

University of Birmingham

Cyclic Proofs for Arithmetical Inductive Definitions
Das, Anupam; Melgaard, Lukas

DOI:
10.4230/LIPIcs.FSCD.2023.27

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Das, A & Melgaard, L 2023, Cyclic Proofs for Arithmetical Inductive Definitions. in M Gaboardi & F van
Raamsdonk (eds), 8th International Conference on Formal Structures for Computation and Deduction (FSCD
2023)., 27, Leibniz International Proceedings in Informatics, LIPIcs, vol. 260, Schloss Dagstuhl, 8th International
Conference on Formal Structures for Computation and Deduction, FSCD 2023, Rome, Italy, 3/07/23.
https://doi.org/10.4230/LIPIcs.FSCD.2023.27

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 28. Apr. 2024

https://doi.org/10.4230/LIPIcs.FSCD.2023.27
https://doi.org/10.4230/LIPIcs.FSCD.2023.27
https://birmingham.elsevierpure.com/en/publications/e3e6060f-1f8d-46bb-9b08-79c6d013e6d3

Cyclic Proofs for Arithmetical Inductive Definitions
Anupam Das #Ñ

University of Birmingham, UK

Lukas Melgaard #

University of Birmingham, UK

Abstract
We investigate the cyclic proof theory of extensions of Peano Arithmetic by (finitely iterated)
inductive definitions. Such theories are essential to proof theoretic analyses of certain “impredicative”
theories; moreover, our cyclic systems naturally subsume Simpson’s Cyclic Arithmetic.

Our main result is that cyclic and inductive systems for arithmetical inductive definitions are
equally powerful. We conduct a metamathematical argument, formalising the soundness of cyclic
proofs within second-order arithmetic by a form of induction on closure ordinals, thence appealing to
conservativity results. This approach is inspired by those of Simpson and Das for Cyclic Arithmetic,
however we must further address a difficulty: the closure ordinals of our inductive definitions
(around Church-Kleene) far exceed the proof theoretic ordinal of the appropriate metatheory (around
Bachmann-Howard), so explicit induction on their notations is not possible. For this reason, we
rather rely on formalisation of the theory of (recursive) ordinals within second-order arithmetic.

2012 ACM Subject Classification Theory of computation → Proof theory

Keywords and phrases cyclic proofs, inductive definitions, arithmetic, fixed points, proof theory

Digital Object Identifier 10.4230/LIPIcs.FSCD.2023.27

Related Version Full Version: https://arxiv.org/abs/2306.08535

Funding This work was supported by a UKRI Future Leaders Fellowship, “Structure vs. Invariants
in Proofs”, project reference MR/S035540/1.

Acknowledgements The authors would like to thank Graham Leigh and Colin Riba for several
interesting conversations about (arithmetical) inductive definitions.

1 Introduction

Cyclic proof theory studies “proofs” whose underlying dependency graph may not be well-
founded, but are nonetheless regular. Soundness for such systems is controlled by an
appropriate “correctness criterion”, usually an ω-regular property on infinite branches,
defined at the level of formula ancestry. Cyclic proofs are a relatively recent development in
proof theory (and related areas), with origins in seminal work of Niwiński and Walukiewicz
for the modal µ-calculus [18]. Inspired by that work, Brotherston and Simpson studied the
extension of first-order logic by (ordinary) inductive definitions [7, 9, 10]. More recently,
Simpson has proposed Cyclic Arithmetic (CA), an adaptation of usual Peano Arithmetic
(PA) to the cyclic setting [21].

One of the recurring themes of cyclic proof theory is the capacity for non-wellfounded
reasoning to simulate inductive arguments with apparently simpler (and often analytic)
invariants. Indeed this difference in expressivity has been made formal in various settings
[3, 6] and has been exploited in implementations [8, 20, 26, 27]. Within the setting of
arithmetic, we have a more nuanced picture: while Simpson showed that CA and PA are
equivalent as theories [21], Das has shown that indeed the logical complexity of invariants
required in CA is indeed strictly simpler than in PA [11]. These arguments typically follow a

© Anupam Das and Lukas Melgaard;
licensed under Creative Commons License CC-BY 4.0

8th International Conference on Formal Structures for Computation and Deduction (FSCD 2023).
Editors: Marco Gaboardi and Femke van Raamsdonk; Article No. 27; pp. 27:1–27:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.das@bham.ac.uk
http://www.anupamdas.com
https://orcid.org/0000-0002-0142-3676
mailto:lxm402@student.bham.ac.uk
https://doi.org/10.4230/LIPIcs.FSCD.2023.27
https://arxiv.org/abs/2306.08535
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Cyclic Proofs for Arithmetical Inductive Definitions

metamathematical approach, formalising the soundness argument of cyclic proofs themselves
within arithmetic and relying on a reflection principle (though there are alternative approaches
too, cf. [4, 5]). Due to the infinitary nature of non-wellfounded proofs and the complexity of
correctness, such arguments require a further detour through the reverse mathematics of
ω-automata theory, cf. [14, 15].

In this work we somewhat bridge the aforementioned traditions in the µ-calculus, first-
order logic with inductive definitions, and arithmetic. In particular we present a cyclic proof
system CID<ω over the language of (finitely iterated) arithmetical inductive definitions: the
closure of the language of arithmetic under formation of (non-parametrised) fixed points.
Such languages form the basis of important systems in proof theory, in particular ID<ω,
which allows for an ordinal analysis of impredicative second-order theories such as Π1

1-CA0.
Our cyclic system CID<ω over this language is essentially recovered by directly importing
analogous definitions from the µ-calculus and first-order inductive definitions.

Our main result is the equivalence between CID<ω and its inductive counterpart ID<ω.
While subsuming inductive proofs by cyclic proofs is a routine construction, the converse
direction constitutes a generalisation of ideas from the setting of arithmetic, cf. [21, 11].
One particular nuance here is that the soundness of cyclic proofs with forms of inductive
definitions typically reduces to a form of induction on the corresponding closure ordinals. For
the setting of even unnested inductive definitions, ID1, closure ordinals already exhaust all
the recursive ordinals (up to Church-Kleene, ωCK

1). On the other hand the proof theoretical
ordinal of ID1 is only the Bachmann-Howard ordinal, so we cannot formalise the required
induction principle on explicit ordinal notations. Instead we rely on a (known) formalisation
of (recursive) ordinal theory within appropriate fragments of second-order arithmetic.

This paper is structured as follows. In Section 2 we recall the syntax and semantics of
first-order logic with inductive definitions, as well as the Knaster-Tarski fixed point theorem
specialised to P(N). In Section 3 we recall PA and ID<ω, recast in the sequent calculus to
facilitate the definition of CID<ω. The latter is presented in Section 4 where we also show its
simulation of ID<ω. In Section 5 we show that the system CID<ω is indeed sound for the
standard model. In Sections 6 and 7 we formalise aspects of inductive definitions, truth,
order theory and fixed point theory within suitable fragments of second-order arithmetic.
Finally in Section 8 we present the converse simulation, from CID<ω to ID<ω, by essentially
arithmetising the soundness argument of Section 5.

Due to space constraints, most proofs and auxiliary material are omitted.

2 Syntax and semantics of arithmetical inductive definitions

2.1 First-order logic (with equality)
In this work we shall work in predicate logic over various languages, written L,L′ etc. We
write x, y etc. for (first-order) variables and s, t etc. for terms, and φ,ψ etc. for formulas
(including equality). For later convenience, we shall write formulas in De Morgan normal
form, with negations only in front of atomic formulas. I.e. formulas are generated from
“atomic” formulas P (⃗t),¬P (⃗t), s = t,¬s = t under ∨,∧,∃,∀. From here we use standard
abbreviations for negation and other connectives.

In order to interpret “inductive definitions” in the next section, it will be useful to consider
a variation of usual Henkin semantics that interprets (relativised) formulas as operators on a
structure. Given a language L, We write L(X) for the extension of L by the fresh predicate
symbol X. For instance formulas of L(X), where X is unary, include all those of L, new
“atomic” formulas of the form X(t) and ¬X(t), and are closed under usual logical operations.

A. Das and L. Melgaard 27:3

Fix a language L and L-structure M with domain M . Let X be a fresh k-ary predicate
symbol and let x⃗ = x1, . . . , xl be distinguished variables. Temporarily expand L to include
each a ∈M as a constant symbol and each A ⊆Mk as a predicate symbol and fix aM := a

and AM := A. We interpret formulas φ(X, x⃗) of L(X) as functions φM : P(Mk)→ P(M l)
by setting a⃗ ∈ φM(A) just if M ⊨ φ[A/X][⃗a/x⃗].

Let us call a formula φ(X) positive in X if it has no subformula of the form ¬X (⃗t). The
following result motivates the “positive inductive definitions” we consider in the next section:

▶ Proposition 2.1 (Positivity implies monotonicity). Let L, M, X, x⃗ be as above. If φ, a
formula of L(X), is positive in X then φM is monotone: A ⊆ B =⇒ φM(A) ⊆ φM(B).

Proof idea. By straightforward induction on the structure of φ. ◀

2.2 Languages of arithmetic and (finitely iterated) inductive definitions
The language of arithmetic (with inequality) is LA := {0, s,+,×, <}. Here, as usual, 0 is a
constant symbol (i.e. a 0-ary function symbol), s is a unary function symbol, + and × are
binary function symbols, and < is a binary relation symbol.

Throughout this paper we shall work with (certain extensions of) LA:

▶ Definition 2.2 ((Finitely iterated) inductive definitions). L<ω is the smallest language
containing LA and closed under:

if φ is a formula of L<ω(X) positive in X, for X a fresh unary predicate symbol, and x
is a distinguished variable, then Iφ,X,x is a unary predicate symbol of L<ω.

Note that we only take the case that X is unary above since we can always code k-ary
predicates using unary ones within arithmetic. When X,x are clear from context, we shall
simply write Iφ instead of Iφ,X,x. We shall also frequently suppress free variables and
parameters (i.e. predicate symbols), e.g. writing interchangably φ(X,x) and φ, when it is
convenient and unambiguous.

Let us introduce some running examples for this work.

▶ Example 2.3 (Naturals, evens and odds). We define the following formulas of LA(X):
n(X,x) := x = 0 ∨ ∃y(X(y) ∧ x = sy).
e(X,x) := x = 0 ∨ ∃y(X(y) ∧ x = ssy).
o(X,x) := x = 1 ∧ ∃y(X(y) ∧ x = ssy) (where 1 := s0).

By definition L<ω contains the symbols N := In, E := Ie and O := Io. Now, writing,
m(X,x) := e(X,x) ∨ (∀y(E(y)→ X(y)) ∧ x = 1)

we also have that M := Im is a symbol of L<ω, by the closure property of the language.

All our theories are interpreted by the “standard model” of arithmetic N = (0, s,+,×, <),
which we extend to a L<ω-structure by:

INφ,X,x :=
⋂
{A ⊆ N : φN(A) ⊆ A}

2.3 On Knaster-Tarski: inductive definitions as fixed points
We conclude this section by making some comments about the interpretation of inductive
definitions as fixed points. Let us first state a version of the well-known Knaster-Tarski
theorem specialised to the setting at hand:

▶ Proposition 2.4 (Knaster-Tarski on P(N)). Let F : P(N) → P(N) be monotone, i.e.
A ⊆ B ⊆ N =⇒ F (A) ⊆ F (B). Then F has a least fixed point µF and a greatest fixed point
νF . Moreover, we have: µF =

⋂
{A ⊆ N : F (A) ⊆ A} and νF =

⋃
{A ⊆ N : A ⊆ F (A)}.

FSCD 2023

27:4 Cyclic Proofs for Arithmetical Inductive Definitions

We shall henceforth adopt the notation of the theorem above, writing µF and νF for the
least and greatest fixed point of an operator F , when they exist.

In light of Proposition 2.1 we immediately have:

▶ Corollary 2.5. INφ = µφN, i.e. INφ is the least fixed point of φN : P(N)→ P(N).

▶ Example 2.6 (Naturals, evens and odds: interpretation). Revisiting Example 2.3 we have:
NN = N
EN = E := {2n : n ∈ N}
ON = O := {2n+ 1 : n ∈ N}

It turns out that also MN = N. While this is readily verifiable with the current definitions,
we shall delay a justification of this until we have built up some more technology.

Let us point out that the syntax of L<ω also allows the formation of greatest fixed points,
by appealing to duality via negation, but we omit such considerations here.

It is well known that least (and greatest) fixed points can be approximated “from
below” (and “from above”, respectively) via the notion of (ordinal) approximant. For any
F : P(N)→ P(N), let us define by transfinite induction,

F 0(A) := A

Fα+1(A) := F (Fα(A))
Fλ(A) :=

⋃
α<λ

Fα(A) if λ is a limit ordinal
(1)

By appealing to the transfinite pigeonhole principle we have:

▶ Proposition 2.7. For F : P(N)→ P(N) monotone, there is an ordinal α s.t. µF = Fα(∅).

Indeed we may assume that such α is countable and, by the well-ordering principle, there is
indeed a least such α satisfying the proposition above.

▶ Example 2.8 (Naturals, evens and odds: closure ordinals). Revisiting Example 2.3 again, it
is not hard to see that the approximants of nN, eN, oN are respectively:

(nN)0(∅) = ∅
(nN)1(∅) = {0}
(nN)2(∅) = {0, 1}

...
(nN)ω(∅) = N

(eN)0(∅) = ∅
(eN)1(∅) = {0}
(eN)2(∅) = {0, 2}

...
(eN)ω(∅) = E

(oN)0(∅) = ∅
(oN)1(∅) = {1}
(oN)2(∅) = {1, 3}

...
(oN)ω(∅) = O

Note that for each of these operators we reached the (least) fixed point for the first time at
stage ω. We say that ω is the closure ordinal of these operators.

Now, returning to the formula m(X,x), let us finally compute its least fixed point in N

by the method of approximants:

(mN)0(∅) = ∅
(mN)1(∅) = {0}
(mN)2(∅) = {0, 2}

...

(mN)ω(∅) = E
(mN)ω+1(∅) = E ∪ {1}
(mN)ω+2(∅) = E ∪ {1, 3}

...

(mN)ω2(∅) = E ∪O = N

Thus indeed INm = N, but this time with closure ordinal ω2.

A. Das and L. Melgaard 27:5

id
Γ, φ⇒ ∆, φ

Γ⇒ ∆
w

Γ,Γ′ ⇒ ∆,∆′

Γ⇒ ∆
θ

θ(Γ)⇒ θ(∆)
Γ⇒ ∆, φ Γ, φ⇒ ∆

cut
Γ⇒ ∆

Γ⇒ ∆, χ
¬-l

Γ,¬χ⇒ ∆
Γ, φ⇒ ∆ Γ, ψ ⇒ ∆

∨-l
Γ, φ ∨ ψ ⇒ ∆

Γ⇒ ∆, φ, ψ
∨-r

Γ⇒ ∆, φ ∨ ψ
Γ, χ⇒ ∆

¬-r
Γ⇒ ∆,¬χ

Γ⇒ ∆, φ Γ⇒ ∆, ψ
∧-r

Γ⇒ ∆, φ ∧ ψ
Γ, φ, ψ ⇒ ∆

∧-l
Γ, φ ∧ ψ ⇒ ∆

Γ⇒ ∆, φ[y/x]
∀-r y fresh

Γ⇒ ∆,∀xφ
Γ, φ(t)⇒ ∆

∀-l
Γ,∀xφ(x)⇒ ∆

Γ, φ[y/x]⇒ ∆
∃-l y fresh

Γ,∃xφ⇒ ∆
Γ⇒ ∆, φ(t)

∃-r
Γ⇒ ∆,∃xφ(x)

Γ(s, t)⇒ ∆(s, t)
=-l

Γ(t, s), s = t⇒ ∆(t, s)
=-r

Γ⇒ ∆, t = t

Figure 1 The sequent calculus LK= for first-order logic with equality. θ is always a substitution,
i.e. a map from variables to terms, extended to formulas and cedents in the expected way. χ is
always an atomic formula P (⃗t) or s = t.

3 Arithmetical theories of inductive definitions

Thusfar we have only considered the language of arithmetic and inductive definitions (“syn-
tax”) and structures over these languages (“semantics”). We shall now introduce theories
over these languages, in particular setting them up within a sequent calculus system, in order
to facilitate the definition of the non-wellfounded and cyclic systems we introduce later.

▶ Definition 3.1 (Sequent calculus for PA). A sequent is an expression Γ⇒ ∆ where Γ and
∆ are sets of formulas (sometimes called cedents).1 The calculus LK= for first-order logic
with equality and substitution is given in Figure 1.

The sequent calculus for PA extends LK= by initial sequents for all axioms of Robinson
Arithmetic Q, as well as the induction rule:

Γ⇒ ∆, φ(0) Γ, φ(y)⇒ ∆, φ(sy)
ind y fresh

Γ⇒ ∆, φ(t)

We will present some examples of proofs shortly, but first let us develop the implementation
of the first-order theories we consider within the sequent calculus.

3.1 Theory of (finitely iterated) inductive definitions
ID<ω is a L<ω-theory that extends PA by (the universal closures of):2

(Pre-fixed) ∀x(φ(Iφ, x)→ Iφ(x))
(Least) ∀x(φ(ψ, x)→ ψ(x))→ ∀x(Iφ(x)→ ψ(x))

for all formulas φ(X,x) positive in X.

1 The symbol ⇒ is just a syntactic delimiter, but is suggestive of the semantic interpretation of sequents.
2 Formally, we include instances of the induction schema for all formulas φ in the extended language too.

FSCD 2023

27:6 Cyclic Proofs for Arithmetical Inductive Definitions

Note that, while the first axiom states that Iφ is a pre-fixed point of φ(−), the second
axiom (schema) states that Iφ is least among the (arithmetically definable) pre-fixed points.
As before, we implement this theory within the sequent calculus:

▶ Definition 3.2 (Sequent calculus for ID<ω). The sequent caclulus for ID<ω extends that for
PA by the rules:

Γ, φ(Iφ, t)⇒ ∆
Iφ-l

Γ, Iφ(t)⇒ ∆
Γ⇒ ∆, φ(Iφ, t)

Iφ-r
Γ⇒ ∆, Iφ(t)

(2)

Γ, φ(ψ, y)⇒ ∆, ψ(y) Γ, ψ(t)⇒ ∆
ind(φ) y fresh

Γ, Iφ(t)⇒ ∆
(3)

3.2 Examples
In this subsection we consider some examples of sequent proofs for ID<ω.

Note that the Iφ-r and ind(φ) rules correspond respectively to the axioms we gave for
ID<ω. The Iφ-l rule, morally stating that Iφ is a post-fixed point of φ(−), does not correspond
to any of the axioms. In fact we may consider it a form of “syntactic sugar” that will be
useful for defining our cyclic systems later:

▶ Example 3.3 (Post-fixed point). We can derive the Iφ-l rule from the other two as follows:

id
φ(Iφ, y)⇒ φ(Iφ, y)

Iφ-r
φ(Iφ, y)⇒ Iφ(y)

φ

φ(φ(Iφ), y)⇒ φ(Iφ, y) Γ, φ(Iφ, t)⇒ ∆
ind(φ)

Γ, Iφ(t)⇒ ∆

where the derivation marked φ (“functoriality”) is obtained by structural induction on φ.

▶ Example 3.4 (Subsuming numerical induction). Recalling the inductive predicate N from
Example 2.3, the usual induction rule of PA is an immediate consequence of ∀xN(x):

Γ⇒ ∆, φ(0)
=
z = 0,Γ⇒ ∆, φ(z)

Γ, φ(y)⇒ ∆, φ(sy)
=
z = sy,Γ, φ(y)⇒ ∆, φ(z)

∃,∨
Γ, n(φ, z)⇒ ∆, φ(z)

id
φ(t)⇒ φ(t)

ind(n)
Γ, N(t)⇒ ∆, φ(t)

∀xN(x)
Γ⇒ ∆, φ(t)

4 Cyclic proofs for the theory of (finitely iterated) inductive definitions

In this section we introduce our “cyclic” version of the theory ID<ω, based on ideas from the
modal µ-calculus [18, 25, 2] and calculi of first-order logic with inductive definitions [7, 9, 10].

4.1 Non-wellfounded and cyclic proofs
The “non-wellfounded derivations” we consider will be potentially infinite proofs (of height
≤ ω) generated coinductively from the rules of the calculus. More formally:

A. Das and L. Melgaard 27:7

▶ Definition 4.1 (Preproofs). A (infinite, binary) tree is a prefix-closed (potentially infinite)
subset of {0, 1}∗. A preproof π in a system L is a map from a tree Tπ (the support of π)
to inference steps of L such that, whenever π(v) has premisses S1, . . . , Sn, v has precisely n
children3 v1, . . . , vn ∈ Tπ where π(v1), . . . , π(vn) have conclusions S1, . . . , Sn respectively.

Given some u ∈ Tπ, we write πu for the preproof with support Tπu = {v : uv ∈ Tπ}
given by πu(v) := π(uv). We call such πu a sub-preproof of π. If π has only finitely many
sub-preproofs, we call it regular or cyclic.

Regular preproofs π can be represented as a finite (possibly cyclic) graph in the expected
way, by simply quotienting Tπ by the relation ∼⊆ Tπ × Tπ given by u ∼ v if πu = πv. Let
us now set up our principal system of interest:

▶ Definition 4.2 (Rules for preproofs). The system LID−
<ω extends LK= by:

initial sequents ⇒ φ for each axiom φ of Q; and,
the rules Iφ-l and Iφ-r from (2); and,

the following additional rule: N

Γ⇒ ∆, N(t)

The “−” superscript in LID−
<ω indicates that we do not include the ind(φ) rules in this

system. Note in the definition above that, in light of Example 3.4, we have chosen to simplify
our system by omitting an explicit rule for numerical induction and instead simply including
a rule that insists that our domain consists only of natural numbers. This streamlines the
resulting definition of “progressing trace”:

▶ Definition 4.3 (Traces and progress). Fix a LID−
<ω-preproof π and (vi)i∈ω an infinite branch

along Tπ. A trace along (vi)i∈ω is a sequence of formulas (φi)i≥k, with each φi occurring on
the LHS of π(vi), such that for all i ≥ k:

π(vi) is not a substitution step and φi+1 = φi; or,
π(vi) is a θ-substitution step and θ(φi+1) = φi; or,
π(vi) is a = -l step with respect to s = t and, for some ψ(x, y), we have φi+1 = ψ(s, t)
and φi = ψ(t, s); or,
φi is the principal formula of π(vi) and φi+1 is auxiliary.

We say that φk+1 is an immediate ancestor of φk if they extend to some trace (φi)i≥k. A
trace (φi)i≥k is progressing if it is principal infinitely often.

▶ Definition 4.4 (Non-wellfounded proofs). A (non-wellfounded) LID−
<ω-proof is a LID−

<ω-
preproof π for which each infinite branch has a progressing trace. We also say that π is
progressing in this case. If π is regular, we call it a cyclic proof.

We write LID−
<ω ⊢nwf φ or LID−

<ω ⊢cyc φ if there is a non-wellfounded or cyclic, respect-
ively, LID−

<ω-proof of φ. We write CID<ω for the class of cyclic LID−
<ω-proofs.

Many of the basic results and features of non-wellfounded and cyclic proofs for arithmetic
from [21, 11] are present also in our setting, and we point the reader to those works for
several examples further to those we give here.

3 Implicit here is the assumption that all rules of L have at most two premisses, so n ≤ 2. This assumption
covers all systems in this work.

FSCD 2023

27:8 Cyclic Proofs for Arithmetical Inductive Definitions

▶ Example 4.5 (Naturals, evens and odds: proving relationships). Let us revisit once more
Example 2.3. Several examples about the relationships between N,E,O for a similar
framework of first-order logic with inductive definitions are given in [7, 9, 10], in particular
including ones with complex cycle structure. Here we shall instead revisit the relationship
between the inductive predicates M and N .

Recall that we showed in Example 2.8 that N and M compute the same set, namely N,
in the standard model. We can show this formally within CID<ω by means of cyclic proofs.
For the direction M ⊆ N :

N(0)
x = 0 ⇒ N(x)

...
Im-l •

M(x) ⇒ N(x)
[y/x]

M(y) ⇒ N(y)
N(ss)

M(y) ⇒ N(ssy)
=,∧,∃

∃y(x = ssy ∧M(y)) ⇒ N(x)
∨-l

e(M,x) ⇒ N(x)

N(1)
x = 1 ⇒ N(1)

w,∧
∀y(E(y) → M(y)) ∧ x = 1 ⇒ N(x)

∨-l
m(M,x) ⇒ N(x)

Im-l •
M(x) ⇒ N(x)

where the derivations marked N(0), N(ss), N(1) all have simple finite proofs by unfolding
N on the RHS. Again we indicate by • roots of identical subproofs, and the only infinite
branch, looping on •, has progressing trace in blue.

4.2 Simulating inductive proofs
Our cyclic system CID<ω subsumes ID<ω by a standard construction:

▶ Theorem 4.6 (Induction to cycles). If ID<ω ⊢ φ then CID<ω ⊢ φ.

Proof sketch. We proceed by induction on the structure of a ID<ω proof. The critical step
is ind(φ), for which we do not have a corresponding rule in LID−

<ω. We simulate this rule by,

...
Iφ-l •

Γ, Iφ(t)⇒ ∆, ψ(t)
φ

Γ, φ(Iφ, t)⇒ ∆, φ(ψ, t)
Γ, φ(ψ, y)⇒ ∆, ψ(y)

[t/y]
Γ, φ(ψ, t)⇒ ∆, ψ(t)

cut
Γ, φ(Iφ, t)⇒ ∆, ψ(t)

Iφ-l •
Γ, Iφ(t)⇒ ∆, ψ(t) Γ, ψ(t)⇒ ∆

cut
Γ, Iφ(t)⇒ ∆

where • marks roots of identical subproofs and the derivation marked φ is obtained by
induction on the structure of φ. Any infinite branch is either progressing by the induction
hypothesis, or loops infinitely on • and has the progressing trace coloured in blue. ◀

Of course, the converse result is much harder (and, indeed, implies soundness of cyclic proofs).

4.3 About traces
Our notion of (progressing) trace may seem surprisingly simple to the seasoned cyclic proof
theorist, when comparing to analogous conditions in similar logics such as the µ-calculus
requiring complex “signatures”, e.g. [18, 25, 2]. However this simplicity arises naturally from
the way we have formulated our syntax. Let us take some time to detail some of properties
of (progressing) traces that will facilitate our soundness argument later.

A. Das and L. Melgaard 27:9

Write I for the set of inductive predicates of L<ω (i.e. the set of symbols Iφ). Write <
for the smallest transitive relation on I satisfying:

if Iφ occurs in ψ(X,x) then Iφ < Iψ.
By the inductive definition of the language L<ω, it is immediate that < is a well-founded
relation on I. In what follows, we shall extend < arbitrarily to a (total) well-order on I, so
as to freely use of terminology peculiar to linear orders.
▶ Proposition 4.7 (Properties of progressing traces). Let (τi)i≥k be a progressing trace. There
is a (unique) inductive predicate symbol Iψ and some k′ ≥ k such that:
1. τi is of the form Iψ(t) and principal for infinitely many i ≥ k;
2. Iψ occurs positively in each τi, for i ≥ k′;
3. for any j ≥ k′ and Iχ occurring in τj, we have Iχ ≤ Iψ.

5 Soundness of non-wellfounded proofs

The main goal of this section is to prove the following result:
▶ Theorem 5.1 (Soundness). If LID−

<ω ⊢nwf φ then N ⊨ φ.
Before proving this, it is convenient to omit consideration of substitutions in preproofs:

▶ Proposition 5.2 (Admissibility of substitution). If there is a (non-wellfounded) LID−
<ω-proof

of a sequent Γ⇒ ∆, then there is one not using the substitution rule.

5.1 Satisfaction with respect to approximants
Before proceeding, let us build up a little more theory about approximants of (least) fixed
points. Let us temporarily expand the language L<ω to include, for each inductive predicate
symbol Iφ and each ordinal α a symbol Iαφ . We do not consider these symbols “inductive
predicates”, but rather refer to them as approximant symbols. In the standard model, using
the notation of Section 2, we set (Iαφ)N := (φN)α(∅).

For a formula φ of L<ω whose <-greatest inductive predicate in positive position is Iψ,
we write φα for the formula obtained from φ by replacing each positive occurrence of Iψ by
Iαψ . As an immediate consequence of the characterisation of least fixed points by unions of
approximants, Proposition 2.7, we have:
▶ Corollary 5.3 (of Proposition 2.7). If N ⊨ φ then there is an ordinal α such that N ⊨ φα.

Note that, as a consequence of positivity implying monotonicity, we also have:
▶ Corollary 5.4 (of Proposition 2.1). If α ≤ β then N ⊨ φα → φβ.

Finally, let us point out that, by the definition of the inflationary construction in
Equation (1), if tN ∈ µφN, then the least ordinal α with tN ∈ (φN)α must be a successor
ordinal. Albeit rather immediate, we better state the following consequence of this reasoning:
▶ Observation 5.5. If α, β are least s.t. N ⊨ Iαφ (t) and N ⊨ φ(Iβφ , t) respectively, then β < α.

5.2 Building countermodels
An assignment is a (partial) map ρ from variables to natural numbers. If φ is a formula and
ρ : FV(φ) → N, we define N, ρ ⊨ φ (or simply ρ ⊨ φ) by simply interpreting free variables
under ρ in N. Formally, N, ρ ⊨ φ if N ⊨ φ [ρ(x)/x]x∈FV(φ).4

4 Note here we are implicitly identifying natural numbers with their corresponding numerals.

FSCD 2023

27:10 Cyclic Proofs for Arithmetical Inductive Definitions

As a consequence of local soundness of the rules, as well as preserving truth we have that
rules “reflect” falsity. In fact we can say more:

▶ Lemma 5.6 (Reflecting falsity). Fix an inference step:

Γ1 ⇒ ∆1 · · · Γn ⇒ ∆n
r

Γ⇒ ∆
(4)

If ρ ⊨
∧

Γ and ρ ⊭
∨

∆ then there is an assignment ρ′ and premiss Γ′ ⇒ ∆′ with:
1. ρ′ extends ρ, i.e. ρ′(x) = ρ(x) for any x in the domain of ρ;
2. ρ′ ⊨

∧
Γ′ and ρ′ ⊭

∨
∆′;

3. if ψ ∈ Γ′ is an immediate ancestor of φ ∈ Γ then either:
a. I, I ′ are the greatest inductive predicates occurring in φ,ψ resp. and I ′ < I; or,
b. For any ordinal α, we have ρ ⊨ φα =⇒ ρ′ ⊨ ψα.

The proof is similar to analogous results in [21, 11], however we must also take care to
maintain the invariant Item 3 during the construction. An important distinction here is
that, for Item 3b, we must find the least ordinal approximating the principal formula of,
say a ∨-left step, and evaluate auxiliary formulas with respect to this ordinal in order to
appropriately choose the correct premiss. The required property then follows by monotonicity,
Proposition 2.1, and the fact that approximants form an increasing chain, cf. Equation (1).
The necessity of this consideration is similar to (but somewhat simpler than) analogous issues
arising in the cyclic proof theory of the modal µ-calculus, cf. [18, 25, 2].

5.3 Putting it all together

We are now ready to prove the main result of this section.

Proof of Theorem 5.1. Let π be a (non-wellfounded) LID−
<ω proof of the sequent ⇒ φ and

suppose, for contradiction, that N ⊭ φ. We define a branch (vi)i<ω and assignments (ρi)i<ω
by setting:

ρ0 := ∅ and v0 := ε (the root of π);5

appealing to Lemma 5.6, if π(vi) has form (4), we set vi+1 s.t. π(vi+1) has conclusion
Γ′ ⇒ ∆′ and ρi+1 := ρ′

i.

By assumption that π is progressing, let (τi)i≥k be a progressing trace along (vi)i<ω, and
let αi be the least ordinals such that N ⊨ ταi

i for i ≥ k.
Now, let k′ ≥ k and Iψ be obtained from (τi)i≥k by Proposition 4.7. By Items 2 and 3

of Proposition 4.7 we have that Iψ is the greatest inductive predicate occurring (positively)
in each τi, for i ≥ k′, and so Item 3a of Lemma 5.6 never applies (for i ≥ k′). Thus, by
Proposition 2.1, we have αi+1 ≤ αi for i ≥ k′.

On the other hand, at any Iψ-l step where τi is principal, for i ≥ k′, we must have that
αi+1 < αi by Observation 5.5. Since this happens infinitely often, by Item 1 of Proposition 4.7,
we conclude that (αi)i≥k′ is a monotone non-increasing sequence of ordinals that does not
converge, contradicting the well-foundedness of ordinals. ◀

5 We assume here that φ is closed, i.e. has no free variables.

A. Das and L. Melgaard 27:11

6 Inductive definitions and truth in second-order arithmetic

The remainder of this paper is devoted to proving the converse of Theorem 4.6. For this,
we are inspired by the ideas of previous work [21, 11], using “second-order” theories to
formalise the metatheorems of cyclic systems (namely soundness), and then appealing to
conservativity results. However the exposition here is far more involved than the analogous
ones for arithmetic. For this reason, we rather rely on a formalisation of the “theory of
recursive ordinals” (with parameters) in Π1

1-CA0, and formalise the soundness argument
abstractly in this way.

6.1 Subsystems of second-order arithmetic and inductive definitions
We shall work with common subsystems of second-order arithmetic, as found in textbooks
such as [22], and assume basic facts about them.

In particular, recall that ACA0 is a two-sorted extension of basic arithmetic by:
Arithmetical comprehension. ∃X∀x(X(x)↔ φ(x)) for each arithmetical formula φ(x).
Set induction. ∀X(X(0)→ ∀x(X(x)→ X(sx))→ ∀xX(x))

From here Π1
1-CA0 is the extension of ACA0 by the comprehension schema for all Π1

1
formulas. It is well-known that Π1

1-CA0 proves also the Σ1
1-comprehension scheme, a fact

that we shall freely use, along with other established principles, e.g. from [22].
We can interpret L<ω into the language of second-order arithmetic by:

Iφ(t) := ∀X((∀xφ(X,x)→ X(x))→ X(t)) (5)

This interpretation induces a bona fide (and well-known) encoding of ID<ω within Π1
1-CA0, and

we shall henceforth freely use (arithmetical) inductive predicates when working within Π1
1-CA0,

always understanding them as abbreviations under (5). In fact, we can make a stronger
statement. Not only does Π1

1-CA0 extend ID<ω arithmetically, it does so conservatively:

▶ Theorem 6.1 (E.g., [12]). Π1
1-CA0 is arithmetically conservative over ID<ω.

This is a nontrivial but now well-known result in proof theory whose details we shall not
recount. We will use this result as a “black box” henceforth.

6.2 Satisfaction as an inductive definition
As usual, there is no universal (first-order) truth predicate for a predicate language, for
Tarskian reasons. However we may define partial truth predicates for fragments of the
language. In a language closed under inductive definitions, this is particularly straightforward
since satisfaction itself is inductively defined (at the meta level). In what follows we will
employ standard metamathematical notations and conventions for coding, e.g. we write ⌜E⌝
for the Gödel code of an expression E. Also, when it is not ambiguous, we shall typically use
the same notation for meta-level objects/operations and their object-level (manipulations
on) codes, as a convenient abuse of notation.

▶ Proposition 6.2 (Formalised relative satisfaction). Let X⃗ = X1, . . . , Xk be a sequence of set
symbols. There is a Π1

1 formula SatX⃗(ρ,m, A⃗) such that Π1
1-CA0 proves the characterisation

in Figure 2 for φ,ψ ranging over arithmetical formulas over X⃗.

▶ Corollary 6.3 (Reflection, Π1
1-CA0). For any arithmetical formula φ(X⃗, x⃗) with all free

first-order variables displayed, we have SatX⃗(ρ, ⌜φ(X⃗, x⃗)⌝, A⃗)↔ φ(A⃗, ρ(x⃗)).

FSCD 2023

27:12 Cyclic Proofs for Arithmetical Inductive Definitions

∀ρ,m, A⃗

SatX⃗(ρ,m, A⃗) ↔

m = ⌜s = t⌝ ∧ ρ(s) = ρ(t)
∨ m = ⌜s < t⌝ ∧ ρ(s) < ρ(t)
∨ m = ⌜φ ∨ ψ⌝ ∧

(
SatX⃗(ρ, ⌜φ⌝, A⃗) ∨ SatX⃗(ρ, ⌜ψ⌝, A⃗)

)
∨ m = ⌜φ ∧ ψ⌝ ∧

(
SatX⃗(ρ, ⌜φ⌝, A⃗) ∧ SatX⃗(ρ, ⌜ψ⌝, A⃗)

)
∨ m = ⌜∃xφ⌝ ∧ ∃nSatX⃗(ρ{x 7→ n}, ⌜φ⌝, A⃗)
∨ m = ⌜∀xφ⌝ ∧ ∀nSatX⃗(ρ{x 7→ n}, ⌜φ⌝, A⃗)

∨
k∨

i=1
(m = ⌜Xi(t)⌝ ∧ ρ(t) ∈ Ai)

∨
k∨

i=1
(m = ⌜¬Xi(t)⌝ ∧ ρ(t) /∈ Ai)

Figure 2 Inductive characterisation of the satisfaction predicate.

7 Approximants and transfinite recursion in second-order arithmetic

Throughout this section we shall fix a list X⃗ of set variables that may occur as parameters
in all formulas. We shall almost always suppress them. We work within Π1

1-CA0 throughout
this section, unless otherwise stated.

7.1 Order theory and transfinite recursion in second-order arithmetic
We assume some basic notions for speaking about (partial) (well-founded) orders in second-
order arithmetic, and some well-known facts about them. Definitions and propositions in
this section have appeared previously in the literature, e.g., [22].

A (binary) relation is a set symbol R, construed as a set of pairs, with domain |R| :=
{x : R(x, x)}. We write simply x ≤R y for x ∈ |R| ∧ y ∈ |R| ∧R(x, y) and x <R y := x ≤R
y ∧ ¬x = y. We write:

LO(R) for an arithmetical formula stating that <R is a linear order on |R|.
WF(R) for a Π1

1-formula stating that <R is well-founded on |R|.
WO(R) := LO(R) ∧WF(R). (“R is a well-order”)
R <WO R′ if WO(R),WO(R′) and there is an order preserving bijection from R onto a
proper initial segment of R′. (<WO is provably ∆1

1 within Π1
1-CA0).

We have, already in ACA0, transfinite induction (for sets) over any well-order:

▶ Proposition 7.1. ∀X,R(WO(R)→ ∀a ∈ |R| (∀b <R aX(b)→ X(a))→ ∀a ∈ |R|X(a))

More importantly we have that the class of well-orders itself is well-founded under comparison:

▶ Proposition 7.2 (Well-orders are well-ordered, ATR0). If F : N→WO then there is n ∈ N
with F (n+ 1) ̸<WO F (n)

An important principle within Π1
1-CA0 is arithmetical transfinite recursion (ATR). Since

we shall need to later bind the well-order over which recursion takes place, we better develop
the principle explicitly.

▶ Definition 7.3 (Approximants). Let φ(X,x) be arithmetical and R a relation. We define:

IRφ (a, x) := ∃F ⊆ |R| × N (∀b ∈ |R| ∀y (F (b, y)→ ∃c <R b φ(F (c), y)) ∧ F (a, x))

A. Das and L. Melgaard 27:13

Intuitively we may see IRφ (a) as the union of a family of sets F (b), indexed by b <R a,
satisfying F (b) =

⋃
c<Rb

φ(F (c)), here construing φ(−) as an operation on sets. The notation

we have used is suggestive: the point of this section is to characterise inductive definitions in
terms of approximants given by transfinite recursion.

Note that IRφ is a Σ1
1-formula. The following is well-known:

▶ Proposition 7.4 (Bounded recursion). Let φ(X,x) be an arithmetical formula and suppose
WO(R). IRφ is a set (uniquely) satisfying:

∀a ∈ |R| ∀x (IRφ (a, x)↔ ∃b <R aφ(IRφ (b), x))
(

i.e. IRφ (a) =
⋃
b<Ra

φ(IRφ (b))
)

(6)

As a consequence of transfinite induction, Proposition 7.1 we have:

▶ Corollary 7.5. Let φ(X,x) be arithmetical and positive in X, and suppose WO(R). We
have ∀a <R b∀x(IRφ (a, x)→ IRφ (b, x)).

Intuitively the above statement tells us that IRφ (−) forms an increasing chain along R.
Henceforth we write IRφ (x) := ∃a ∈ |R| IRφ (a, x) which, with R occurring as a parameter,

is again a Σ1
1 formula.

7.2 Formalising recursive ordinals and approximants
Π1

1-CA0 is not strong enough a theory to characterise inductive definitions by limits of
approximants, in general. However, when the closure ordinals of inductive definitions are
recursive, they may be specified by finite data and duly admit such a characterisation within
Π1

1-CA0. This subsection is devoted to a development of this characterisation; the definitions
and propositions have appeared previously in the literature, e.g., [12, 13].

Let us fix a recursive enumeration of Σ0
1-formulas with free (first-order) variables among

x, y, and write α, β etc. to range over their Gödel codes. Thanks to a (relativised) universal
Σ0

1-formula, we can readily evaluate (the codes of) Σ0
1 formulas already within RCA0. In this

way we may treat α, β etc. as binary relations, and duly extend the notations of the previous
subsections approriately, e.g. freely writing |α|,≤α, <α,LO(α),WF(α),WO(α), α <WO β, Iαφ .

▶ Definition 7.6 (Recursive ordinals). Write O := {α : WO(α)}, obtained by Π1
1-

comprehension, and α <O β for O(α) ∧ O(β) ∧ α <WO β.
We also write IO

φ (x) := ∃α ∈ O Iαφ (x).

Of course, well-foundedness of O under <O is directly inherited from well-foundedness of
WO under <WO, Proposition 7.2. Note that IO

φ (x) is again a Σ1
1-formula, and so we have

access to IO
φ as a set within Π1

1-CA0. In fact we even have access to the restriction I−
φ (−) ⊆

O × N again by Σ1
1-comprehension. As a result we can give a recursive characterisation of

IO
φ similar to Proposition 7.4 but at the level of O:

▶ Proposition 7.7 (Recursion). Let φ(X,x) be arithmetical and positive in X. We have:

∀α ∈ O ∀x (Iαφ (x)↔ ∃β <O αφ(Iβφ , x))

i.e. Iαφ =
⋃

β<Oα

φ(Iβφ)

 (7)

The following are well-known properties about O:

FSCD 2023

27:14 Cyclic Proofs for Arithmetical Inductive Definitions

▶ Proposition 7.8 (Properties of O). We have the following:
1. (Increase) ∀α ∈ O ∃β ∈ O α <O β.
2. (Collection) ∀x∃α ∈ Oφ→ ∃β ∀x∃α <O β φ.

Turning back to positive formulas again, we have the following useful consequence:

▶ Corollary 7.9. Let φ(X,x) and ψ(X) be arithmetical and positive in X. ψ(IO
φ)→ ∃αψ(Iαφ).

7.3 Characterising inductive definitions as limits of approximants
The main result of this section is:

▶ Theorem 7.10 (Characterisation). ∀x(Iφ(x)↔ IO
φ (x)) (i.e. Iφ = IO

φ).

Proof sketch. For (→), it suffices to show that IO
φ is a prefixed point of φ(−):6

φ(IO
φ) ⊆ φ(Iαφ) for some α, by Corollary 7.9

φ(IO
φ) ⊆ Iβφ for some β >WO α by Propositions 7.7 and 7.8

φ(IO
φ) ⊆ IO

φ by definition of IO
φ

Iφ ⊆ IO
φ ∵ Π1

1-CA0 proves Iφ is least among pre-fixed points

Note here it is crucial that we have access to IO
φ as a set, thanks to Σ1

1-comprehension.
For (←), we show Iαφ (a) ⊆ IO

φ (i.e. ∀x(Iαφ (a, x)→ Iφ(x))) by α-induction on a ∈ |α|:

Iαφ (b) ⊆ Iφ ∀b <α a by inductive hypothesis⋃
b<αa

Iαφ (b) ⊆ Iφ by ∃-left-introduction

φ

(⋃
b<αa

Iαφ (b)
)
⊆ φ(Iφ) by positivity of φ(−)

Iαφ (a) ⊆ φ(Iφ) by (6)
Iαφ (a) ⊆ Iφ ∵ Π1

1-CA0 proves Iφ is a pre-fixed point

Note here that it is crucial that we have access to Iφ as set, thanks to Π1
1-comprehension. ◀

8 Simulating cyclic proofs within ID<ω

The goal of this section is to finally establish the converse to Theorem 4.6:

▶ Theorem 8.1. Let φ be arithmetical. If CID<ω ⊢ φ then ID<ω ⊢ φ.

The argument proceeds essentially by formalising the soundness argument of Section 5
within Π1

1-CA0, with respect to the partial satisfaction predicate Sat. We spend most of this
section explaining this formalisation.

We henceforth work within Π1
1-CA0, unless otherwise stated.

Necessity of non-uniformity. In light of Theorem 6.1 and Theorem 4.6, we obviously cannot
formalise soundness of CID<ω uniformly within Π1

1-CA0, for Gödelian reasons. Instead we
take a non-uniform approach. Let us henceforth fix a CID<ω proof π of a sequent Γ⇒ ∆.
We assume π uses only inductive predicates among I⃗ = Iφ1 , . . . , Iφn . All notions about
(recursive) ordinals from Section 7 are now relativised to I⃗ (recall that we allowed free set
variables to occur as parameters throughout).

6 Here we are using expressions, say, φ(A) ⊆ B as an abbreviation for ∀x(φ(A, x) → B(x)).

A. Das and L. Melgaard 27:15

Formalising properties of traces. The results of Section 4.3, in particular Proposition 4.7, in-
volve only finitary combinatorics and are readily formalisable already within RCA0, essentially
following the given (meta-level) proofs.

“Knowing that” a regular proof is progressing. At some point during the soundness
argument, namely after constructing the “countermodel branch”, we shall need to extract a
progressing thread from an infinite branch of π. However, this requires our ambient theory
knowing that π is progressing, hitherto a meta-level assumption. Let us point out that in our
non-uniform exposition, for fixed π, known progressiveness has been shown to be available in
even the weakest of the “big five”:

▶ Proposition 8.2 (RCA0, [11]). π is progressing.

Formalised admissibility of substitution. The admissibility of substitution, Proposition 5.2,
is available already in weak theories by a simple inductive construction: from π define
π′ a substitution-free LID−

<ω non-wellfounded proof node-wise by simply composing the
(finitely many) substitutions up to a node. The progressing criterion means that there are, in
particular, infinitely many non-substitution steps along any infinite branch, and so by (weak)
König’s lemma have that the resulting binary tree is well-defined.

We henceforth work with π′ a substitution-free LID−
<ω non-wellfounded proof of Γ⇒ ∆

using only inductive predicates among I⃗ = Iφ1 , . . . , Iφn
, that we “know” is progressing.

Formalising satisfaction with respect to approximants. We already defined recursive
approximants in Π1

1-CA0 in Section 7.2. The formalised version of Corollary 5.3 is given by
Corollary 7.9, and the formalised version of Corollary 5.4 is available already in pure logic.
The existence of least ordinals satisfying a property is given by well-foundedness of WO
under <WO, Proposition 7.2, and thus Observation 5.5 follows from Equation (6).

Formalised building countermodels. To speak about satisfaction and truth of formulas in
π′, we use the formalised notion SatI⃗ in place of the meta-level “⊨”. Note that the inductive
predicates occurring in π′ parametrise the satisfiability predicate. From here Lemma 5.6
is formalised by proving soundness of the rules of LID−

<ω with respect to SatI⃗ , keeping
track of immediate ancestry and using the results of the previous subsection. We use the
(formalised) notions Iαφ as inputs to SatI⃗ in order to evaluate formulas like φα, and we rely
on well-foundedness of the class of well-orders, Proposition 7.2, to make the correct decisions
cf. Item 3b. Let us point out that, for a fixed step r, the description of (ρ′, S′) from (ρ, S)
is arithmetical in I⃗ , SatI⃗ , <WO, O and I⃗−, by essentially following the specification in the
Lemma statement, relativising “ordinals” to O.

Putting it all together, formally. Finally let us discuss how the proof of Theorem 5.1 (for
π′) is formalised. Recall that the infinite “countermodel branch” (vi)i<ω is recursive in the
construction from (formalised) Lemma 5.6. Since that construction was arithmetical (in
certain set symbols), we indeed have access to the countermodel branch (vi)i<ω as a set by
comprehension. Now, since we know that π′ is progressing, we can duly take a progressing
trace (τi)i≥k along it. From here the obtention of the sequence of (now recursive) ordinals
(αi)i≥k is obtained by a simple comprehension instance arithmetical in SatI⃗ , I⃗

− and <WO.
The remainder of the argument goes through as written, appealing to formalised versions of
auxiliary statements.

From here we may conclude the main result of this section as promised:

FSCD 2023

27:16 Cyclic Proofs for Arithmetical Inductive Definitions

Proof sketch of Theorem 8.1. From CID<ω ⊢ φ, for φ arithmetical, the explanations in
this section give us Π1

1-CA0 ⊢ Sat∅(∅, ⌜φ⌝,∅). By reflection, Corollary 6.3, we thus have
Π1

1-CA0 ⊢ φ, and so by conservativity, Theorem 6.1, we have ID<ω ⊢ φ, as required. ◀

9 Conclusions

We presented a new cyclic system CID<ω formulated over the language L<ω of finitely iterated
arithmetical inductive definitions. We showed the arithmetical equivalence of CID<ω and its
inductive counterpart ID<ω by nontrivially extending techniques that have recently appeared
in the setting of cyclic arithmetic [21, 11]. Among other things, this work serves to further
test the metamathematical techniques and methodology now available in cyclic proof theory.

Extensions of predicate logic by “ordinary” inductive definitions, which are essentially
quantifier-free but allow for a form of simultaneous induction, were extensively studied by
Brotherston and Simpson, in particular in the setting of cyclic proofs [7, 9, 10]. Indeed
recently Berardi and Tatsuta have shown that cyclic systems for extensions of Peano and
Heyting arithmetic by such inductive definitions prove the same theorems as the corresponding
inductive systems [4, 5]. As noted by Das in [11] the result of [4] (for Peano arithmetic) is, in
a sense, equivalent to Simpson’s in [21] since ordinary inductive definitions can be encoded
by Σ1-formulas: closure ordinals of ordinary inductive definitions are always bounded above
by ω. Comparing to the current work, recall that the closure ordinals of even a single
arithmetical inductive definition exhaust all recursive ordinals.

There are many other possible extensions of the language of arithmetic LA by fixed points.
One natural avenue for further work would be to consider Lα for both α < ω and α ≥ ω.
Again the corresponding finitary systems IDα play a crucial role in the ordinal analysis of
stronger impredicative subsystems of second-order arithmetic (see, e.g., [19]). However what
may be more interesting in the context of cyclic proof theory is the extension of LA (and
L<ω) by so-called “general” inductive definitions, as in [16, 17]. These essentially extend the
syntax of LA in the same way that fixed points of the modal µ-calculus extend the language
of modal logic, in particular allowing set parameters within inductive definitions. Such a
setting necessarily exhibits more complicated metatheory, but is a natural target in light of
the origins of cyclic proof theory based in the µ-calculus and first-order logic with inductive
definitions. To this end, let us point out that cyclic systems for the “first-order µ-calculus”
have already appeared [24, 23, 1], and so could form the basis of such investigation.

References
1 Bahareh Afshari, Sebastian Enqvist, and Graham E Leigh. Cyclic proofs for the first-order

µ-calculus. Logic Journal of the IGPL, August 2022. jzac053. doi:10.1093/jigpal/jzac053.
2 Bahareh Afshari and Graham E. Leigh. Cut-free completeness for modal mu-calculus. In

32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik,
Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017. doi:10.1109/LICS.
2017.8005088.

3 Stefano Berardi and Makoto Tatsuta. Classical system of martin-löf’s inductive definitions is
not equivalent to cyclic proof system. In Javier Esparza and Andrzej S. Murawski, editors,
Foundations of Software Science and Computation Structures - 20th International Conference,
FOSSACS 2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, volume 10203 of
Lecture Notes in Computer Science, pages 301–317, 2017. doi:10.1007/978-3-662-54458-7_
18.

https://doi.org/10.1093/jigpal/jzac053
https://doi.org/10.1109/LICS.2017.8005088
https://doi.org/10.1109/LICS.2017.8005088
https://doi.org/10.1007/978-3-662-54458-7_18
https://doi.org/10.1007/978-3-662-54458-7_18

A. Das and L. Melgaard 27:17

4 Stefano Berardi and Makoto Tatsuta. Equivalence of inductive definitions and cyclic proofs
under arithmetic. In 32nd Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2017, Reykjavik, Iceland, June 20-23, 2017, pages 1–12. IEEE Computer Society, 2017.
doi:10.1109/LICS.2017.8005114.

5 Stefano Berardi and Makoto Tatsuta. Intuitionistic podelski-rybalchenko theorem and equival-
ence between inductive definitions and cyclic proofs. In Corina Cîrstea, editor, Coalgebraic
Methods in Computer Science - 14th IFIP WG 1.3 International Workshop, CMCS 2018,
Colocated with ETAPS 2018, Thessaloniki, Greece, April 14-15, 2018, Revised Selected Pa-
pers, volume 11202 of Lecture Notes in Computer Science, pages 13–33. Springer, 2018.
doi:10.1007/978-3-030-00389-0_3.

6 Stefano Berardi and Makoto Tatsuta. Classical system of martin-lof’s inductive definitions is not
equivalent to cyclic proofs. Log. Methods Comput. Sci., 15(3), 2019. doi:10.23638/LMCS-15(3:
10)2019.

7 James Brotherston. Cyclic proofs for first-order logic with inductive definitions. In Bernhard
Beckert, editor, Automated Reasoning with Analytic Tableaux and Related Methods, Inter-
national Conference, TABLEAUX 2005, Koblenz, Germany, September 14-17, 2005, Pro-
ceedings, volume 3702 of Lecture Notes in Computer Science, pages 78–92. Springer, 2005.
doi:10.1007/11554554_8.

8 James Brotherston, Dino Distefano, and Rasmus Lerchedahl Petersen. Automated cyclic
entailment proofs in separation logic. In Nikolaj S. Bjørner and Viorica Sofronie-Stokkermans,
editors, Automated Deduction - CADE-23 - 23rd International Conference on Automated
Deduction, Wroclaw, Poland, July 31 - August 5, 2011. Proceedings, volume 6803 of Lecture
Notes in Computer Science, pages 131–146. Springer, 2011. doi:10.1007/978-3-642-22438-6_
12.

9 James Brotherston and Alex Simpson. Complete sequent calculi for induction and infinite
descent. In 22nd IEEE Symposium on Logic in Computer Science (LICS 2007), 10-12
July 2007, Wroclaw, Poland, Proceedings, pages 51–62. IEEE Computer Society, 2007. doi:
10.1109/LICS.2007.16.

10 James Brotherston and Alex Simpson. Sequent calculi for induction and infinite descent. J.
Log. Comput., 21(6):1177–1216, 2011. doi:10.1093/logcom/exq052.

11 Anupam Das. On the logical complexity of cyclic arithmetic. Log. Methods Comput. Sci.,
16(1), 2020. doi:10.23638/LMCS-16(1:1)2020.

12 Solomon Feferman, W Sieg, and W Buchholz. Iterated inductive definitions and subsystems of
analysis: Recent proof-theoretical studies. Springer, 1981.

13 Gerhard Jäger. Fixed points in peano arithmetic with ordinals. Ann. Pure Appl. Log.,
60(2):119–132, 1993. doi:10.1016/0168-0072(93)90039-G.

14 Leszek Aleksander Kolodziejczyk, Henryk Michalewski, Pierre Pradic, and Michal Skrzypczak.
The logical strength of büchi’s decidability theorem. In Jean-Marc Talbot and Laurent Regnier,
editors, 25th EACSL Annual Conference on Computer Science Logic, CSL 2016, August 29 -
September 1, 2016, Marseille, France, volume 62 of LIPIcs, pages 36:1–36:16. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.CSL.2016.36.

15 Leszek Aleksander Kolodziejczyk, Henryk Michalewski, Pierre Pradic, and Michal Skrzypczak.
The logical strength of büchi’s decidability theorem. Log. Methods Comput. Sci., 15(2), 2019.
doi:10.23638/LMCS-15(2:16)2019.

16 Robert S. Lubarsky. µ-definable sets of integers. Journal of Symbolic Logic, 58:291–313, 1993.
17 Michael Möllerfeld. Generalized inductive definitions. PhD thesis, WWU Münster, 2002. URL:

https://nbn-resolving.de/urn:nbn:de:hbz:6-85659549572.
18 Damian Niwinski and Igor Walukiewicz. Games for the mu-calculus. Theor. Comput. Sci.,

163(1&2):99–116, 1996. doi:10.1016/0304-3975(95)00136-0.
19 Michael Rathjen and Wilfried Sieg. Proof Theory. In Edward N. Zalta and Uri Nodelman, edit-

ors, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,
Winter 2022 edition, 2022.

FSCD 2023

https://doi.org/10.1109/LICS.2017.8005114
https://doi.org/10.1007/978-3-030-00389-0_3
https://doi.org/10.23638/LMCS-15(3:10)2019
https://doi.org/10.23638/LMCS-15(3:10)2019
https://doi.org/10.1007/11554554_8
https://doi.org/10.1007/978-3-642-22438-6_12
https://doi.org/10.1007/978-3-642-22438-6_12
https://doi.org/10.1109/LICS.2007.16
https://doi.org/10.1109/LICS.2007.16
https://doi.org/10.1093/logcom/exq052
https://doi.org/10.23638/LMCS-16(1:1)2020
https://doi.org/10.1016/0168-0072(93)90039-G
https://doi.org/10.4230/LIPIcs.CSL.2016.36
https://doi.org/10.23638/LMCS-15(2:16)2019
https://nbn-resolving.de/urn:nbn:de:hbz:6-85659549572
https://doi.org/10.1016/0304-3975(95)00136-0

27:18 Cyclic Proofs for Arithmetical Inductive Definitions

20 Reuben N. S. Rowe and James Brotherston. Automatic cyclic termination proofs for recursive
procedures in separation logic. In Yves Bertot and Viktor Vafeiadis, editors, Proceedings of the
6th ACM SIGPLAN Conference on Certified Programs and Proofs, CPP 2017, Paris, France,
January 16-17, 2017, pages 53–65. ACM, 2017. doi:10.1145/3018610.3018623.

21 Alex Simpson. Cyclic arithmetic is equivalent to peano arithmetic. In Javier Esparza and
Andrzej S. Murawski, editors, Foundations of Software Science and Computation Structures -
20th International Conference, FOSSACS 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017,
Proceedings, volume 10203 of Lecture Notes in Computer Science, pages 283–300, 2017.
doi:10.1007/978-3-662-54458-7_17.

22 Stephen G. Simpson. Subsystems of second order arithmetic. Perspectives in mathematical
logic. Springer, 1999.

23 Christoph Sprenger and Mads Dam. On global induction mechanisms in a µ-calculus with
explicit approximations. RAIRO Theor. Informatics Appl., 37(4):365–391, 2003. doi:10.
1051/ita:2003024.

24 Christoph Sprenger and Mads Dam. On the structure of inductive reasoning: Circular and
tree-shaped proofs in the µ-calculus. In Andrew D. Gordon, editor, Foundations of Software
Science and Computational Structures, 6th International Conference, FOSSACS 2003 Held
as Part of the Joint European Conference on Theory and Practice of Software, ETAPS 2003,
Warsaw, Poland, April 7-11, 2003, Proceedings, volume 2620 of Lecture Notes in Computer
Science, pages 425–440. Springer, 2003. doi:10.1007/3-540-36576-1_27.

25 Thomas Studer. On the proof theory of the modal mu-calculus. Stud Logica, 89(3):343–363,
2008. doi:10.1007/s11225-008-9133-6.

26 Gadi Tellez and James Brotherston. Automatically verifying temporal properties of pointer
programs with cyclic proof. In Leonardo de Moura, editor, Automated Deduction - CADE
26 - 26th International Conference on Automated Deduction, Gothenburg, Sweden, August
6-11, 2017, Proceedings, volume 10395 of Lecture Notes in Computer Science, pages 491–508.
Springer, 2017. doi:10.1007/978-3-319-63046-5_30.

27 Gadi Tellez and James Brotherston. Automatically verifying temporal properties of pointer
programs with cyclic proof. J. Autom. Reason., 64(3):555–578, 2020. doi:10.1007/
s10817-019-09532-0.

https://doi.org/10.1145/3018610.3018623
https://doi.org/10.1007/978-3-662-54458-7_17
https://doi.org/10.1051/ita:2003024
https://doi.org/10.1051/ita:2003024
https://doi.org/10.1007/3-540-36576-1_27
https://doi.org/10.1007/s11225-008-9133-6
https://doi.org/10.1007/978-3-319-63046-5_30
https://doi.org/10.1007/s10817-019-09532-0
https://doi.org/10.1007/s10817-019-09532-0

	1 Introduction
	2 Syntax and semantics of arithmetical inductive definitions
	2.1 First-order logic (with equality)
	2.2 Languages of arithmetic and (finitely iterated) inductive definitions
	2.3 On Knaster-Tarski: inductive definitions as fixed points

	3 Arithmetical theories of inductive definitions
	3.1 Theory of (finitely iterated) inductive definitions
	3.2 Examples

	4 Cyclic proofs for the theory of (finitely iterated) inductive definitions
	4.1 Non-wellfounded and cyclic proofs
	4.2 Simulating inductive proofs
	4.3 About traces

	5 Soundness of non-wellfounded proofs
	5.1 Satisfaction with respect to approximants
	5.2 Building countermodels
	5.3 Putting it all together

	6 Inductive definitions and truth in second-order arithmetic
	6.1 Subsystems of second-order arithmetic and inductive definitions
	6.2 Satisfaction as an inductive definition

	7 Approximants and transfinite recursion in second-order arithmetic
	7.1 Order theory and transfinite recursion in second-order arithmetic
	7.2 Formalising recursive ordinals and approximants
	7.3 Characterising inductive definitions as limits of approximants

	8 Simulating cyclic proofs within ID_{< omega}
	9 Conclusions

