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The article offers a general formulation for
the multipolar field expansion of an inclusion.
The multipolar moments of arbitrary order for the
ellipsoidal inclusion are derived, showing known
features of their elastic fields in both the far and
near field. Using integer point enumeration theory,
the same formulation is extended to all polytopal
inclusions, which serve to model faceted inclusions
found in, e.g. igneous and metamorphic rocks, particle
reinforced composite materials, or as intermetallic
precipitates in alloys. A general algorithm for the
calculation of the multipolar moments of polytopes
of any number of vertices is derived. A number of
examples for tetrahedral, cuboidal and dodecahedral
inclusions are given. It is shown that the parity of
the axial moment function of a polytopal inclusion
mirrors the symmetry of the inclusion. This represents
the main properties of their elastic fields, including
the long- and near-field decay. If the inclusion is
symmetric with respect to a given axes, the fields
will decay with 1/r2 in the far field and 1/r4 in the
near field. If symmetry along that direction is lost,
as is expected in most real inclusions, the decay rate
progresses with 1/r2 but the near field with 1/r3.

1. Introduction
This article concerns the approximation of the elastic
fields of a plastic inclusion via their multipolar field
expansion. Plastic inclusions serve to model regions
in a material that have undergone some form of
internal rearrangement, as may be encountered in
multicomponent precipitates found in shear zones [1],
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multiphase materials [2] including martensites and twins [3,4], or when modelling quantum dots
[5,6], to name but a few examples.

The problem of the plastic inclusion was first formulated by Eshelby in 1957, who achieved
the explicit solutions to the external elastic fields of an inclusion of ellipsoidal shape in isotropic
media [7,8]. Sass et al. [9] first studied the elastic fields of a cuboidal inclusion, for which they
offered a Fourier series solution; this problem was later reworked by Faivre [10], who achieved
the first explicit solution to the elastic fields of a parallelepipedal inclusion in isotropic elasticity.
Further geometries have been studied both in the context of homogeneous eigenstrains and
isotropic elasticity and for anisotropic materials [11], with different elastic moduli [12], including
solutions for the fields of square plate inclusions [13], cuboids [14], cylinders [15], rod-like
inclusions [16], concave inclusions [17], toroids [18], generalized formulations for arbitrary closed
geometries [19] and polyhedra [6,20].

Even for the simplest cases, such as the original Eshelbian ellipsoidal inclusion, the explicit
solutions to the external and internal elastic fields of the inclusion are famously forbidding. The
elastic energy and the elastic fields of inclusions of the simplest geometries in isotropic linear
elasticity (parallelepipedal [10], ellipsoidal [7,8]) still entail solutions that cannot be expressed
in terms of simple functions, and rely on implicit elliptic integrals and on nested hierarchies of
such functions and their derivatives. Excluding transversely isotropic materials, for inclusions
in anisotropic media only numeric solutions are available [21]. This article is concerned with
offering an approximate hierarchy with which to obtain a simple account of the long-range
elastic fields of inclusions of ellipsoidal or polytopal shape, whether in an isotropic or anisotropic
medium, that can serve to approximate their fields to arbitrary accuracy in the near field
as well.

This will be achieved by producing the multipolar expansion of the elastic fields of the
inclusion. Multipolar field expansions originate in electrodynamics (cf. [22]) where, taking
advantage of the fast decay of the electrodynamic Green’s function, they are employed to
assimilate complex distributions of charge into localized charge distributions. Similarly to how
it is done in electrodynamics, in linear elasticity one can achieve a multipolar field expansion by
producing the Taylor series expansion of the elastic field’s integral representation formula (q.v.
[23]). Each subsequent term in the expansion will be contributed by an induced force dipole,
quadrupole, and so on. In both the electromagnetic and elastic cases, the fundamental solution to
the field decays with 1/r, so with increasing multipolar term will be dominated by increasing
powers of 1/r. And because the terms in the expansion are all rational functions, once the
multipolar moments are known, the expansion enables a fast estimate of the fields to remarkable
accuracy.

In the context of linear elasticity, multipolar field expansions have long been employed
to model point defects [24,25], particularly because the trace of the dipolar moment tensor
is the relaxation volume of the defect [26], which enables the easy modelling of the dipolar
moment tensor if the relaxation volume of the point defect can be calculated from first principles
[26,27] or deduced from X-ray diffraction data [28]. Generalized formalisms of the multipolar
fields have been offered in the context of reconstruction of seismic sources from estimated low
order multipolar moments [29,30], and applied over particular cases to circular voids in plane
stress [31], prismatic loops [32], dislocation loops and cracks [33] or to stochastic ensembles
of dislocations [34]. They have also been applied to ensembles of dislocations in the context
of discrete dislocation dynamics and the fast multipole method [35,36], and in the context of
homogenization theory, with the aim of development of effective elastic moduli and constitutive
behaviours in composite materials with spherical or ellipsoidal inclusions [37–39].

In §2, this article generalizes prior studies (e.g. [31,39]) of multipolar fields of ellipsoidal
inclusions to arbitrary order. Aside from providing an intuitive and computationally cheap
means of studying the long and near field of the inclusion, the multipolar expansion of the
ellipsoidal inclusion serves as a testing ground for the approach, showcasing how non-obvious
known results such as the effect of the inclusion’s volume in the far field [40] can be quickly
recovered (thereby validating the approach) while facilitating understanding of the near field as
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Figure 1. Schematic plot of the ellipsoidal inclusionD.

well. Section 3 extends these efforts to inclusions of convex polytopal geometry of any order,
particularly common in materials science, where new phases grow through faceting. This is
achieved by exploiting modern developments in integer point enumeration [41], which as will
be shown enable the derivation of a general algorithm for the multipolar moments of any order
for any convex polytope, be it in two or three dimensions. This approach reveals a number of
important features concerning the effect the symmetry of the polytopal inclusion has on its long-
range and near-field behaviours, and offers a simple intuitive formula with which to quantify
said effects. Section 4 outlines the main findings of the article.

2. Multipolar expansion of an ellipsoidal inclusion
The explicit solution to the elastic fields of an ellipsoidal inclusion was originally given by Eshelby
[7,8]. An extension of Eshelby’s account to anisotropic elasticity can be found in Mura [23].
Eshelby’s inclusion is defined as an ellipsoidal region D embedded in an infinite, homogeneous,
isotropic linear elastic medium E ⊆ R

3 (figure 1). The region D is subjected to an unspecific
transformation which changes its geometry. This transformation is given by an eigenstrain (or
transformation strain, or stress-free strain) e∗

ij, which is defined to be homogeneous for all points
x ∈D. As a result of the inclusion D being constrained by the medium E , mechanical equilibrium
considerations at the interface ∂D between the inclusion and the medium cause a non-trivial
elastic field to arise both inside and outside the inclusion.

Owing to the ellipsoidal symmetry of the inclusion, an explicit solution both inside [7] and
outside [8] the inclusion can be achieved. A remarkable result is that the inclusion acts as a lacuna
(cf. [42–44]), with the strain and stress fields inside the inclusion being homogeneous so long as
the inclusion is ellipsoidal [45,46].

(a) General statement of the multipolar expansion
The explicit solution to any linear elastic problem caused by a source internal to the medium is
given by the representation

ui(x) =
∫

R3
Gij(x − x′)f ∗

j (x′) dx′, (2.1)

where i, j = 1, 2, 3, repeated index denotes summation, dx = dx1dx2dx3 is the Cartesian measure,
and ui denotes the elastic displacement field, Gij(x) is the elastic Green’s tensor,1 and f ∗

j (x) denotes
the elastic source term in its equivalent Burridge–Knopoff [47] force representation, which can be
obtained from the eigenstrain representation of the inclusion as follows.

1For expressions in the elastic isotropic and anisotropic cases, see [23].
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(i) Force representation of the inclusion

We will consider an inclusion D defined by the eigenstrain e∗
il constant for all x ∈D. The Burridge–

Knopoff theorem [47] states that for a source term defined by an eigenstrain e∗
il, the force

representation is given by:

f ∗
j (x) = −

∫
∂D

Cikjle
∗
ilδ(x − x′)nk dS′, (2.2)

where Cijkl is the elastic constant tensor, ni is the surface normal vector, and δ(x) the delta function.
For brevity, in the following we shall employ the equivalent eigenstress σ ∗

kj = Cikjle∗
il so that,

f ∗
j (x) = −

∫
∂D

δ(x − x′)σ ∗
kjnk dS′

= −
∫
D

δk(x − x′)σ ∗
kj dV′

= −σ ∗
kj

∫
R3

δk(x − x′)χD(x′) dV′ = σ ∗
kj∂kχD(x), (2.3)

where the divergence theorem and the fact that the system is homogeneous have been used. Here
δk(x) = ∂kδ(x) and χD(x) the characteristic function offering compact support on D, i.e.

χD(x) =
{

1 x ∈D
0 x /∈D.

(2.4)

Thus, we deduce that the ellipsoidal inclusion’s force representation is given (in the sense of
distributions) by:

f ∗
j (x) = Cikjle

∗
il∂kχD(x). (2.5)

We note that this formulation is entirely general, and holds for any inclusion D of any shape.
Likewise, it is not limited to inclusions proper—the eigenstrain may represent an inhomogeneity
[40] too.

(ii) Multipolar expansion of the external field of the inclusion

Knowledge of the force representation of the ellipsoidal inclusion (equations (2.5)) enables the
explicit solution of its elastic field via the representation given in equations (2.1). The procedure
to solve this problem analytically can be found e.g. in [7,8,23], and leads to a set of solutions
dependent on elliptic integrals of the first and second kind which are famously complex when
considering the external fields of the inclusion (cf. [48]). Rather, here we seek to approximate said
solution via the multipolar expansion [29] of the representation formula equations (2.1).

To that end, we expand Green’s tensor Gij(x − x′) in Taylor series of x′ about the origin:

Gij(x − x′) =
∞∑

n=0

(−1)n

n!

∂nGij(x)

∂xk1∂xk2 . . . ∂xkn

x′
k1

· x′
k2

· . . . · x′
kn

(2.6)

and substitute this series expansion into the representation formula (equations (2.1)), whereupon

ui(x) =
∫

R3
f ∗
j (x′)

∞∑
n=0

(−1)n

n!

∂nGij(x)

∂xk1 . . . ∂xkn

x′
k1

· . . . · x′
kn

dx′ (2.7)

=
∞∑

n=0

(−1)n

n!

∂nGij(x)

∂xk1 . . . ∂xkn

∫
R3

f ∗
j (x′)x′

k1
· . . . · x′

kn
dx′ (2.8)

=
∞∑

n=0

(−1)n

n!

∂nGij(x)

∂xk1 . . . ∂xkn

γ
(n)
jk1,...,kn

(2.9)
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where γ
(n)
jk1,...,kn

defines the nth-order multipolar moment of the force distribution f ∗
j , and is

represented by

γ
(n)
jk1,...,kn

=
∫

R3
f ∗
j (x′)x′

k1
· . . . · x′

kn
dx′. (2.10)

Because the elastic Green’s tensor itself decays with 1/r, its nth-order derivative will decay with
1/rn+1, meaning that higher order terms in the multipolar expansion have increasingly small
effect in the far field. As a result, with a few terms of the expansion it is possible to reach very
accurate representations of the inclusion’s elastic far field. Achieving this requires calculation of
the multipolar moments γ

(n)
jk1,...,kn

, each of which is a number. We note that this same expansion
can be achieved without using the Burridge–Knopoff force representation by operating with the
Navier–Lamé equations in Fourier space.

(iii) Multipolar moments of the external field of the ellipsoidal inclusion

In order to compute the multipolar moment γ
(n)
jk1,...,kn

, we substitute the force representation of the
ellipsoidal inclusion (equations (2.5)) into equations (2.10):

γ
(n)
jk1...kn

=
∫

R3
σ ∗

kjx
′
k1

· . . . · x′
kn

∂kχD(x′) dx′ (2.11)

= σ ∗
kj

∫
R3

πk1...kn (x′)∂kχD(x′) dx′, (2.12)

where the monomial
πk1...kn (x′) = x′

k1
· . . . · x′

kn
, (2.13)

is introduced for brevity. Using Green’s identity and the fact that ∂kχD(x) is likewise supported
over D, we can rework the integral above:

γ
(n)
jk1...kn

= σ ∗
kj

∫
D

πk1...kn (x′)∂kχD(x′) dx′ (2.14)

= σ ∗
kj

[∫
∂D

πk1...kn (x′)χD(x′)nk dS′ −
∫
D

∂πk1...kn (x′)
∂x′

k
χD(x′) dx′

]
(2.15)

= −σ ∗
kj

∫
D

∂πk1,...,kn (x′)
∂x′

k
dx′, (2.16)

where the surface integral vanishes because χD(x) = 0 on the x ∈ ∂D.
Thus, in effect one is charged with computing integrals over the ellipsoid of a monomial of

increasing order based on the selection of indices k1, . . . , kn and k. For low order moments, it is
straightforward to list all possible resulting multipolar moments as we do in the sequel. However,
as their order increases the number of possible multipolar moments increases with C(n, 3), so
a systematic way of calculating all possible multipolar moments of the ellipsoidal inclusions
becomes necessary. This is done in §2b and (c).

(b) Encoding of the indices
The integrand ∂kπk1,...,kn (x) of equations (2.16) depends on long permutations of the indices
k1, k2, . . . , kn, k with each index taking values {1, 2, 3}. Because the integrand is a monomial in R

3,
many different permutations will result in the same monomial in the integrand. For this reason,
it is convenient to introduce the following encoding of the k1, . . . , kn, k indices:

ip = #(∂kπk1...kn ∩ xp) =
n∑

j=1

(δpkj − δkkj ), p = 1, 2, 3, (2.17)

where ip counts the number of times x1 (for p = 1), x2 (for p = 2) or x3 (for p = 3) appears in the
monomial ∂kπk1...kn . For further convenience, we collect the ip in the multiindex I = (i1, i2, i3) with
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|I| = i1 + i2 + i3. Thus, we may write that the

γ
(n)
jk1...kn

= −(ik + 1)σ ∗
kjγ

I, (2.18)

where

γ I =
∫
D

xi1
1 xi2

2 xi2
2 dx =

∫
D

xI dx, (2.19)

and the (ik + 1) term accounts for the coefficient brought about the ∂k derivative; if the term xk is
not present in the integrand, then ik = −1, and hence (ik + 1) will cancel the multipolar moment,
as required.

(c) General formula of the multipolar moment of an ellipsoidal inclusion
The highly symmetrical nature of the ellipsoid enables the obtention of closed-form general
formulae for all multipolar moments of arbitrary order. Here we report directly the general
result and some useful intermediate ones, with their general derivation given in electronic
supplementary material. For brevity, here we quote the main results directly.

Thus, denote a general multiindex I = (ip, iq, ir) with p �= q �= r ∈ {1, 2, 3}. Then, when
m = n − 1 > 0 and I = (m, 0, 0):

γ (m,0,0) = 2(1 + (−1)m)
(m + 1)(m + 3)

πam+1
p aqar. (2.20)

The term (1 + (−1)m)/2 is introduced to capture the fact that the multipolar moments of even
order are zero.

When m + k = n − 1 and I = (m, k, 0):

γ (m,k,0) = (1 + (−1)m)(1 + (−1)k)Γ ((m + 1)/2)Γ ((k + 1)/2)
2(m + k + 3)Γ ((1/2)(n + 2))

√
πam+1

p ak+1
q ar, (2.21)

where Γ (z) is the Gamma function.
Finally, the general formula when m + k + w = n − 1 and accordingly I = (m, k, w):

γ (m,k,w) = (1 + (−1)m)(1 + (−1)k)(1 + (−1)w)Γ ((m + 1)/2)Γ ((k + 1)/2)Γ ((w + 1)/2)
4(n + 2)Γ ((1/2)(n + 2))

am+1
p ak+1

q aw+1
r .

(2.22)

This completes the derivation of all possible multipolar moments of the ellipsoidal inclusion.
Table S1 in electronic supplementary material collects some of the low-order multipolar moments.
All other higher order moments may be obtained by combining equation (2.18) with equation
(2.22).

(d) The far field and the near field
The multipolar field expansion of an ellipsoidal inclusion can therefore be reduced to:

ui(x) =
∞∑

n=0

γ
(2n+1)
jk1k2...k2n+1

∂ (2n+1)Gij

∂xk1∂xk2 . . . ∂xk2n∂xk2n+1

. (2.23)

The stress fields follow naturally from the displacement field expansion as:

σil(x) =
∞∑

n=0

γ
(2n+1)
jk1k2...k2n

Cilpq
∂ (2n+1)Gpj

∂xq∂xk1∂xk2 . . . ∂xk2n∂xk2n+1

, (2.24)

which in the isotropic case reduces to

σil(x) =
∞∑

n=0

γ
(2n+1)
jk1,k2,...,k2n+1

[λδilGpj,pk1...k2n+1 + 2μGij,lk1...k2n+1 ]. (2.25)
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Equation (2.23)–(2.25) are general, and apply to any inclusion (or inhomogeneity) irrespective
of its shape. When truncated to dipolar order, we would find that

u(1)
i (x) = 4

3
πa1a2a3σ

∗
jk1

Gij,k1 = V(λδjk1 e∗
pp + 2μe∗

jk1
) Gij,k1 , (2.26)

where V = (4/3)πa1a2a3 is the volume of the ellipsoid, and Green’s function first derivative can
be expressed as [23]

Gij,k1 = 1
16π (1 − ν)μ

1
r2 [(3 − 4ν)ρk1δij − ρjδjk1 − ρiδjk1 + 3ρiρjρk], (2.27)

with ρi = xi/r, r = |x| is the direction cosine along xi, whereupon we might collect the numerator
terms as:

gijk1 = (1 − 2ν)(ρk1δij + ρjδik1 − ρiδjk1 ) + 3ρiρjρk1 , (2.28)

so that we recover of Eshelby’s formula for the point defect (see eqn. (2.23) in [40]), namely that

u(1)
i (x) =

Ve∗
jk1

8π (1 − ν)r2 gijk1 . (2.29)

Thus, the fact that all dipolar moments of an ellipsoidal inclusion depend solely on their volume
may be understood as the fact that from afar, all inclusions behave like point defects. The dipolar
elastic field also shows that the far field of the inclusion will be dominated by 1/r2 terms, and
that their stress field will therefore decay with 1/r3. This serves to verify that the multipolar field
expansion mirror behaviour deduced from the exact fields of the ellipsoidal inclusion.

However, the multipolar expansion also showcases the extent to which the inclusion behaves
as a point defect in its far field, as it provides us with a lengthscale with which to evaluate the
range of each successive multipolar term. For any inclusion, the dipolar terms entail a 1/r2 decay,
and so long as the inclusion is ellipsoidal, the next non-vanishing multipole, the octopolar term
(see equation (2.22)), entails a 1/r4 decay. Then, we may define the depth α for the far field as
the distance from the ellipsoid’s centroid beyond which the dipolar contributions dominate the
far field. This is achieved by comparing the magnitude of the dipolar and octopolar moments
themselves:

αj > max

√√√√√
⎡
⎣γ

(3)
jk1k2k3

γ
(1)
jk1

⎤
⎦∝ max aj. (2.30)

This means that in each spatial direction xj, the near-field’s effects are expected to become
dominant only for distances smaller than about the largest axis of the ellipsoid. This entails
that whereas eqn. 2.29 does capture the far field of the ellipsoidal inclusion, its applicability is
directional. For example, long and thin inclusions (shear zones, martensites) will resemble point
defects in the far field more strongly in the direction in which they are thin than in the direction
in which they are long, and this discrepancy can be corrected by considering additional higher
order multipolar terms, which can be readily evaluated at a fraction of the cost of the full-field
expansion.

Likewise, the ratio between octopolar and dodecapolar moments would provide the next
lengthscale in the near field:

βj >

√√√√√
⎡
⎣γ

(5)
jk1k2k3k4k4

γ
(3)
jk1k2k3

⎤
⎦∝

√
3
7

max aj. (2.31)

The quantities αj, βj offer an upper bound to the convergence of the multipolar terms, and are
otherwise affected by specific orientations. Still, they highlight how the far field is dominated by
dipolar terms, and the near field by octopolar terms: all further contributions concern lengthscales
smaller than the geometric dimensions of the inclusion itself. This rate of convergence is depicted
in figure 2, which shows the evolution of the first three multipolar stress components of an
ellipsoidal inclusion of dimensions a1 = 0.25 m, a2 = 0.2 m, a3 = 0.175 m; as can be seen, the far
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Figure 2. Multipolar stress field components for an ellipsoidal inclusion of dimensions a1 = 0.25 m, a2 = 0.2 m, a3 = 0.175 m,
defined by shear zone of e∗12 = 1 (and all other eigenstrain components zero), in a material withμ = 1 GPa, ν = 0.33. Forσ11

andσ12, the stress field on the line (x2 = 0.1, x3 = 0) m is shown; forσ22, on the line (x1 = 0.1, x3 = 0) m.

field is accurately captured at a distance away from the inclusion of about |x| > a1 = 0.25 m,
beyond which all three terms converge to the dipolar, long-range field. Figure 3 in turn offers a
complete representation of the multipolar stress field components in the plane, comparing them to
the exact solution (found e.g. in [23], ch. 2). As can be seen, the basic, long-range features of stress
fields are appropriately captured at dipolar order, and higher order approximations approximate
with increasing accuracy the near-field features of the exact solution, from a distance of about the
length of its axes.

3. Polytopal inclusions
The ellipsoidal inclusion serves to model a vast number of defects of micromechanical and
macroscopic concern: from twins and martensitic needles [3] to shear zones in tectonics [1].
However, in some circumstances (particularly, but not exclusively, if the material is anisotropic),
inclusions display characteristic faceting and may be construed to be polytopes, i.e. made up
by vertices, edges and facets. Polytopal inclusions are of particular interest in, among others,
the study of igneous and metamorphic aggregates in rocks, the study of particle reinforced
composites, the study of precipitates in metallic alloys, and in quantum dots in semiconductors.
In rocks, faceted phenocrysts and groundmass of ‘polygonal’ [2] shapes are typical. Likewise, they
are typical in metallic alloys, when intermetallic phases are present (e.g. spinel formation in steels
[49]), which has warranted in the past extensive studies of the cuboidal inclusion [9] and varied
polytopal geometries (e.g. stars [50]). Likewise, polytopal inclusions in anisotropic quantum dot
crystals can be employed, through their elastic fields, to tune quality of the photons emitted by
the quantum dots has led to considerable efforts aimed at describing the elastic fields of polytopal
inclusions [6,20,51,52], often leading to intricate solutions [51,52]. Finally, polytopal inclusions are
of interest as approximations to more complex geometries: given an inclusion of surface ∂D, it is
always possible to approximate it via surface triangulation [53].
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Figure 3. Exact and multipolar stress field components (in GPa) for an ellipsoidal inclusion of dimensions a1 = 0.25 m, a2 =
0.2 m,a3 = 0.175 m,definedbya shear zoneof e∗12 = 1 (all other eigenstrain components zero),withμ = 1 GPa,ν = 0.33. The
lengthscale and elastic constants are merely representative; in the electronic supplementary material a Mathematica notebook
is provided to enable the computation of the multipolar fields of inclusions with any desired combination of elastic constants
and dimensions.

(a) General expression of the multipolar moments of an inclusion
The procedure outlined in §2 to derive the multipolar field expansion of the elastic fields of an
ellipsoidal inclusion can be applied to any other inclusion, provided the force representation is
known. This is because the Taylor series expansion leading to equation (2.9) is valid so long as
the force representation fj(x) remains a measurable function, which ought to be the case since the
inclusion thus represented necessarily exists (at least at the atomistic level) as an energy minimum
configuration in a conservative field (cf. [3]). Thus, irrespective of the geometry of the inclusion,
the multipolar moments themselves will still be given by equation (2.10):

γ
(n)
jk1,...,kn

=
∫

R3
x′

k1
· . . . · x′

kn
· f ∗

j (x′) dx′, (3.1)

where in this case f ∗
j (x′) is the force representation.

Let us assume that the inclusion is some closed shape P of constant eigenstrain e∗
lj inside, or,

equivalently, of constant eigenstress σ ∗
kj. Then its force representation will be:

f ∗
j (x) = σ ∗

kj∂kχP(x), (3.2)

where χP(x) is the characteristic function of the inclusion. We note that the force representation
induces a measure μP, namely

μP(x) = χP(x), (3.3)
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vk

ω1(vk)

ω3(vk)

x1

x2

x3

)

vk

polytope 

ω2(vk)

Figure 4. Schematic of a general convex, simple polytopeP inR
3. The polytope is represented with dashed black lines. Over

the vertex vk , the three incident vectors ω1(vk), ω2(vk), ω3(vk) are shown, forming a tangent cone; the parallelepipedKvk
formed by the three incident vectors is shown in dashed grey lines.

so that the multipolar moments are

γ
(n)
jk1,...,kn

= −σ ∗
kj

∫
R3

πk1...kn,k(x) dμP(x′). (3.4)

As in the case of the ellipsoidal inclusion, in light of the monomial πk1...kn,k(x) it is convenient to
encode the indices k1, . . . , kn, k into the multiindex I = (i1, i2, i3) given by equation (2.17), so that

γ
(n)
jk1...kn

= −σ ∗
kj(ik + 1)γ I

and γ I ≡ γ (i1,i2,i3) =
∫

R3
xi1

1 xi2
2 xi3

3 dμP(x).

⎫⎪⎬
⎪⎭ (3.5)

(b) Moments of a polytope: representation of a convex polytope in three dimensions
In three dimensions, a polytope is a polyhedron made up of vertices and planar facets. Clearly, the
computation of the integral equation (3.5) for a general polytope P of numerous facets and vertices
will be particularly cumbersome (cf. [51]) unless some general mathematical theory able to offer
general procedures with which to integrate over multiple edges and faces of arbitrary polytopes is
employed. Here we employ recent developments in integer-point enumeration theory, stemming
from geometric combinatorics (cf. [41]), to that end, deriving a general algorithm for calculating
all possible moments of a given simple polytope. This will rely on the cone decomposition of the
polytope at its vertices, which we describe in the sequel.

(i) Cone decomposition of a polytope

We will consider a general convex, simple polytope such as that depicted in figure 4, which we
denote by P ⊂ R

3. P is defined by N vertices {vk}N
k=1. For brevity, we call the set of all vertices as

V = (v1, v2, . . . , vN). Since the polytope is simple and we operate in R
3, over each vertex vk there

meet three edges. We define the edge vectors of the vertex vk as the three vectors ω1(vk), ω2(vk),
ω3(vk) parallel to each edge incident on the vertex vk. The positive span of these three edge vectors
forms a cone Kvk , known as the tangent cone Kv = {a1ω1(v) + a2ω2(v) + a3ω3(v) : a1, a2, a3 ≥ 0} ⊂ R

3.
We denote by |detKvk | the volume of the parallelepiped formed by the edge vectors ω1(vk), ω2(vk),
ω3(vk), that is, |det(ω1(vk), ω3(vk), ω3(vk))|.

(ii) Brion’s formula for the moments of a convex polytope

With those definitions in place, it is possible to calculate the general moment γI (equation (3.5))
of a simple polytope in at least three complementary ways. The first can be found in §12.3 (pp.
218–220) of [41]. It relies on the continuous form of Brion’s theorem [54] over simple, rational,
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convex polytopes, later generalized to any convex polytope by Barvinok [55]. According to Brion’s
theorem, the integral of ex·u over the polytope P is given by:

∫
R3

ex·udμP(x) = −
∑

vk∈V

evk·u|detKvk |
(ω1(vk) · u)(ω2(vk) · u)(ω3(vk) · u)

. (3.6)

Now we consider the following integral, for the multiindex I = (i1, i2, i3):

∫
P

xIex·u dx =
∫
P

(
∂

∂u

)I
ex·udx

= −
(

∂

∂u

)I
⎡
⎣∑

vk∈V

evk·u|detKvk |
(ω1(vk) · u)(ω2(vk) · u)(ω3(vk) · u)

⎤
⎦ . (3.7)

Thus, in the limit when u → 0, the integral above becomes the moment integral, whereupon

γ I =
∫
P

xIdx = − lim
u→0

(
∂

∂u

)I ∑
vk∈V

[
evk·u|detKvk |

(ω1(vk) · u)(ω2(vk) · u)(ω3(vk) · u)

]
= − lim

u→0

(
∂

∂u

)I
V(u),

(3.8)
where for brevity we name:

V(u) =
∑

vk∈V

[
evk·u|detKvk |

(ω1(vk) · u)(ω2(vk) · u)(ω3(vk) · u)

]
. (3.9)

(c) General algorithm for the calculation of themoments of a convex polytope of any order
Equation (3.8), found in [41], suffices to compute all desired moments of a polytope. It is however
computationally cumbersome, as it involves the derivatives of exponential functions and the
computation of a limit. For this reason, in what follows we will derive a more computationally
effective alternative general formula for the moments of the polytope.

We achieve this by manipulating theorem 12.4 of [41], originally due to Brion and Vergne
(theorem 3.2 in [56], also found in e.g. [41,57]), which in its original form concerns the volume and
the axial moment function of the polytope P . According to said theorem, we begin by considering
Brion’s theorem (equation (3.6)), and note that we may re-scale the u variable into u �→ sz, with
s ∈ R. Having done this, we then expand the integral on Brion’s theorem (equation (3.6)) in Taylor
series of the scaling factor s about the origin:

∫
P

ex·szdx =
∞∑

j=0

[∫
P

(x · z)j dx
]

sj

j!
, (3.10)

where now the series expansion depends on the axial moment function:

γ (j)(z) =
∫
P

(x · z)j dx. (3.11)

If we proceed likewise with the r.h.s. of equation (3.6), we get

−
∑

vk∈V

es(vk·z)|detKvk |
(s3ω1(vk) · z)(ω2(vk) · z)(ω3(vk) · z)

= −
∞∑

j=−3

⎡
⎣∑

vk∈V
(vk · z)j+3 |detKvk |

(ω1(vk) · z)(ω2(vk) · z)(ω3(vk) · z)

⎤
⎦ sj

(j + 3)!
. (3.12)
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Comparing both sides of the equation term-by-term, we find that the axial moment function γ (j)(z)
may be expressed as:

γ (j)(z) =
∫
P

(x · z)j dx

= − j!
(j + 3)!

∑
vk∈V

(vk · z)j+3 |detKvk |
(ω1(vk) · z)(ω2(vk) · z)(ω3(vk) · z)

. (3.13)

Clearly, γ (j)(z) is not a moment proper (it depends on z), nor one we are necessarily interested in,
as its index is an integer. If z were one of the three unit vectors, then γ (j)(z) can be used to select
the axial moments of order j, e.g.:

γ (j)(1, 0, 0) =
∫
P

xj
1 dx ≡ γ (j,0,0). (3.14)

However, what we seek is γ I, with I the multiindex I = (i1, i2, i3) encoding the k1 . . . knk indices
in the multipolar moments. Here we show how a few simple manipulations of the axial moment
function γ (j)(z) enables us to relate this result by Brion and Vergne to the desired moments γ I.
Indeed, we may expand the axial moment function γ (j)(z) in series of z about the origin, where
we use again the multiindex I = (i1, i2, i3) for convenience:

γ (j)(z) =
∑
|I|≥0

zI

|I|!
(

∂

∂z

)I
γ (j)(z)

∣∣∣∣∣
z=0

. (3.15)

This series is capped at |I| = j, as higher-order derivatives vanish in the integrand.
Likewise, we can expand γ (j)(z) itself in powers (x · z)j via the multinomial sum:

(x · z)j = (x1z1 + x2z2 + x3z3)j =
∑
|I|=j

(
j
I

)
xIzI, (3.16)

where (
j
I

)
=
(

j
i1, i2, i3

)
= j!

i1! i2! i3!
, (3.17)

so that ∫
P

(x · z)j dx =
∑
|I|=j

(
j
I

)
zI
∫
P

xI dx =
∑
|I|=j

(
j
I

)
zIγ I. (3.18)

Now, if we group the terms in the Taylor series so that |I| = j, we can compare them to the terms
in the multinomial series, and conclude that the desired γ I moments of the general polytope P
can be represented via

γ I = 1
|I|!

(
∂

∂z

)I
γ |I|(z)

∣∣∣∣∣
z=0

, (3.19)

where

γ |I|(z) = − |I|!
(|I| + 3)!

∑
vk∈V

(vk · z)|I|+3 |detKvk |
(ω1(vk) · z)(ω2(vk) · z)(ω3(vk) · z)

, (3.20)

where naturally |I| ≡ j.
Equation (3.19) relates the axial moment function γ |I|(z) to all other moments of the

polytope. Analytically, this is advantageous because the axial moment function does not include
exponential terms, and the formula involves only derivatives rather than limits of derivatives,
resulting in a computationally simpler way of obtaining the desired moments of the polytope.
A third, alternative formulation reliant on the moment generating function of a convex polytope
can be found in [58], and is provided in the electronic supplementary material.

Further, equation (3.19) provides an efficient algorithm to compute any multipolar moment of
a polytope: (1) for a given order |I|, obtain the axial moment function γ |I|(z) (equation (3.20));
(2) calculate the desired multipolar moment γ I using equation (3.19). The electronic
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Figure 5. Two polytopal inclusions. (a) Tetrahedral inclusion. (b) Cuboidal inclusion.

supplementary material provides an example on how to operate with the axial moment function
formula derived here.

(d) Tetrahedral inclusion
We consider the tetrahedral inclusion V (a 3-simplex) shown in figure 5a. The tetrahedron
has height of magnitude f , sides of size a,

√
b2 + c2, and

√
d2 + e2. We place the vertices in

such a manner that the centroid of the tetrahedron falls at the origin: v1 = −(1/4)(a + b +
c, c + e, f ), v2 = (a − (1/4)(a + b + d), −(1/4)(c + e), −(1/4)f ), v3 = (b − (1/4)(a + b + d), c − (1/4)(c +
e), −(f/4)), v4 = (d − (1/4)(a + b + d), e − (1/4)(c + e), (3f/4)). We define the edge vectors as ωi(vk) =
vi − vk, i = {n ∈ {1, 2, 3, 4}: i �= k}, and using equation (3.19), we find that the axial moment function
is:

γ (j)(u) = − j!
(j + 3)!

|acf |
4j+3

(
− (−au1 − bu1 − cu2 + 3du1 + 3eu2 + 3fu3)j+3

(du1 + eu2 + fu3)(−au1 + du1 + eu2 + fu3)(−bu1 − cu2 + du1 + eu2 + fu3)
+

+ (−au1 − bu1 − cu2 − du1 − eu2 − fu3)j+3

au1(bu1 + cu2)(du1 + eu2 + fu3)
+ (3au1 − bu1 − cu2 − du1 − eu2 − fu3)j+3

au1(au1 − bu1 − cu2)(−au1 + du1 + eu2 + fu3)
−

− (−au1 + 3bu1 + 3cu2 − du1 − eu2 − fu3)j+3

(bu1 + cu2)(−au1 + bu1 + cu2)(bu1 + cu2 − du1 − eu2 − fu3)

)
(3.21)

The axial moment function enables us to generate all other multipolar moments of the
inclusion via equation (3.19). Table S2 in the electronic supplementary material collects them up to
third order. Figure 6 depicts the hydrostatic stress component on the cross-section afforded by the
lower face of two distinct tetrahedra of the same volume, one symmetric in the x2 and the other
skewed. The hydrostatic stress field is chosen in order to diminish the difficulties posed by having
to rotate the stress tensor, particularly when the polytope is skewed or rotated about the origin.
As has been discussed, all long-range interactions depend solely on the dipolar terms, which
are proportional to the volume of the tetrahedron alone. And indeed, as is shown in figure 6a,b,
because both tetrahedra have the same volume, the long-range fields of both tetrahedra are the
same, irrespective of the shape (and orientation) of the inclusion. Further, they are homologous
with those of the ellipsoidal inclusion, and indeed to those of the point defect, and given by (for
the case represented in figure 6):

σ
(1)
h (x) = −μ(1 + ν)x1x2

π (1 − ν)r5/2 Ve∗
12, (3.22)

where V is the polytope’s volume. The effect of shape is only felt in the near fields: with the
octopolar contributions, short range effects start to be accounted for: the skewed tetrahedron’s
hydrostatic field in figure 6b becomes increasingly asymmetrical in its near field, something
not observed in the symmetric tetrahedron shown in figure 6a. This becomes increasingly
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Figure 6. The hydrostatic stress field (in GPa) of a nominal tetrahedral inclusion. Two equivoluminal tetrahedra are considered:
a, defined by the set of vertices (−1/2,−3/16,−1/4), (1/2,−3/16,−1/4), (0, 5/16,−1/4), (0, 1/16, 3/4); and b by the
vertices (−0.375,−0.1375,−0.25), (0.625,−0.1375,−0.25), (−0.125, 0.3625,−0.25), (−0.125,−0.0875, 0.75) (all units in
m), with the origin placed at the centroid of the corresponding tetrahedron. The inclusion is defined as zone of constant given
by the eigenstrain e∗12 = 1 (all other eigenstrain components zero). The figure depicts the cross-section of the field on the lower
face of the tetrahedra (for both a and b, x3 = −0.25 m), i.e. on the lower face of the tetrahedron, embedded in amaterial with
μ = 1 GPa, ν = 0.33.

more marked as the order of the expansion increases. We note here that because the origin
of coordinates is placed at the centroid, the quadrupolar moments vanish and their associated
field is exactly the dipolar one; but because the tetrahedron lacks ellipsoidal symmetry, the
hexadecapolar moments do not vanish and contribute to the near field. This means that the
near field contribution is unlike that of the ellipsoidal inclusion; this is generally the case for all
polytopes, and has considerable implications for the nature of the short-range fields of polytopal
inclusions, as we discuss further in §3g.

(e) Cuboidal inclusion
A general cuboidal inclusion V can be represented by the parallelepiped shown in figure 5b.
We choose to place the vertices at v1 = (0, 0, 0), v2 = (a, 0, 0), v3 = (c, d, 0), v4 = (e, f , g), v5 = (a +
c, d, 0), v6 = (a + c + e, d + f , g), v7 = (c + e, d + f , g), v8 = (a + e, f , g). This places the centroid at
vc = ((1/2)(a + c + e), (1/2)(d + f ), (g/2)). For cancellation purposes, we relocate the origin to the
centroid, so that now all vertices can be found at vk �→ vk − vc. The edge vectors ωi(vk) are
defined as the incident sides over each vertex shown in figure 5b, e.g. ω1(v1) = v2 − v1, ω2(v1) =
v3 − v1, ω3(v1) = v4 − v1, etc. This results in the following axial moment:

γ (j)(u) = |adg|
2j+3au1(cu1 + du2)(eu1 + fu2 + gu3)

[−(−au1 + cu1 + du2 + eu1 + fu2 + gu3)j+3

+ (au1 + cu1 + du2 + eu1 + fu2 + gu3)j+3 + (−au1 − cu1 − du2 + eu1 + fu2 + gu3)j+3

− (au1 − cu1 − du2 + eu1 + fu2 + gu3)j+3 + (−au1 + cu1 + du2 − eu1 − fu2 − gu3)j+3

− (au1 + cu1 + du2 − eu1 − fu2 − gu3)j+3 − (−au1 − cu1 − du2 − eu1 − fu2 − gu3)j+3

+ (au1 − cu1 − du2 − eu1 − fu2 − gu3)j+3] (3.23)
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Figure 7. Inclusions in plane strain. (a) Triangular inclusion. (b) Parallelogramic inclusion.

For more general hexahedra lacking the rotational symmetry of a parallelepiped the axial moment
function will not be even. However, in this particular case the axial moment function is even with
respect to u when the order of the axial moment is odd, so unlike in the tetrahedral inclusion, odd
order moments vanish, and the near field is approached faster. The ensuing multipolar moments
are collected in table S3 in the electronic supplementary material. Figure 7b shows the hydrostatic
stress field of a skewed parallelepiped across two different cross-sections: on the top surface
and on the epicentral cross-section along the x2 = 0 direction. These two cross-sections permit
studying the effect symmetries in the shape of the inclusion have in its long- and short-range
elastic fields. The symmetry of this specific inclusion means the long-range hydrostatic field at
the epicentral plane vanishes, but not enough to suggest the same should happen in the near
field. As the order of multipolar expansion increases, the hydrostatic field is seen to not vanish
in the near field. In a highly non-symmetrical plane, the far field remains centred at the origin,
though this is only a feature of the dipolar term. Convergence in the near field on opposite faces is
not as fast as the force multipoles remain centred at the origin due to the skewed parallelepiped.

(f) Multipolar moments in plane strain
In the case of plane strain conditions, the polytopes of interest degenerate into planar polygons. In
plane strain, these polygons represent infinite prysms, of which only a transverse section is being
studied. Regardless, the whole mathematical apparatus presented here can be readily adapted
to deal with plane strain polytopes. Thus, the multipolar expansion of its elastic field (equation
(2.9)) remains valid over x ∈ R

2, i, j, k1, . . . , kn, k ∈ {1, 2}. The general expression of the multipolar
moments themselves remain valid, only that the integral is now over R

2, Green’s function itself
is now the plane strain Green’s function (see e.g. eqn (5.24) in Mura [23]) and χD(x) is likewise a
characteristic function in R

2. The sole term that requires being adapted to the planar conditions
is equation (3.19). This may be done presently as indicated in [41]. In particular, if d = 2 denotes
the dimensionality of the problem, then for planar cases: (1) the multiindex becomes I = (i1, i2);
(2) the vertices vk will still number N, but a simple polytope in two dimensions has only two
incident edges per vertex, so the tangent cone is simplified to Kv = {ω1(v), ω2(v)}; (3) thus, the
axial moment function takes the form:

γ (|I|)(z) = − |I|!
(|I| + 2)!

∑
vk∈V

(vk · z)|I|+2 |detKvk |
(ω1(vk) · z)(ω2(vk) · z)

. (3.24)

For instance, for the triangle of sides a, b, c, origin in the centroid and the x1 axis aligned with the
side c as shown in figure 7a, we find that

γ (j)(u) = 2|cs|
u1(u1(a2 − b2 − c2) − 2cu2s)(u1(a2 − b2 + c2) − 2cu2s)

·
[

2u1

3j+2cj
(2cu2s − a2u1 + b2u1)j+2
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+ 1
6j+2cj+2

(2cu2s − u1(a2 − b2 + c2))(a2u1 − 2cu2s − b2u1 − 3c2u1)j+2

+ 1
6j+2cj+2

(u1(a2 − b2 − c2) − 2cu2s)(a2u1 − 2cu2s − b2u1 + 3c2u1)j+2
]

(3.25)

where s =
√

b2 − ((−a2 + b2 + c2)2/4c2). Naturally, in this case γ (1)(u) = 0, as the origin is located
in the centroid, but there is no symmetry with respect to either axis, so all other moments do not
vanish, γ I(u) �= 0∀|I| > 1, which means that generally the far fields of the triangular inclusion in
plane strain will decay with 1/r2 and the near-field progress with 1/r3, 1/r4, etc. The exception
would be the highly symmetrical equilateral triangle of side (say) a, in which case

γ (j)(u) = 2aj+2
√

3(u3
1 − 3u1u2

2)

[
−u1uj+2

2

3
j
2

+ 1
2j+33j+1

(
u1 +

√
3u2

) ((
3u1 −

√
3u2

))j+2 +

+ 1
2j+33j+1

(
u1 −

√
3u2

) (
−
(

3u1 +
√

3u2

))j+2
]

. (3.26)

In this case, the axial moment function is even with respect to u1, which means that all multipolar
moments where i1 mod 2 �= 0 will vanish. As a result, the triangular inclusion in plane strain
has the rare property of its near field decaying more slowly along the x1-direction than the x2-
direction. Similar conclusions can be drawn by considering the axial moment function of other
planar polytopes. For instance, for the parallelogramic inclusion of sides a and c and height b
shown in figure 7b, the translational symmetry entails an odd axial moment function:

γ (j)(u)

= |ab|
2j+2au1(bu2 + cu1)

[a2u2
1(−(−au1 + bu2 + cu1)j + (au1 + bu2 + cu1)j + (−au1 − bu2 − cu1)j

− (au1 − bu2 − cu1)j) + 2au1(bu2 + cu1)((−au1 + bu2 + cu1)j + (au1 + bu2 + cu1)j

+ (−au1 − bu2 − cu1)j + +(au1 − bu2 − cu1)j) + (bu2 + cu1)2(−(−au1 + bu2 + cu1)j

+ (au1 + bu2 + cu1)j + (−au1 − bu2 − cu1)j − −(au1 − bu2 − cu1)j)] (3.27)

and accordingly γ I
parall = 0 ∀I : |I| mod 2 �= 0.

(g) Symmetry, parity and decay of the elastic fields of a polytopal inclusion
A key feature of the study of the multipolar moments of polytopes is that the polytope’s own
symmetry (indeed, any inclusion’s) is reflected in the axial moment function. This follows from
the formal definition of the axial moment function of a general inclusion:

γ (j)(u) =
∫

(u · x)jχP(x) dx.

If the inclusion is symmetric with respect to the direction xk, then χP(−xk) = χP(xk) (all other
directions omitted), and therefore by Fubini’s theorem, all even ordered axial moments, γ (2j)(u),
are likewise an even function in the direction uj. Thus, the symmetry of an inclusion is directly
mirrored by the parity of its γ (j)(u) axial moments. Furthermore, as shown via equation (3.19) all
non-axial multipolar moments are derivatives at the origin of γ (j)(u). In light of this, the property
whereby the derivative of an even function is odd and the derivative of an odd function vanishes
at the origin can be invoked to conclude that, in those axial directions with respect to which the
inclusion is symmetric, the inclusion’s even ordered multipolar moments must vanish.

Thus, symmetric polytopal inclusions have no even ordered multipolar moments. This
property has already been observed for the particular case of the ellipsoidal inclusion: its even
ordered multipolar moments vanished because this made the integrand in the moment integrals
odd with respect to the ellipsoid’s measure itself. However, because a general convex polytope of
N vertices will not necessarily be symmetric in any one axial direction, it is not possible to make
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Figure 8. The hydrostatic stress field (in GPa) of a parallelepiped defined by vertices: (−1.25,−0.5,−0.5),
(−0.25,−0.5,−0.5), (−0.75, 0,−0.5), (−0.25, 0, 0.5), (0.25, 0,−0.5), (1.25, 0.5, 0.5), (0.25, 0.5, 0.5), (0.75, 0, 0.5)
(all units in m), with the origin placed at the centroid of the parallelepiped. The inclusion is defined as zone of constant given
by the eigenstrain e∗12 = 1 (all other eigenstrain components zero). The figure depicts the cross-section on: (a) the upper face
of the parallelepiped (x3 = 0.5m); (b) the epicentral plane (x2 = 0 m). Hereμ = 1 GPa, ν = 0.33.

a similar general statement about the decay rate of the elastic fields of a polytopal inclusion. It is
always possible to reorient the axes so as to diagonalize the multipolar moment of a given order,
but this does not result in a net change in the decay rate of the fields: the multipolar moment
will generally not vanish, and as was seen in the case of the hydrostatic dipolar field of the
parallelepipedal inclusion considered in figure 8b, finding one such direction does not entail the
higher odd ordered moments will vanish either.

However, when a specific polytope is symmetric with respect to one or more of the axial
directions, then the same property observed in the ellipsoidal case holds: a symmetric polytope
will see all its even ordered moments vanish because the integrand of the moment integral is
odd with respect to the measure of R

3. As a result, the second-order terms in the expansion will
vanish and the far field of the polytope’s stress field will decay with 1/r3, whereas the near field
with 1/r5. Thus, whenever symmetry is present, the formulation derived here will express said
symmetry through the parity of the polytope’s axial moment function γ (j)(u): γ (j)(u) will be even
with respect to the direction uk, and it will follow that all even ordered multipolar moments will
vanish, resulting in a net decay rate of its elastic fields that propagates in even powers of 1/r2.
For instance, when considering the regular dodecahedron of side c, its axial moment (shown

in the electronic supplementary material) function is even, meaning that γ
(j)
dod(−u) = γ

(j)
dod(u).

Accordingly, relative to the basis it is expressed in, the dodecahedral inclusion will see all its
even ordered moments vanish, i.e.

γ I
dod = 0 ∀I ∈ N

3/ |I| mod 2 �= 0. (3.28)

Likewise conclusions are drawn for the parallelepipedal inclusion, as its axial moment function
(equation (3.23)) reflects its symmetry.
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Because this property is entirely dependent on the symmetry of the polytope itself, it seems
clear that in practice such fast decay of the elastic fields of the polytopal inclusion will be limited
to a very narrow number of cases, and that in practice most polytopal inclusions found in
real materials will have a full multipolar expansion. This result is highlighted because, given
that symmetry plays such a strong role in the speed with which its elastic fields decays, any
attempt at modelling inclusions that relies on polytopal inclusions of high symmetry is bound to
misrepresent the fields of polytopal inclusions of the same graph, unless attempts are made by
the modeller at perturbing the symmetry of the base model itself: one should not approximate an
irregular cuboid with a regular one, nor a faceted thin martensitic needle with an ellipsoid, for in
both cases the asymmetry radically alters all near-field interactions.

4. Conclusion
This article has derived the elastic multipolar field expansions of ellipsoidal and polytopal
inclusions, including a general formula for calculating all multipolar moment of ellipsoidal
inclusions, and using recent developments in integer point enumeration theory, the multipolar
moments of arbitrary polytopal inclusions. The approach has enabled us to show that the
symmetry of the polytope is reflected by the axial moment function, and that the multipolar
moments can be generated through this function. This result has been applied to specific
polytopes (triangles, parallelograms, tetrahedrons, parallelepipeds and dodecahedrons), and can
be used to represent any polytopal inclusion through triangulation.

We have shown that the first order dipolar terms in the expansion verify the Eshelby property
that the long-range behaviour of an inclusion depends solely on its volume, regardless of its
shape. Our formulation provides a bound to this far field, as well as being able to model the
near-field: at a distance of about the representative size of the inclusion, the far-field dominates.
Whereas the far-field is shape-insensitive, our approach has enabled us to highlight the role
symmetry plays in the near field by virtue of the symmetry/parity property of the axial moment
function. We have shown how symmetrical inclusions such as ellipsoids have a near-field with
a 1/r5 decay rate, whereas non-symmetrical inclusions such as tetrahedrons have a stronger
1/r4 decay rate. This suggests that simplified symmetrical models will underestimate near-field
interactions, and emphasizes the need for accurate geometric modelling; e.g. when twins are
assimilated to ellipsoids, their near field interactions will be under-predicted.

The formulation derived here enables very accurate and very simple estimates of the elastic
fields of the polytopal and ellipsoidal inclusions to arbitrary levels of accuracy for a fraction of
the computational cost associated with evaluating their exact fields analytically or, more typically,
through numerical approaches. As such, they will be useful in any application where knowledge
of the elastic field of an inclusion is required to quantify other physical quantities. This is the
case for instance when estimating diffusional flows around complex inclusions: the multipolar
fields derived here enable quick and accurate estimates of the far- and near- hydrostatic stress
field, which when coupled to the diffusional problem facilitates analytical estimates of the
diffusional flows, as may be necessary in e.g. studying vacancy segregation around inclusions
or hydrogen transport around precipitates. Likewise, the multipolar fields offer a quick method
to compute with accuracy the elastic interactions between inclusions and other defects such as
for instance dislocations, shear bands, or cracks; this will facilitate the modelling of such effects
as precipitation hardening or the effect of impurities in discrete dislocation models of crystal
plasticity, or to model faceted twins or martensitic phases and study their mutual interactions
or their interactions with other defects. Further, the multipolar fields derived here enable simple
estimates not only of the elastic fields, but also of the elastic energy densities of polytopes, which
can be used to estimate inclusion morphologies when coupled with interfacial energy. Finally, the
multipolar stress fields will also be useful in homogenization approaches reliant on computing
the collective elastic fields of ensembles of inclusions, as the latter can reliably be approximated
via multipolar fields presented here.
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