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ABSTRACT: 

A myriad of physiological impairments is seen in individuals following a spinal cord 

injury (SCI). These include altered autonomic function, cerebral hemodynamics, and 

sleep. These physiological systems are interconnected and likely insidiously interact 

leading to secondary complications. These impairments negatively influence quality of 

life. A comprehensive review of these systems, and their interplay, may improve clinical 

treatment and the rehabilitation plan of individuals living with SCI. Thus, these 

physiological measures should receive more clinical consideration. This special 

communication introduces the under investigated autonomic dysfunction, cerebral 

hemodynamics, and sleep disorders in people with SCI to stakeholders involved in SCI 

rehabilitation. We also discuss the linkage between autonomic dysfunction, cerebral 
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hemodynamics, and sleep disorders and some secondary outcomes are discussed. 

Recent evidence is synthesized to make clinical recommendations on the assessment 

and potential management of important autonomic, cerebral hemodynamics, and sleep-

related dysfunction in people with SCI. Finally, a few recommendations for clinicians 

and researchers are provided. 

 

Keywords 

Spinal Cord Injuries, Autonomic Nervous System, Cerebrovascular, Cognition, Sleep 

Apnea Syndromes, Rehabilitation 

 

INTRODUCTION 

Individuals who have sustained a spinal cord injury (SCI) suffer from a multitude 

of impairments. The sequelae of impairments includes autonomic nervous system 

(ANS) dysfunction, which contributes to a host of disorders, including adverse changes 

in cardiovascular stability, cerebral hemodynamics, sleep, and cognitive function.1–7 

These impairments are interconnected and negatively impact physical rehabilitation8 

detracting from community engagement and quality of life among individuals living with 

a SCI (Figure 1).9,10 Disrupted cardiovascular ANS control can impair oxygen delivery to 

exercising muscles (i.e., exertional hypotension11) resulting in decreased performance 

during activities of daily living and potentially limit physical rehabilitation for these 

individuals.12 It is important to note that ANS impairments that limit physical 

rehabilitation are not isolated to the disruption of cardiovascular function, but also 

impact bladder function13 which has shown to detract from participation,8 independence 
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with daily activities,14 and quality of life in individuals living with a SCI15 due in part to 

catheterization considerations, and frequent urinary tract infections.16  

Mounting evidence links sleep disordered breathing (SDB) to ANS dysfunction, 

cardiovascular instability, and poor adherence to physical rehabilitation in the general 

and SCI populations.17 The prevalence of SDB in individuals with a SCI is greater than 

the prevalence in those without a SCI, especially among individuals with tetraplegia 

where prevalence may exceed 90%.18–20 Recently, it has been suggested undiagnosed 

and untreated SDB may be confounding rehabilitation research in individuals living with 

a SCI,17 due to the known negative impact on autonomic, cardiovascular, cognitive and 

motor function in uninjured individuals. Although the indicators of autonomic 

cardiovascular dysfunction differ between those with and without a SCI (i.e., transient 

episodes of autonomic dysreflexia [AD] vs chronic hypertension), it is contended that 

SDB negatively impacts autonomic and cerebrovascular function in individuals living 

with a SCI in a manner similar to that identified in patients with intact spinal cords (See 

Figure 1).  

Thus, following the International Classification of Functioning framework, these 

impairments to the body structures and functions negatively impact activity and 

participation in life. Likewise, albeit outside of the scope of this review, promotion of a 

healthy lifestyle (i.e. smoking cessation, nutrition, alcohol consumption, physical 

activity), as well as improving social support, may improve autonomic function and 

facilitate a reduction in disability. Despite the prevalence and impact of ANS 

dysfunction, the implementation of this knowledge into SCI rehabilitation remains low, 

perhaps due to a lack of standardized recommendations and screening assessments. 

                  



6 

 

Therefore, the purpose of this special communication is to provide: 1) a brief review of 

cardiovascular autonomic, cerebrovascular, and sleep dysfunction in individuals with a 

SCI, 2) explanations on what these impairments may mean for clinicians and 

researchers, 3) recommendations on how SCI clinicians and researchers can address 

these concomitant impairments in practice and future studies. 

Figure 1: Theoretical Model Overview: 

 

CARDIOVASCULAR AUTONOMIC DYSFUNCTION 

Impaired cardiovascular ANS control is prevalent in individuals with SCI at or 

above the 6th thoracic level (≥ T6). This includes AD and orthostatic hypotension (OH). 

Autonomic dysreflexia is characterized as a sudden rise in blood pressure (BP) due to a 

sustained spinal sympathetic reflex initiated from afferent signaling below the injury that 

persists due to the loss of descending inhibitory control.21 Orthostatic hypotension, the 

drop in BP during position change, is often concomitant with persistent hypotension, 

creating a highly unstable BP profile5, which is the clinical expression of impaired 

descending sympathetic vasomotor control.22    

Prevalence rates for both AD and OH are highly variable because many 

individuals remain asymptomatic.2,23 In a retrospective review of the medical records in 

277 Veterans with a SCI, the diagnosis of AD and OH were less than 7%, regardless of 

the level of the injury.24 However, in individuals with an injury higher than T6, AD has 

been reported in 48-100% of cases,21,25,26 while OH was reported in 36% of individuals 

with a chronic SCI (C4-T11).27 Additionally, it has been found that 32 of 46 (70%) 

individuals with a chronic SCI (C2-T12) met OH criteria.28  . Overall, autonomic 
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dysfunction and BP instability have been shown to negatively impact activities of daily 

living,29 participation in rehabilitation,30,31 length of hospital stays,32 stroke risk33,34 and 

cognitive function.2,35 Moreover, given that OH has been identified as a significant 

predictor of ischemic stroke in the general population,36 the increased prevalence of OH 

in individuals living with SCI may contribute to the increased prevalence of stroke 

compared to individuals without a SCI.33,34  

Two potential mechanisms that have been suggested37 for the increased stroke 

risk33,34 are 1) the inability to adequately control arterial BP, and 2) impaired cerebral 

hemodynamics. Although each mechanism is linked physiologically to the other, it is 

important to distinguish between these two mechanisms in the clinical management of 

the elevated stroke risk in the SCI population.5,38–40 Evidence in humans has linked 

surges in BP during AD with increases in middle cerebral artery blood flow velocity,41 

increased arterial stiffness,41–44 and loss of baroreflex sensitivity45 leading to cerebral 

hypo- and hyper-perfusion.41 Concomitantly, animal studies report that uncontrolled BP 

results in increases in arterial stiffness, altered vascular reactivity,46 and reduced 

cardiac contractility.7 However, the level of injury does not always correlate strongly with 

autonomic dysfunction27,47,48 and a gold standard for measuring autonomic function 

remains elusive.49 Nevertheless, it is becoming increasingly clear that autonomic 

dysfunction impacts cerebral hemodynamics,37 and activities related to physical function 

and rehabilitation.2 Albeit evidence is scant, it has been reported that cerebral 

hemodynamics may play a significant role in the adaptation to OH in individuals with 

SCI,50 suggesting that the relationship between cardiovascular ANS dysfunction and 

cerebrovascular function may be bidirectional (Figure 1). 
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CEREBRAL HEMODYNAMICS 

Studies investigating cerebrovascular function in individuals living with a SCI 

have primarily used transcranial Doppler, thus measures of cerebral blood flow velocity 

(CBFv) are typically reported. With this consideration, the terminology recently 

suggested by Skow et al. (2022) will be used.51 Effective regulation of cerebral blood 

flow is required for appropriate cerebral perfusion, and is accomplished by three primary 

mechanisms:52 

1. cerebral autoregulation (CA); ∆ CBF / ∆ BP, which can include 

measurements made during steady-state (sCA) or transient fluctuations in 

arterial BP (dynamic [dCA]). 

2. cerebrovascular reactivity to changes in arterial carbon dioxide; ∆ CBF / ∆ 

arterial gas concentration. 

3. neurovascular coupling (NVC); ∆ CBF / ∆ metabolic demand. 

There is controversial evidence regarding CBFv in the SCI population with some 

reporting a decrease or no difference in CBFv compared to individuals without a 

SCI.35,52–55 Evidence shows that an increase in BP induced by the administration of 

pharmacological agents,56,57 or AD41, all increased resting CBFv in individuals living with 

a chronic SCI, which may be independent of resting BP.56 However, in older individuals 

without a SCI, hypertension has been shown to reduce CBFv.58 The distinct findings 

across populations may point out a common characteristic shared by individuals with a 

SCI and the elderly without a SCI, which is that they may all demonstrate impaired CA, 

and highlight the importance of NVC (See “Cerebral Hemodynamics and Cognition” 

below).  
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Conversely, lower BP may not have the same relationship with CBFv. Despite 

heterogenous evidence, in individuals with a SCI, chronic hypotension has been shown 

to decrease cerebral perfusion and NVC.59,60 The reduced CBFv and cognitive decline 

may be a result of reduced cerebral oxygenation.61 This finding is important considering 

relationships have been found between OH severity and cognitive function62 and arterial 

stiffness44 in individuals living with a SCI which is congruent with findings from older 

adults without a SCI.63  In animal models of SCI, episodes of AD resulted in 

cerebrovascular endothelial dysfunction and fibrosis41 and cognitive decline.42 However, 

reduced CBFv may not be the sole factor responsible for impaired cognitive function 

following SCI for two reasons. First, pharmacological interventions are shown to 

increase systemic BP and CBFv but fail to improve cognitive performance in 

hypotensive individuals with a chronic SCI.56,57 Second, the administration of 

pharmacological intervention improves cognitive function, but does not increase CBFv 

in individuals with a subacute and a chronic SCI with hypotension.3 Furthermore, the 

relationship between systemic BP and CBFv may be limited to those living with a 

chronic SCI, given no significant correlations were found between systolic BP changes 

and CBFv during a sit-up test in newly injured individuals.64  

These discrepant findings may be due to the heterogeneity of the participants 

studied in previous experiments as some included individuals with hypotension and 

chronic injuries57 while Phillips et al. conducted their studies with individuals with 

subacute or chronic injuries.3 Other factors, such as SDB,65–67 psychological distress,68 

and physical activity69 may explain the difference as they may moderate the baseline 

cardiovascular ANS function, thus influencing cognitive function jointly with the 
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cerebrovascular system. Methodologically, it is important to highlight that inter-day 

cerebral blood flow measurements appear to be reliable in those with and without SCI70 

and that the dose of pharmaceuticals (i.e., midodrine) prior to assessment are important 

to consider in these studies.71  

The use of other techniques may improve our understanding of the relationship 

among cardiovascular ANS control, cerebral hemodynamics, and cognition. One such 

technique is the use of near-infrared spectroscopy (NIRS, or functional NIRS [fNIRS]), a 

real-time, non-invasive measurement capable of measuring cerebral perfusion, 

oxygenation, and activation.72  The use of NIRS is robust and includes measures of 

skeletal muscle oxidative capacity in healthy populations as well as those with chronic 

pathologies,73 including in individuals with SCI.74 Likewise, NIRS has been used to 

evaluate cortical oxygenation during transcranial magnetic stimulation,75 visual 

stimulation,76 motor cortex activation,77 and lower-body negative pressure.61 However, 

the available evidence of brain oxygenation with NIRS remains limited in the SCI 

population, providing an intriguing area of investigation regarding cardiovascular ANS 

control, cerebral hemodynamics, and cognition in individuals with a SCI. Ultimately, 

several mechanisms likely impair cerebral hemodynamics in individuals living with a 

SCI, which may partially mediate the reduction in cognitive function in this population.  

 

SLEEP 

 Interest in sleep physiology has grown over the decades. More recently, interest 

in SDB in individuals living with a SCI1,17,19,78–80 has increased exponentially. The 

prevalence of SDB in individuals with a SCI is greater than those without a SCI, 
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especially in persons with tetraplegia.18–20 The increased prevalence of SDB in 

individuals with a SCI may be due to a reduction in excitability of brainstem 

motoneurons that innervate upper airway muscles, leading to narrowing and/or closure 

of the upper airway that occurs concomitantly with a spinal injury.81 This modification 

may be  exacerbated by the direct impact of the spinal lesion on breathing function.82–86 

Sleep disordered breathing, in addition to other sleep disorders (i.e., insomnia, restless 

leg syndrome, sleep apnea), impact several important outcome measures in the SCI 

population, including but not limited to diminished quality of life,87 increases in pressure 

injuries and impaired healing,88 neurogenic obesity and metabolic syndrome.89  Even 

with the growing interest and understanding of sleep disorders in the SCI population, 

diagnosis and treatment remain poor.90–92 

Sleep and Autonomic Function in Individuals with and without SCI 

 Sleep disturbances in individuals without a SCI are associated with altered 

autonomic function93 and impaired vascular function94 (in addition to impaired cognition 

and reduced physical performance95,96). Alterations in autonomic function in individuals 

with an intact spinal cord and SDB  was recently reviewed by Dissanayake et al.93 The 

authors evaluated 71 studies that examined heart rate variability, BP variability, 

baroreceptor sensitivity, catecholamine levels, and muscle sympathetic nerve 

recordings. The evaluation showed that 81% of the published studies reported altered 

autonomic function in patients with SDB compared to healthy controls and 77% showed 

a relationship with SDB severity. Collectively, the primary conclusion reached from the 

evaluation was that SDB leads to increased sympathetic activity and low heart rate 

variability with less evidence supporting a reduction in parasympathetic activity. 
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Notwithstanding the limitations of heart rate variability and spontaneous cardio-vagal 

baroreflex sensitivity for understanding theANS,97–99 the authors also noted that the 

evidence may be biased by additional comorbidities associated with SDB.93   

The evidence linking sleep and altered autonomic activity in individuals living with 

a SCI remains scant. However, when individuals with a SCI and SDB are treated, and 

adhere to continuous positive airway pressure treatment, fewer individuals experience 

symptoms of AD and orthostatic dizziness.100 The treatment with continuous positive 

airway pressure reduces or eliminates the nocturnal hypoxic and hypercapnic episodes, 

and sleep fragmentation. This is an important finding considering the known negative 

impact of SDB on vascular function in humans without a SCI94 and the known impact of 

SCI on vascular physiology.47 Future studies are needed to confirm findings describing 

the beneficial effects of continuous positive airway pressure on sleep quality in 

individuals with a SCI compared to a control group. 

Recently, Fang et al. (2018) reported highly variable BP control in a 

heterogenous group of individuals with acute and a chronic SCI.101 The authors grouped 

the participants based on BP responses (or lack thereof)  during sleep. The groups 

included “dippers” (a nocturnal BP dipping more than 10% of daytime value), “non-

dippers” (a nocturnal BP dipping from 10% to 0% of daytime value), and “reverse 

dippers” (a higher night than daytime BP). Participants were also divided based on 

disease severity (apnea/hypopnea index [events/hour]; mild [5-15], moderate [15-30], 

severe [ > 30]). When the data was analyzed based on the “dipper”, “non-dipper”, and 

“reverse dipper” categories, differences in nocturnal BP were evident as expected but 

no differences in heart rate variability were apparent.101 When stratified for severity of 
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SDB, no differences in BP or heart rate variability were found between groups. 

However, when the data were stratified for acute vs chronic SCI, “reverse dippers” with 

acute injuries were found to have a lower apnea/hypopnea index, and the opposite was 

found in individuals with chronic SCI, which suggests that chronic SDB may negatively 

impact autonomic control BP during sleep in individuals with SCI.101  

Sleep and Cerebral Hemodynamics in Individuals with and without SCI   

 Sleep apnea is associated with altered cerebral hemodynamics in individuals 

with and without a SCI. In uninjured individuals with SDB, lower carotid artery blood flow 

and increased carotid artery resistance was evident during hyperventilation and carbon 

dioxide rebreathing trials compared to uninjured individuals without SDB.102 The degree 

to which the severity of SDB impacts cerebrovascular reactivity remains equivocal. 

Some investigators have reported that disease severity does not impact 

cerebrovascular reactivity,65 while others have reported a linear relationship between 

vessel stiffness (i.e., mean middle cerebral artery pulsatility index) and total volume of 

white matter.66 In addition, regression analysis showed a significant relationship 

between age and disease severity with cerebrovascular compliance,66 highlighting that 

the duration and severity of SDB are likely important variables to consider when 

investigating the impact of SDB on cerebral hemodynamics. Additionally, sleep 

fragmentation and disease severity were negatively correlated with age- and body- 

mass-index- adjusted CBFv.66 Cognitive function was also assessed and there was no 

relationship between CBFv and cognitive processes of attention and executive function 

in people with SDB, but a positive relationship between those two in individuals without 
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SDB.67 This further supports the notion that the chronicity of SDB negatively impacts 

cerebral hemodynamics and cognitive function in individuals without SCI.  

There is a paucity of studies investigating cerebral hemodynamics and sleep in 

individuals with SCI. The Phillips Lab has studied impaired cerebral hemodynamics in 

SCI,3,103,104 and recently reported impaired cerebrovascular reactivity is associated with 

SDB in individuals with SCI using many variables as part of a principle component 

analysis.105 Specifically, number of oxygen desaturations, amplitude of oxygen 

desaturations, number of apneic events, and apnea/hypopnea index were strongly 

correlated to impaired cerebrovascular reactivity. This is important as cerebrovascular 

reactivity is associated with BP variability, cognitive decline, and white matter 

hyperintensities.106–108 It was concluded that examining SDB in participants with SCI 

should be considered as part of routine clinical care, which we have also suggested.17  

 

CLINICAL CONSIDERATIONS  

Mitigating the Deleterious Impact of Autonomic Control  
on the Cardiovascular System in Patients with SCI 

Body position and exercise should be considered when modifications in 

autonomic control of the heart, splanchnic and peripheral vasculature are addressed in 

individuals with SCI. When individuals suddenly change position (from supine to sitting 

or standing), there is an insufficient sympathetic response109 resulting in a rapid pooling 

of blood in the splanchnic area and the legs.110 This pooling results in a reduction of 

venous return thereby lowering systemic BP. Symptoms of “light headedness” ensue 

and if the original position cannot be quickly restored, the person may experience 

syncope.2  This orthostatic intolerance can be mitigated by the use of an abdominal 

                  



15 

 

binder and elastic stockings111 and may be combined with medications such as 

Midodrine,2 though this recommendation is limited.112 There is emerging evidence 

suggesting that spinal cord electrical stimulation may improve OH following SCI,113–115 

and improve cognitive function.116 Transcutaneous spinal cord stimulation may also 

improve CBFv and stabilize BP in individuals living with a SCI.114 Likewise, functional 

electrical stimulation for whole-body exercise was shown to significantly improve NVC in 

individuals living with a SCI above T4.117 However, more information regarding modality 

of exercise  (e.g., aerobic and resistance exercise) and the impact of exercise intensity 

is required. These data present several clinically applicable interventions to facilitate 

appropriate management of BP instability in individuals living with a SCI. 

The sequence of events following the positional change and sympathetic failure 

have important clinical consequences. Although many individuals living with OH remain 

asymptomatic, it has been reported that OH is associated with prolonged recovery 

which is coupled with increases in the time spent in physical rehabilitation30,31 

hospitals.32 In addition, OH is linked to diminished physical, social, and emotional 

health,29 as well as increased reporting of anxiety and depression.118 Likewise, AD 

poses several unique challenges, and treatment modalities for AD have remained 

unchanged since 1997119 with antihypertensive medications as the primary 

management recommendation. Unfortunately, these medications may exacerbate 

OH.120 

Exercise may be an option for the treatment of autonomic dysfunction in 

individuals with a SCI. Activity-based therapy options include body-weight-supported or 

robotic-aided locomotor training with or without electrical stimulation, or respiratory 
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muscle training.121–128 However, for those with severe OH, exercise may result in 

“exertional hypotension”11,129 further impeding physical training. Interestingly, a case 

study reported that modulating BP via epidural spinal cord stimulation in individuals with 

a SCI had a beneficial impact on exercise performance, further demonstrating the 

adverse impact of OH on physical performance and thus rehabilitation.129 Unfortunately, 

exercise studies in individuals with a SCI are typically of poor quality for a variety of 

reasons.112,130 Regardless of the available literature, there are several important factors 

to consider when initiating physical rehabilitation or training, including body position131 

and exercise intensity.132 Exercises performed while seated (i.e., upper-body ergometry, 

wheelchair propulsion), can be used to facilitate, or circumvent, specific signs of 

autonomic dysfunction. Likewise, standing exercises, such as using a standing table 

with arm ergometry may be useful to acclimate orthostatic BP control,69,133 while supine 

upper extremity exercise may be useful to increase CBFv.134  

In general, higher intensity exercise should be employed when possible.135 Other 

clinical approaches to improve physical function during exercise could include 

medications2 and compression garments111,136 to prevent hypotension or aquatics 

training to facilitate venous return.137 Exercise intensity is often determined using heart 

rate expressed as a percentage of maximum. However, this form of standardization is 

not recommended for individuals with cervical and upper-thoracic SCI due to disrupted 

cardiac sympathetic control and the usage of antihypertensive medications in this 

population may attenuate heart rate responses during exercises.138 These individuals 

may want to consider using ratings of perceived exertion (RPE) to regulate relative 
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exercise intensity.139 However, limitations with the use of RPE in individuals with a SCI 

has been noted in the literature.140 

Cerebral Hemodynamics and Cognition 

The effects of cerebral hemodynamics on cognitive function have been studied 

extensively in those without a SCI.141 However, like autonomic function,142 recovery- and 

health-related outcomes of cerebral hemodynamics after SCI have not received 

adequate attention compared to recovery- and related-comorbidities associated with 

motor and sensory function. It is reported that up to 60% of individuals with SCI 

experience some degree of cognitive impairment after injury,6 and it may be an under 

investigated barrier to education, sustainable employment, and independent living for 

these individuals.143,144 However, the prevalence rate of cognitive dysfunction remains 

uncertain,6 and this may be due to the heterogeneity of the injury characteristics and 

various domains of cognitive function that can be tested. 

The relationship between CBFv and cognitive function is complex, likely 

bidirectional, and not fully understood.145 A community-based population study indicates 

that higher CBFv is correlated with better executive function,145 which may be 

moderated by other factors. For example, reductions in CBFv (i.e., 20-30%) elicited by 

caffeine leads to improved executive function.146,147 It may be that appropriate temporal 

and spatial delivery of CBFv, achieved through dynamic control pathways, is necessary 

for optimal cognitive functioning. Some studies in uninjured individuals report links 

between NVC,148,149 cerebrovascular reactivity,150
 and dCA151 and cognitive function. 

Reports indicate altered dCA35,152 and NVC55,153 in people with SCI, but to the 

authors’knowledge, only NVC has been linked to cognitive dysfunction.55,153 More work 
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is needed to understand if cognitive function is related to dynamic CBFv regulation or 

cerebrovascular reactivity after SCI. Therefore, the use of standardized and clinically-

feasible assessment tools for cognitive function in SCI is warranted. Furthermore, 

impaired CA during physiological stimuli64,152 and cognitive testing3 is reported in 

individuals with both subacute and chronic SCI. Those with more severe autonomic 

dysfunction demonstrated a larger extent of impairment in cerebral 

autoregulation.55,64,152 Cognitive performance is also correlated with cerebral 

hemodynamics following SCI.3,4 However to date, there is no valid biomarker of cerebral 

hemodynamics that can evaluate cognitive function in people with SCI. Evidence in 

people without a SCI shows that cognition is associated with cerebral vessel contractility 

and dilation154 and increased cerebral oxygenation is correlated to improved cognitive 

performance.155 Therefore, cerebrovascular reactivity and cerebral oxygenation may be 

promising biomarkers of cognitive for evaluation during clinical practice.  

 

Sleep 

Disruptions in sleep can negatively affect several measures of physical function in 

uninjured individuals, which impact decision making regarding physical rehabilitation. 

Decreases in physical activity and self-selected exercise intensity,156 reductions in peak 

torque and power during exercise,157,158 reduced maximal work and heart rate 

independent of aerobic capacity,159 and an increased prevalence of fatigue compared to 

sleepiness160,161 have been reported in individuals with SDB. Importantly, treating SDB 

with continuous positive airway pressure in these individuals improves self-reported 

physical activity,162 peak aerobic capacity,163,164 and decrease symptoms of anxiety and 
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depression.165 However, much of the literature involved with sleep and SCI has not 

focused on the potential impact of SDB on physical function. A preliminary framework 

on how sleep disruptions may negatively impact physical function and health in SCI has 

previously been published.17 Although the impact of SDB on autonomic function in 

individuals with and without an injury is not the same (hypertension vs AD and OH), the 

impact of SDB on autonomic function is still present. Thus, by logical extension, SDB 

would impact autonomic function in individuals living with a SCI. Thus, it is contended 

that  SDB is a moderating variable, and not causative. Thus, it is likely that chronic SDB 

worsens autonomic dysfunction over time in these individuals, potentially confounding 

the current SCI literature.17 

 

RECOMMENDATIONS 

In summary, these findings underscore the importance of the multidisciplinary 

team for managing care in persons with acute and chronic SCI. Here it is suggested that 

additional members need to be added to the team, and that assessments of SDB17 and 

cognitive function should become standard practice to improve evaluation and treatment 

of autonomic dysfunction and mitigate adverse cardiovascular and cognitive function, 

and impaired sleep. The literature surrounding differences in autonomic dysfunction 

between those with acute and chronic SCI and those with higher and lower-level lesions 

is not robust; thus, recommendations are provided that span both the chronicity and 

severity of SCI.  

 

Recommendation 1. Improved education for health care providers.  
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Knowledge regarding mechanisms of autonomic dysfunction and downstream effects 

(Figure 1) is low among nursing and physiotherapy students166,167 and likely low among 

other healthcare professionals, including medical, and physiotherapy and occupational 

therapy students. Despite the relevance, oral maxillofacial surgeons were also deficient 

in knowledge about obstructive sleep apnea.168 This suggests that despite dealings with 

many healthcare professionals, persons with SCI are not receiving appropriate 

education about the consequences and potential treatments for autonomic dysfunction.  

To combat this, it is suggested that providers working with individuals with SCI pursue 

the following resources: 

(i) Become proficient in the assessments recommended by the ISAFSCI 

(International Standards to Document Autonomic Function following SCI)49  

(ii) Gain an understanding the Apnea-Hypopnea Index (AHI)169 and treatment 

options for SDB170  

(iii) Acquire knowledge regarding the technical and methodological 

recommendations for measuring and interpreting CBFv171  

(iv) Become familiar with the preliminary framework on how untreated SDB may 

be confounding rehabilitation research.17  

However, please note that some of these are preliminary recommendations which 

require additional research to establish a better understanding of what variables are 

clinically important based on the duration and severity of the lesion as well as other 

comorbidities. 

 

Recommendation 2. Comprehensive assessment of sleep and cognition should 

complement motor and sensory assessments.  
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To establish a baseline, and to determine the interplay of SCI and autonomic 

dysfunction on everyday life, all persons with a SCI should receive a standard 

evaluation of sleep from a sleep professional, and cognitive functioning, from a 

neuropsychologist. Although speech language pathologist or occupational therapist may 

provide an abbreviated cognitive exam, systematic assessment involving multiple 

cognitive domains is needed to provide a better understanding of the prevalence of 

cognitive dysfunction following SCI, and establish patterns in cognitive deficits affected 

by SCI. Critically, motor-free cognitive function tests have been shown to be reliable 

when used in individuals with SCI.172 The data from these evaluations can be used 

immediately by the rest of the team to challenge cognitive functioning during 

rehabilitation (physical / occupational therapy) or to develop strategies to manage 

cognitive dysfunction (speech language pathology). Data from the sleep study can 

characterize disturbances in sleep, including restless leg syndrome, insomnia, and 

sleep apnea, which can be used to inform treatment decisions (i.e., prescribe positive 

airway pressure treatment or other therapies). Regular re-assessment of sleep and 

cognitive functioning over time is also recommended to determine changes over time 

and in response to treatment. Further, it is also relevant to evaluate the impact of CBFv, 

pharmacological agents, and SDB on cognitive function, as they may contribute to a 

reversible dysfunction.  

 

Recommendation 3. Assessment of Cerebral Hemodynamics.  

At present, the assessment of cerebral hemodynamics is not a routine part of the 

clinical evaluation of persons with SCI. It is critical that technicians are trained in 
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assessment techniques, such as TCD and fNIRS, and that these are considered for 

regular clinical care. Due to the cost of such items, an affiliation with research 

laboratories or hospitals may be beneficial for the research team and clinician alike. For 

a thorough measurement, and the most clinically realistic approach, one would use TCD 

with validated beat-to-beat BP monitoring for accurate assessment of CBFv.52 The 

addition of these measurements, and during positional changes in those with SCI, 

would provide a more comprehensive assessment to improve decision making 

regarding optimal interventions to facilitation the rehabilitation.  

 

Recommendation 4. Assessment of Autonomic Dysfunction.  

Both OH and AD may be under-reported as many individuals remain 

asymptomatic,2,23,26 as such, standardized assessment is warranted. While many sites 

use tilt-tables to examine OH, recent work suggests that the sit-up test is equally 

effective, reliable,173 and does not require any specialized equipment.174 However, if 

objective measures are not possible, there are item banks175 and questionnaires40 

available. Appropriate recognition and treatment of AD is critically important to prevent 

complications such as stroke, seizures, or cardiac arrest.176 Despite the critical nature of 

AD, many healthcare providers report low levels of knowledge regarding AD.166,167,177,178 

Consistent monitoring of BP is critical during the acute and subacute stages of recovery 

to establish a baseline BP and it improves AD diagnosis.  

Healthcare professionals working with individuals with a SCI should be well-

versed in acute management of AD, which includes repositioning the person into an 

upright position, and removing potential triggers, such as tight clothing (i.e., abdominal 
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binders), blocked catheters, and impacted bowels. If BP does not return to baseline 

within 5-10 minutes after addressing triggers, pharmacological management should 

begin.119 This management is in contrast to acute management for OH, which includes 

repositioning the individual with SCI into a supine position with the feet elevated. In 

conjunction with standardized assessment, standardized education for persons with SCI 

and their family members/caregivers is needed to improve carryover from inpatient 

settings to home settings. This includes education not only on the importance of BP 

management, but also the elevated risk for stroke. Rehabilitation professionals play an 

important part of the healthcare team managing persons with SCI; in addition to 

advocating for standardized assessment and monitoring of autonomic dysfunction, 

providing education (e.g., stroke prevention, BP management, AD prevention and 

management, sleep hygiene) to patients and caregivers is critical. Further, rehabilitation 

professionals should prescribe therapeutic exercise to improve cardiovascular function, 

cognitive functioning, and sleep quality. 

 

CONCLUSIONS  

In this special communication article, up-to-date evidence on cardiovascular 

autonomic function, cerebral hemodynamics, and sleep in individuals with a SCI is 

reviewed. Extensive knowledge gaps in the currently available literature was found and 

provide a working framework on how these variables may be related (Figure 1). Finally, 

we provide recommendations on how these variables can be incorporated into the 

clinical assessment of individuals living with a SCI. 
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The gaps in our current knowledge, scientifically and clinically, highlight the need 

for improving communication between researchers and clinicians for improving 

physiological and psychological outcomes following SCI. The combination of rigorous 

scientific studies, and reports of effective treatment strategies from the clinics, will 

ultimately lead to improved clinical treatment and research studies aimed at promoting 

health, and quality of life, and reducing disability in these individuals. The clinical 

considerations and recommendations on patient assessments and management for 

potentially existing autonomic cardiovascular, cerebral hemodynamics, and sleep 

impairments in this article are meant to be the impetus that begins to fill the knowledge 

gaps surrounding research and clinical treatment for individuals living with SCI. By 

discussing comprehensive perspectives on these topics, it is hoped to improve the 

foundational knowledge and communication surrounding these topics, and direct future 

work for stakeholders involved in SCI rehabilitation.   

 

 

 

 

 

 

 

 

FIGURE LEGENDS 
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Figure 1: Theoretical interactive model showing the more established relationships 

(solid lines), and the less established relationships (dashed lines), in the SCI literature. 

The bidirectional arrows between autonomic and cerebrovascular dysfunction are 

dashed due to the heterogeneity of the literature between these two variables (see text 

for full details). However, these two variables in totality are known to have an impact on 

cognitive function, physical limitations, disability, isolation and changes in quality of life 

thus indicated by a dashed line to the surrounding gray box. Similarly, sleep has been 

shown to impact these variables in individuals without a SCI thus also represented by a 

dashed line to represent the limited evidence in the SCI population. More known 

relationships exist that reflect the influence of cerebrovascular and sleep disruption on 

cognitive function, thus represented by solid lines directly to cognitive dysfunction. For 

clarity, no solid line is drawn to represent the known association between SCI and 
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physical limitations, disability, isolation, or quality of life. Gray shading implies 

interrelated variables. SCI = Spinal Cord Injury, QoL = Quality of Life 
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