
 
 

University of Birmingham

On the structure of optimal solutions in a
mathematical programming problem in a convex
space
Piunovskiy, Alexey; Zhang, Yi

DOI:
10.1016/j.orl.2023.07.006

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Piunovskiy, A & Zhang, Y 2023, 'On the structure of optimal solutions in a mathematical programming problem in
a convex space', Operations Research Letters, vol. 51, no. 5, pp. 488-493.
https://doi.org/10.1016/j.orl.2023.07.006

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 02. May. 2024

https://doi.org/10.1016/j.orl.2023.07.006
https://doi.org/10.1016/j.orl.2023.07.006
https://birmingham.elsevierpure.com/en/publications/b25c2bee-b278-4610-89e5-b215c6444e3f


Operations Research Letters 51 (2023) 488–493

Contents lists available at ScienceDirect

Operations Research Letters

journal homepage: www.elsevier.com/locate/orl

On the structure of optimal solutions in a mathematical programming 

problem in a convex space

Alexey Piunovskiy a, Yi Zhang b,∗
a Department of Mathematical Sciences, University of Liverpool, Liverpool, L69 7ZL, UK
b School of Mathematics, University of Birmingham, Birmingham, B15 2TT, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 May 2023
Received in revised form 14 July 2023
Accepted 20 July 2023
Available online 28 July 2023

Keywords:
Feinberg-Shwartz lemma
Extreme point
Mixed optimal solution
Problem with constraints

We consider an optimization problem in a convex space E with an affine objective function, subject to 
J affine constraints, where J is a given nonnegative integer. We apply the Feinberg-Shwartz lemma in 
finite dimensional convex analysis to show that there exists an optimal solution, which is in the form of 
a convex combination of no more than J + 1 extreme points of E . The concerned problem does not seem 
to fit into the framework of standard convex optimization problems.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons .org /licenses /by /4 .0/).
1. Introduction

In the literature of convex analysis and optimization, see e.g., 
[1,2,10,13,14], the standard definition of a convex set is a convex 
subset of a vector space. It has been noticed that the requirement 
that a convex set to be embedded into a vector space is restrictive 
for several applications in e.g., decision theory and petroleum engi-
neering, see [8,9] for some discussions and historical remarks. The 
natural generalization is to consider the so called convex space or 
convex structure, where only operations of finite convex combina-
tions are defined, without involving a vector space, see [6]. Affine 
functions can be defined on a convex space in the same way as on 
a convex set in a vector space. According to [7, Theorem 4], a con-
vex space is isomorphic to a convex set in a cone, rather than a 
vector space, where the cone is defined again without referring to 
a vector space, see the precise definitions in Subsection 2.1. There-
fore, in terms of terminology, we will talk about convex sets in a 
cone, instead of convex spaces.

In this paper, we consider an optimization problem in a convex 
set in a cone with an (−∞, ∞]-valued affine objective function on 
it, and subject to constraint inequalities on other J affine functions, 
where J ≥ 0 is a fixed nonnegative integer.

Our contributions are as follows. For an optimization problem 
in a convex set E in a cone with an (−∞, ∞]-valued affine objec-
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tive function on it, and subject to constraint inequalities on other 
J affine functions, we impose suitable conditions under which we 
show that this problem has an optimal solution which is in the 
form of a convex combination of no more than J + 1 extreme 
points in E . In [11, Subsection 3.2.5], a similar result was obtained 
for E being a metrizable compact convex subspace of a locally 
convex Hausdorff space, where the latter requirement was inac-
curately missing. Here, the conditions are more general in that 
we assume the consistency of the problem, and the compactness 
of the convex set E in a cone, which is not necessarily metriz-
able, as well as the totality of the space of bounded below lower 
semicontinuous affine functions on E . The application of this re-
sult to Markov decision processes will be demonstrated in [12]. 
The present paper can also be viewed as an application of the 
Feinberg-Shwartz lemma in [5] in finite dimensional convex anal-
ysis, quoted as Proposition 3.1 below, on which our proof is based.

The rest of the paper is organized as follows. In Section 2, we 
provide basic definitions and present the main result. Section 3
collects auxiliary lemmas and facts. The proof of the main theorem 
is presented in Section 4. The paper ends with a conclusion in 
Section 5.

2. Problem statement and main result

In this section, we state the concerned optimization problem. 
Before that, we provide some definitions that are directly involved 
in the problem statement and main result to be presented. Al-
though the objects to be defined are all standard in the context 
of convex sets in a vector space, we need to consider their natu-
le under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).
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ral generalizations in the context of convex sets in a cone, or say 
convex spaces.

2.1. Basic definitions

To begin with, we define a cone without involving a vector 
space as follows.

Definition 2.1 (Cone). Consider a nonempty set X with an element 
0 ∈ X and the operations of addition, denoted as x + y ∈ X for 
x, y ∈ X , and scalar multiplication by non-negative real numbers, 
denoted as ax ∈ X for all x ∈ X and a ∈ [0, ∞). The set X is called 
a cone (over [0, ∞)) if it satisfies the following conditions:

• a(x + y) = ax + ay for all a ∈ [0, ∞) and x, y ∈ X ;
• a(bx) = (ab)x for all a, b ∈ [0, ∞) and x ∈ X ;
• 1x = x and 0x = 0 for all x ∈ X ;
• x + y = y + x for all x, y ∈ X ;
• x + (y + z) = (x + y) + z for all x, y, z ∈ X ;
• (a + b)x = ax + bx for all a, b ∈ [0, ∞) and x ∈ X ;
• x + 0 = x for all x ∈ X .

The above definition is close to the one of a cone with a zero 
on p.93 of [8]. The only difference is that in [8], a cone is further 
required to be cancellative. A cone is called cancellative if for any 
y, z ∈ X , if for some x ∈ X , it holds that x + y = x + z, then y = z. 
Here we do not require this property to hold for the concerned 
set to be a cone. An example of a cone (over [0, ∞)) which is 
not cancellative is X = [0, ∞] with the usual addition and scalar 
multiplication, 0 = 0, 0 · ∞ := 0, because for y, z ∈ X , ∞ + y =
∞ + z (both sides being ∞) does not imply y = z.

Definition 2.2 (Convex set). A subset E of a cone X is called a con-
vex set (in X) if αx + (1 − α)y ∈ E for all x, y ∈ E and α ∈ [0, 1]. A 
subset of E is called a convex subset of E if it is a convex set in X .

Let us say a few words about terminologies. In view of [8, The-
orem 4], we may well call the above defined convex set in a cone 
a convex space: this is consistent with the definition of a convex 
space in [6]. In the literature, by a convex set it is often meant 
a convex subset of a vector space. A vector space is a particular 
cone. Here and below, by a convex set, unless stated otherwise, 
we always mean a convex set in a cone, not necessarily in a vec-
tor space. Some results need the convex set to be a subset of a 
vector space, see, for instance, Example 3.1 below. When this is to 
be emphasized, we will say explicitly that the convex set is in the 
underlying vector space.

For example, the set X of all [0, ∞]-valued measures on a given 
measurable space (�, F), with the usual addition and scalar multi-
plication, is a non-cancellative cone, and one can consider convex 
subsets of this convex cone of [0, ∞]-valued measures on a σ -
algebra B. This is the situation that arises in studies of Markov 
decision processes with total undiscounted criteria, where the oc-
cupation measures form a convex set in the cone of [0, ∞]-valued 
measures, which in general cannot be embedded into a vector 
space, see [3,4].

Definition 2.3 (Face and extreme point). Let E be a nonempty convex 
set. A nonempty subset D ⊆ E is called an extreme subset of E , 
if for each point u ∈ D , the representation u = αu1 + (1 − α)u2
with α ∈ (0, 1), u1, u2 ∈ E implies that u1, u2 ∈ D . A point u ∈ E
is called an extreme point of E if the singleton {u} is an extreme 
subset of E . An extreme subset of E may be non-convex. E.g., a 
pair of distinct extreme points forms such a non-convex extreme 
subset. A convex extreme subset of E is called a face of E .
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Suppose in the above definition, the convex set E has a topol-
ogy on it. Then by a closed extreme subset (or face) of E we mean 
a closed subset of E , which is also an extreme subset (respectively, 
a face) of E .

Definition 2.4 (Affine function). A (−∞, +∞]-valued function f (·)
defined on a convex set E in a cone is called affine if

f (αx1 + (1 − α)x2) = α f (x1) + (1 − α) f (x2)

for all x1, x2 ∈ E and all α ∈ [0, 1].

In the above definition, we used the same notation for the 
addition and scalar multiplication in the underlying cone and in 
(−∞, ∞]. The context should exclude any confusion.

2.2. Problem statement and main result

Now we state the concerned optimization problem.
Consider a nonempty convex set E in a cone, and endow E with 

some topology. This topology on E needs not be consistent with 
the linear operations (addition and scalar multiplication). Let Ĉ(E)

be the family of (−∞, +∞]-valued bounded from below lower 
semicontinuous affine functions on E . As in [7, p.222], we call 
Ĉ(E) total if for each x, y ∈ E with x �= y, there is some function 
f ∈ Ĉ(E) such that f (x1) �= f (x2).

Let W0(·), W1(·), . . . , W J (·) ∈ Ĉ(E) be given. We consider the 
following optimization problem

Minimize over x ∈ E: W0(x)

subject to W j(x) ≤ d j, j = 1,2, . . . , J , (1)

where d j ∈ R are fixed constants and J ≥ 0. The case of J = 0
corresponds to the absence of constraint inequalities in problem 
(1).

In the context of problem (1), any point in E will be referred 
to as a solution (for problem (1)). A solution is called feasible for 
problem (1) if it satisfies the constraints in it. If J = 0, then ev-
ery solution is feasible. Problem (1) is called consistent, if it has 
some feasible solutions. A feasible solution x∗ ∈ E is called an op-
timal solution for problem (1) if W0(x∗) ≤ W0(x) for all feasible 
solutions x ∈ E .

Now we present our main result.

Theorem 2.1. Suppose that the nonempty convex set E (in a cone) is 
compact, problem (1) is consistent, and Ĉ(E) is total. Then there exists 
an optimal solution, say x∗ ∈ E, for problem (1) in the form of a convex 
combination of at most J + 1 extreme points in E, i.e., x∗ = ∑ J+1

k=1 αkxk, 
where αk ∈ [0, 1], ∑ J+1

k=1 αk = 1, and xk is extreme in E for each k =
1, 2, . . . , J + 1.

Remark 2.1. In the special case of E being a convex compact sub-
set of Rn endowed with the Euclidean topology, if problem (1)
is consistent, then it has an optimal solution x∗ , which, by the 
Caratheodory theorem, can be expressed as a convex combination 
of no more than n + 1 extreme points of E . What is new here, is 
that in case J < n, J + 1 extreme points are enough.

3. Preliminary results

In this section, we present some lemmas and recall some fur-
ther facts, which are needed in the proof of the main theorem. 
Lemmas 3.1 and 3.2 are immediate consequences of the relevant 
definitions, and their proofs are omitted.
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Lemma 3.1. If E1 is an extreme subset of E0, whereas E0 is an extreme 
subset of a nonempty convex set E, then E1 is also an extreme subset of 
E. In particular, a face of a face of a nonempty convex set E is also a face 
of E.

Lemma 3.2. Consider a nonempty convex set E, which is endowed with 
a topology. Let I be an arbitrary nonempty index set. If Ei , i ∈ I , are 
extreme subsets (or faces) of E and 

⋂
i∈I Ei �= ∅, then 

⋂
i∈I Ei is an ex-

treme subset (respectively, face) of E. In particular, if Ei , i ∈ I , are closed 
extreme subsets (or faces) of E and 

⋂
i∈I Ei �= ∅, then 

⋂
i∈I Ei is a closed 

extreme subset (respectively, face) of E.

Given a nonempty convex set E (in a cone X), the minimal face 
of E that contains a point u ∈ E , i.e., the intersection of all the 
faces of E containing u, is denoted by G E (u).

Definition 3.1 (Pareto optimality). Let E be a fixed nonempty con-
vex set in the cone (−∞, ∞] J+1 with some nonnegative integer 
J . A point u ∈ E is called Pareto optimal if, for each v ∈ E , the 
component-wise inequality v ≤ u implies that v = u. The collec-
tion of all Pareto optimal points is denoted by Par(E).

Let J ≥ 0 be a fixed nonnegative integer. Consider a nonempty 
convex set E in R J+1, and 
u = (u0, . . . , u J ) ∈ Par(E). The next use-
ful result of Feinberg and Shwartz, see Lemma 3.2 of [5], gives a 
structure of G E (
u).

Proposition 3.1 (Feinberg and Shwartz). Let J ≥ 0 be a nonnegative 
integer. Suppose E is a fixed nonempty convex subset of R J+1 , and 

u = (u0, . . . , u J ) ∈ Par(E). Then the following assertions are valid.

(a) G E (
u) ⊆ Par(E).
(b) For some 1 ≤ k ≤ J + 1, and 1 ≤ i ≤ k, there are some 
bi =

(bi
0, . . . , b

i
J ) ∈R J+1 and β i ∈R, defining the hyperplanes in R J+1

Hi =
⎧⎨
⎩
x = (x0, . . . , x J ) ∈R j+1 :

J∑
j=0

bi
jx j = β i

⎫⎬
⎭ ,

i = 1,2, . . . ,k,

satisfying the following properties:
(i) 
bi ≥ 0, 

∑ J
j=0 bi

j > 0, for i = 1, 2, . . . , k − 1 and 
bk > 0. Here 
all the inequalities are component-wise.

(ii)
∑ J

j=0 b1
j x j ≥ β1 for all 
x = (x0, . . . , x J ) ∈ E0 := E, 

∑ J
j=0 b1

j u j

= β1; for i = 1, 2, . . . , k − 1, 
∑ J

j=0 bi+1
j x j ≥ β i+1 for all 


x = (x0, . . . , x J ) ∈ Ei := Ei−1 ∩ Hi , and 
∑ J

j=0 bi+1
j u j = β i+1 .

(iii) G E(
u) = Ek := Ek−1 ∩ Hk.

Proof. See Lemmas 3.1 and 3.2 of [5]. �
In Proposition 3.1(b), for each i = 1, 2, . . . , k, Hi is a supporting 

hyperplane of Ei−1 at 
u.
The proof of Theorem 2.1 is based on an application of the re-

sult of Feinberg and Shwartz quoted in Proposition 3.1. We shall 
refer to it as the Feinberg-Shwartz lemma.

The correctness of the previous result requires E to be a convex 
subset of Rn . More precisely, the next example shows that if E is a 
nonempty convex subset of the cone (−∞, ∞]2 and 
u ∈ R2, then 
Proposition 3.1 may fail to hold.

Example 3.1. Let E ′ ⊆ R2 be a closed disk of radius 0.5 and cen-
tered at (1, 1.5), and E = E ′ ∪ {(∞, v2) : v2 ∈ [0, 2]}. Then this set 
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E is convex in the cone (−∞, ∞]2 with the component-wise ad-
dition and scalar multiplication, and 
u = (1, 1) is Pareto optimal in 
E . It is also an extreme point of E . Thus, G E (
u) = {
u}.

If Proposition 3.1 was applicable to this convex set E in the 
cone (−∞, ∞]2 and the point 
u = (1, 1), then there would be non-
negative b1, b2 ≥ 0 with b1 + b2 > 0 and a constant β such that 
b1 · 1 + b2 · 1 = β and b1 v1 + b2 v2 ≥ β for all 
v = (v1, v2) ∈ E .

The requirement of b1 · 1 + b2 · 1 = β and b1 v1 + b2 v2 ≥ β for 
all 
v = (v1, v2) ∈ E ′ ⊂ E imply that b1 = 0, and b2 = β > 0, as 
given by the unique supporting hyperplane in R2 of the disk E ′ at 

u = (1, 1).

On the other hand, since 0 ·∞ := 0, for (∞, 0) ∈ E , b1 ·∞ + b2 ·
0 = 0 < β , yielding a contradiction.

The next result, in particular, asserts that a nonempty convex 
compact set E in a cone always has some extreme points, provided 
that Ĉ(E) is total. Its proof is similar to the one of [1, Lemma 7.65].

Lemma 3.3. Suppose E is a nonempty, compact and convex set in a cone. 
Recall that Ĉ(E) is the space of (−∞, +∞]-valued bounded from below 
lower semicontinuous affine functions on E. Then the following asser-
tions are valid.

(a) Suppose F is a closed extreme subset (or a closed face) of E and 
f (·) ∈ Ĉ(E). Then

Y :=
{

x ∈ F : f (x) = inf
x̃∈F

f (x̃)

}

is a closed extreme subset (respectively, a closed face) of E.
(b) Assume that Ĉ(E) is total, i.e., if x1 �= x2 ∈ E, then there is f (·) ∈

Ĉ(E) such that f (x1) �= f (x2). Then each closed face F of E contains 
at least one extreme point x̂ of E, and the singleton {x̂} is closed. In 
particular, E has some extreme points.

Proof. (a) Let infx̃∈F f (x̃) := a ∈ (−∞, ∞]. If a = +∞, then Y = F
and the statement follows from the assumed properties of F .

Below, we assume that a ∈R. Then

Y := {x ∈ F : f (x) = a} = {x ∈ F : f (x) ≤ a} .

Firstly, consider F as a closed extreme subset of E .
It follows that the set Y is nonempty and closed, because F is 

closed, and the function f (·) is lower semicontinuous.
Let us verify that Y is an extreme subset of E . Indeed, if x ∈ Y

and x = αx1 + (1 − α)x2 with α ∈ (0, 1) and x1, x2 ∈ F , then, a =
f (x) = α f (x1) + (1 −α) f (x2) because f (·) is affine on E . Since for 
each x̃ ∈ F , f (x̃) ≥ a, to have x ∈ Y (i.e., f (x) = a), we must have 
f (x1) = f (x2) = a leading to x1, x2 ∈ Y . This shows that Y is an 
extreme subset of F . Now, according to Lemma 3.1, Y is also an 
extreme subset of E .

Thus, Y is a closed extreme subset of E .
Finally, we note that if F is a closed face of E , then the set 

Y is convex. Indeed, if x1, x2 ∈ Y , then for each α ∈ [0, 1], αx1 +
(1 −α)x2 ∈ F , and f (αx1 + (1 −αx2)) = α f (x1) + (1 −α) f (x2) = a, 
where the first equality holds because f (·) is affine, and the last 
equality holds because x1, x2 ∈ Y . Consequently, αx1 + (1 − α)x2 ∈
Y . It follows from this and what was established earlier that Y is 
a closed face of E .

(b) Fix a closed face F of E . Consider the family A of closed 
faces of F , which is partially ordered with respect to the inclu-
sion, i.e., A � B if and only if B ⊆ A. For each chain in A, since F
is compact (as a closed subset of the compact E) and each finite 
subfamily say A1 ⊇ · · · ⊇ An of the chain in A has a nonempty 
intersection An �= ∅, one may refer to Theorem 2.31 of [1] for 
that each chain in A has a nonempty intersection. According to 
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Lemma 3.2, this intersection is an upper bound of the chain in A. 
Therefore, according to Zorn’s Lemma, see e.g., [1, Lemma 1.7], A
has a maximal element, say F̂ , and no proper subset of F̂ can be a 
closed face of F .

Next, we show that F̂ is a singleton. Suppose for contradiction 
that there exist x1, x2 ∈ F̂ such that x1 �= x2. Since by assumption 
Ĉ(E) is total, we may consider some f (·) ∈ Ĉ(E) such that f (x1) �=
f (x2). Without loss of generality, assume that f (x1) > f (x2). Now 
by part (a), applied to the nonempty compact and convex set F , 
we see that Z :=

{
x ∈ F̂ : f (x) = infx̃∈ F̂ f (x̃) ≤ f (x2)

}
is a closed 

face of F , and x1 /∈ Z . As a result, Z ⊂ F̂ is a proper subset of F̂
as well as a closed face of F , which is a desired contradiction. We 
conclude that F̂ = {x̂} is a singleton, closed in F and thus in E , and 
the point x̂ ∈ F is an extreme point of F . By Lemma 3.1, x̂ is also 
an extreme point of E . �

It is known, see e.g., [1, Corollary 7.66] that every nonempty 
convex compact subspace E of a locally convex Hausdorff space 
has some extreme points. Lemma 3.3 is an extension of that result, 
because in a locally convex Hausdorff space, the set of real-valued 
continuous affine functions separate points: see [1, Corollary 5.82].

4. Proof of Theorem 2.1

In this section, we provide the detailed proof of Theorem 2.1.

Proof of Theorem 2.1. First, we assume that there is a feasible so-
lution, say x ∈ E , with W0(x) < ∞. Then there is an optimal solu-
tion, say x ∈ E , for problem (1) with a finite value, say W0(x) =:
d0 ∈ R. It will be explained at the end of this proof that this as-
sumption can be withdrawn.

Introduce the space of performance vectors O := { 
W (x) =
(W0(x), W1(x), . . . , W J (x)), x ∈ E} ⊆ (−∞, ∞] J+1. The set O is 
convex in the cone (−∞, ∞] J+1 because the functions W j(·) are 
affine and the space E is convex. Since, by assumption, problem 
(1) is consistent and with a finite (optimal) value, O ∩ R J+1 is a 
nonempty convex set in R J+1.

Now we pass problem (1) to the following one in the space of 
performance vectors:

Minimize W0 (2)

subject to 
W = (W0, W1, . . . , W J ) ∈ O

and W j ≤ d j, j = 1,2, . . . , J .

The rest of the proof consists of verifying the statements for-
mulated in each of the following steps.

Step 1. There exists an optimal solution, say 
W ∗ = (W ∗
0 , W ∗

1 , . . . ,
W ∗

J ), to problem (2) such that


W ∗ = (W ∗
0 , W ∗

1 , . . . , W ∗
J ) ∈ Par(O ∩R J+1).

(We mention that the assumption of totality of Ĉ(E) is not in use 
here as well as in Steps 2 and 3 of this proof.)

To show the existence of such an optimal solution 
W ∗ to prob-
lem (2), we consider the following problem

Minimize over x ∈ E:
J∑

j=0

W j(x) (3)

subject to W j(x) ≤ d j, j = 0,1,2, . . . , J .

Since for each j = 0, . . . , J , W j(·) is lower semicontinuous, 
bounded from below, and with values in (−∞, ∞], so is the func-
tion 

∑ J W j(·). Since E is compact, the set of feasible solutions 
j=0
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for problem (3) is compact, as a closed subset of E . It follows that 
problem (3) has an optimal solution x∗ ∈ E .

Upon passing problem (3) to the following problem in the space 
of performance vectors

Minimize
J∑

j=0

W j (4)

subject to 
W = (W0, W1, . . . , W J ) ∈ O

and W j ≤ d j, j = 0,1,2, . . . , J ,

we see that


W ∗ = (W ∗
0 , W ∗

1 , . . . , W ∗
J )

:= (W0(x∗), W1(x∗), . . . , W J (x∗))

is an optimal solution to problem (4).
We argue that 
W ∗ is as required in Step 1 as follows. Note that, 

compared to problem (2), in problem (3), there is an additional 
constraint W0(x) ≤ d0, where d0 is defined as the optimal value of 
problem (2), which is finite by assumption, see the beginning of 
this proof. This implies that problem (3) has a finite optimal value, 
so that 
W ∗ ∈ R J+1, and the set of feasible solutions for problem 
(3) is a subset of the one for problem (2). Therefore, x∗ is a feasible 
solution for problem (1), and accordingly, 
W ∗ is a feasible solution 
to problem (2). Secondly, it necessarily holds that W ∗

0 = d0, be-
cause otherwise, we would have W0(x∗) < d0, and this is against 
that d0 is the optimal value of problem (1) and problem (2). Con-
sequently, 
W ∗ is an optimal solution to problem (2), as required.

To see why 
W ∗ ∈ Par(O ∩R J+1), note that 
W ∗ ∈R J+1, and if 
there is some 
W ′ = (W ′

0, . . . , W
′
J ) ∈ O ∩R J+1, which strictly out-

performs 
W ∗ , i.e., W ′ ≤ 
W ∗ and W ′
j < W ∗

j for some j ∈ {0, . . . , J }, 
then 
W ′ is feasible for problem (4) and 

∑ J
j=0 W ′

j <
∑ J

j=0 W ∗
j . 

Consequently, 
W ∗ would not be optimal for problem (4), yielding 
a contradiction. Step 1 is completed.

In Step 2, we consider F , a nonempty convex closed (and thus 
compact) subset of E . Introduce the set

Õ := { 
W (x) : x ∈ F } ⊆ (−∞,∞] J+1, (5)

where 
W (x) = (W0(x), . . . , W J (x)). The set Õ is a convex subset of 
O, because W j(·) are affine on E and F is a convex subset of E .

We assume that β ∈ R and a vector 
b = (b0, . . . , b J ) > 0 in 
R J+1 are such that, for some 
u = (u0, . . . , u J ) ∈ Õ, 

∑ J
j=0 b ju j = β

and

J∑
j=0

b j W j ≥ β ∀ 
W = (W0, . . . , W J ) ∈ Õ ∩R J+1. (6)

Recall that 0 × ∞ := 0 and a + ∞ := ∞ for all a ∈R ∪ {∞}. All 
the inequalities for vectors are component-wise. Then from 
b > 0, 
we see that

Ô :=
⎧⎨
⎩ 
W = (W0, . . . , W J ) ∈ Õ :

J∑
j=0

b j W j = β

⎫⎬
⎭

=
⎧⎨
⎩ 
W = (W0, . . . , W J ) ∈ Õ ∩R J+1 :

J∑
j=0

b j W j ≤ β

⎫⎬
⎭

⊆R J+1. (7)

Step 2. For F , 
b and β as described in the above, the set Ô is 
bounded and closed, and thus is a compact subset of R J+1 .
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The set Ô is bounded from below because each of the functions 
W j(·) is bounded below by a constant say W j , and Ô is a subset 
of the space of performance vectors O.

The set Ô is bounded from above because for each j = 0, 1, . . . ,
J and 
W = (W0, . . . , W J ) ∈ Ô, W j = β−∑

i �= j bi W i

b j
≤ β−∑

i �= j bi W i

b j
<

∞. Again, here we used the fact that 
b > 0 component-wise.
The rest verifies the closedness of Ô ⊆R J+1 in R J+1.
Let { 
W (n) = (W (n)

0 , . . . , W (n)
J )}n≥0 ⊆ Ô converge to some 
W =

(W0, . . . , W J ) ∈ R J+1, i.e., W (n)
j → W j as n → ∞ for each j =

0, . . . , J . Then

J∑
j=0

b j W j = β. (8)

It remains to show that 
W = (W0(x), . . . , W J (x)) =: 
W (x) for 
some x ∈ F .

For each n ≥ 0, since, 
W (n) ∈ Ô, there is some xn ∈ F such that 

W (n) = 
W (xn).

Since F is a compact subset of E , by [1, Theorem 2.31], the 
sequence {xn}n≥0 has a convergent subnet {yλ}λ∈� with yλ → x
for some x ∈ F . We verify that 
W (x) = 
W as follows.

Since for each j = 0, . . . , J , the function W j(·) is lower semi-
continuous, by [1, Lemma 2.42],

lim inf
λ

W j(yλ) ≥ W j(x) ∀ j = 0,1, . . . , J . (9)

On the other hand, since for each j ∈ {0, 1, . . . , J }, {W j(yλ)}λ∈� is 
a subnet of {W j(xn)}n≥0 = {W (n)

j }n≥0 and W (n)
j → W j as n → ∞, 

by [1, Lemma 2.17], {W j(yλ)}λ∈� → W j . It follows from this and 
(9) that

W j ≥ W j(x)

for all j = 0, 1 . . . , J . In particular, 
W (x) ∈R J+1.
For the desired relation 
W = 
W (x), it remains to show for each 

j = 0, 1, . . . , J that the above inequality cannot hold strictly. Sup-
pose for contradiction that W j > W j(x) for some j ∈ {0, 1 . . . , J }. 
Then we would have β = ∑ J

j=0 b j W j >
∑ J

j=0 b j W j(x) ≥ β , where 
the first equality is by (8), the second inequality holds because 

b > 0, and the last inequality holds by (6) and the facts that x ∈ F , 

W (x) ∈R J+1, and Õ is the set of performance vectors of the points 

in F . Hence, 
W = 
W (x), as needed, and Step 2 is completed.

Step 3. Consider the point 
W ∗ = (W ∗
0 , . . . , W ∗

J ) ∈ Par(O ∩ R J+1)

coming from Step 1. Then 
W ∗ = ∑ J+1
k=1 αk 
Wk , where αk ∈ [0, 1] for 

each k = 1, . . . , J + 1, 
∑ J+1

k=1 αk = 1, and 
Wk is an extreme point of 
O ∩R J+1, satisfying 
Wk ∈ Par(O ∩R J+1).

The justification of the claimed result in Step 3 is as follows.
Since 
W ∗ ∈ Par(O ∩R J+1) as asserted in Step 1, and O ∩R J+1

is a nonempty convex set in R J+1 as was noted in the beginning 
of this proof, Proposition 3.1 is applicable, from which we deduce 
the following:

(a) GO∩R J+1 ( 
W ∗) ⊆ Par(O ∩R J+1).
(b) For some 1 ≤ k ≤ J + 1, and 1 ≤ i ≤ k there exist some 
bi =

(bi
0, b

i
1, . . . , b

i
J ) ∈R J+1 and β i ∈R, defining the hyperplanes

Hi =
⎧⎨
⎩
p = (p0, . . . , p J ) ∈R J+1 :

J∑
j=0

bi
j p j = β i

⎫⎬
⎭ ,

i = 1,2, . . . ,k,

satisfying the following properties:
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(i) 
bi ≥ 0, 
∑ J

j=0 bi
j > 0, for i = 1, 2, . . . , k −1 and 
bk > 0. Here 

all the inequalities between vectors are component-wise.
(ii)

∑ J
j=0 b1

j p j ≥ β1 for all 
p = (p0, . . . , p J ) ∈ O ∩ R J+1, ∑ J
j=0 b1

j W ∗
j = β1; for i = 1, 2, . . . , k − 1, 

∑ J
j=0 bi+1

j p j ≥
β i+1 for all 
p = (p0, . . . , p J ) ∈ O ∩R J+1 ∩ H1 ∩ H2 ∩ · · · ∩
Hi , and 

∑ J
j=0 bi+1

j W ∗
j = β i+1.

(iii) GO∩R J+1 ( 
W ∗) = O ∩R J+1 ∩ H1 ∩ H2 ∩ · · · ∩ Hk .

In the rest of this proof, we shall refer to the above consequences 
of Proposition 3.1 as the Feinberg-Shwartz lemma.

Let us verify that the set GO∩R J+1 ( 
W ∗) is a convex and com-
pact subset of R J+1. First, we show its compactness by applying 
the statement established in Step 2. To this end, we shall iden-
tify the appropriate F , 
b and β satisfying the conditions described 
above Step 2.

Consider the half-spaces

H
i :=

⎧⎨
⎩
p = (p0, . . . , p J ) ∈R J+1 :

J∑
j=0

bi
j p j ≤ β i

⎫⎬
⎭ ,

i = 1,2, . . . ,k.

From Items (ii), (iii) of (b) in the Feinberg-Schwartz lemma, we see 
that

GO∩R J+1( 
W ∗) = O ∩R J+1 ∩ H1 ∩ H2 ∩ · · · ∩ Hk

=R J+1 ∩ O ∩ H
1 ∩ H

2 ∩ · · · ∩ H
k
. (10)

Since the bounded from below functions W j(·), j = 0, 1, . . . , J , 
are lower semicontinuous and bi

j ≥ 0 for all j = 0, 1, . . . , J , we see 
that 

∑ J
j=0 bi

j W j(·) is also lower semicontinuous. Here 0 · ∞ := 0
was in use. It follows that the set

{x ∈ E : 
W (x) ∈ O ∩ H
1 ∩ H

2 ∩ · · · ∩ H
k−1}

= {x ∈ E : 
W (x) ∈ H
1 ∩ H

2 ∩ · · · ∩ H
k−1}

=
k−1⋂
i=1

⎧⎨
⎩x ∈ E :

J∑
j=0

bi
j W j(x) ≤ β i

⎫⎬
⎭

is closed and thus compact in E because E is compact. It is 
nonempty by (10).

If we take F = {x ∈ E : 
W (x) ∈ O ∩ H
1 ∩ H

2 ∩ · · · ∩ H
k−1}, then 

the set in (5) takes the form Õ = O ∩ H
1 ∩ H

2 ∩ · · · ∩ H
k−1

, and by 
(10),

GO∩R J+1( 
W ∗) = { 
W = (W0, . . . , W J ) ∈ Õ ∩R J+1 :
J∑

j=0

bk
j W j ≤ βk},

which is in the same form as the set Ô defined in (7) above Step 
2. The conditions on 
u, b j and β above Step 2 are satisfied by 

W ∗ , bk

j and βk by (b) in the Feinberg-Shwartz lemma. Hence, the 
statement in Step 2 is applicable, from which we see that the set 
GO∩R J+1 ( 
W ∗) is a compact subset in R J+1. Its convexity is evi-
dent, and is actually by definition.

Now, since GO∩R J+1 ( 
W ∗) ⊆R J+1 is an intersection with some 
hyperplane(s), its dimension is not higher than J . One may apply 
the Caratheodory theorem together with the Krein-Milman theo-
rem, see e.g., [1, Theorems 5.32, 7.68] or [11, Corollary B.2.1], for 
that every point of GO∩R J+1 ( 
W ∗) can be written as the convex 
combination of at most J + 1 extreme points in it. Since, ac-
cording to (a) in the Feinberg-Shwartz lemma, GO∩R J+1 ( 
W ∗) ⊆
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Par(O ∩ R J+1), we see that each of these extreme points are in 
Par(O ∩R J+1). Since GO∩R J+1 ( 
W ∗) is a face of O ∩R J+1, its ex-
treme points are also extreme points of O ∩R J+1, see Lemma 3.1. 
The statement in Step 3 is thus justified.

Step 4. Consider an extreme point 
W = (W0, . . . , W J ) of O ∩R J+1, 
and suppose 
W ∈ Par(O ∩R J+1). Then there exists some extreme 
point x̂ ∈ E such that 
W = 
W (x̂) = (W0(x̂), . . . , W J (x̂)).

We justify the statement in Step 4 as follows.
Consider the set E ′ := {x ∈ E : 
W (x) = 
W }. Then E ′ �= ∅ as 
W ∈

Par(O ∩R J+1) ⊆ O by assumption, and

E ′ =
J⋂

j=0

{x ∈ E : W j(x) ≤ W j}. (11)

Indeed, E ′ is a subset of the set on the right-hand side. Let us jus-
tify that the opposite inclusion holds. Suppose that x ∈ E belongs 
to the set on the right-hand side, i.e., it is such that W j(x) ≤ W j , 
j = 0, 1, . . . , J . Then 
W (x) = (W0(x), . . . , W J (x))) ∈ O ∩R J+1 and 

W (x) = 
W , because 
W ∈ Par(O ∩R J+1). This shows that the given 

point x belongs to E ′ , as required.
Next, observe that E ′ is a nonempty compact and convex set 

in E . Indeed, the nonemptiness of E ′ was observed earlier. Since 
all the functions W j(·), j = 0, 1, . . . , J , are lower semicontinuous, 
it follows from (11) that the set E ′ is a closed and hence compact 
subset of the compact set E . It is obviously convex, as the functions 
W j(·), j = 0, 1, . . . , J , are affine.

Applying Lemma 3.3(b) to the nonempty compact and convex 
set E ′ , we see that E ′ contains some extreme point, say x̂ ∈ E ′ . 
Now we show that x̂ ∈ E ′ is also an extreme point of E . By the 
definition of the set E ′ , this would lead to the statement claimed 
in Step 4.

Let x1, x2 ∈ E be such that x̂ = αx1 + (1 − α)x2 for some α ∈
(0, 1). Then


W = 
W (x̂) = α 
W (x1) + (1 − α) 
W (x2), (12)

where the first equality holds because x̂ ∈ E ′ , and the second 
equality holds as the functions W j(·) are affine. Since 
W ∈ Par(O ∩
R J+1) ⊆ R J+1, it follows that 
W (x1), 
W (x2) ∈ R J+1. If 
W (x1) =
W (x2), then their common value is necessarily 
W . Consequently, 
x1, x2 ∈ E ′ . Since x̂ is an extreme point of E ′ , we see that x1 = x2 =
x̂. On the other hand, it cannot happen that 
W (x1), 
W (x2) do not 
coincide, for otherwise, since 
W (x1), 
W (x2) ∈ O ∩ R J+1, (12) in-
dicates that 
W is not an extreme point of O ∩ R J+1, which is a 
contradiction.

Therefore, x̂ is also an extreme point of E , as requested. Step 4 
is completed.

Now by Steps 3 and 4, we see that 
W ∗ coming from Step 1 
satisfies 
W ∗ = ∑ J+1

k=1 αk 
Wk = ∑ J+1
k=1 αk 
Wk(xk) for some αk ∈ [0, 1]

satisfying 
∑ J+1

k=1 αk = 1 and xk being an extreme point of E for 
each k = 1, . . . , J + 1. Since the functions W j(·) are affine and E is 
convex, from the previous equalities, we see 
W ∗ = 
W (

∑ J+1
k=1 αkxk). 

Since 
W ∗ is an optimal solution for problem (2), the last equal-
ity shows that the point 

∑ J+1
k=1 αkxk ∈ E is an optimal solution for 

problem (1). It exhibits all the properties stated in Theorem 2.1.
So far, we have seen that the statement of this theorem holds, 

given the extra assumption that there is a feasible solution x̂ ∈ E
with W0(x̂) < ∞.

Finally, we show that the theorem still holds, when the afore-
mentioned assumption does not hold. Thus, until the end of this 
proof, we suppose that, for all feasible solutions x ∈ E , W0(x) =
+∞. Then, any feasible solution is optimal. If J = 0, then any ex-
treme point of E is optimal. By Lemma 3.3(b), E has at least one 
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extreme point, and the statement of the theorem follows. Now 
consider the case of J ≥ 1. In this case, we consider a modifica-
tion of problem (1):

Minimize over x ∈ E: W1(x)

subject to W j(x) ≤ d j, j = 2, . . . , J .

Since problem (1) is consistent by assumption, an optimal solu-
tion to the above problem is necessarily feasible for problem (1), 
and its optimal value is finite and smaller or equal to d1. Note also 
that this modified problem has J − 1 constraints. Now, we may 
apply what was proved earlier to this modified problem, and ob-
tain an optimal solution for the modified problem in the form of 
a convex combination of at most J extreme points of E . This solu-
tion is feasible for the original problem. As was mentioned earlier, 
it is also optimal for the original problem (1). This theorem is thus 
proved. �
5. Conclusion

In conclusion, we considered an optimization problem in a con-
vex set in a cone E with an affine objective and J affine con-
straints. The set E is not required to be embedded in any vector 
space. Under suitable conditions, by applying the Feinberg-Shwartz 
lemma in finite dimensional convex analysis, we showed that there 
exists an optimal solution in the form of a convex combination of 
at most J + 1 extreme points of E . This result will be used in the 
study of Markov decision processes in [12].
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