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Abstract
Purpose of Review To effectively synthesise and analyse multi-robot behaviour, we require formal task-level models which 
accurately capture multi-robot execution. In this paper, we review modelling formalisms for multi-robot systems under 
uncertainty and discuss how they can be used for planning, reinforcement learning, model checking, and simulation.
Recent Findings Recent work has investigated models which more accurately capture multi-robot execution by considering 
different forms of uncertainty, such as temporal uncertainty and partial observability, and modelling the effects of robot 
interactions on action execution. Other strands of work have presented approaches for reducing the size of multi-robot models 
to admit more efficient solution methods. This can be achieved by decoupling the robots under independence assumptions 
or reasoning over higher-level macro actions.
Summary Existing multi-robot models demonstrate a trade-off between accurately capturing robot dependencies and uncer-
tainty, and being small enough to tractably solve real-world problems. Therefore, future research should exploit realistic 
assumptions over multi-robot behaviour to develop smaller models which retain accurate representations of uncertainty 
and robot interactions; and exploit the structure of multi-robot problems, such as factored state spaces, to develop scalable 
solution methods.

Keywords Multi-robot systems · Markov models · Uncertainty

Introduction

The demand for multi-robot systems (MRSs) is increasing, 
due to their performance, flexibility, and fault tolerance [1, 
2]. Successful multi-robot deployments have been completed 
in a range of domains, such as fulfilment centres [3], fruit 
fields [4], and roads [5]. For safe and robust multi-robot coor-
dination in the real world, it is often desirable to consider 
formal models of the MRS, which enable policy synthesis for 
well-defined objectives, as well as a formal analysis of such 
policies. In this review paper, we consider formal models that 
capture the task-level behaviour of the MRS. These model 

high-level capabilities such as navigation or manipulation 
whilst abstracting the lower-level control required to imple-
ment these capabilities. Formal models are used alongside 
multi-robot planning [6] and reinforcement learning (RL) 
[7] techniques to synthesise robot behaviour, and alongside 
model checking [8] and simulation [9] techniques to evaluate 
task-level metrics of multi-robot performance. However, the 
success of these techniques is limited by the model’s accu-
racy, in particular its capacity to capture and predict execu-
tion-time multi-robot behaviour [10]. For example, if we plan 
on an inaccurate model, our expectations of robot behaviour 
during planning diverge from what is observed during execu-
tion, which can lead to inefficient execution-time behaviour 
or robot failure in the worst case.

In this paper, we focus on modelling the stochasticity of 
MRSs as, in any environment, robot behaviour is affected by the 
stochastic dynamics of the environment and the other robots. 
For example, a mobile robot operating in an office may fail to 
navigate upon a door being closed unexpectedly, or it may be 
unable to dock at a charging station if another robot is charging 
for longer than expected. We begin by introducing the types 
of uncertainty encountered by MRSs, including uncertainty 
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over action outcomes [11], a robot’s current state [12], and the 
duration and start time of robot actions [13, 14••]. Next, we 
review modelling formalisms which capture these sources of 
uncertainty. We then describe how formal multi-robot models 
have been used to support advances in the application of plan-
ning, RL, model checking, and simulation techniques to MRSs.

Uncertainty in Multi‑Robot Systems

In this section, we outline the common forms and sources of 
uncertainty experienced by MRSs.

Outcome Uncertainty Robot uncertainty is most commonly 
captured over discrete action outcomes [11], such as whether 
a grasp action is executed successfully. Stochastic outcomes 
can occur due to robot navigation failure [15], battery deple-
tion [16], or stochastic features of the environment such as 
hazards [17], resources [18], and doors [19].

Partial Observability In some MRSs, robots only partially 
observe the environment, which prevents them from know-
ing each other’s states. This is often caused by limited com-
munication and sensing capabilities, such as imperfect local-
isation [20], limited network range [21], or object occlusion 
[22]. Under partial observability, robots form a belief over 
the true state of the environment and other robots using pos-
sibly noisy observations obtained from sensors.

Temporal Uncertainty Sources of temporal uncertainty affect 
the duration and start time of robot actions during execution 
[13, 23, 24]. Temporal uncertainty occurs in almost any robot 

environment, where action durations are affected by environ-
mental disturbances, such as unknown obstacles or adverse 
weather conditions. For example, a mobile robot’s tire may 
slip on a carpet whilst navigating through an office, slowing 
it down. Furthermore, robots may have to wait for stochastic 
temporal processes in the environment, such as order arrival 
in a fulfilment centre, before beginning task execution [25].

The Effect of Robot Interactions A particularly relevant 
driver of uncertainty in MRSs is the fact robots typically 
share resources, such as space or access to a charging sta-
tion, and must interact with each other [14••]. For example, 
when multiple mobile robots navigate in the same physi-
cal space simultaneously, they may experience congestion, 
which increases uncertainty over action duration [23]. Alter-
natively, a robot manipulator may be more likely to fail a 
grasp if another robot is nearby, restricting its movement.

Formal Multi‑Robot Models

In this section, we review modelling formalisms for MRSs, 
which we summarise in Table 1. At their foundation, each of 
these models consists of states, which describe a snapshot of 
the MRS and environment, and transitions between states, 
which define the system dynamics.

Classical Multi‑Robot Models

Joint transition systems (JTSs) model MRSs with deter-
ministic dynamics [10, 38–41]. JTS states are often fac-
tored into local states for each robot, e.g. their location and 

Table 1  A summary of multi-robot modelling formalisms

Model Stochastic 
outcomes

Partial 
observability

Temporal 
uncertainty

Continuous 
time

Transition  
independence

Asynchronous 
execution

Allows for 
heterogeneous 
teams

JTS [10] ✗ ✗ ✗ ✗ ✗ ✗ ✓
MMDP [6] ✓ ✗ ✗ ✗ ✗ ✗ ✓
TI-MMDP [26] ✓ ✗ ✗ ✗ ✓ ✗ ✓
CMMDP [27•] ✓ ✗ ✗ ✗ ✓ ✗ ✓
Team MMDP [28] ✓ ✗ ✗ ✗ ✗ ✗ ✓
Dec-SIMDP/IDMG [29, 30] ✓ ✗ ✗ ✗ ✗ ✗ ✓
SPATAP Model [31] ✓ ✗ ✗ ✗ ✓ ✗ ✓
TVMA per Robot [23] ✓ ✗ ✓ ✗ ✗ ✓ ✓
Dec-POMDP [32] ✓ ✓ ✗ ✗ ✗ ✗ ✓
MacDec-POMDP [33••] ✓ ✓ ✓ ✗ ✗ ✓ ✓
Dec-POSMDP [34] ✓ ✓ ✓ ✗ ✗ ✓ ✓
CTMDP [35] ✓ ✗ ✓ ✓ ✗ ✓ ✓
GSPN [36] ✓ ✗ ✓ ✓ ✓ ✓ ✗
GSMDP [37] ✓ ✗ ✓ ✓ ✗ ✓ ✓
MRMA [14••] ✓ ✗ ✓ ✓ ✗ ✓ ✓
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battery level, and a shared set of global state features, such 
as whether doors in the environment are open. JTSs are fully 
deterministic and so fail to capture the stochastic dynam-
ics of real robot environments. Multi-agent Markov deci-
sion processes (MMDPs) are a natural extension of JTSs to 
stochastic domains [6]. Similar to JTSs, MMDPs capture 
robots in a joint state and action space, but MMDP actions 
have probabilistic outcomes. MMDPs are a common for-
malism for MRSs and have been used to model drone fleets 
[42••], warehouse robots [25], and human–robot teams [43]. 
MMDPs and JTSs assume synchronous execution, i.e. robots 
execute their actions in lockstep, and all actions have the 
same duration. Furthermore, the joint state and action spaces 
yield an exponential blow-up in the number of robots being 
modelled. In practice, robot action durations are inherently 
continuous and uncertain, where robot interactions contrib-
ute towards this uncertainty [14••, 23, 24, 44, 45]. Thus, to 
accurately capture multi-robot behaviour, we require formal-
isms which model asynchronous multi-robot execution and 
uncertainty over action duration. One approach for explicitly 
doing this is to use continuous-time Markov models, which 
we discuss later in this section.

Avoiding the Exponential Scalability of Joint Models

The number of MMDP or JTS states and actions increases 
exponentially in the number of robots [6], which makes opti-
mal solutions for planning [46], RL [47], and model check-
ing [10] intractable. This can be improved by making dif-
ferent assumptions which simplify the model. In fact, there 
has been a significant research effort to identify realistic 
assumptions for specific multi-robot problems. Transition-
independent MMDPs (TI-MMDPs) [26] and constrained 
MMDPs (CMMDPs) [27•] assume the transition dynamics 
of each robot are independent, but couple the MRS through 
rewards and shared resources, respectively. Team MMDPs 
[28] also treat the transition dynamics independently, model-
ling robots sequentially in the context of simultaneous task 
allocation and planning problems. Transition independence 
assumptions allow for weakly coupled models that operate 
outside of the joint state and action space and reduce the 
model size, thus facilitating the use of more efficient solu-
tion methods. However, in cases where execution-time robot 
interactions affect the outcome and duration of robot actions, 
the transition-independent models above are unable to accu-
rately reflect the MRS.

For many multi-robot problems, robots can act inde-
pendently for the majority of execution, as interactions are 
sparse. For example, two robots conducting a handover can 
ignore each other until they are close. Interaction-driven 
Markov games (IDMGs) [29] and decentralised sparse 
interaction MDPs (Dec-SIMDPs) [30, 48] exploit this to 
reduce the space complexity whilst still accounting for 

execution-time interactions. IDMGs and Dec-SIMDPs are 
equivalent and capture an MRS using an independent MDP 
per robot and a set of interaction MMDPs, which define joint 
MRS behaviour in interaction areas, such as near a doorway. 
Though interaction MMDPs are joint models, they are sig-
nificantly smaller than the full MMDP, as they are defined 
over only a small fraction of the full MMDP state space. 
However, these models are only useful when interactions 
are localised to a small, fixed part of the environment. If this 
does not hold, they become equivalent to the full MMDP.

Finally, a commonly used approach to avoid the use of 
joint models whilst still considering robot dependencies and 
execution-time interactions is to model the MRS as a set 
of single-robot models that are extended to include some 
knowledge of the other robots. In [25, 31], spatial task allo-
cation problems (SPATAPs) are modelled using single-robot 
models which aggregate the response of the other robots. 
The aggregate response is represented as a distribution 
which predicts whether any robot is present at a given loca-
tion. This is computed by combining individual distributions 
over each robot’s location and allows robots to predict which 
tasks will be handled by other robots during planning. A 
similar approach is taken in [23], where an MRS is modelled 
using single-robot time-varying Markov automata (TVMA) 
which capture the probabilistic effects of congestion caused 
by the other robots. In this context, congestion is represented 
as a distribution over the number of robots present at each 
area of the environment, and distributions of navigation 
duration under the presence of a specific number of robots 
are obtained from real-world multi-robot navigation data. To 
solve multi-robot planning problems, [24] augment single-
robot models with a cost function which captures the effects 
of robot interactions. This cost function is then adjusted 
iteratively during planning to encourage robot collaboration.

Partially Observable Multi‑Robot Models

Partially observable MDPs (POMDPs) are widely used to 
model partially observable problems, where robots make 
observations which update their belief over their current 
state [12]. Decentralised POMDPs (Dec-POMDPs) extend 
POMDPs to multi-robot settings [32], where each robot has 
its own set of local observations. Dec-POMDPs have been 
used for warehouse robotics [49], cooperative package deliv-
ery [34], and teams of unmanned aerial vehicles [50]. If the 
combined local observations of each robot uniquely identify 
the joint state, Dec-POMDPs are reduced to Dec-MDPs, 
which are easier to solve [32]. However, these are still joint 
models, and optimal solvers for both Dec-POMDPs and 
Dec-MDPs have even higher time complexity than MMDP 
solvers [32]. To reduce the space complexity related to the 
joint modelling in Dec-POMDPs, [51, 52•] consider decou-
pling them into local POMDPs for each robot. For each of 
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these local POMDPs, they compute a distribution which 
captures how external state factors influence its local state. 
These external state factors include the states of the other 
robots. This is then used to marginalise out the external state 
factors to construct single-robot POMDPs. This influence 
based abstraction produces smaller models. However, com-
puting influence distributions is intractable in general [52•].

Another class of relevant POMDP-based models are 
macro action Dec-POMDPs (MacDec-POMDPs) [33••] 
and decentralised partially observable semi-MDPs (Dec-
POSMDPs) [34], which consider macro actions which exe-
cute a series of primitive low-level actions, such as moving 
one grid cell forward. This hierarchical paradigm is based 
on the options framework [53] for MDPs and has two main 
benefits. First, it reduces model size by leveraging existing 
behaviour, such as navigation, and modelling behaviour at 
the macro-action level, rather than each time step. Second, 
the use of temporally extended actions seamlessly enables 
asynchronous action execution. Each MacDec-POMDP and 
Dec-POSMDP has an underlying Dec-POMDP which cap-
tures the low-level actions that form the macro actions. For 
MacDec-POMDPs, the underlying Dec-POMDP and the 
policies for each macro action are assumed to be known 
[54]. MacDec-POMDP policies can then be evaluated by 
unrolling the macro actions on the low-level Dec-POMDP. 
Unlike MacDec-POMDPs, Dec-POSMDPs capture macro 
actions using distributions over their completion time, where 
Dec-POSMDP policies can be evaluated through simulation.

Continuous‑Time Multi‑Robot Models

Several models have been proposed to take into account 
uncertainty over action duration in the context of MRSs 
which are evolving asynchronously. These make use of con-
tinuous-time distributions which capture the stochasticity in 
robot action durations. Continuous-time MDPs (CTMDPs) 
extend MDPs to include durative transitions represented as 
exponential delays [35] and have been used to model multi-
robot data collection problems [55]. To model asynchronous 
multi-robot execution, CTMDPs can be defined over a joint 
state and action space, similar to MMDPs. Thus, as with 
MMDPs, they scale exponentially in the number of robots. 
To mitigate this, [55] constructs single-robot CTMDPs 
assuming transition independence, similar to [26, 27•]. The 
duration of each action in a CTMDP is modelled with a 
single exponential distribution. This is a convenience which 
allows for simpler solution approaches which exploit the 
memoryless property of the exponential distribution, but 
limits the accuracy with which we can capture robot action 
durations.

Many multi-robot models can capture heterogeneous 
MRSs (see Table 1), where robots have different capabilities 
and resource usage etc. This is often achieved using local 

action spaces or reward functions for each robot. General-
ised stochastic Petri nets (GSPNs) [36] are a modelling for-
malism for homogeneous MRSs, i.e. the robots are identical, 
where robots are represented anonymously as tokens. Fur-
thermore, as in CTMDPs, durations are restricted to expo-
nentials. GSPNs remain exponential in the team size, but 
robot anonymity provides a practical reduction in the num-
ber of states. GSPNs have been used to model teams of foot-
ball robots [56], autonomous haulers [57], and monitoring 
robots [58]. Generalised semi-MDPs (GSMDPs) can capture 
concurrent execution and stochastic durations and have been 
applied to MRSs in [37, 44], but are complex to define and 
hard to solve, as GSMDPs allow for arbitrary duration distri-
butions. Multi-robot Markov automata (MRMA) [14••] also 
allow for arbitrary duration distributions to capture asyn-
chronous multi-robot execution in continuous time. Markov 
automata (MA) extend MDPs and CTMDPs by explicitly 
separating instantaneous robot action choice and the dura-
tion of robot actions [59]. MRMA are joint models, where 
robot action durations are represented as phase-type distribu-
tions (PTDs), which are sequences of exponentials capable 
of capturing any nonnegative distribution to an arbitrary 
level of precision [60]. In an MRMA, there is a different 
duration distribution for each spatiotemporal situation an 
action may be executed under, referred to as the context, 
which captures the effects of robot interactions on action 
execution. By separating robot decision-making from action 
duration, robot interactions can be detected at the instant 
an action is triggered by analysing the joint MRMA state. 
MRMA are connected to other continuous-time multi-robot 
models. First, GSPN semantics can be described with an 
MA [61]. Second, a standard solution for GSMDPs involves 
converting all duration distributions into PTDs [60], which 
produces a model similar to an MRMA [37]. However, 
MRMA are simpler to define and can be solved directly [62], 
as all durations are exponentials/PTDs by definition.

Model Applications

In this section, we discuss how the multi-robot models in 
Table 1 have been solved and analysed for multi-robot plan-
ning, RL, model checking, and simulation. We summarise 
this discussion in Table 2. Note that in Table 2, we do not 
list foundational works which apply to more general models, 
such as heuristic search approaches for MDPs which can be 
applied to MMDPs [46] or MA model checking techniques 
which can be applied to MRMA [62].

Planning

Multi-robot planning techniques synthesise robot behav-
iour given a formal model of the system. Many multi-robot 
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models can be solved with standard techniques. MMDPs can 
be solved exactly using MDP solvers such as value or policy 
iteration [100, 101]. However, these methods solve for all 
states, making them intractable for joint multi-robot mod-
els. Heuristic and sampling-based methods such as labelled 
real-time dynamic programming [102] or Monte-Carlo tree 
search [103] improve upon the limited scalability of exact 
solvers by restricting search to promising areas of the state 
space. Despite reducing the explored states, heuristic algo-
rithms are slow to converge on large models, but often pro-
vide anytime behaviour such that valid solutions are synthe-
sised quickly and improved with time. The poor scalability 
of MMDP planning motivates planning on simplified mod-
els. For TI-MMDPs [26], transition independence allows 
for compact representations of reward dependencies in 
conditional return graphs, which admits efficient solutions. 
For Dec-SIMDPs and IDMGs, the single-robot MDPs and 
interaction MMDPs can be solved separately using standard 
solvers such as value iteration [29]. Similarly, the SPATAP 
models in [31] are single-robot MDPs which capture the 
effects of the other robots, and can be solved separately. 
CMMDP approaches typically exploit the fact that only 
the resource constraint couples the agents to scale to larger 
problems. Planning for CMMDPs has considered a range of 
constraints over resource consumption, such as bounding its 
worst-case [67], considering a chance-constraint [68, 71], 
and bounding its conditional value at risk [72].

MMDPs can be solved tractably if they are sufficiently 
small. Therefore, in [63], robots are grouped into clusters 
based on robot dependencies, and each cluster is solved as a 
separate MMDP. Similarly, in [64], robots are incrementally 
added to an MMDP to control scalability.

Recent work [42••] has begun to address the poor scal-
ability of MMDP planning. There, an anytime planner for 

MMDPs based on Monte-Carlo tree search is presented, 
where robot dependencies are exploited to decompose the 
value function into a set of factors from which the optimal 
joint action can be computed. This approach scales to previ-
ously intractable problems.

Solution methods for continuous-time multi-robot models 
differ depending on the objective. To solve CTMDPs for 
time-abstract objectives, such as expected untimed reward, 
MDP solvers are applied to an embedded time-abstract MDP. 
For timed objectives, MDP solvers are instead applied to a 
uniformised MDP, where each state has the same expected 
sojourn time [37, 104, 105]. Similarly, GSPNs can be con-
verted to an MDP [57] or an MA [58] dependent on the 
objective and solved with standard techniques. For MRMA, 
we can plan using MA solution methods [62].

Dec-POMDPs can be solved centrally to synthesise local 
policies for decentralised execution, which map from local 
action-observation histories to actions [50, 77–79]. With 
this, local Dec-POMDP policies are robust to communi-
cation limitations and unreliable sensors. Dec-POMDP 
solutions can be adapted to MacDec-POMDPs and Dec-
POSMDPs to synthesise policies over macro actions. In 
[89], the space of macro-action policies is searched exhaus-
tively, where efficient simulators improve the scalability of 
policy evaluation [49]. This approach scales poorly, which is 
addressed in [90], where a heuristic search method optimises 
finite state controllers for each robot. However, MacDec-
POMDP and Dec-POSMDP solutions have not been shown 
to scale beyond teams of around four robots [33••, 34].

Reinforcement Learning (RL)

An alternative approach to policy synthesis is RL [47]. 
Planners synthesise behaviour using a model of the system, 

Table 2  Applications of the 
models in Table 1 for multi-
robot/multi-agent problems

Model Planning Reinforcement learning Model checking Simulation

JTS [10] [38–41] - [38–41] -
MMDP [6] [6, 42••, 63, 64] [65, 66] [63, 64] -
TI-MMDP [26] [26] - - -
CMMDP [27•] [18, 67–72] [73, 74] - -
Team MMDP [28] [28] - [28] -
Dec-SIMDP/IDMG [29, 30] [29, 30, 48] [75, 76] - -
SPATAP Model [31] [25, 31] - - -
TVMA per Robot [23] [23] - - -
Dec-POMDP [32] [50, 77–79] [80••–88] - -
MacDec-POMDP [33••] [33••, 49, 89–91] [92–95] - -
Dec-POSMDP [34] [34, 77, 96] - - -
CTMDP [35] [55, 97] - - -
GSPN [36] [57, 58, 98, 99] - - [56, 99]
GSMDP [37] [44] - - -
MRMA [14••] - - - [14••]
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whereas RL approaches learn behaviour using data sampled 
from the environment [46, 47]. Multi-robot RL problems are 
formulated assuming an underlying multi-robot model which 
is unknown prior to training. Fully observable, centralised 
problems can be formulated as an MMDP [65, 66] and 
solved using standard RL techniques such as deep Q-learn-
ing [106]. However, these techniques do not scale to multi-
robot problems due to the exponential increase in the state 
and action space [66, 80••]. In many settings, decentralised 
policies are required due to limited communication or partial 
observability [80••, 81]. Here, multi-robot RL can be for-
mulated as a Dec-POMDP and solved under the paradigm 
of centralised training with decentralised execution [107], 
which allows additional state information not available dur-
ing execution to be used during training, such as the joint 
state. One example of this paradigm is QMix [80••], which 
uses a mixing network to estimate the joint Q value from 
single-robot Q values. RL techniques for Dec-POMDPs are 
still slow to converge, however, and so MacDec-POMDPs 
can be used to exploit existing behaviours and improve the 
efficiency of learning [92–95].

Model Checking

Model checking techniques evaluate the behaviour induced 
by robot policies by systematically checking if a property is 
satisfied in a formal robot model [10]. Properties are often 
specified with temporal logics such as linear temporal logic 
(LTL) or continuous stochastic logic (CSL). Similar to plan-
ning, many of the multi-robot models in Table 1 can be veri-
fied using techniques for more general models. For example, 
LTL formulae can be verified on JTSs and MMDPs using 
techniques for transition systems and MDPs [10]. However, 
exact LTL model checking approaches compute a product 
of the model and an automaton that captures the LTL for-
mula, which significantly increases the state space, making 
them unsuitable for multi-robot problems. MRMA can be 
model checked against CSL formulae using model checking 
techniques for MA [62]. This also applies to GSPNs, which 
can be represented as an MA with identical semantics [61]. 
Similar CSL model checking techniques are available for 
CTMDPs [108].

Model checking and planning are often combined to syn-
thesise guaranteed multi-robot behaviour. For LTL specifica-
tions, we can plan over a joint product automaton; however, 
this quickly becomes intractable. To overcome this, [28] 
concatenate single robot product automata through switch 
transitions in a team MMDP to reduce the state space. For 
MMDPs, in [64], robots are added incrementally to a prod-
uct automaton until the full problem is solved or a fixed 
computational budget is exceeded. Alternatively, in [41], the 
product automaton is explored incrementally through sam-
pling for MRSs modelled as a JTS. Combined planning and 

model checking techniques have been used for multi-robot 
data gathering [38, 39], monitoring [40], and mobility-on-
demand [64].

Statistical model checking (SMC) techniques evaluate 
properties by sampling through a model given a set of robot 
policies, which avoids enumerating the state space [109] 
and bridges the gap between model checking and simula-
tion techniques, which we discuss later in this section. In [8], 
SMC is used to evaluate quantitative properties of an MRS. 
SMC techniques can be applied to many of the models in 
Table 1. For example, we can use SMC techniques for MA 
[110] to evaluate bounded or unbounded properties on an 
MRMA. A drawback of SMC is a possible failure to explore 
states reached with low probability, which can render SMC 
unsuitable for safety critical systems [110].

Simulation

Simulators evaluate multi-robot behaviour by executing a 
set of robot policies in an abstracted environment model. 
Using formal multi-robot models, we can create a discrete-
event simulator (DES) by sampling stochastic outcomes and 
durations and resolving non-determinism using robot poli-
cies. DESs mitigate the complexity of physics-based simu-
lators such as Gazebo [111] by abstracting away low-level 
robot dynamics [112], allowing simulations to run mag-
nitudes faster than real time. GSPNs, or variants thereof, 
have been used to simulate teams of football robots [56] 
and human–robot manufacturing teams [99], respectively. 
In [14••], a DES called CAMAS (context-aware multi-agent 
simulator) samples through an MRMA to evaluate task-level 
metrics of multi-robot performance under the effects of robot 
interactions, such as the time to complete a set of tasks.

Conclusions

In this paper, we reviewed modelling approaches for captur-
ing the task-level behaviour of MRSs. We focused on sto-
chastic models of multi-robot execution and introduced the 
different types of uncertainty encountered by MRSs. Fur-
thermore, we discussed how these models have been used 
for multi-robot planning, RL, model checking, and simu-
lation. Recent research has focused on constructing mod-
els which accurately capture the effects of uncertainty and 
robot interactions or constructing models small enough to 
be solved efficiently. These two objectives are opposing, as 
to accurately capture multi-robot execution, we often require 
joint models which are frequently intractable to solve or ana-
lyse. Therefore, future research should focus on developing 
smaller multi-robot models which still accurately capture 
uncertainty and robot interactions. This may be achieved 
by identifying realistic assumptions over the sources of 



Current Robotics Reports 

1 3

uncertainty and robot interactions, such as interactions only 
occurring in small portions of the state space. Exploiting 
these assumptions allows for smaller models which can be 
solved efficiently without sacrificing model accuracy. An 
alternative avenue for research is to exploit the structure 
of multi-robot problems, such as factored state spaces and 
dependencies between robots, to develop scalable solution 
methods for multi-robot models.
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