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Immune checkpoint immunotherapies act to block inhibitory receptors on the surface of T
cells and other cells of the immune system. This can increase activation of immune cells and
promote tumour clearance. Whilst this is very effective in some types of cancer, significant
proportions of patients do not respond to single-agent immunotherapy. To improve patient
outcomes, we must first mechanistically understand what drives therapy resistance. Many
studies have utilised genetic, transcriptional, and histological signatures to find correlates
of effective responses to treatment. It is key that we understand pretreatment predictors
of response, but also to understand how the immune system becomes treatment resistant
during therapy. Here, we review our understanding of the T-cell signatures that are critical
for response, how these immune signatures change during treatment, and how this infor-
mation can be used to rationally design therapeutic strategies. We highlight how chronic
antigen recognition drives heterogeneous T-cell exhaustion and the role of T-cell receptor
(TCR) signal strength in exhausted T-cell differentiation and molecular response to therapy.
We explore how dynamic changes in negative feedback pathways can promote resistance
to single-agent therapy. We speculate that this resistance may be circumvented in the fu-
ture through identifying the most effective combinations of immunotherapies to promote
sustained and durable antitumour responses.

Introduction
Activation of T cells is controlled by their T-cell receptor (TCR), which recognises short amino
acid sequences (peptides) presented on major histocompatibility complex (MHC) molecules by
antigen-presenting cells (APCs). Conventional T cells can be CD8+ ‘cytotoxic’ or CD4+ ‘helper’ subsets,
defined by their ability to bind peptide-loaded MHC (pMHC) class I or II, respectively. Direct recogni-
tion of pMHC on target cells is important for killing [1]; MHC I is constitutively expressed and loaded
with self-peptide in almost all cells, whereas MHC II expression is constitutive only in ‘professional’ APCs
such as dendritic cells (DCs). As such, many cancers are MHC II− [2], making CD8+ T cells the primary
cytotoxic population driving the anticancer response. However, in some cases, cells of epithelial lineage
can express MHC II in response to interferon signalling [3] and cytotoxic CD4+ T cells can kill MHC II+

cancer cells [4].
T-cell activation results in production of key cytokines, such as Interferon-gamma (IFNγ) and tumour

necrosis factor-alpha (TNF-α), and cytolytic granules such as Perforin and Granzymes. Activated T cells
proliferate and can differentiate into memory cells, persisting for long periods of time primarily in the
blood and lymphoid tissues, primed to respond quickly to subsequent infection or malignancy. Alterna-
tively, activated T cells can differentiate into an effector phenotype – effectors are more cytotoxic and can
reside in tissues to exert their effector function, but retain less proliferative capacity.
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Strength of TCR signalling has important roles in T-cell differentiation and function. T cells need to distinguish
between weak tonic signals that occur in the lymphoid environment to promote survival [5,6], and strong, foreign
antigen signals that require an immune response. In mice, comparatively stronger TCR signalling promotes effector
function over memory in both CD4+ [7] and CD8+ T cells [8–10] during acute stimulation. Also, whilst cytotoxic fate
of CD8+ T cells is largely independent of initial signal strength, strength of TCR recognition on target cells dictates
directional polarisation of cytolytic granules and effective killing [11,12].

Effective antitumour immunity requires T-cell responses to
tumour neoantigens
Tumours are derived from self, making their recognition challenging for T cells that are self-tolerised during thymic
development [13]; nevertheless, T cells can recognise a variety of cancer associated patterns through their TCR [14],
the most potent of which are neoantigens. Neoantigens are novel amino acid sequences arising from nonsynony-
mous mutations that can deliver a signal to the TCR when presented on MHC molecules [15]. High numbers of
nonsynonymous mutations tend to be associated with exogenous mutagens or certain types of genetic instability
[16]. Accordingly, experimental induction of high neoantigen burden via loss of DNA mismatch repair machinery
results in tumour rejection by mice [17].

In addition to key effector functions, TCR ligation drives the expression of multiple costimulatory and coin-
hibitory receptors that can recruit kinases or phosphatases to positively or negatively regulate TCR signalling [18].
Programmed cell death 1 (PD-1) appears to be the dominant coinhibitory receptor and is expressed by both näıve
and antigen experienced T cells upon TCR ligation. Inhibitory signalling via PD-1 targets both the CD28 costimu-
latory molecule [19,20] and the TCR itself [21]. Other coinhibitory receptors, such as lymphocyte-activation gene 3
(LAG-3), T-cell immunoreceptor with Ig and ITIM domains (TIGIT), and T-cell immunoglobulin and mucin domain
3 (TIM-3), are expressed only in T cells with more prolonged antigen experience due to epigenetic inaccessibility of
their loci in näıve populations [22]. Signalling via coinhibitory receptors raises the TCR signalling threshold, such that
an antigenic stimulus that would otherwise activate a T cell fails to elicit a response [23]. Blockade of coinhibitory re-
ceptors, or their ligands, using therapeutic monoclonal antibodies (immune checkpoint blockade (ICB)) can increase
T-cell function and drive clinical benefit in some types of cancer [24].

In the U.K., NICE approval for ICB therapy is based on evidence of improved survival from clinical trials. Response
to ICB is highly variable between different types of cancer. Cancers with high mutation rates, such as melanoma and
lung squamous-cell carcinoma, tend to respond well [25]. However, even within patient groups that respond well,
such as melanoma, there are some patients that are therapy resistant. Therapy resistance can broadly be defined
as primary resistance, where patients fail to respond to primary treatment, and acquired resistance, where patients
initially respond but then become resistant [26].

Much of what drives resistance is tumour intrinsic [27]. Analysis of genetic signatures in pretreatment tumour
biopsies has revealed predictors of response to ICB, such as clonal mutational burden and signatures of immune
recruitment such as CXCL9 expression [27]. In patients that do initially respond, ICB exerts immune pressure on the
tumour, to which it can often adapt. Tumours can undergo immunoediting by acquisition of mutations in key antigens
that are driving the immune response, or the pathways that present these antigens to T cells. However, in some cases,
patients may still respond to ICB in the absence of antigen recognition. For example, in β2-Microglobulin-mutated
dMMR colorectal cancer where γδ T cells recognise stress ligands on tumour cells via NKG2D [28].

Tumours may also acquire mutations in JAK/STAT signalling pathways that mediate the response to IFNγ sig-
nalling [29], an important effector mechanism of the anticancer CD8 T-cell response. Tumours can remodel their
microenvironment to promote therapy resistance [30]; factors such as hypoxia [31], immune exclusion by tumour
stroma [32], and infiltration of regulatory immune cells such as myeloid-derived suppressor cells [33] can subvert the
anticancer immune response.

Distinct from tumour intrinsic factors, there are T-cell intrinsic factors that can also mediate resistance. Under-
standing the T-cell signatures (or biomarkers) that predict response to therapy, but also how these signatures change
during therapy can provide insight into mechanisms of therapy resistance. Experimental work in animal models of
chronic antigen exposure can help us understand the fundamental processes that govern T-cell regulation, and there-
fore T-cell intrinsic therapy resistance. Here, we discuss the fundamental mechanisms that regulate T-cell biology in
the face of chronic antigen exposure. We overview how preclinical mouse models have set a platform for translational
discovery and highlight key similarities and differences that have been observed in human clinical studies of patients
on ICB.
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Table 1 Phenotypic and functional differences between naive and exhausted subsets of CD8+ T cells during chronic LCMV
infection in mice

Naive TPEX TEX intermediate TEX terminal

TCF1 ++ + - -

TOX - + ++ ++

TBET - + - -

EOMES - - + +

CD127 + +/- - -

CD62L ++ +/- - -

CX3CR1 - - + -

CXCR6 - - - +

PD-1 - + ++ ++

TIM-3 - - + +

KLRG1 - - + -

Proliferative capacity + + - -

Cytotoxicity - - + +/-

Cytokine production + + + -

Negative feedback control of T cells in mouse models of
infection and tolerance
Experimental models of chronic antigen exposure, such as lymphocytic choriomeningitis virus (LCMV) infection,
and techniques to identify antigen-specific T cells such as TCR transgenics and pMHC tetramers, have informed our
fundamental understanding of negative feedback control of T cells.

Negative feedback mechanisms, including coinhibitory receptors, are an intrinsic and indispensable feature of
T-cell function; their absence can cause activation-induced T-cell death [34] and lethal immunopathology during
infection [35]. Chronic antigen exposure in cancer or infection can drive ‘exhaustion’ – a state of T-cell differentia-
tion distinct from effector/memory phenotypes, characterised by expression of multiple coinhibitory receptors and
progressive loss of function [36,37]. Exhausted T cells lose proliferative potential, long-term survival, ability to pro-
duce cytokines, and ability to kill target cells. Although there are many similarities between exhausted CD8+ T cells
and effectors arising from acute antigen stimulus, there are transcriptional signatures and characteristics specific to
T-cell exhaustion, uncoupled from effector function [38]. In mice, blockade of the ligand for PD-1 (PD-L1), can
induce proliferation in LCMV specific exhausted CD8+ T cells [35].

LCMV studies have highlighted the significant heterogeneity in T-cell exhaustion (Table 1). Many have drawn a dis-
tinction between T cells that are exhausted (TEX, usually indicated by coexpression of multiple coinhibitory receptors
including PD-1 and Tim-3 or CD39 [36]), and the precursor to these cells (TPEX, usually indicated by coexpression
of PD-1 and transcription factor T-cell factor 1 (TCF1) [39] or CXCR5 [40,41]). Loss of T-cell functionality in re-
sponse to chronic antigen is graded and TPEX cells are at an early point in the trajectory. TPEX cells can undergo a
TCR signal-dependent conversion to TEX cells [42], a process that is augmented by T-cell intrinsic IFNγ signalling
[43]. In contrast, TEX cells are a stable population that maintain phenotypic and functional features in transfer exper-
iments [44]. In many ways, TPEX and TEX demonstrate a functional polarisation like memory and effector CD8+ T
cells during acute stimulation. TPEX, unlike TEX, show a selective ability to undergo proliferative burst following ICB
[39,40].

Transcription factors such as TOX [34,45,46], BLIMP-1 [47], MYB [48], NR4A1 [49,50], and NFAT [51] mediate
the exhaustion programme by controlling the expression of negative regulators of TCR signalling. Exhausted T cells
also undergo significant epigenetic rewiring following as little as 5 days of chronic antigen exposure [52,53]. In mouse
models, it is largely thought that terminally exhausted T cells are incapable of response to ICB due to the epigenetic
repression of genes involved in important T-cell functions [54] and TCF7 (encoding TCF1) itself [55].

Failure of TEX cells to respond to ICB monotherapy may be a result of functional redundancy between numerous
coinhibitory receptors [56]. In contrast, negative signalling via PD-1 may be the limiting factor for TPEX cells to signal
via their TCR, explaining their selective response to monotherapy. This may then suggest that blockade of multiple
coinhibitory receptors is necessary to restore signalling in TEX. For example, it has been shown that dual blockade
of coinhibitory receptors PD-1 and TIGIT can restore cytokine production in TOX+ CD8+ tumour-infiltrating lym-
phocytes (TILs) in vitro [57].

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).

3

D
ow

nloaded from
 http://portlandpress.com

/essaysbiochem
/article-pdf/doi/10.1042/EBC

20220247/947920/ebc-2022-0247c.pdf by U
K user on 16 August 2023



Essays in Biochemistry (2023) EBC20220247
https://doi.org/10.1042/EBC20220247

Some studies have challenged this idea. For example, combining blockade of PD-L1 with a vaccination approach
has been shown to expand PD-1hi antigen-specific CD8+ T cells in an infection model [58]. Additionally, TIM-3+

exhausted T cells can proliferate in response to engineered Interleukin-10 [59]. These data show it may be possible
to reinvigorate terminally exhausted T cells. Discrepancies between studies may be due to functional heterogene-
ity within TCF1−-exhausted subsets. Some TCF1− subsets are at an intermediate stage of exhaustion, they express
CX3CR1 and KLRG1 and make IFNγ. Other more terminally exhausted cells express CXCR6 and produce very low
levels of IFNγ [60].

Not just duration, but TCR signal strength appears to be a key determinant of fate decisions among exhausted CD8
T-cell subsets. T cells with higher avidity for antigen, as determined by tetramer staining, showed a biased for termi-
nal exhaustion differentiation [60]. Additionally, utilising the Nr4a3-Tocky reporter of TCR signalling and a model
of adaptive tolerance, we have highlighted CD4+ T-cell transcriptional programmes that are related to defined TCR
signal strengths [23]. Crucially, we found that strong TCR signalling increased the expression of many coinhibitory
receptors, in agreement with work on CD8+ T cells in tumour models [61]. Additionally, we have found significant
overlap in genes associated with strong TCR signalling, and genes up-regulated in antigen experienced T cells reac-
tivating in response to PD-1 blockade. This evidence suggests that blockade of inhibitory signalling does not only
increase the probability that a given antigen-experienced T cell will reactivate in response to subsequent TCR signals,
but that the qualitative strength of the signal is higher. This agrees with in vitro studies that have shown selective
sensitivity to PD-1-mediated inhibition in genes that require strong TCR signalling [62].

Negative feedback control of T cells in mouse models of
cancer
Chronic infection models have some key limitations in understanding T-cell negative feedback in cancer.
Tumour-reactive T cells circulate between the tumour, blood, and lymphoid tissue and a systemic immune response
is key for effective anticancer immunity [63]. In contrast with systemic LCMV infections, tumour antigens are largely
restricted to the tumour site. This is an important consideration, as cellular therapy studies have found withdrawal
from chronic antigen stimulation can restore function to exhausted T cells [64].

Many paradigms from LCMV studies have been replicated in mouse models of cancer. Subcutaneous implantation
of tumour cells leads to generation of TEX and TPEX cells that are transcriptionally analogous to those generated during
LCMV infection [42]. TPEX are essential for the maintenance of a T-cell response in mouse models of cancer, they
can traffic between lymph nodes and tumours [65,66], acting as a reservoir [67] to supply tumours with cells that
gain effector functions upon arrival [68]. Despite representing a small proportion of tumour-specific CD8+ T cells,
selective deletion of tumour-specific Tcf7+ CD8+ T cells accelerates tumour growth and diminishes response to ICB
in mouse models [69]. These data in mouse models suggest that signatures relating to TPEX may indicate an effective
ongoing anticancer immune response, and the presence of cells that can respond well to ICB therapy.

T-cell exhaustion is not limited to CD8+ T cells. Cancer neoantigens are frequently restricted to MHC II and recog-
nised by CD4+ T cells in both mice [70] and humans [71]. In a poorly immunogenic mouse model of cancer, exper-
imental induction of an MHC I restricted neoantigen only conferred sensitivity to ICB when an MHC II restricted
neoantigen was also induced [72]. CD4+ T-cell recognition of tumour antigen led to increased numbers of CD8+ T
cells through the well-established principle of CD4+ T-cell help [73], whereby CD4+ T cells provide support to CD8+

T cells in the form of costimulation and cytokine production, either directly or via DCs (Figure 1). This happened
despite lack of MHC II expression on tumour cells, indicating that CD4+ T cells recognised tumour antigens that were
phagocytosed and presented by professional APCs. Therefore, whilst direct recognition of MHC II+ tumour cells can
mediate tumour rejection [74], it is not prerequisite for CD4+ T-cell involvement in the anticancer immune response.

Like work in models of chronic infection and adaptive tolerance, strength of TCR signalling can dictate fate of
antitumour CD8+ T cells. High-affinity interactions between the TCR and pMHC drive higher levels of negative
feedback, whilst particularly low affinity interactions lead to ineffective killing [61]. TCR signal strength appears to be
a key determinant of TEX versus TPEX fate; whilst both subsets can share clonotypes [68], it appears that lower-affinity
TCR-pMHC interactions favour TPEX differentiation [75].

Expression levels of coinhibitory receptors are dependent on TCR signal strength and PD-1 blockade increases TCR
signal strength [23,60]. We have observed elevated expression of genes encoding multiple coinhibitory receptors in
antigen-adapted T cells that reactivated their TCR signalling in response to PD-1 blockade [23]. In mouse models of
cancer, it has been observed that T cells bound by therapeutic PD-1 antibodies have increased expression of TIM-3
[76]. Consequently, combination of PD-1 and TIM-3 blockade showed better clinical response than PD-1 blockade
alone [76,77]. Additionally, PD-L1 and LAG-3 combination therapy has shown synergistic effects on CD4+ and CD8+
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Figure 1. Graphical representation of reported changes to function of CD4+ T cells, CD8+ T cells, and DCs in response to

αPD-L1 immunotherapy

Distinct from direct effect on CD8+ T cells, immunotherapy can act via CD4+ T cells and DCs to support CD8+ T-cell function via

cytokine production and costimulation.

T-cell cytokine production and tumour control [78]. Therefore, combination blockade is an attractive strategy to not
only target T cells with very high levels of inhibitory signalling but also to combat therapy induced dynamic feedback
and acquired therapy resistance [79]. Signatures that can identify dynamic changes in negative feedback may therefore
be valuable in the design of combinatorial ICB therapies and on-therapy monitoring of efficacy.

T-cell signatures in response to ICB in human cancer
Mouse models are a valuable tool for studying the processes that underlie ICB therapeutic success. However, the time
periods for disease development differ significantly, and many mouse models are unable to account for the significant
interpatient heterogeneity in human cancer.

Systemic response to ICB
Whilst many studies in mouse models of cancer focus on intratumoural T cells, it is now recognised that an effective
response to ICB is in fact systemic [63]. Interaction between T cell PD-1 and DC PD-L1 in tumour-draining lymph
nodes is an important facet of ICB activity in mice [80]. In melanoma patients, ICB can lead to clonal replacement of
intratumoural CD8+ T cells with those from peripheral sites [81]. In addition, sequencing of peripheral blood T cells
before ICB therapy has found that expanded cytotoxic CD8 T-cell clones are associated with beneficial response [82].
The peripheral blood of melanoma patients exhibits an increased number of highly expanded clones as compared with
healthy controls, reflective of T-cell proliferation in response to recognition of tumour antigens [82]. An increase in
the number of highly expanded clones in response to therapy is associated with good clinical outcomes [83]. Clones
possessing a central memory signature can convert to a cytotoxic effector signature in the peripheral blood of patients
responding to ICB [82]. This demonstrates how ICB can increase TCR signal strength to drive differentiation of
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cytotoxic effector cells to mediate tumour cell killing. These findings are corroborated by analysis of tumour reactive
T cells from peripheral blood of lung cancer patients [84]: successful ICB responses were associated with an increase
in expression of effector/exhaustion markers and a decrease in memory phenotypes during treatment.

In the periphery, highly expanded cytotoxic CD8 T-cell clones show the greatest transcriptional response to ICB,
without increasing their clonal size [82]. These cells express many genes typically associated with CD8 T-cell exhaus-
tion such as TOX, HAVCR2, and TIGIT. Similar studies in urothelial cancer have shown expanded tumour-specific
CD8 clones with a cytotoxic phenotype in the periphery are predictive of effective ICB response [85]. This marks
a clear difference between mouse LCMV models and human disease-exhausted CD8+ T cells in human cancer are
likely not ‘nonresponders’ but respond differently to CD8+ T cells at an earlier stage of differentiation. This highlights
a mechanism distinct from proliferation as a key determinant of response to ICB and agrees with mouse in-vitro
studies that have found exhausted CD8+ T cells to be effective killers [61].

Intratumoural responses to ICB
Early studies in humans receiving ICB identified TIL intrinsic signatures of response, including increased CD8 T-cell
infiltration, T-cell proliferation, IFNγ signalling, and granzyme B production [86]. Tumour antigen-specific CD4+ T
cells can accumulate within human cancers [87], exhibiting hallmarks of exhaustion such as coexpression of multi-
ple inhibitory receptors (including CD39), loss of cytokine production (a key mechanism for helping CD8+ T cells),
and transcriptional similarities to TOX+ CD8+ T cells [88]. Exhausted CD4+ T cells can respond to immunotherapy:
blockade of PD-1 during in-vitro stimulation of patient-derived PD-1+ CD39+ CD4+ TILs led to increased cytokine
production and expression of the costimulatory ligand CD40L. Following pretreatment with anti-PD-1, coculture
of exhausted CD4+ TILs with autologous DCs and CD8+ T cells led to DC priming and CD8+ T-cell proliferation
[88]. These studies highlight the fact that both CD4+ and CD8+ T cells can lose critical antitumour functions, fol-
lowing chronic antigen stimulation and are both targets of ICB (Figure 1). Indeed, we recently cross-referenced tran-
scriptional signatures of ICB in melanoma patients with those found in mouse CD4 T cells receiving high-strength
TCR signals. We identified a five gene signature associated with clinical response, highlighting increased TCR sig-
nal strength as a key factor in driving patient survival. We termed this gene signature TCR.strong (ICOS, TNFRS4
(OX40), STAT4, TNIP3, IRF8) [23]. Elevated expression of ICOS and OX40 suggests that the ICB-mediated increase
in TCR signal strength acts to increase costimulation via inducible receptors (Figure 1).

A study of human lung cancer TILs utilised sequencing of complimentary determining region 3 (CDR3) loci to
determine TCR specificity and cross-referenced to scRNA-seq data [84]. This allowed transcriptional comparisons
of TILs reactive for tumour neoantigens and the numerous bystanders [89] reactive for resolved (influenza) or la-
tent (EBV) infections. Tumour antigen-reactive TILs contained features of mouse TEX and were enriched for gene
signatures associated with tissue residency (CD103, HOBIT), effector function (GZMB, IFNG), negative feedback
(HAVCR2, ENDTP1 (CD39)), and transcriptional control of exhaustion (TOX, BLIMP1). Accordingly, they also
expressed low levels of genes associated with memory. Similar results have been shown in melanoma [90].

Transcriptional comparisons of tumour-reactive TILs between patients found that signatures associated with mem-
ory (IL7R, TCF7) were correlated with a good clinical response, whereas many genes associated with effector func-
tion, exhaustion, and tissue residency were associated with treatment resistance [84]. This highlights that whilst most
TILs have an exhausted signature, it is atypical TILs – resembling descriptions of TPEX – that are crucial for effec-
tive therapy responses. In support of this notion, TPEX can be sustained within intratumoural niches [91] to promote
survival, and the presence of intratumoural TCF1+ PD-1+ CD8 T cells is predictive of a positive response to ICB in
melanoma patients [90,92].

T-cell signatures of exhaustion and therapy resistance
T-cell signatures from human studies suggest that in addition to a weak pre-existing response, homogenous exhaus-
tion to a strong pre-existing response can also drive primary therapy resistance (Figure 2). These data suggest it may
be possible to avoid primary resistance by early intervention with ICB, prior to homogenous T-cell exhaustion. Treat-
ment with ICB in the neoadjuvant setting has led to improved survival over adjuvant treatment in melanoma [93]
and can drive pathological responses in canonical ICB nonresponders such as pMMR colorectal cancer [94].

ICB-induced dynamic negative feedback may contribute to acquired therapy resistance in humans. In the periph-
eral blood of melanoma patients responding to ICB, CD8 T cells that proliferate in response to ICB increase their ex-
pression levels of PD-1 and CTLA-4 [95]. This is not a peripheral phenomenon, since other studies have highlighted
signatures of increased intratumoural negative feedback following ICB including expression of PD-1 and LAG-3 [96],
and V-domain immunoglobulin suppressor of T-cell activation (VISTA) [97]. Increases in TCR strong signature fol-
lowing ICB were higher in immunotherapy naive patients as compared with those who progressed following CTLA-4
blockade [23]. This suggests that ICB can lead to enhanced negative feedback, driving acquired resistance to future
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Figure 2. Graphical representation showing how αPD-L1 immunotherapy can modulate intratumoural CD8+ T-cell differen-

tiation during treatment

Ineffective response may be a result of poor pre-existing response or previous terminal differentiation. Presence of less-differenti-

ated TPEX cells allows for proliferative burst and differentiation, driving clinical benefit.

ICB therapy. In support of this, new combination approaches that target coinhibitory receptors, such as LAG-3, in
addition to PD-1 are showing promising results in trials [98,99]. Future work should focus on rationally identifying
optimal combinations of ICB that can promote sustained antitumour immune responses. To achieve this, fundamen-
tal insight into the molecular functions of different classes of immune checkpoint is still required to inform treatment
strategies in humans.

Future perspectives
To understand which therapeutic strategies are appropriate and for which patients, future research must answer two
key questions: (i) what are the signatures of T cells in which functionality is restored during single agent/combination
ICB? And (ii): what is the molecular response to ICB that underpins resistance in responding T cells? The former will
help target them at the right patients, maximising clinical benefit and minimising unnecessary toxicity and the latter
will inform design of rational therapy combinations.

Thorough mechanistic work in experimental models of cancer, tracking dynamic changes in T cells during ICB, will
be key to answering the above questions. Translating work in mouse to human is a key challenge in the field: innovative
approaches such as tumour-explant models [100] have allowed well-controlled comparisons between ICB approaches,
providing valuable information regarding T-cell differentiation during therapy. This will help us understand what
therapies synergise with blockade of ICs, such as PD-1, and how they might be used to augment or prolong the
clinical benefit of ICB.

Summary
• TCR signal duration and strength drive heterogeneous T-cell exhaustion.

• Stage of T-cell exhaustion dictates molecular response to ICB.

• T-cell proliferation and effector differentiation are signatures of effective ICB therapy.

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution
License 4.0 (CC BY).
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• Poor pre-existing immune response and homologous terminal exhaustion can both drive primary
resistance to ICB.

• ICB may drive acquired resistance via enhanced negative feedback.
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