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Abstract9

This work proposes a new method of extracting texture descriptors from dig-

ital images based on local scaling properties of the greyscale function using

constraints to define connected local sets. The texture is first mapped onto a

three-dimensional cloud of points and the local coarseness under different scales

is assigned to each point p. This measure is obtained from the size of the largest

“connected” set of points within a cube centred at p. Here, the “connected set”

is defined as the set of points such that for each point in the local domain there

is at least one other point at a distance smaller than a threshold t. Finally, the

Bouligand-Minkowski fractal descriptors of the local coarseness of each pixel are

computed. The classificatory power of the descriptors on the Brodatz, Vistex,

UIUC and UMD databases showed an improvement over the results obtained

with other well-known texture descriptors reported in the literature. The per-

formance achieved also suggests possible applications to real-world problems

where the images are best analysed as textures.

Keywords: Pattern Recognition, Fractal Descriptors, Local Connectivity,10

Image Analysis11

1. Introduction12

There have been several fractal-based methods proposed for the analysis of13

complexity in images, including the analysis of image textures [1, 2, 3, 4, 5, 6, 7].14
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Fractal geometry in image analysis has also found practical applications in a15

number of areas [8, 9, 10, 44, 11, 12, 13, 14].16

In a “texture image”, the analysis is typically focused on the statistical and17

geometrical relations amongst pixel intensity patterns in different regions and18

scales. In this context, fractal analysis becomes a powerful tool to address the19

problem of measuring the complexity or the homogeneity of the texture across20

scales. A pattern can be expressed by certain type of homogeneity at a partic-21

ular resolution and here is where fractal geometry provides a straightforward22

procedure to detect and relate such properties. Moreover, real world objects23

commonly have some degrees of intrinsic self-similarity and therefore they might24

be more suitably represented as approximations to fractal objects rather than to25

regular Euclidean ones. Some of the successful fractal-based approaches tested26

in this field include “multiscale fractal dimension” [15], multifractals [16] and27

“fractal descriptors” [17]. Particularly, the latter has demonstrated to be highly28

efficient for the discrimination of general textures [18, 19, 20, 13, 14, 21].29

Here, we propose an alternative way of extracting texture descriptors based30

on fractal geometry. The texture descriptors are computed using the Bouligand-31

Minkowski fractal descriptors [20] based on the local coarseness of each pixel32

[22, 23] rather than on the image intensity values [20, 17, 19]. The proposed33

procedure performs a two-level complexity analysis. In the local domain, the34

coarseness describes the clustering (or homogeneity) of the pixel neighbourhood,35

while globally, the fractal descriptors represent the distribution of connectivities36

across the image. These two complementary types of information appear to be37

fundamental in describing and discriminating texture patterns at varying scales38

in a more straightforward way than other statistical or geometrical solutions39

proposed. Some advantages of the suggested approach are:40

• A large number of real-world scenes (like those described by the textures41

analysed here) have fractal-like characteristics;42

• The “fractal properties” of textures are most often not homogeneous across43

scales as expected with ideal fractal objects but the fractal descriptors44
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enable the quantification of such variability across the image;45

• The local coarseness provides information about pixel neighbourhoods,46

which is rather richer than pixel intensity alone.47

The method performance was assessed on four well-known image databases48

(Brodatz [24], Vistex [25], UIUC [33] and UMD [16]) and the results were com-49

pared to other texture descriptors reported in the literature (Gabor [26], Fourier50

[27], Grey-Level Cooccurrence Matrix (GLCM) [28], Multifractal [16], Local Bi-51

nary Patterns (LBP) [29], Soft-LBP [35], Fuzzy-LBP [36] and textons (VZ)52

[34]).53

54

2. Related Works55

Since the seminal work of Mandelbrot [42], several fractal-based methods56

have been proposed in the literature to analyse texture images, and particularly57

for the problem of texture classification. The most state-of-the-art and success-58

ful approaches can be essentially divided into three categories: texton-based,59

multifractals and fractal descriptors.60

Texton (also called bag-of-words) methods follow the general scheme pre-61

sented in [34]. The basic idea in this approach is to associate a vector of mea-62

sures (texton or “word”) to each pixel or region of interest in the image and63

cluster them into a number of groups (dictionary). Therefore, for each image64

in the training and testing database, a model is built by using the histogram65

of pixels whose corresponding textons are closer to a particular group in the66

dictionary.67

An example of texton-based fractal method is illustrated in [37], where the68

image is submitted to a filter bank as in [34] and the textons are estimated by69

the local fractal dimension of each filter response, computed by using the expo-70

nential relation between the sum of pixel intensities within a neighbourhood of71

the reference pixel and the radius of such neighbourhood. The remaining proce-72
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dures are classical in texton-based methods [34], involving K-means clustering73

of textons and classification by nearest neighbours with χ2 distance.74

The second group of fractal-based methods includes the multifractal spec-75

trum, which quantifies the distribution of a regularity parameter (the Holder76

exponent) within local neighbourhoods of each image pixel. In [40] and [16]77

the neighbourhood regularity is quantified by using a similar procedure to that78

employed in [37], that is, the power-law relation between the sum of the pixel79

intensities after Gaussian filtering within a neighbourhood and the radius of the80

neighbourhood. The image is therefore partitioned into subsets, based on the81

values of the local Holder exponents, and the texture features are given by the82

box-counting dimension of each subset.83

A more elaborated method to compute the local regularity is described in84

[41], using wavelet leaders. A wavelet leader is the maximum response of a85

wavelet decomposition inside a scale-space neighbourhood, that is, the neigh-86

bourhood in this case is three-dimensional, including not only all the adjacent87

points in the decomposition level as usual, but also those correspondent points in88

neighbour scales in the wavelet pyramid. The use of wavelet leaders attenuates89

one of the main problems with wavelet transforms, which is the large number of90

small coefficients obtained for natural images. Another novelty in this method,91

compared to [16], is the use of a multi-orientation approach to the image, to92

overcome the orientation sensitivity of the wavelet transform. A more complete93

version, including an adaptation to dynamic textures can be found in [38].94

Multifractal methods can be further divided into dense and sparse approaches.95

In dense methods, the Holder exponent is computed at each pixel in the image.96

This is the case of the above methods. Another strategy is the sparse approach,97

where the dimension is computed only over particular regions rather than over98

all the pixels as proposed in [39]. In that case, the orientation histograms of99

the scale-invariant gradient of the image is used to partition the image for the100

posterior computation of the multifractal spectrum.101

Finally, the third category of fractal methods in texture classification is102

composed of the fractal descriptors, originally proposed in [17]. They employ103
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the values of the power-law curve associated to the fractal modelling to provide104

the image features in a straightforward manner. One of the most investigated105

approaches in this category are the Bouligand-Minkowski descriptors [20], where106

the texture is mapped onto a three-dimensional cloud of points and all the107

points are simultaneously dilated by spheres with radius r. The descriptors are108

obtained from the total volumes of the dilted cloud with various values of r.109

More details are given in Section 4.2. These features have been used either110

directly [20] or after some post-processing procedure [19]. Another variant is111

described in [18], where the entropy of the fractal descriptors are computed112

under different scales to accomplish the classification task.113

The proposed method can be considered as part of the third group, although114

the local connectivity can also be associated to the concept of local regularity as115

employed in the multifractal spectrum. In a sense, it is similar to the multifrac-116

tal approach, as both rely on a two-layer analysis: first, a local quantification of117

regularity (here expressed by the connectivity dimension), and second, a global118

distribution of such property. However, our proposal replaces the box-counting119

dimension of partition sets by the Bouligand-Minkowski descriptors. Such de-120

scriptors provide a more descriptive representation as, more than estimating the121

local dimension in the spatial domain of the image, they also reveal how the122

local regularity behaves across multiple scales. Moreover, the connectivity is123

also locally scale-invariant, which makes it a type of density function and allows124

the generation of descriptors robust to invariances in illumination changes, as125

discussed in [16].126

3. Fractal Geometry127

A fractal is a mathematical object with self-similarity (i.e. parts are similar128

to the whole) and typically high complexity (i.e. persistence of distinguishable129

details at various scales).130

Same as Euclidean geometry defines fundamental measures such as area and131

perimeter, fractal geometry defines its own measures, one of the most important132

being the “fractal dimension”. This measures how the complexity (or space133
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occupation) of the object changes with changes of observational scale. Its value134

can be obtained from the general expression:135

D = lim
ε→0

log(M(ε))

log(ε)
, (1)

where M(ε) is a self-similarity measure which grows with the scale ε following136

a power law.137

Despite mathematical fractals being ideal constructs, many seemingly self-138

similar and complex objects are easily found in the real world. In this context,139

there is vast literature on modelling real-world problems through fractal geom-140

etry and quantifying important properties using fractal dimensions. Applying141

fractal theory to digitised images requires to redefine the fractal dimension in a142

discrete and finite space, and several methods have been developed for this pur-143

pose [30, 31]. Two of these will be discussed below, the Bouligand-Minkowski144

and local connected dimension.145

3.1. Bouligand-Minkowski146

This method estimates the dimension of binary objects, but it can be straight-147

forwardly extended to grey-level textures [20].148

The grey-level image is considered as a cloud of points in the three-dimensional149

Euclidean space, such that a pixel in the coordinate (x, y) and with intensity z150

is mapped onto a point with coordinates (x, y, z). Then, each point in the cloud151

is morphologically dilated by spheres with radius r and the volume V (r) of the152

dilated cloud is computed. The dimension is given by:153

D = 3− α, (2)

where α is the slope of the linear regression of log(V (r)) on log(r).154

3.2. Local Connected Dimension155

The Local Connected Dimension [22] has been applied to binary images. As156

shown in Section 4 we use an adapted version for grey-scale images. This consist157

of computing a local dimensional value relative to each possible position of the158
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analysis, i.e. for each image pixel. Given a pixel p, within a local neighbourhood159

of size rmax, its local dimension DC(p) can be obtained by counting the number160

N of pixels connected (using, for example, 8-neighbour pixel connectivity in161

the plane) to p within a square window with side-length r always centred at p.162

When r is varied, the dimension is given by:163

DC(p) = αC , (3)

where αC is the slope of the linear regression of log(N(r)) on log(r).164

3.3. Bouligand-Minkowski Fractal Descriptors165

While the fractal dimension has been shown to be useful in a variety of ap-166

plications, it still is a single number, and this might be insufficient to model167

complex or heterogeneous objects. To take advantage of fractal geometry with-168

out being bound to a single number, the authors in [17] proposed using “fractal169

descriptors”, i.e. to use all the values from log(M(ε)) rather than their scal-170

ing relation. More specifically, they used the log(V (r)) curve from Bouligand-171

Minkowski dimension to provide powerful features for texture image. These172

features can be used directly, after transformation, or combined (for instance,173

using different colour channels [21] or image windows [18]) and have been suc-174

cessfully used in texture analysis [18, 19, 20, 13, 14, 21].175

4. Proposed Method176

We propose a new method to compute fractal descriptors based on adapting177

the local connectivity concept to grey-level images to describe local patterns178

in images. Such adaptation essentially consists of mapping the image onto a179

three-dimensional cloud (considering the grey-level of the pixel as the third180

dimension) and replacing the concept of “adjacency” by that of “an Euclidean181

distance smaller than a threshold”.182

183
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4.1. Local Connectivity184

The local fractal dimension has been used before to estimate the structure of185

binary sets. This is based on the local scaling of mass (binary pixels) using the186

mass-radius dimension and repeating the analysis to small regions, relative to a187

centre point position which can be repeated for many (or all) possible positions188

in an image. This method can be constrained to “local connected set” rather189

than just local sets by considering only the mass that is “locally connected” to190

the origin of the analysis. Such an approach was successfully applied in [22] to191

characterise the structure of retinal vessel patterns and to cancer and pre-cancer192

invasive patterns [9]. That approach, however, can be modified to accommodate193

non-binary sets (i.e. other image types). Here we consider the scaling of pixel194

intensities in grey-scale images as if they were embedded in a three-dimensional195

Euclidean space defined by the image coordinates and the intensity scale.196

Based on this approach, the connectivity concept can be redefined by replac-197

ing the adjacency contact relation with a new connectedness property based on198

a three-dimensional Euclidean distance satisfying a predefined threshold.199

To achieve this, the grey-level image I : [1,M ]× [1, N ]→ < is mapped into200

a cloud of points S in a three-dimensional Euclidean space, such that each x201

and y coordinate pairs are the coordinates of each pixel and the z coordinate is202

the respective pixel intensity.203

S = {(x, y, z)|I(x, y) = z} (4)

Following the mapping, a connectivity measure is computed for each point204

p in the cloud by considering a cube Crp with side-length r centred at the point:205

Crp = {(x, y, z)|x ∈ [xp − r, xp + r], y ∈ [yp − r, yp + r],∈ [zp − r, zp + r]} (5)

The connectivity measure Mr,t
p is given by the number of points inside Crp206

and connected to p. Given that the concept of connectivity in three dimensions207

is not so straightforward as in two, here a connectivity based on Euclidean208

distances is employed. In this context, the set Cr,tp of points connected to p is a209
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subset of points within Crp such that each element has at least one other point210

at a distance smaller than t within the cube.211

Cr,tp = {p} ∪ {pi|pi ∈ Crp and ∃pj ∈ Crp |D(pi, pj) < t}, (6)

where D is the three-dimensional Euclidean distance.212

An optimized algorithm to find the connected components maps the points213

in the cube into a non-weighted graph G(V,E) such that:214

v ∈ V iff pv ∈ Crp , (7)

215

ei,j ∈ E iff {pi, pj} ⊆ Crp and D(pi, pj) < t, (8)

and then searches for the connected component of G(V,E) that includes p.216

The connectivity measure Mr,t
p is given by the size (number of vertices) of217

the connected component Cr,tp . Figure 1 illustrates the connected components in218

two dimensions to facilitate visualization. Figure 1(a), (b), (c) and (d) show the219

steps for a window (two-dimensional version of the cube) with growing length r.220

In each iteration the border of the current window is highlighted in black. Inside221

the current window all the points at a distance smaller than t are connected by222

an edge. Such process generates a graph with multiple connected components.223

The points taking part into the connected component that contains the centre224

pixel p are painted red. The connectivity of p (for each r) is given by the number225

of red points inside the respective window.226

In a similar way to the analysis of binary images, to characterise the scaling227

of local connectivity in grey-scales, a local Holder exponent can be computed228

by:229

α(p) = lim
r→0

log(Mr,t
p )

log(r)
. (9)

Given that the range of r cannot be made large enough to estimate the relation230

with confidence, the limit loses part of its significance and the coarse (or coarse-231

grained) Holder exponent [23] arises as a more interesting measure. This is232

given by:233

αr(p) =
log(Mr,t

p )

log(r)
. (10)
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(a) (b)

(c) (d)

Figure 1: Computing the connectivity of a pixel p (centre point). (a), (b), (c) and (d)

exemplify the process for different window lengths. Inside the current window (highlighted

in black) all the points at a distance smaller than t are connected by an edge resulting in a

multi-component graph. The connectivity is given by the number of points in the connected

component containing the centre point (these are painted red).
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The threshold t is an empirically pre-defined value. After computing αr for234

each pixel, the procedure ends up with a matrix of values Mαr
for each r. Here,235

the values of r were varied between 1 and 6, with t ranging between 1 and 10.236

Finally, the Bouligand-Minkowski fractal descriptors are computed over each237

one of the six matrices Mαr (one for each value of r) and concatenated to provide238

the final texture descriptors.239

240

4.2. Bouligand-Minkowski Descriptors241

The procedure to compute the Bouligand-Minkowski descriptors of each ma-242

trix consists of two steps. First, each point in the matrix is mapped onto a243

three-dimensional cloud of points. Second, all the points in the cloud are si-244

multaneously dilated by a sphere with radius r and the total volume V (r) of245

the dilated cloud is computed. The descriptors correspond to the values of246

V (r) when r ranges within a pre-defined range. More details are given in the247

following.248

At first, the real-valued matrix Mαr
: [1,W ] × [1, H] → <, where W is the249

width and H the height of the matrix, is mapped onto a three-dimensional cloud250

of points C. Such mapping is obtained by associating each point in Mαr
with251

coordinate (x, y) ∈ ([1,W ] × [1, H]) and such that M(x, y) = z, z ∈ <, with a252

point with coordinates (x, y, z) ∈ C.253

In the following, each point in C is dilated by a radius r, and the total volume254

V (r) of the dilated cloud is computed. In practice, all the points are replaced255

by a sphere with radius r and, depending on the value of r and the distance256

among the points in the cloud, such spheres can touch and merge. Therefore,257

the total dilated volume is not just the sum of the volumes of the individual258

spheres, but it encloses relevant information about the distribution of points in259

the cloud and, as a consequence, the distribution of αr in M .260

Particularly, when V (r) is analysed within a range of values of r, it provides a261

useful insight about the homogeneity of αr. If such distribution is homogeneous,262

the cloud C is regular and the curve log r× log V (r) is similar to a straight line.263

If, on the other hand, such coefficients are distributed in an irregular way on M ,264

11



there is a larger number of values of r for which new collisions arise and thus the265

log− log curve is more irregular as well. Such behaviour of V (r) is what makes266

it appealing to summarize the information expressed by the local coarseness.267

The total volume V (r) of the dilated cloud corresponds to the number of268

points pertaining to the union of spheres B(p, r) centred at each point p ∈ C269

with radius r:270

V (r) =
∑
p′

1U (p′), (11)

being 1 the indicator function (1U (p′) = 1 if p′ ∈ U and 0, otherwise) and271

U =
⋃
p∈C

B(p, r). (12)

272

In practice, an efficient way to compute V (r) is by using the Euclidean273

Distance Transform (EDT), given that the set B(p, r) in the above expression274

contains the points at a distance at most r from p. In a three-dimensional space,275

the EDT of a point p′ is provided by:276

EDT (p′) = min
p∈C

(dist(p, p′)), (13)

where dist(p, p′) is the Euclidean distance between the points. More details on277

methods to compute the EDT efficiently can be found in [43].278

The Bouligand-Minkowski descriptors D(u) are obtained by computing the279

EDT over all points within a region of interest around C. Those EDT values280

are thus increasingly sorted into a vector o and the descriptors correspond to281

the logarithm of the cumulated number of points p′ such that EDT (p′) ≤ o(u):282

D(u) = log

[
u∑
i=1

δ(EDT (p′)− o(u))

]
, (14)

where δ is the unit response function (δ(x) = 1, if x = 0, and δ(x) = 0,283

otherwise). The index u corresponds to the non-negative values of the EDT284

within the region of interest. For example, for r ≤ 2 there are 4 possible values285

for u (1,
√

2,
√

3 and 2), and thus 4 descriptors are computed. Here we use286

r ≤ 10, providing 85 descriptors.287
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As the number of descriptors can become very large in most cases, a Prin-288

cipal Component Analysis is performed after the concatenation. The following289

algorithm express each step in a pseudo-code language, while Figure 2 synthe-290

sizes these steps on a diagram. That diagram shows the steps involved in the291

proposed method, sequentially from top to bottom. First of all, a grey level292

image is depicted, following by the matrices Mαr
, represented as intensity im-293

ages for r between 1 and 6. After that, the Bouligand-Minkowski descriptors294

are computed for each previous matrix, providing the exhibited log− log curves.295

Finally, at the bottom, the Bouligand-Minkowski descriptors are concatenated296

and submitted to a Principal Component Analysis with the aim of reducing the297

dimensionality. It is worth noting that Mαr
behaves like a multiscale transform298

over the texture where increasing values of r gradually “smooth” details, since299

points falling inside a same cube are expected to have similar Holder coarseness.300
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for r = 1 until 6 do301

for all p ∈ I do302

for all q1 ∈ Cpr do303

for all q2 ∈ Cpr ∧ q2 6= q1 do304

if distance(q1, q2) ≤ t then305

add(G, {q1, q2})306

end if307

end for308

end for309

Cr,tp ← findConnectedComponent(G,p)310

Mαr
(p)← log(|Cr,t

p |)
log(r)311

end for312

Dr ← BouligandMinkowskiDescriptors(Mαr )313

end for314

D ← concatenate(D1, D2, D3, D4, D5, D6)315

descriptors← PCA(D)316

Figure 3 shows how the proposed descriptors can precisely classify some tex-317

tures from Brodatz database. Even with only a few PCA scores the classes can318

be distinguished. It is still worth stressing that although using more compo-319

nents causes the curves approximate each other, as they less contribute to the320

variability, those components when put together allow higher precision when321

managed by efficient classifiers. Such promising results are consequence of com-322

bining the measure of complexity under different perspectives: the first (Holder323

coarseness) more local and focused on the pixel neighbourhood, the second324

(Bouligand-Minkowski) more global, expressing how the topology of the texture325

is defined. The complementary information given by both provides a richer326

method to well characterize even the most complex and irregular textures.327
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Figure 2: Steps in the proposed method. At the top, the grey-level texture to be analysed.

Below, the Mαr matrices expressing the coarseness at each pixel in the original image, with

r ∈ [1, 6], represented in an intensity image. In the following row, the respective Bouligand-

Minkowski curves computed over each Mαr is exhibited and finally the concatenated descrip-

tors after applying a Principal Component Analysis are shown at the bottom of the diagram.
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Figure 3: First PCA scores (D(k)) of the proposed descriptors from images of two classes

(objects). The groups can be identified by the descriptors even visually.
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5. Experiments328

The performance of our approach was tested against other well-known tex-329

ture descriptors to classify four benchmark databases (Brodatz [24], Vistex [25],330

UIUC [33] and UMD [16]).331

The Brodatz database is a collection of grey-scale images from photos of an332

architectural textures book [24]. One hundred and eleven images were used,333

with each one being split into 16 non-overlapping windows, resulting in 111334

classes with 16 samples each.335

The Vistex database is a classical texture image collection [25] composed336

by colour images with different resolutions. Images of size 512 × 512 pixels337

were converted to grey-level textures and split into 16 non-overlapping windows,338

resulting in 54 classes with 16 samples each.339

For the UIUC database we use a more recent version employed in [33], com-340

posed by 25 classes with 40 grey-level samples per class and each sample has a341

resolution of 256× 256 pixels.342

The forth database is UMD [16], composed by 25 classes with 40 grey-level343

images in each one and each image has a high resolution of 1280×960. To speed344

up the computation, here a downsampled version was employed and each image345

has a 256× 192 resolution.346

The total number of descriptors depends on the maximum radius of the347

Bouligand-Minkowski dilation. Table 1 shows this relation, although in most348

cases, a reduced number of descriptors were enough to obtain the success rates349

reported here. The numbers used in practice are discussed in Section 6.350

The descriptors were computed for each image and the results were compared351

(in terms of precision over a cross-validation classification of each database) with352

other classical and state-of-the-art approaches, to know, (Gabor [26], Fourier353

[27], Grey-Level Cooccurrence Matrix (GLCM) [28], Multifractal [16], Local354

Binary Patterns (LBP) [29], Soft-LBP [35], Fuzzy-LBP [36] and textons (VZ)355

[34]).356

The classification was carried out through a Linear Discriminant Analysis357
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Table 1: Total number of descriptors for each radius used by the Bouligand-Minkowski dila-

tion.

Dilation radius Number of descriptors

1 6

2 24

3 48

4 84

5 132

6 186

7 252

using a 10-fold scheme for cross-validation [32]. The precision (named “Success358

Rate” in Results section), in this case, corresponds to the average percentage359

of images correctly classified in each round of the cross-validation procedure,360

according to the ground-truth provided by each database.361

6. Results and Discussions362

6.1. Parameter settings363

The cube side-lengths considered to compute the connected components and364

therefore the Holder exponent were fixed between 1 and 6, as greater values365

became computationally unfeasible on standard hardware. For the threshold t,366

larger values were thought to provide more information as they produced larger367

components, however, distances greater than 10 were, again, computationally368

costly. Moreover, the use of larger values of t tends to make the coarseness369

measures quite similar along the neighbourhood and such local homogeneity370

would impair the ability of fractal descriptors to detect small-scale patterns in371

the texture.372

The remaining variable to establish was the dilation radius in the Bouligand-373

Minkowski analysis. Table 2 shows the success rates of classification (as a per-374

centage) for a number of dilation radii and the number of fractal descriptors375
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generated for Brodatz data set. This was done to identify radii values pro-376

viding best performance with a minimum number of descriptors (and avoid377

over-training issues such as dimensionality curses).378

Table 2: Success rates of classification and number of descriptors for different dilation radii

on the Brodatz database.

Dilation radius Success rate (%) Number of descriptors

1 69.93 6

2 87.67 23

3 91.16 48

4 91.95 73

5 92.12 105

6 92.40 138

7 92.74 242

The same test and results on the Vistex database are shown in Table 3, for379

UIUC in Table 6.1 and for UMD in Table 6.1.

Table 3: Success rates of classification and number of descriptors for different dilation radii

on the Vistex database.

Dilation radius Success rate (%) Number of descriptors

1 62.74 6

2 89.59 23

3 91.44 33

4 93.87 73

5 95.03 132

6 95.14 118

7 95.60 142

380

From the results above, we concluded that 6 was a reasonable value for the381

dilation radius as it produces a number of descriptors similar to those used in382

other established methods while outperforming them in the rates of classification383

obtained.384
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Table 4: Success rates of classification and number of descriptors for different dilation radii

on the UIUC database.

Dilation radius Success rate (%) Number of descriptors

1 59.10 6

2 73.30 24

3 81.70 48

4 86.80 65

5 87.90 112

6 89.50 124

7 90.10 229

Table 5: Success rates of classification and number of descriptors for different dilation radii

on the UMD database.

Dilation radius Success rate (%) Number of descriptors

1 66.90 5

2 81.50 19

3 86.40 47

4 90.80 83

5 93.10 116

6 94.00 150

7 93.90 178
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6.2. Classification385

The graphs and tables below show the results obtained by the proposed386

method as well as the performance of other approaches. Figure 4 shows the387

success rates on the Brodatz database according to the number of descriptors388

used. Most methods show a rapid increase in the correct classification rates as389

the number of descriptors increase, then reaching a stability level. While our390

method does not produce the best performance with few descriptors it shows391

the best performance when these are 25. Furthermore the performance increase392

appears to be smoother than for the other methods, too.
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Figure 4: Success rates of classification and number of descriptors for various methods applied

to the Brodatz database.

393

Table 6 shows the best classification results achieved for each method in394

the previous graph, the number of descriptors necessary to reach such rate and395

the associated cross-validation error. Except for the classical Fourier approach,396

the other methods have similar performances (around 86%), while however our397

proposed method achieved nearly 92% (a notable improvement, given the size398

and complexity of the textures database).399

Figure 5 shows another very useful and hepful way of evaluating the per-400

formance of a classifier, i.e, the confusion matrix. This diagram aims to show401
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Table 6: Success classification rates (with the respective errors) and number of descriptors for

various methods applied to the Brodatz database.

Method Success rate (%) Number of descriptors

LBP 87.33±0.02 15

GLCM 86.48±0.02 70

Multifractal 85.64±0.03 70

Gabor 85.42±0.02 19

Fourier 78.71±0.03 15

Fuzzy LBP 88.34±0.02 15

Soft LBP 88.96±0.02 15

Textons 81.47±0.02 97

Proposed 91.84±0.01 96

the number of elements from the class A (expected) that were assigned to the402

class B (predicted). The elements that are correctly classified are represented in403

the diagonal, while the number of misclassified samples can be infered from the404

outside. Here the values on the diagonal are expressed by grey-levels (the darker405

the point, the higher the number of samples), whilst those outside are depicted406

in red levels only to facilitate the visualization. In this type of representation,407

an ideal classifer is expected to have the maximum possible of dark points on408

the diagonal and the minimum in the outside. In Figure 5, as supposed, the best409

methods in this visual sense are LBP and the proposed descriptors. However,410

although they behave in a similar way in some cases like the confused samples411

around the class 40, the proposed fractal descriptors exhibits less dark red points412

confirming the higher correctness rate and identifying the classes where more413

or less samples can be distinguished.414

Figure 6 shows the classification rates for the Vistex database. The relative415

results are similar to those for Brodatz, although the curves here are more416

irregular; this is likely due to a more pronounced variation in patterns amongst417

the images.418
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Figure 5: Confusion matrices for the methods on Brodatz data set. (a) LBP. (b) Fuzzy-LBP.

(c) Soft-LBP. (d) Proposed method.
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Figure 6: Success classification rates and number of descriptors for the Vistex database.

Table 7 shows the percentage of images correctly classified in Vistex database.419

The reduced number of classes appears to benefit the performance of the meth-420

ods, as the rates are greater than for the Brodatz database results. Again,421

the proposed method demonstrates its potential in the analysis of complex tex-422

tures; the Vistex images contain a high level of heterogeneity caused by shadows,423

orientation, scale, etc. However, the combination of local and global multiscale424

analysis in the the proposed method achieved about 94.5% correct classification.425

426

Figure 7 shows the confusion matrices for Vistex in the same scheme used for427

Brodatz. Despite the difference in appearance with the matrices for the analy-428

sis of the Brodatz textures (which have fewer classes, Figure 5), the proposed429

descriptors correctly identifies more classes. Apart from the reduced number of430

red points, this also can be observed by a diagonal more continuous, with less431

grey gaps. Moreover, the classification errors are not concentrated at any spe-432

cific classes, ensuring higher reliability to the method for a practical application.433

434

Figure 8, Table 8 and Figure 9 show the results for the classification of435

UIUC database, following the same scheme adopted for the previous databases,436
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Figure 7: Confusion matrices for the methods on Vistex data set. (a) Fuzzy-LBP. (b) LBP.

(c) Soft-LBP. (d) Proposed method.
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Table 7: Success classification rates (with respective errors) and number of descriptors for

various methods applied to the Vistex database.

Method Success rate (%) Number of descriptors

LBP 91.55±0.03 13

GLCM 88.21±0.03 70

Multifractal 88.31±0.03 76

Gabor 90.39±0.01 17

Fourier 84.49±0.02 15

Fuzzy LBP 89.82±0.04 15

Soft LBP 92.36±0.03 15

Textons 86.00±0.02 98

Proposed 94.45±0.02 74

that is, success rate against number of descriptors, highest success rates and437

confusion matrices. An interesting point to be observed in this case is that438

methods like LBP and variants, which provided good results in the classifica-439

tion of Vistez and Brodatz, now present results below the average. The main440

cause of such discrepancy are the significant changes in viewpoint, scale and441

illumination conditions on UIUC samples. Approaches like classical LBP (and442

its variants) and GLCM focus their analysis on grey-levels and local neighbour-443

hood, whereas their global descriptors are not complex and precise enough to444

identify a global change in albedo for example. On the other hand, multifrac-445

tals and textons, using, respectively, local measures invariant to illumination446

and multiple types of filters, were capable of identify samples even when they447

are presented under different perspectives and distances from the observer. Fi-448

nally, the proposed method again achieved the highest percentage of images449

correctly classified. Such performance is a consequence, as stated before, of450

the efficiency of combining two complementary local and global fractal analysis,451

addressing the respective variations amongst samples from the same class by452

means of descriptors that quantify the local regularity as well as the texture453
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patterns at each scale instead of using only the pixel intensities or ambiguous454

global measures like histograms or fractal dimension.
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Figure 8: Success classification rates and number of descriptors for the UIUC database.

455

Table 8: Success classification rates (with respective errors) and number of descriptors for

various methods applied to the UIUC database.

Method Success rate (%) Number of descriptors

LBP 57.80±0.05 14

GLCM 58.70±0.03 13

Multifractal 82.40±0.03 70

Gabor 69.10±0.03 18

Fourier 67.30±0.03 10

Fuzzy LBP 51.60±0.06 15

Soft LBP 54.90±0.05 15

Textons 86.70±0.03 97

Proposed 88.00±0.02 85

Finally, Figure 10, Table 9 and Figure 11 exhibit the results for the classi-456

fication of UMD by the compared descriptors. A similar discussion to that for457

UIUC database is also valid here. In fact, UMD shares similarities with UIUC,458
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Figure 9: Confusion matrices for the methods on UIUC data set. (a) Gabor. (b) Multifractals.

(c) Textons. (d) Proposed method.
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mainly in their high variance of viewpoints and scales, in addition to the un-459

controlled illumination conditions. The good results for multifractals was also460

expected since the database was proposed and employed in the corresponding461

paper ([16]). Another observation is that in Figure 10 multifractal descriptors462

outperformed the proposed method for a number of descriptors smaller than 50.463

This can also be explained by characteristics of the database and, particularly,464

by the complexity of the samples, containing, for instance, dozens of packets of465

wall anchors or tins of joint compound, each unit with complex labels attached.466

Even in this case, however, the proposed method provided the highest success467

rate when more than 80 descriptors were employed.
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Figure 10: Success classification rates and number of descriptors for the UMD database.

468

Based on these results, we conclude that the combination of fractal descrip-469

tors and local coarseness Holder exponent allows a rich and precise description470

of complex and heterogeneous textures. One advantage of our method is that it471

analyses two domains. The first one is local and provides measures of the clus-472

tering of pixel neighbourhoods while the second, deals with the distribution of473

the clustering across the image, giving a measure of its homogeneity. Moreover,474

computing the coarseness at different cube sizes makes this procedure a multi-475

scale analysis. Furthermore, the fractal descriptors provide a detailed analysis476
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Figure 11: Confusion matrices for the methods on UMD data set. (a) Gabor. (b) Multifractals.

(c) Textons. (d) Proposed method.
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Table 9: Success classification rates (with respective errors) and number of descriptors for

various methods applied to the UMD database.

Method Success rate (%) Number of descriptors

LBP 77.90±0.03 12

GLCM 78.20±0.04 16

Multifractal 92.10±0.03 72

Gabor 82.50±0.03 20

Fourier 75.50±0.02 15

Fuzzy LBP 78.20±0.03 15

Soft LBP 77.80±0.03 14

Textons 92.50±0.02 100

Proposed 93.00±0.02 100

in terms of the spatial distribution of such clustering measure.477

We empirically identified that with regards to the local fractal measure of478

natural images, the connectivity itself can also be characterised as self-similar (as479

shown in [22]) while the Bouligand-Minkowski descriptors summarise how the480

variation of such self-similarity occurs at the different scales analysed [20, 17].481

The result of this double-level multiscale and fractal analysis (through frac-482

tal descriptors and the local coarseness, respectively) leads to a set of quantifiers483

that are perhaps more robust to abrupt texture variations. Such robustness is484

a consequence of two main points: firstly, the local dimension is taken over a485

neighbourhood, which attenuates the effect of a punctual irregularity (noise,486

for example) in the pixel and, secondly, the fractal descriptors capture relevant487

information at different scales and, hence, localised variations would not com-488

promise the global performance of the descriptor to a large extent. The inherent489

multiscale procedure also retains information about different levels of details in490

the images, making possible a more precise and reliable classification.491
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7. Conclusions492

We proposed a new method to extract texture descriptors from grey-level493

images by computing the Bouligand-Minkowski fractal descriptors from a matrix494

containing the coarseness Holder exponent (logarithm of the number of points495

connected to each pixel in the original image).496

The method was applied to classify well-known databases and the perfor-497

mance compared to other classical and state-of-the-art texture analyses pub-498

lished in the literature. Our method outperformed all other analyses for the499

compared databases.500

The results suggest that fractal descriptors and local coarseness exponent501

provide complementary information about the textures. While the coarseness502

index measures pixel clustering and consequently the neighbourhood homogene-503

ity, the fractal descriptors provide a measure of the regularity of the distribution504

of Holder exponents, and consequently the distribution of patterns along scales.505

After removal of redundancies through PCA, the descriptors become a powerful506

tool to represent and describe complex textures.507
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