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 

Abstract— A simple analysis technique to extract the complex 

dispersion characteristics of thin periodic 2-D Fabry-Pérot leaky 

wave antennas (LWA) is presented. The analysis is based on a 

two-stage process that dispenses with the need for root-finding in 

the complex plane. Firstly, full-wave MoM together with 

reciprocity is employed for the estimation of the LWA radiation 

patterns at different frequencies from which the phase constant is 

calculated. Employing array theory the phase constant is 

subsequently used to estimate the radiation patterns for different 

values of the leakage rate. The correct value for the leakage rate 

is identified by matching the corresponding radiation pattern to 

that obtained using the full-wave method. To demonstrate this 

technique, we present results for half-wavelength and sub-

wavelength profile LWAs. Unlike the transverse equivalent 

network method, the proposed technique maintains its accuracy 

even for antennas with low profile. 

 

Index Terms—leaky-wave antenna (LWA), frequency selective 

surface (FSS), periodic structures, resonant cavities.  

I. INTRODUCTION 

IGH gain antennas consisting of a 2-D periodic 

metallodielectric array suspended above a ground plane 

at a distance of approximately half-wavelength have been 

presented in the past [1] and  have recently received increased 

attention [2-7]. They offer a simple solution for achieving 

highly directive patterns from a single low-directivity source. 

To a first approximation, their operation can be modeled by a 

Fabry-Pérot resonant cavity formed between the periodic array 

acting as a partially reflective surface (PRS) and the fully 

reflective ground plane [2]. The resonance condition ensures 
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that the radiation emitted by a point source inside the cavity is 

converted into a directive beam on the other side of the PRS. 

Antennas of this type have been also realized using stacks of 

uniform dielectric layers of different thickness [8-10]. 

However, periodic metallodielectric PRS, which are 

compatible with commonly employed printed circuit 

techniques, minimize the number of required layers and offer 

increased design flexibility. 
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Fig. 1. a) Layout of the resonant cavity leaky-wave antenna formed by 

metallodielectric PRS and AMC with excitation source inside the cavity b) 

Unit cell of a square patch PRS array and c) AMC array. 

 

More recently, planar 2-D periodic metallic arrays printed 

on a grounded dielectric substrate have been presented as 

artificial magnetic conductors (AMC). Such structures exhibit 

a high surface impedance for incident plane waves within a 

specific frequency range [11-14], so that the average 

tangential magnetic field is small and the electric field large 

along the surface [15]. Due to this unusual boundary 

condition, AMC structures reflect incident plane waves in–

phase to the incident field and can be used as ground planes 

for low-profile antennas. Employing this type of ground plane 
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(Fig. 1), Fabry-Pérot type LWAs with quarter wavelength [16] 

and sub-wavelength [17] profiles have been reported. 

Several techniques have been proposed for the analysis and 

design of infinite Fabry-Pérot Leaky Wave Antennas (LWAs). 

An approximate ray-optics model was employed in [1] to 

extract the radiation pattern and the resonance condition. In 

[8] a transmission line model was introduced in order to 

predict the radiation characteristics and resonance conditions 

of antennas formed using multiple layers of dielectrics. More 

recently, the radiation patterns of Fabry-Pérot antennas formed 

by 2-D periodic metallodielectric arrays as PRS have been 

extracted using rigorous full-wave Method of Moments 

(MoM) and invoking reciprocity [4,18]; however, this 

technique stops short of obtaining the complex propagation 

constant, which is useful for the design of antennas with 

tailored radiation patterns. 

The radiation characteristics of infinite LWAs can also be 

obtained by the complex wavenumber of the associated leaky 

mode [7, 9]. The wavenumber dispersion allows estimation of 

the antenna radiating aperture profile, which in turn can be 

used to obtain the far-field radiation patterns, their 

beamwidths and associated bandwidths, as well as the 

variation of the antenna pointing angle with frequency [19]. 

Knowledge of the complex dispersion relation is also helpful 

in the synthesis of practical LWAs. For example, the leakage 

rate allows estimation of the power radiated within a finite 

antenna length, which is essential in designing finite LWAs 

with high radiation efficiency. The complex wavenumber is 

also required for the systematic design of a non-uniform 

LWA, which can produce tapered illumination patterns that 

avoid phase aberration [19-21], leading to far-field patterns 

with reduced side-lobes and antenna systems prone to reduce 

interference.  

The complex dispersion of Fabry-Pérot LWAs with a PRS 

consisting of 2-D periodic metallodielectric arrays was first 

extracted in [22] employing a Transverse Equivalent Network 

(TEN) and a pole-zero method to estimate the equivalent 

impedance of the array. Since a single mode TEN is 

employed, the accuracy of this technique is reduced for sub-

wavelength profile antennas. Although it is possible to 

produce multiport TEN [23] and other formulations of the 

eigenvalue problem to obtain the complex dispersion of bound 

and leaky modes of 2D periodic structures using full-wave 

techniques, such as MoM [22], the associated eigenvalue 

equations, zeros of the impedance matrix equation, typically 

take non-canonical form [24-25], which is cumbersome to 

solve numerically in the complex plane. Techniques based on 

the Finite-Difference Time-Domain (FDTD) method have also 

been developed in order to extract the dispersion of the 

complex wavenumber for this type of antennas [26-27]. These 

techniques can be time consuming and, particularly for very 

small or large values of the leakage rate, have limited 

accuracy. 

In this paper, we propose a new simple technique for the 

estimation of the complex dispersion of thin periodic 2-D 

LWAs in the leaky wave region. The technique combines for 

the first time array theory as well as periodic MoM with 

reciprocity. An overview of the method is given in section II. 

Subsequently, the technique is applied in section III in order to 

study three different antenna designs, namely a half-

wavelength, a quarter-wavelength and a sub-wavelength (λ/7) 

profile 2-D LWAs. The radiation patterns and the complex 

dispersion are derived employing the proposed method and 

compared with those obtained using a TEN.   

II. DISPERSION OF FABRY-PEROT LEAKY-WAVE ANTENNAS  

The complex wavenumber, k, of a leaky-mode in general 

takes the form: 

 jk      )( 1m                (1) 

where  is the phase constant and  is the leakage rate. The 

complex nature of k expresses the decrease of the amplitude of 

the leaky wave as it propagates due to radiation. In the 

absence of other sources of radiation, the phase constant, , 

determines the pointing angle, , of the antenna’s main lobe 

and the leakage rate, , determines the illumination of the 

radiating aperture. Significantly, the radiation pattern of a 

LWA can be obtained analytically for a uniform LWA with a 

given complex wavenumber [19, 28]. The method that we 

propose here is based on the following procedure; the 

radiation pattern of a particular infinite-size LWA is initially 

obtained using full-wave periodic MoM and invoking 

reciprocity [4]. Subsequently an iterative procedure is 

employed based on array theory [28-29] in order to reproduce 

this pattern from pairs of  and . Since the calculations 

involved in this iterative process are analytical, and since prior 

knowledge of the propagation constant, , can be obtained by 

the angle of maximum radiation, the proposed technique is 

fast and computationally efficient. In the following we present 

the method and the analytical expressions involved in the 

calculation of the radiation patterns.  

A. Spectral Domain Periodic MoM and Reciprocity 

Reciprocity suggests that the far-field radiated at a certain 

direction by an antenna fed by a point source is proportional to 

the relative excitation of the near fields at an observation point 

upon plane wave incidence from the same direction. Hence, by 

scanning the relative field strength at an observation point 

inside the antenna cavity for plane waves incident with all 

possible angles at a fixed frequency, the radiation pattern of 

the antenna at this frequency can be obtained [4, 18]. This 

method can be efficiently applied employing the spectral 

domain periodic MoM for the full-wave modeling of LWAs 

such as the one depicted in Fig. 1. The Electric Field Integral 

Equation (EFIE) is determined by applying the boundary 

condition on the metallic elements that compose the array 

(here assumed perfect conductors), and subsequently solved 

using the Galerkin MoM. For simple array element 

geometries, such as the one shown in Fig. 1, the currents can 

be modelled using zero-ended entire domain sinusoidal basis 

functions [30, 31], yielding fast and accurate results. The 

details of this method are described elsewhere and therefore 

not repeated here [4, 30]. 

B. Array factor approach 

The array factor (AF) approach serves as an alternative 

method to calculate the radiation characteristics of periodic 
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LWAs [28, 29]. The array factor for a 2-D planar array is 

given by the following expression [29]: 
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where Dx / Dy is the periodicity and M / N is the number of 

unit cells along the x- / y- axis respectively. For an infinitely 

long antenna there is no contribution to the radiation by edge 

effects. The phase m /n in Eq. 2 represents the relative phase 

shift of the excitation for the m / n order element referenced to 

the element at the origin. Assuming that all higher Floquet 

space harmonic (FSHs) are evanescent and only the 

fundamental can radiate, then the relative phase shift is 

determined by the propagation constant, x/y, of the 

fundamental FSH in the x- / y- directions: 

 1m x xm D      1n y yn D                (3) 

The relevant excitation strength of the m
th

 / n
th

 array element, 

1mI / nI1  in Eq. 2, can be obtained from the attenuation rate, 

x / y, due to the leakage, as well as the magnitude of the 

reference element, Io. Since for a uniformly periodic array the 

leakage rate, , is constant along the antenna, the excitation 

strength drops exponentially for elements away from the 

excitation point. To a step approximation, we can therefore 

write for the m
th

 / n
th

 element along the x- / y-axis: 

 1
1 0

x xm D
mI I e

 
  

 1

1 0
y yn D

nI I e
 

             (4) 

The radiation pattern of the antenna under consideration can 

be obtained as the product of the array factor with the 

radiation pattern of the PRS array element. In this example we 

assume a free-standing PRS consisting of square patches with 

edge L (Fig. 1) whose radiation intensity, U , at every   ,  

can be obtained using Babinet’s principle from that of a 

rectangular aperture [29]:  
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 (5) 

where k0 is the free space wavenumber, 0 is the intrinsic 

impedance and Eo is a constant. By combining Eq. 2 and 5, the 

radiation pattern of a LWA such as the one depicted in Fig. 1 

can be analytically obtained for a given wavenumber k. 

C. Derivation of the complex propagation constant 

As shown above, the estimation of the radiation pattern 

following an array factor approach requires prior knowledge 

of both the real, , and imaginary, , part of the wavenumber, 

k. In order to reduce the complexity of the problem, the former 

can be obtained by tracking the angle of maximum directivity 

in the full-wave radiation pattern. In particular, in order to 

extract the dispersion of the propagation constant in a 

particular direction the radiation pattern οf the antenna under 

consideration is obtained at different frequencies. The angle, 

, corresponding to the direction of maximum directivity for 

each frequency is then related with  by means of simple 

trigonometry [19] (Fig. 2): 

 sin0  k                 (6) 

where k0 is the free-space wavenumber. In the following we 

assume that the antenna of Fig. 1 is excited by a Hertzian 

dipole polarized along the y-axis. In this case, x / y 

correspond to the phase constants along the H- / E-plane and 

can be obtained by varying the angle of the incident wave 

along the xz- / yz-planes respectively.  

Subsequently, the AF approach is employed to obtain the 

dispersion of the leakage rate, . This can be estimated using 

an inverse and iterative procedure. For each frequency point, 

we use the corresponding value of the propagation constant, , 

and the radiation pattern is successively estimated according 

to Eq. 2 for different values of the leakage rate, . For each 

value of , the corresponding radiation pattern is compared 

with the one derived using full wave MoM [30] and 

reciprocity [4]. This is done by calculating an error function 

which is expressed as the mean-square error between the two 

normalised patterns. The value of  for which the error 

function is minimized corresponds to the actual value of the 

leakage rate at the particular frequency. For a new frequency 

point, estimations of the leakage rate at nearby frequencies can 

be used as starting values, also considering that higher 

frequencies typically produce lower leakage rates. Since the 

calculations involved in the iterative procedure are analytical, 

the proposed method is fast and efficient. 

 
 

Fig. 2. Estimation of the propagation constant from the angle of maximum 

gain at the H-plane (βx) and the E-plane (βy) for a LWA.  

III. NUMERICAL RESULTS  

In this section we initially demonstrate the application of 

the proposed method in working examples of resonant cavity 

antennas with a single periodic array (PRS) and half-

wavelength profile. This refers to the structure shown in Fig. 1 

where a Perfect Electric Conductor (PEC) at h=λ/2 is used 

instead of an AMC. Subsequently, we extend this technique to 

the case of antennas with two periodic arrays (PRS and AMC) 
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and sub-wavelength profile; structure shown in Fig. 1 where h 

is either λ/4 or λ/7. The results from the proposed technique 

are compared with those from a TEN, where a pole and zero 

method is employed for the estimation of the effective 

impedance of the arrays. The latter is very well described in 

[32, 33] and therefore applied here directly. 

 
a) 

 
b) 

Fig. 3  Radiation pattern a) H-plane and b) E-plane of the LWA formed 

with a square patch PRS with dimensions (in mm) D= 9.0, LPRS=8, hd1=1.5, 

h=9.82 and εr=2.55. 

A. Half-wavelength antennas 

The structure under consideration involves a PRS consisting 

of square patches with edge 8.0 mm arranged in a square 

lattice with periodicity 9.0 mm and printed on a dielectric slab 

of thickness, hd1, equal to 1.5 mm and relative permittivity 

2.55. This PRS is located at a distance, h, equal to 9.82 mm 

above a ground plane. This corresponds to approximately half-

wavelength at 14GHz, where the antenna produces a broadside 

pattern. The excitation is assumed to be a Hertzian dipole 

polarized along y and placed in the middle of the cavity (e.g. 

z=h/2). 

Periodic MoM in the spectral domain is employed to obtain 

the y-polarised fields at the centre of the unit cell and z=h/2 

(observation point). On the calculation of the near fields an 

optimized number of 40 FSH is considered for convergence 

better than 1%, [34]. The H- and E- plane radiation patterns 

for this LWA are obtained by the full-wave method discussed 

in section IIA for a range of frequencies between 14GHz and 

16.5GHz for the H-plane and between 14GHz and 18GHz for 

the E-plane. Some examples of these results are presented in 

Fig. 3. Tracking the angle of maximum, , and using equation 

6, the dispersion of the phase constant is readily obtained.  

In agreement with previous studies of 2-D LWA Fig. 3 

shows that at broadside a pencil beam is produced with equal 

3dB beamwidth in the H- and E-plane [35]. The patterns in the 

E- and H-plane are increasingly different at higher angles 

towards endfire. Further observation of this figure shows that 

as the beam angle increases, the peak field amplitude increases 

in the H-plane. The opposite is happening in the E-plane. 

These observations are in agreement with [35]. Furthermore, 

the inset in Fig. 3 shows the presence of grating lobes that 

correspond to the -1 FSH from 14.4GHz onwards in the H- 

and the E-plane. 

 
a) 

 
    b) 

Fig. 4.  Normalized wavenumber versus frequency for a) the TE mode 

along x (H-plane) and b) the TM mode along y (E-plane) as obtained by the 
proposed technique and a Transverse Equivalent Network for the LWA with 

dimensions as in Fig. 3. 
 

The dispersion diagrams as obtained from the patterns of 

Fig. 3 in the frequency range studied are shown in Fig. 4. 

Based on equation (6), the H-plane pattern provides the phase 

constant x of a TE mode along x, and the E-plane pattern 

gives y corresponding to a TM mode along y [32]. This figure 

also shows superimposed the phase constant values as 

obtained from a TEN model [33]. A comparison of the values 

for x / y indicates a very good agreement between the two 

techniques.  

Figure 5 shows the radiation pattern calculated according to 

full-wave MoM together with that estimated using the AF 

approach assuming an infinitely long antenna with the 

obtained leakage rate, . Since the AF calculation is based on 

the assumption of a single radiating Floquet space harmonic, it 

cannot predict the side lobes that emerge as a result of higher 
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Floquet space harmonics in Fig. 5b. Therefore, in the 

calculation of , the error function will only include the 

portion of the radiation pattern that is occupied by the main 

lobe, neglecting the higher values of , which correspond to 

side lobes. 

 
a) 

 
b) 

Fig.5. a) H- and b) E-plane radiation pattern at 14.4GHz for the half-
wavelength antenna of Fig. 3 as obtained by full-wave Method of Moments 

and Array Factor theory. 

 

 
a) 

 
b) 

Fig. 6. Normalized leakage rate versus frequency, a) H-plane and b) E-

plane as obtained by the proposed technique and a Transverse Equivalent 
Network for the LWA with dimensions as in Fig. 3. 

 

The computed values of the normalized leakage rate, , at 

the H- and E-plane as calculated using the proposed technique 

as well as the TEN model are shown in Fig. 6. The agreement 

between both techniques is good for the given range of 

frequencies. As common with LWAs [19], the normalized 

leakage rate, /k0, decreases towards endfire direction. The 

interference of the side lobes with the main lobe limits the 

applicability of the proposed technique at higher frequencies. 

B. Quarter wavelength antennas 

Antennas with sub-wavelength profile can be produced 

introducing a second periodic array in close proximity to the 

ground plane [15, 16]. To a ray optics approximation, this can 

be attributed to the reduced reflection phase of the AMC 

ground plane. Here we employ a working example of an 

antenna such as the one shown in Fig. 1.  The PRS employed 

previously is now located at a distance h= 5.46 mm above an 

AMC array, which consists of patches with edge, LAMC=4.1 

mm and is printed on a dielectric slab of thickness, hd2=1.15 

mm and relative permittivity 2.2. The height of the cavity, h, 

has been designed for the antenna to produce a broadside 

pattern at 14GHz.  

 
 

Fig. 7.  Normalized wavenumber versus frequency for the H- and E-plane 
as obtained by the proposed technique and a Transverse Equivalent Network 

for the sub-wavelength antenna of Fig. 1, with dimensions (in mm) D= 9.0, 

h=5.46, for the PRS: square patches LPRS=8, hd1=1.5 and εr=2.55 and for the 
AMC: square patches LAMC=4.1, hd2=1.15 and εr=2.2 operating at 14GHz. 

 

 
 

Fig. 8. Normalized leakage rate versus frequency for the H-plane and E-

plane as obtained by the proposed technique and a Transverse Equivalent 

Network for the sub-wavelength antenna of Fig. 7. 
 

A similar study as the one performed for the half-wavelength 

antenna is carried out. In order to apply the periodic MoM 

commensurate periodicities are assumed ensuring that the set 

of FSH is suitable for expanding the fields at both arrays.  For 
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thinner cavities, higher order evanescent FSH can increasingly 

interact and therefore become increasingly important in the 

calculation of the near fields and thus in the estimation of the 

patterns. For this example 60 FSH in the x- and y- direction 

are considered for a convergence better than 1%, [34]. 

The dispersion of the phase constants are shown in Fig. 7 

for a range of frequencies between 14GHz and 15.6GHz for 

the H- and between 14GHz and 16.5GHz for the E-plane. This 

figure also shows superimposed the phase constant values as 

obtained from a TEN. The computed values of the leakage rate 

at the H- and E-plane are also depicted in Fig. 8 between 

14GHz and 15GHz for the H- and E-plane. The TEN utilised 

in the calculations only accounts for a single mode, therefore 

when the antenna profile decreases the accuracy of the method 

is also reduced. Consequently, as is evident in Figs 7 and 8, 

the agreement between the two methods for this antenna is 

reduced compared to the half-wavelength antenna, particularly 

in the H-plane. 

 
a) 

 
b) 

Fig. 9  Radiation pattern a) H-plane and b) E-plane of the LWA with 

dimensions (in mm) D= 9.0, h=3.25, for the PRS: square patches LPRS=8, 
hd1=1.5 and εr=2.55 and for the AMC: square patches LAMC=4.3, hd2=1.15 and 

εr=2.2 operating at 14GHz as obtained using Full-wave MoM and Array 

Factor procedure.  

C. Thin antennas 

Thin antennas with sub-wavelength profile can be produced 

employing an AMC with reflection phase lower than 0
o 

in the 

configuration of Fig. 1. Due to the low profile, the interaction 

of higher order evanescent modes between the two arrays 

significantly increases. The accuracy of the single mode 

transverse equivalent network model gradually reduces 

compared to the half-wavelength profile LWA. The technique 

proposed here can be directly applied for thin antennas 

without loss of accuracy. Here we demonstrate this by means 

of an example involving an antenna with profile λ/7. The PRS 

is the same as in the previous studies and is located at a 

distance h= 3.25mm (~λ/7) above an AMC array, which 

consists of patches with LAMC=4.3 mm printed on a dielectric 

slab of thickness, hd2=1.15mm and relative permittivity 2.2. 

 
 

Fig. 10.  Normalized wavenumber versus frequency for the H-plane and E-

plane as obtained by the proposed technique and a Transverse Equivalent 
Network for the LWA of Fig. 9. 

 

 
 

Fig. 11 Normalized leakage rate versus frequency for the H-plane and E-

plane as obtained by the proposed technique and a Transverse Equivalent 
Network for the LWA of Fig. 9. 

 

The H- and E- plane radiation patterns of the LWA at 

different frequencies are determined in order to extract the 

phase constant in either plane. A total number of 120 FSH in 

each direction has been taken into account for convergence 

better than 1%. The radiation patterns at both planes as 

obtained using MoM as well as an AF approach at different 

frequencies are presented in Fig. 9 showing a good agreement 

between both techniques that validate the AF model accuracy. 

A pencil beam is obtained at broadside at the frequency of 

14GHz. However, a narrower beamwidth is obtained in the E-

plane attributed to a lower value of the leakage rate at this 

plane. The dispersion diagrams for the H- and E-plane are 

shown in Fig. 10 for frequencies between 14-14.6GHz and 14-

16.5GHz, respectively. The interference of the side-lobes with 

the main lobe impedes the application of the proposed 

technique in this case beyond 14.6 GHz for the H-plane and 
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beyond 16.5 GHz for the E-plane. The computed values of the 

leakage rate are also depicted in Fig. 11 between 14-14.6GHz 

and 14-15.1GHz for the H- and E-plane, respectively. In both 

figures, the resulting dispersion parameters as obtained using 

TEN are depicted clearly showing how the accuracy of the 

method has reduced even more for the λ/7 antenna, 

particularly at the H-plane. 

IV. DISCUSSION AND CONCLUSION 

The antennas under investigation have been designed to 

operate at 14 GHz using the same PRS but different AMCs, so 

that the profile of the antenna reduces as the dimension of the 

lower array (AMC) is increased. By observation of Figures 6, 

8 and 11 one can conclude that higher values of the leakage 

rate are obtained for antennas with reduced profile and the 

same PRS. This leads to less directive radiation patterns for 

thinner antennas.  For angles away from broadside (frequency 

higher than 14 GHz) the difference between the values of the 

leakage rate for antennas with different profiles becomes 

smaller. Figures 5, 7 and 10 further demonstrate that as the 

profile reduces, the phase constant βx/y varies more rapidly 

with frequency in both the H- and E- plane. Moreover, the 

phase constant at the H- (βx) and E-plane (βy) take similar 

values for half-wavelength antenna (Fig. 5a and 5b). However, 

for thinner antennas the values of the phase constant for angles 

away from broadside (frequency higher than 14 GHz) 

increasingly differ being always larger at the H-plane, βx than 

at the E-plane, βy. 

In conclusion, a simple technique for the dispersion analysis 

of high-gain planar leaky-wave antennas employing either one 

or two periodic surfaces (PRS and AMC) has been presented. 

MoM together with reciprocity as well as an array factor 

approach have been used to estimate the complex propagation 

constant of these antennas. The proposed technique was firstly 

applied to the analysis of a LWA with half-wavelength profile 

and subsequently extended to antennas with lower profile. The 

radiation patterns for the E- and H- plane at different 

frequencies were obtained using MoM in order to extract the 

phase constant. The produced dispersion diagrams were in 

good agreement with those derived by a TEN. Reactive 

interaction between adjacent layers due to evanescent higher-

order Floquet harmonics limits the validity of the single mode 

TEN, which is based on equivalent impedances of the PRS 

and AMC arrays and single mode circuits. The proposed 

technique overcomes this problem, so that low-profile LWAs 

can be accurately and efficiently analyzed. The main 

limitation of the proposed technique is due to the appearance 

of grating lobes, which limit the applicability of the technique. 
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