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Abstract 

We present the design and implementation of a new type of micromachined terahertz planar highly 

directive antenna based on a periodic partially reflective surface. The periodic surface and antenna are 

fabricated using SU-8 photoresist micromachining technology. The proposed antenna is based on a Fabry-

Perot type resonant cavity which is formed by superimposing the periodic surface over a single waveguide-

fed slot in a metallic ground at a distance of about half wavelength. Simulations and measurements of the 

antenna performance are presented. 

Index Terms—Partially Reflective Surfaces, Fabry-Perot cavity, Periodic structures, THz antennas. 

 

1. INTRODUCTION 

Periodic surfaces are passive periodic arrays of metallic elements on a substrate or apertures in a metallic 

screen, with the property to alter the magnitude and phase of incident electromagnetic fields according to 

the design of their geometrical parameters. In recent years, there has been increased interest in the design 

and fabrication of periodic surfaces at millimetre-wave and sub-millimetre-wave/THz frequencies for 

numerous applications. Periodic surfaces have been developed as Frequency Selective Surfaces (FSS) and 

employed as demultiplexing elements in passive Earth observation THz radiometers traditionally 

employing a single mechanically scanned aperture antenna [1-4]. FSSs are used in the quasi - optical 

receiver of these advanced instruments to spectrally separate the signals that are collected by the scanning 



antenna [5]. Split slot ring based periodic surfaces have also been developed as thin linear to circular 

polarization converters [6]. Other applications of THz periodic surfaces include thin absorbers [7] and THz 

biosensors for chemical and biochemical materials [8]. 

 

Fig. 1.  Schematic diagram of the proposed antenna 

 

THz frequencies offer new opportunities for communications, sensing and imaging applications [8, 9]. 

Such applications require high efficiency and high gain antennas to improve the overall system gain and 

enhance the signal-to-noise-ratio. At THz frequencies, reflector-based antennas [9] and horn antennas [10, 

11] have been used. Despite their good radiation performance, they are bulky, which is an important 

drawback and furthermore they require complex, expensive and time-consuming fabrication techniques 

(e.g. CNC metal milling) in order to achieve the desired tolerances at these frequencies. Lenses have also 

been reported [12] as highly directive antennas for broadside radiation. Lens antennas are fabricated with 

laser silicon etching, which is not cost-efficient, and they normally have a profile of several wavelengths 

which is increased if a higher gain value is desired [13]. Although a profile of several wavelengths is not a 

problem at higher THz frequencies (over 1 THz) it can be problematic at the lower end of the THz 

spectrum (about 300GHz) particularly in the case of compact integrated systems. Planar antennas are 

therefore required for compact integrated systems at low THz frequencies [14]. In addition, planar antennas 

are readily compatible with micromachining techniques which lead to low-cost fabrication for mass 

production. Conventional microwave planar antennas employ microstrip patch arrays to achieve high gain. 

Nevertheless, patch arrays are not a viable solution for THz frequencies since they exhibit high losses low 

efficiency and narrow bandwidth. Recently, a new paradigm for the use of periodic surfaces for the 

realization of high gain and improved bandwidth antennas with a single feeding source has been proposed 

[15, 16] based on earlier work in the 1950s [17]. The antenna is based on a periodic partially reflective 

aperture PRS 

slot waveguide 

supporting ring ground plane 



surface (PRS) superimposed over a ground plane with a single radiating source (e.g. slot in the ground 

plane, dipole or patch). This led to increased research interest in this type of antennas [18-20] and more 

recently implementations in mm-wave bands [21].  

 

In this paper, we employ low-cost SU8 photoresist micromachining technology in order to develop planar 

highly directive Fabry-Perot cavity antennas at approximately 300GHz. A fully metalized micromachined 

PRS is placed at half wavelength distance over a metallic ground and a single waveguide-fed slot (Fig. 1). 

The PRS is supported on a metalised SU-8 polymer ring. A resonant air cavity is thus formed with the 

metallic ground which leads to directive radiation patterns and high gain. The antenna, including a 

waveguide section feeding the resonant cavity, is implemented using micromachining fabrication 

techniques available at the University of Birmingham. SU-8 photoresist polymer is employed that has the 

advantages of high dimensional accuracy, high achievable structure aspect ratio and a capability of large 

scale inexpensive production. The proposed antenna supports a leaky wave mode within the cavity when 

excited by a single feed. A large radiating aperture is hence formed that produces directive patterns without 

the need for complex feeding network and associated losses. The directive beams can be broadside or tilted 

towards larger angles as it is demonstrated.   

2. Design of THz Periodic Surface 

 

In this section the design of the proposed periodic PRS is described. Full-wave periodic analysis is 

employed using CST Microwave Studio
TM

 simulation software. Periodic boundary conditions are applied 

to the unit cell of the structure, assuming an infinite size of the periodic surface, and reduce the calculations 

of the complete structure into a single unit cell. The performance of the FPC antennas that are described in 

later sections can be explained employing ray optics theory and is based on the reflection characteristics of 

the PRS [15, 17].  The analysis described in [15] shows that a high PRS reflection coefficient magnitude 

will result in high antenna directivity and a slow variation of the PRS reflection phase with frequency will 



result in improved antenna bandwidth. Thus, the proposed PRS is designed according to the 

aforementioned requirements.  

 

A square aperture PRS element has been chosen for the design. The elements are etched in a 0.432 mm 

thick SU-8 layer which is then silver plated as described in section 4. The dimensions of each element are 

0.48x0.48 mm
2
 and the periodicity is 0.6 mm (Fig. 2).  The thickness of the layer was chosen in order to 

facilitate the micromachining fabrication process while the periodicity and the size of the aperture were 

selected so that the desired phase response was achieved. The simulated reflection coefficient (magnitude 

and phase) is obtained for normal incidence and is shown in Fig. 2. A slow variation of the phase with 

frequency is observed. High values for the reflection coefficient magnitude are obtained for the chosen unit 

cell dimensions which indicate high antenna directivity.  

Frequency,GHz

270 280 290 300 310 320

M
a

g
n
it
u
d

e
, 
d

B

-12

-10

-8

-6

-4

-2

0

P
h
a

s
e

,D
e

g
re

e
s

70

80

90

100

110

120

130

Magnitude

Phase

p=0.6mmd=0.48mm

 

Fig. 2.  Unit cell dimensions and simulated complex reflection coefficient of the proposed PRS. 

 



3. Antenna Design 

 

Next, a finite size antenna is designed based on the unit cell analysis of the previous section formed by a 

PRS array placed at half wavelength distance over a ground plane. Two back-to-back H-plane bends and a 

waveguide section are employed and designed in order to provide a direct and accurate connection interface 

with the standard waveguide [22]. One end of the bend is connected to the antenna and the other end 

directly to the waveguide flange. In total it is formed by three micromachined layers each of which contains 

holes to allow precision alignment pins and screws of the waveguide flange to pass through. The 

dimensions of the holes match the ones of the flange. The length of the straight section is 13.55 mm, and 

has been chosen in order to permit fair separation between the flange and the antenna. This ensures that the 

pins and screws are not blocked from the other side and do not interfere with the antenna.  

The complete antenna structure comprises six metalized SU-8 layers and two brass plates placed on the top 

and bottom to support and hold the structure together (Fig. 3). Starting from the bottom, layers 1 to 3 form 

the waveguide bend described above, and layers 4 to 6 form the FPC antenna.  
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Fig.3. Diagrams of the assembled antenna. (a) The blue part represents the hollow space and the 

surrounding conductors were made transparent to offer a clearer view. (b) Complete structure including 

brass plates and holes for alignment pins and screws. 

 

A top view of all three layers forming the bend is shown in Fig. 4(a), showing the area of interest and 

excluding the holes for the alignment pins and screws. In the same figure the other three layers of the 

structure are shown which form the FPC structure. Five of the six layers have the same thickness, equal to 

0.432 mm to simplify the fabrication. However, due to restrictions explained in section 4, the thickness of 

the ground plane was reduced to the minimum available thickness which is 0.288 mm. The antenna’s 

design is based on the creation of Fabry-Perot type resonant cavity as mentioned in the introduction. It is 

formed of a slotted ground plane (layer 4), a supporting ring that defines the air cavity thickness (layer 5) 

and the PRS (layer 6). The values of the parameters shown in the Fig. 4(a) are given in Table I.   

In Fig. 4(b) the brass plates used to support the structure are shown. The holes have different diameters 

corresponding to the diameter of the screws used for clamping the structure and the pins that assure the 

alignment of the antenna’s layers and waveguide flange. A rectangular aperture is etched for the radiation 

side, large enough so that it will not interfere with the performance of the antenna. From the feeding side, a 

circular aperture is made to fit the SU-8 device to the waveguide flange. The brass plates have a thickness 

of 3mm in order to make the whole structure rigid. The rest of the dimensions are also given in Table I. It is 

important to note that the brass plates are only used to clamp the SU-8 layers together and strengthen the 

structure and form no part in the alignment of the layers or waveguide flange.     



The antenna has thus been formed using the optimized aperture PRS layer, placed on top of the supporting 

layer in front of the ground plane. An air cavity is thus created of approximately half wavelength at 300 

GHz (0.432 mm). The slot in the ground plane fed from the waveguide bend is used as a single feeder of 

the antenna. The dimensions of the slot in the ground plane were selected such that a good matching in the 

frequency range of interest is achieved. For the PRS, a total of 13x13 array elements are etched into the 

SU-8 layer, whose total length corresponds to about 8λ at 300 GHz. Although it is a finite size structure, it 

is electrically large enough for the edge effects to be negligible. Moreover the distance of the supporting 

walls from the end of the PRS array is about 4λ. This was carefully studied by simulation to ensure that the 

antenna performance and the radiation patterns are not deteriorated.  

 

The complete structure of the proposed antenna has been simulated in CST Microwave Studio and the 

obtained directivity and gain are presented in Fig. 5. A maximum directivity of 22.8 dBi has been achieved 

at 283.8 GHz with a 3 dB radiation bandwidth of approximately 4.5 GHz. The return loss is also shown in 

Fig. 5 with a minimum of around -20dB at 281.8 GHz, whereas at the central frequency, 284 GHz, |S11| is -

7.5 dB. This performance could not be further optimized due to the fabrication limitations in terms of the 

minimum dimension of the feeding slot. Thinner feeding slots have produced S11 values below -15 dB. 

Moreover, less reflective arrays could give better performance in terms of matching, but a lower directivity 

would be obtained. The impedance mismatch and material losses give a deviation of 1.5 dB between 

directivity and gain at the central frequency. 
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Fig. 4.  (a) Illustration of the 6 layers forming the complete antenna structure (top view), white color 

represents the air and grey the silver, (b) Top and bottom brass plate layers. 



 

TABLE I 

ANTENNA DESIGN DIMENSIONS FROM FIG. 4 

Parameter α x y D wx wy 

Value (mm) 13 46 24 19.05 0.8636 0.4318 

Parameter b s1 s2    l     La 

Value (mm) 15.4 0.5 0.09    11.8     7.68 
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Fig. 5.  Simulated directivity, realized gain and return loss of the proposed antenna. 
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(c) 

Fig. 6.  Simulated H- and E-plane radiation patterns for: (a) 281GHz, (b) 283GHz and (c) 

285GHz. 

 

In Fig. 6 the H-plane and E-plane radiation patterns are shown for three frequencies over the 

operating band. Broadside directive beams are observed with a side lobe level below -20dB at 

the lower and central frequency whereas at the upper edge the beam becomes narrower with 

slightly higher sidelobes. This becomes more obvious at higher frequencies, were a split 



beam is obtained and the maximum radiation angle increases with frequency; this again is 

typical for leaky-wave antennas and could be useful in certain applications requiring multi-

beam and beam scanning designs. Moreover, if a straightforward change in the position of the 

feeding slot towards one side of the antenna is performed, a single beam radiation pattern is 

obtained. To validate this concept, three slot positions were considered as shown in Fig. 7(a). 

The simulated S11 for all the cases is presented in Fig. 7(b), showing a good matching 

between around 294GHz and 305GHz, revealing a second possible operational band of the 

proposed antenna. The corresponding radiation patterns for operation at 302GHz are shown 

in Fig. 8. It can be observed that for position 1 (Fig. 8a) there are two beams at -40
o 

and +40
o
. 

As the slot is moved towards one edge of the antenna, one of the two beams is suppressed, as 

expected, resulting in a single beam at 32
o
 with good side lobe level for position 3 (Fig. 8c). 

Furthermore, an angle scan of 12
o
 with frequency is obtained within the frequency band 

where good matching is observed. 
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Fig. 7.  (a) Illustration of the three feeding slot positions (top view), (b) Simulated S11 for 

three slot positions. 
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Fig. 8.  Simulated H-plane radiation patterns at 302GHz for: (a) position 1, (b) position 2, 

and (c) position 3 (from Fig. 7). 

 

4. Fabrication 

 

The antenna has been designed using a square aperture PRS in a silver plated SU-8 layer. SU-

8 is a UV-sensitive photoresist and able to form structures of high aspect ratio [22, 23]. The 

required accuracy at such high frequencies imposes the use of micromachining fabrication 

techniques so SU-8 is chosen as a suitable solution for this technique. A simple process is 

involved which can be exploited for volume production. Furthermore, the losses in silver 

plated SU-8 waveguiding structures are similar to those in solid metal structures and the cost 

of the material is low [24]. 

The designed antenna consists of 6 layers, as shown in Fig. 4(a) and each layer was originally 

designed to be 432 µm thick. However, in order to achieve better metallization inside the 

narrow waveguide slot, layer 3 was reduced to 288 µm as mentioned in the previous section, 



to allow the silver to be coated thoroughly over all the sidewalls. All the layers were 

fabricated through an ultra-thick SU-8 photo-resist based micromachining process. First, SU-

8 50 photo-resist was spin coated on a 100 mm silicon wafer and the edge bead was removed 

immediately. For the layers with different thickness, the amount of the SU-8 disposed on 

wafer and spin coating parameters were adjusted to achieve the desired thickness. Then, the 

wafer rested on a carefully leveled stage for few hours to allow the liquid resist to be self-

planarized. This step is critical to harvest a smooth and uniform surface. After that, the wafer 

was baked at 65
o
C and 95

o
C subsequently and thereafter patterned with the designed mask in 

a Cannon PLA-501 mask aligner. For the 288 μm layer the baking time was 30 min at 65
o
C 

and 2 h and 40 min at 95
o
C. For the 432 µm layers the baking time was 30 min and 4 h and 

30 min at 65
o
C and 95

o
C respectively. Post exposure bake was conducted at 70

o
C, which was 

lower than the previous bake, to reduce the thermal stress accumulated in the thick SU-8 

layer. The pieces were developed in EC solvent and released from the silicon wafer using 

KOH solution. Finally, the SU-8 pieces were metalized with 2 μm thick silver in a 

Cressington 308R vacuum evaporator. 

Finally, the antenna was assembled by stacking the six silver-coated SU-8 layers and 

clamping between two brass plates, as illustrated in Fig. 3(b). A careful alignment of the 

layers had been carried out using two metallic pins with precise diameter which also acted as 

the dowel pins to fit into the standard waveguide flange. A photo of the assembled circuit is 

shown in Fig. 9. 

 



 

Fig. 9.  Photograph of fabricated antenna comprising six layers of metallised SU-8 and brass 

plates. 

5. Measurements 

 

In this section, measurements of the fabricated prototype are presented. Initial measurements 

demonstrated that the operation of the antenna was shifted at a lower frequency than the 

expected one. This fact suggested that some of the dimensions of the fabricated antenna did 

not match the proposed design due to fabrication inaccuracies. An error of up to ±20 μm can 

be expected with the employed fabrication procedure, which has a significant effect in this 

frequency band. Another factor that could have contributed in this altered behaviour is the 

possible imperfect flatness of the SU-8 layers, and in particular the top radiating PRS layer. 

Based on the above, the antenna was simulated again in an effort to achieve better agreement 

with measurements and hence account for the altered fabricated dimensions.  

 

The parameter that most significantly affects the antenna’s operating frequency is the 

thickness of layer 5 which defines the height of the air cavity. This was increased by 30 μm. 

It is worth noting that the 30 μm added to the cavity height can be attributed partly to the 

fabrication tolerance in the thickness of layer 5 and partly to the slight curvature of layers 5 

and 6. The new value of the cavity height is 462 μm.  



In Fig. 10, the simulated realized gain and S11 is presented for the new structure. The 

maximum broadside gain is now shifted to 267 GHz with a value of 19.1 dBi. The matching 

has deteriorated, achieving only around -2 dB within the operating bandwidth. However, at 

higher frequencies where the beam splitting effect is observed, good matching is obtained 

from 294GHz to 305GHz. The maximum gain at this frequency band is 13.4dBi. However 

for a single beam operation with the feeding slot at one edge of the ground plane as described 

in section 3, the maximum gain has been calculated to be 15.9dBi which is expected since the 

radiated power is almost doubled.  

The S-parameters were measured using an Agilent N5250A network analyzer with OML 

WR-3 extension head. The radiation patterns were measured in an automated anechoic 

chamber of 60 x 60 x 90 cm
3
 dimensions available at the Rutherford Appleton Laboratory, 

Didcot, UK. A WR-2.8 corrugated feed horn was used as a receiver placed at a distance of 22 

cm from the antenna under test. The patterns were measured only at a small number of 

frequencies due to allocated time limitations in order to validate the simulation predictions. 

At each frequency a dynamic range of more than 40 dB was achieved for the patterns 

measurement. Only H-plane patterns were measured. In Fig. 11(a), the comparison of the 

simulated and measured S11 is shown after having removed layer 5 and 6, in order to validate 

the performance of the waveguide-fed slot in the ground plane (layer 4). The antenna was 

carefully reassembled including the brass plates. The good agreement between simulation and 

measurements (less than 2% frequency shift) indicates that the dimensions of the coupling 

slot were only slightly altered. 

The measured S11 response of the complete antenna structure in comparison with the 

simulated one for the original and the redesigned antenna is depicted in Fig. 11(b). There is a 

good agreement between the measured and the simulated response of the redesigned antenna. 



For frequencies around 267 GHz, where the antenna is expected to operate, there is a 

discrepancy of about 1dB which is attributed to losses. 
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Fig. 10.  Simulated realized gain and S11 of the redesigned antenna. 
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         (a)         (b) 

Fig. 11.  (a) Measured S11 in comparison with simulation of ground plane with a slot, (b) 

Measured S11 in comparison with simulation of proposed and redesigned antenna. 

   

In Fig. 12 the normalized measured H-plane patterns are shown for four different frequencies. 

It can be observed that there is a very good agreement with the simulations. Nevertheless, a 

consistent asymmetry is evident at the measured patterns, which is not present in the 

simulation. This is attributed to unwanted reflections at the relatively bulky positioning 

structure that was supporting the antenna in the measurements set-up. At the time of the 

radiation pattern measurements we lacked the exact information about the dimensional 



discrepancies of the fabricated antenna, which as explained above led us to the redesigned 

antenna simulation model. However, a good directive pattern was obtained at 268GHz, i.e. 

very close to the central frequency of maximum broadside gain. The slightly distorted main 

beam is typical of this type of leaky-wave FPC antennas when operated above the central 

frequency as explained previously. It is interesting to note that in the frequencies where the 

split beam is observed, i.e. around 302GHz, the antenna is well matched (Fig. 11b). This 

means that it could be used for beam scanning applications applying the change in the 

position of the feeding slot as proposed in Section 3. 
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(d) 

Fig. 12.  Simulated and measured H-plane radiation patterns for: (a) 268GHz, (b) 270GHz, 

(c) 272GHz and (d) 302GHz. 

 

6. Conclusion 

 

A micromachined periodic surface based antenna has been proposed operating at low THz 

frequencies. An initial design for broadside operation at 284 GHz is presented. Moreover, at 

higher frequencies a split beam is obtained and a beam scanning application is proposed by 

changing the position of the feeding slot leading to a single beam operation. A prototype is 

fabricated and experimentally tested validating the simulations. The frequency shift 

compared to the original design is attributed to inaccuracies of the fabrication process which 

have a significant effect in this frequency band.      
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