UNIVERSITY^{OF} BIRMINGHAM University of Birmingham Research at Birmingham

Diagnosis and management of prolactin-secreting pituitary adenomas

Petersenn, Stephan; Fleseriu, Maria; Casaneuva, Felipe F.; Guistina, Andrea; Biermasz, Nienke R.; Biller, Beverley M K; Bronstein, Marcello; Fukuoka, Hidenori; Gadelha, Monica; Greenman, Yona; Gurnell, Mark; Ho, Ken; Honegger, Jurgen; Ioachimescu, Adriana G.; Kaiser, Ursula; Karavitaki, Niki; Katznelson, Laurence; Lodish, Maya; Maiter, Dominique; Marcus, Hani J.

DOI: 10.1038/s41574-023-00886-5

License: Other (please specify with Rights Statement)

Document Version Peer reviewed version

Citation for published version (Harvard):

Petersenn, S, Fleseriu, M, Casaneuva, FF, Guistina, A, Biermasz, NR, Biller, BMK, Bronstein, M, Fukuoka, H, Gadelha, M, Greenman, Y, Gurnell, M, Ho, K, Honegger, J, Ioachimescu, AG, Kaiser, U, Karavitaki, N, Katznelson, L, Lodish, M, Maiter, D, Marcus, HJ, McCormack, A, Molitch, M, Muir, CA, Neggers, S, Pereira, A, Pivonello, R, Post, K, Raverot, G, Salvatori, R, Samson, S, Shimon, I, Spencer-Segal, J, Vila, G, Wass, J & Melmed, S 2023, 'Diagnosis and management of prolactin-secreting pituitary adenomas: a Pituitary Society international Consensus Statement', *Nature Reviews Endocrinology*. https://doi.org/10.1038/s41574-023-00886-5

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature's AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: http://dx.doi.org/[insert DOI]

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.

•User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

1	Diagnosis and Management of Prolactin-Secreting Pituitary Adenomas:
2	Pituitary Society International Consensus Guidelines
3	
4	Stephan Petersenn ¹ , Maria Fleseriu ² , Felipe F. Casanueva ³ , Andrea Giustina ⁴ ,
5	Nienke Biermasz ⁵ , Beverly Biller ⁶ , Marcello Bronstein ^{7*} , Philippe Chanson ⁸ ,
6	Hidenori Fukuoka ⁹ , Monica Gadelha ¹⁰ , Yona Greenman ¹¹ , Mark Gurnell ¹² , Ken
7	Ho ¹³ , Jürgen Honegger ¹⁴ , Adriana Ioachimescu ¹⁵ , Ursula Kaiser ¹⁶ , Niki
8	Karavitaki ¹⁷ , Laurence Katznelson ¹⁸ , Maya Lodish ¹⁹ , Dominique Maiter ²⁰ , Hani
9	J. Marcus ²¹ , Ann McCormack ^{13,22} , Mark Molitch ²³ , Christopher A. Muir ²² ,
10	Sebastian Neggers ²⁴ , Alberto M. Pereira ²⁵ , Rosario Pivonello ²⁶ , Kalmon Post ²⁷ ,
11	Gerald Raverot ²⁸ , Roberto Salvatori ²⁹ , Susan Samson ³⁰ , Ilan Shimon ³¹ , Joanna
12	Spencer-Segal ³² , Greisa Vila ³³ , John Wass ³⁴ , Shlomo Melmed ³⁵
13	
14	¹ ENDOC Center for Endocrine Tumors, Hamburg, Germany, and University of
15	Duisburg-Essen, Essen, Germany
16	² Oregon Health Sciences University, Portland, Oregon USA
17	³ Santiago de Compostela University, Santiago de Compostela, Spain
18	⁴ San Raffaele Vita-Salute University and IRCCS Hospital, Milan, Italy
19	⁵ Leiden University Medical Center, Leiden, Netherlands
20	⁶ Massachusetts General Hospital, Boston, Massachusetts, USA
21	⁷ Hospital das Clinicas, University of Sao Paulo, Sao Paulo, Brazil
22	⁸ Université Paris-Saclay, Assistance Publique-Hôpitaux de Paris Hôpital
23	Bicêtre, Le Kremlin-Bicêtre, France
24	⁹ Kobe University Hospital, Kobe, Hyogo, Japan
25	¹⁰ Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil

²⁶ ¹¹ Tel Aviv-Sourasky Medical Center and Tel Aviv University, Tel Aviv, Isra	v, israei
--	-----------

- ²⁷ ¹²University of Cambridge and Addenbrooke's Hospital, Cambridge, UK
- ¹³Garvan Institute of Medical Research, Sydney, Australia
- ¹⁴University of Tübingen, Tübingen, Germany
- ¹⁵Medical College of Wisconsin, Milwaukee, Wisconsin, USA
- ¹⁶Brigham and Women's Hospital and Harvard Medical School, Boston,
- 32 Massachusetts, USA
- ¹⁷Institute of Metabolism and Systems Research, College of Medical and Dental
- ³⁴ Sciences, University of Birmingham, Birmingham, UK
- ¹⁸Stanford University School of Medicine, Stanford, California, USA
- ¹⁹University of California, San Francisco, San Francisco, California, USA
- ³⁷ ²⁰UCLouvain Cliniques Universitaires Saint Luc, Brussels, Belgium
- ²¹National Hospital for Neurology and Neurosurgery, Queen Square, London,
- 39 UK
- ⁴⁰ ²²St. Vincent's Hospital, Sydney, Australia
- ⁴¹²³Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- ⁴² ²⁴Erasmus University Medical Centre, Rotterdam, Netherlands
- ⁴³ ²⁵Amsterdam University Medical Centre, University of Amsterdam, Amsterdam,
- 44 Netherlands
- ⁴⁵ ²⁶Università Federico II Di Napoli, Naples, Italy
- ⁴⁶ ²⁷Mount Sinai Health System, New York, New York USA
- ⁴⁷ ²⁸Department of Endocrinology, Reference Centre for Rare Pituitary Diseases
- 48 HYPO, "Groupement Hospitalier Est" Hospices Civils de Lyon, Bron, France
- ⁴⁹ ²⁹Johns Hopkins University, Baltimore, Maryland USA
- ⁵⁰ ³⁰Mayo Clinic, Jacksonville, Florida USA

- ³¹Beilinson Hospital, Rabin Medical Center, Petah-Tikva, and Sackler Faculty of
- 52 Medicine, Tel Aviv University, Tel Aviv, Israel
- ⁵³ ³²University of Michigan, Ann Arbor, Michigan USA
- ⁵⁴ ³³Medical University of Vienna, Vienna, Austria
- ⁵⁵ ³⁴University of Oxford, Churchill Hospital, Oxford, UK
- ⁵⁶ ³⁵Cedars-Sinai Medical Center, Los Angeles, California USA
- 57 *Deceased
- 58

59 **Corresponding author:**

- ⁶⁰ Prof. Dr. Med. Stephan Petersenn
- 61 ENDOC Center for Endocrine Tumors
- 62 Erik-Blumenfeld-Platz 27A
- 63 22587 Hamburg, Germany
- ⁶⁴ Phone: +49 40 401 87985
- ⁶⁵ Fax: +49 40 401 86629
- 66 Email: stephan.petersenn@endoc-med.de
- 67
- 68 Stephan Petersenn ORCID: 0000-0002-0618-6147
- ⁶⁹ Maria Fleseriu ORCID: 0000-0001-9284-6289
- ⁷⁰ Shlomo Melmed ORCID: 0000-0002-2355-3447

71 ABSTRACT

This report from an international, multidisciplinary workshop sponsored by the 72 Pituitary Society offers evidence-based graded consensus recommendations 73 and key summary points for clinical practice on the diagnosis and management 74 of prolactinomas. Epidemiology and pathogenesis, clinical presentation of 75 disordered pituitary hormone secretion, assessment of hyperprolactinemia and 76 biochemical evaluation, optimal use of imaging strategies and disease-related 77 complications are addressed. In-depth discussions present the latest evidence 78 on treatment of prolactinoma, including efficacy, side effects, and options for 79 withdrawal of dopamine agonist therapy, as well as indications for surgery, 80 preoperative medical therapy, and radiation therapy. Management of 81 prolactinoma in special situations is discussed, including cystic lesions, mixed 82 growth hormone and prolactin-secreting adenomas, and aggressive 83 prolactinomas, considerations for pregnancy and fertility, as well as 84 management of prolactinomas in children and adolescents, patients with 85 underlying psychiatric disorders, menopausal women, transgender individuals, 86 and patients with chronic kidney disease. The workshop concluded that 87 although treatment resistance is rare, there is a need for additional therapeutic 88 options to address clinical challenges in treating these patients and a need to 89 facilitate international registries to enable risk stratification and optimization of 90 therapeutic strategies. 91

92 INTRODUCTION

93	The Pituitary Society published guidelines on diagnosis and management of
94	prolactin (PRL)-secreting adenomas in 2006 ¹ and in conjunction with the
95	Endocrine Society in 2011. ² This updated consensus considers new evidence
96	that has markedly influenced clinical practice, including incorporation of
97	transcription factors into pituitary adenoma classification, ³ long-term side effects
98	of dopamine agonist (DA) therapy, ⁴ outcomes following DA withdrawal, ⁵
99	advances in surgical tumor resection, ⁶⁻⁸ management during pregnancy, ⁹⁻¹¹
100	effects of hyperprolactinemia on bone and fracture risk, ¹² and management of
101	cystic and aggressive prolactinomas, ¹³ as well as prolactinomas in children and
102	transgender patients.

103

104 METHODS

The Pituitary Society hosted a virtual consensus workshop on the diagnosis and 105 management of prolactinoma in January 2022. Workshop co-chairs (SP, MM, 106 FFC) and Pituitary Society Programs Co-Directors (MF, AG) identified topics 107 related to prolactinoma diagnosis and management to be addressed, and 36 108 experts in the clinical management of pituitary disease representing 13 109 countries with different healthcare systems participated in the workshop. 110 Speakers, selected according to their expertise for the specific topic based on 111 their publication record and recognized standing in the field, summarized key data on their assigned topics in 15-minute, fully referenced slide-lecture 113 presentations recorded approximately one month prior to the workshop. 114 Speakers critically reviewed English-language, PubMed-indexed papers 115 116 published before January 2022. Search terms included "prolactinoma",

"prolactin-secreting adenoma", and terms associated with topics for discussion,
including "epidemiology", "pathogenesis", "clinical symptoms", "assessment",
"imaging", "complications", "dopamine agonists", "surgery", and "radiation
therapy". Lectures were recorded and précis of key findings prepared, which
participants were invited to review and comment on in advance.

During the 2-day meeting, speakers provided 5-minute highlight summaries of their assigned topics, participants were divided into breakout groups for extended discussions, and then reported their conclusions and comments to the entire group. Consensus recommendations were then recorded based on majority opinion. After the meeting, consensus recommendations, slide-lecture presentations, précis, and discussion points were collated, and a draft manuscript was prepared by the lead authors (SP, MF, SM).

Based on principles for grading of evidence for guidelines,^{14,15} as well as 129 previously published consensus statements from the Pituitary Society,¹⁶ 130 evidence supporting each consensus recommendation was graded as very low, low, medium, or high quality; consensus recommendations based on very low 132 or low quality were graded as weak, and those based on medium or high quality evidence were graded as strong (**Box 1**). Recommendations and discussion 134 points were circulated to all participants for review, and more recent data 135 identified in literature reviews using the same keywords through January 2023 136 were added as appropriate. The draft manuscript was circulated to all authors in 3 rounds prior to their final approval. Consensus recommendations and key 138 points are presented and additional background discussion is presented in 139 Supplementary Information. 140

141

142 **BACKGROUND**

143 Epidemiology

- Microprolactinomas rarely proliferate and are of low concern for
 persistent long-term adenoma growth (strong).
- Macroprolactinomas, especially in males, have a different clinical
 prognosis compared with microadenomas and require closer follow-up
 (strong).
- 149

Prolactinomas, most commonly benign PRL-secreting adenomas derived from 150 lactotrophs, account for 50% of all pituitary adenomas in both females and 151 males. At age 25-44 years, prolactinomas predominantly affect women, with a 152 female:male ratio of 5:1 to 10:1, whereas after menopause the ratio equalizes.¹⁷ 153 The standardized incidence rate in women is 3 times higher than in men. The 154 ratio between macro- and microprolactinomas is approximately 1:8 in women, 155 and 4:1 in men. 156 Microprolactinomas (<10 mm in maximal diameter) are more frequent, and seldom grow into macroprolactinomas. Giant prolactinomas 158 (macroprolactinomas >40 mm) are rare.¹⁸ Recent studies indicate a higher 159 prevalence for prolactinomas than previously predicted.¹⁷ Incidence and 160 prevalence rates are depicted in **Supplementary Table 1** and described in 161 Supplementary Box 1. 162 163

164 Molecular Pathogenetic Mechanisms

- *MEN1* and *AIP* germline mutation screening could be considered in
 patients with a family history of pituitary adenomas and in patients <30
 years old with macroadenomas (weak).
- Somatic mutation screening should not be routinely performed (strong).
- Molecular mechanisms for prolactinoma pathogenesis require further 170 elucidation. Prolactinomas are mostly sporadic monoclonal neoplasms, 19,20 171 implying a somatic genetic event conferring a growth advantage. A hotspot somatic mutation in splicing factor 3 subunit B1 (SF3B1R625H) was identified in 20% of prolactinomas in one series, and was associated with higher PRL levels 174 and potentially more aggressive behavior.²¹ Prolactinomas are very rarely 175 associated with germline mutations, and, when present, onset of disease 176 usually occurs at a younger age. With *MEN1* and *AIP* mutations, 177 macroprolactinomas are more aggressive, and with MEN1 could be resistant to 178 therapy.^{22,23} By contrast, microprolactinomas in MEN1 may be less aggressive 179 than previously thought.²⁴ As pathogenic AIP variants are very rarely detected, 180 screening should be considered judiciously to avoid unnecessary testing and 181 cost. 182
- ¹⁸³ See **Supplementary Box 1** for further discussion.
- 184

185 CLINICAL PRESENTATION

- 186 Hyperprolactinemia and Hypogonadism
- The presence of a sellar mass on imaging requires evaluation for
 hyperprolactinemia (strong).

189	Galactorrhea should trigger investigation for hyperprolactinemia, except
190	for known physiological reasons (e.g., pregnant or lactating women)
191	(strong). Importantly, absence of galactorrhea does not exclude
192	hyperprolactinemia (strong).
193	Loss of libido and/or infertility, new-onset menstrual irregularities or
194	amenorrhea in women, as well as erectile dysfunction and/or
195	hypogonadotrophic hypogonadism in men, should trigger investigation
196	for hyperprolactinemia (strong).
197	PRL-secreting adenomas have been associated with increased obesity
198	and metabolic syndrome (weak).
199	
200	Increased PRL during stress, pregnancy, and lactation inhibits hypothalamic
201	kisspeptin neuron function, and consequently reduces gonadotrophin-releasing
202	hormone (GnRH) production. ²⁵ Prolactinoma clinical presentation in part reflects
203	PRL-induced suppression of the hypothalamic-pituitary-gonadal axis which
204	usually reverts after PRL normalization, ²⁶ although hypogonadism may persist,
205	especially in male patients with macroprolactinomas. ^{27,28}
206	Hyperprolactinemia leads to oligo/amenorrhea with or without galactorrhea
207	in women and erectile dysfunction in men, while loss of libido and infertility are
208	observed in both sexes. ²⁹ Although obesity is reportedly 4-fold more prevalent
209	with prolactinomas vs non-functioning pituitary adenomas, ³⁰ this disorder likely
210	occurs secondary to associated hypogonadism.
211	See Supplementary Box 2 for further discussion.
212	

213 Considerations

Screening for hypogonadotrophic hypogonadism in all male and premenopausal
female patients with micro- and macroprolactinomas is recommended.

216

217	Other Pituitary Hormone Deficiencies Before and After Treatment
218	Macro- and, less frequently, microprolactinomas may cause growth
219	hormone (GH), thyroid-stimulating hormone (TSH), and
220	adrenocorticotrophin (ACTH) axis deficiencies. Patients should be
221	evaluated for associated clinical features, tested for pituitary hormone
222	deficiencies, and appropriately treated per standard guidelines (strong).
223	Surgical resection of prolactinomas may resolve hypopituitarism but also
224	cause new-onset deficiencies. Postoperative retesting is warranted
225	(strong).
226	
227	Prevalence and clinical course of GH/TSH/ACTH deficiencies, derived largely
228	from retrospective studies, are less well delineated compared with
229	hypogonadism. Hormone deficiencies are more frequently encountered with
230	macroprolactinomas. ³¹⁻³³ In a study of 81 men, prevalence of pretreatment
231	TSH/ACTH deficiency increased from 6.7%/0% for macroprolactinomas 10-19
232	mm to 17.9%/6.9% for adenomas 20-39 mm and 26.1%/33.3% for giant
233	prolactinomas ≥40 mm. ³⁴
234	As surgery and radiation may each induce hypopituitarism, post-treatment
235	evaluation timeline should be individualized. ³⁵
236	See Supplementary Box 2 for further discussion.
237	

238 Considerations

239	Screening for GH/TSH/ACTH deficiencies ³⁵ in all patients with macroadenomas
240	and 6-9 mm microadenomas at diagnosis was recommended; the consensus
241	was to retest pituitary function after effective DA therapy depending on baseline
242	pituitary deficiencies and mass extension, as well as PRL and adenoma
243	response.
244	Screening for GH/TSH/ACTH deficiencies was recommended for those
245	undergoing surgical resection, and retesting approximately 6-12 weeks after
246	surgery was recommended depending on baseline adenoma size, surgical
247	findings, and postoperative symptoms. Some participants concluded that
248	patients with hormonal deficiencies at diagnosis as well as those with
249	adenomas >6 mm should all be retested after surgery.
250	
251	INITIAL ASSESSMENT
252	Causes of Hyperprolactinemia
253	 Patients with hyperprolactinemia but PRL levels <5×ULN should undergo
254	repeat PRL testing (strong). Cannulated PRL sampling might be useful if an
255	influence of stress is suspected (strong).
256	In general, adenoma size and PRL levels correlate; discrepancy should
257	trigger consideration of other possible causes (strong).
258	Medication use should be rigorously reviewed to exclude drug-induced
259	hyperprolactinemia (strong).
260	Primary hypothyroidism, renal insufficiency, and liver failure should be
261	recognized as causes of mild hyperprolactinemia (strong).
262	Pregnancy should not be overlooked as a cause of hyperprolactinemia
263	(strong).

PRL secretion is under chronic inhibitory control by hypothalamic-derived
 dopamine³⁶ (Figure 1). Dopamine traverses the pituitary stalk and suppresses
 both PRL production as well as lactotroph proliferation via D2 receptors (D2R).
 These inhibitory actions are opposed by estrogen.

The most common pathologic cause of hyperprolactinemia is excess PRL
production by a prolactinoma.²⁰ However, parasellar or intrasellar masses
impinging on the pituitary stalk, including non-secreting pituitary adenomas,
may compromise dopamine flow and lead to hyperprolactinemia (**Table 1**).
Hence, elevated PRL levels (up to 6×ULN)^{37,38} may reflect a hypothalamicpituitary lesion, or evidence of local trauma, surgery, radiation, skull fracture, or
internal carotid artery aneurysm.³⁹ Adenoma size-adapted cut-offs for PRL may
distinguish true prolactinomas from other pituitary lesions.⁴⁰

Estrogens potently induce hyperprolactinemia, but the influence of oral contraceptives on prolactinoma development is controversial. In a case-control analysis, there was a mildly increased risk with menopausal hormone therapy as well as with oral contraceptives, but risk with oral contraceptives was not present in the prospective cohort analysis.⁴¹ (See **Supplementary Box 3** for discussion on PRL excess in pregnancy.)

Primary hypothyroidism may present with hyperprolactinemia reversible with
 thyroid hormone replacement. Intracranial hypotension may cause

hyperprolactinemia.⁴² Stress (e.g., due to venipuncture) may induce a 2- to 4-

fold rise in PRL levels that lasts <1 hour. Repeated or cannulated PRL

venipuncture sampling for testing is recommended with PRL levels <5×ULN if

an influence of stress is suspected.^{43,44} Physiologic PRL increases may occur

264

289	after exercise, high-protein meals, and alcohol. ^{45,46} Patients with polycystic
290	ovary syndrome (PCOS) require evaluation for elevated PRL, as PCOS per se
291	is rarely associated with hyperprolactinemia.47
292	High PRL with lymphocytic hypophysitis may reflect either autoimmune cell
293	actions or a stalk effect. ⁴⁸ Hypophysitis should be considered with apparently
294	idiopathic hyperprolactinemia. ⁴⁹ PRL co-secretion with GH in acromegaly or
295	with TSH in thyrotrophinoma is due to either plurihormonal adenoma or stalk
296	effect. ⁵⁰
297	An extensive listing of drugs acting as dopamine antagonists or as serotonin
298	agonists may cause hyperprolactinemia and galactorrhea (see Table 1). ⁵¹⁻⁵³
299	
300	Biochemical Evaluation
301	In patients with inconsistent symptoms and variable PRL levels, consider
302	false-positive or false-negative results (strong).
303	Standard PRL assay reference ranges may not be sufficiently validated
304	to recognize mild hyperprolactinemia (weak).
305	Serum samples with PRL levels above the upper detection limit should
306	be diluted to provide an exact value (strong).
307	Macroprolactinemia should be evaluated in patients with moderately
308	increased PRL levels (<200 ng/mL), at least in those with discordant
309	clinical or imaging findings (strong).
310	With inconsistent symptoms and discrepancy with PRL levels, biotin
311	exposure or heterophilic or human anti-animal antibodies may rarely
312	cause erroneous laboratory results (strong).

In patients with giant adenomas and typical features of • hyperprolactinemia but normal or slightly elevated PRL levels, samples should be re-measured after 1:100 dilution to exclude a high-dose hook 315 316 effect (strong). A correct biochemical diagnosis of hyperprolactinemia is a prerequisite for further investigation but may be hampered by potentially overlapping conditions 319 associated with increased PRL levels.^{46,54} Suspicion of an assay artifact should 320 arise in patients whose symptoms and biochemical results are not consistent. 321 Assay errors, macroprolactinemia, and high-dose hook effect are all possible reasons for false-positive or false-negative PRL levels (Figure 2). PRL assays 325 PRL is usually measured by immunoassays, calibrated against the WHO 326 84/500 international standard containing exclusively 23 kDa monomeric hPRL. A diagnosis depends on well-established assay- and sex-specific reference 328 intervals. However, published upper limits are lower than those presented by 329 most manufacturers,⁵⁵ normal values are higher in women, and different 330 measurement units may be provided (i.e., $1 \mu g/L = 21.2 mIU/L$). Stimulation and

³³² suppression tests yield non-specific results and have been largely abandoned.²

333

334 Macroprolactinemia

The major circulating form of PRL has a molecular weight (MW) of 23 kDa,

compared with so-called 'big' PRL (MW 40-60 kDa) and 'big-big' PRL (MW>150

kDa). In 10-25% of hyperprolactinemic populations, a high proportion of serum

big-PRL and big-big PRL is found.⁵⁶ Anti-PRL autoantibodies (mostly IgG)
bound to PRL contribute to big-big PRL and therefore to macroprolactinemia.
As these variants interfere with PRL assays but are biologically inactive, most
patients with macroprolactinemia lack typical clinical symptoms of
hyperprolactinemia.⁵⁷ PRL recovery after polyethylene glycol precipitation can
usually distinguish between macroprolactinemia and true hyperprolactinemia⁵⁸
(see Supplementary Box 3).

345

346 Hook Effect

In two-site immunoradiometric or chemiluminometric assays, incubation with extremely high PRL concentrations saturates both antibodies and prevents sandwich formation, resulting in the so-called 'hook effect.' Thus, patients with very high PRL levels may show only moderately elevated levels. The hook effect is rarely encountered currently, but should be considered when PRL level is only mildly elevated and clinical suspicion for a macroprolactinoma is high.⁵⁹

353

354 **IMAGING**

355 Magnetic Resonance Imaging

356	MRI should be performed in patients with confirmed hyperprolactinemia
357	at diagnosis (if no other non-adenomatous causes for hyperprolactinemia
358	are evident), to demonstrate adenoma response to medical treatment,
359	and to establish baseline status 3-6 months post-surgery (strong). Timing
360	of MRI after medical therapy initiation depends on adenoma size,
361	proximity to the optic chiasm, and PRL response to therapy.

362	• Follow-up imaging frequency should be based on clinical, biochemical,
363	and histological factors, as well as previous imaging results (strong).
364	 Serial imaging should be performed for treatment-resistant prolactinoma;
365	new onset of symptoms including visual changes, headaches, or
366	galactorrhea; new-onset pituitary dysfunction; and evidence of new PRL
367	increase (strong).
368	Dynamic gadolinium-based MRI contrast enhancement is important for
369	initial diagnosis of prolactinoma. For follow-up MRIs, gadolinium should
370	be used judiciously; macrocyclic chelates are preferred over linear
371	chelates until further studies clarify possible long-term retention risks
372	(strong).
373	Gadolinium should be used with caution in patients with chronic kidney
374	disease due to the risk of nephrogenic systemic fibrosis (strong).
375	Patients with adenomas at high risk of aggressive behavior require closer
376	surveillance (strong).
377	
378	MRI is the recommended imaging modality for diagnosing pituitary and
379	parasellar lesions, as well as for follow-up monitoring of treated or untreated
380	pituitary adenomas. ^{2,20} However, repeat imaging incurs a cost burden and,
381	coupled with reports on possible retention of linear gadolinium-based contrast
382	agents, ^{60,61} determining the optimal imaging frequency to safely assess
383	treatment response is paramount. Evidence is sparse. Macroprolactinoma
384	expansion is usually accompanied by biochemical and clinical changes, ^{62,63} and
385	serum PRL concentrations usually correlate with adenoma size, but exceptions
386	occur. ^{62,64} As microadenomas not treated with DA rarely increase in size, MRI

(as an adjunct to PRL monitoring) is typically warranted only with suspected
 adenoma growth or optic chiasm proximity or to evaluate surgical
 possibilities.^{63,65}

Prolactinomas are typically mildly hyperintense on T2-weighted MRI.⁶⁶
 Men may show a heterogeneous T2 intensity signal reflecting necrosis and
 hemorrhage associated with higher PRL levels and poorer DA response.^{67,68} T2
 hypointensity in women has been associated with DA resistance.⁶⁹ Increased
 T2 hyperintensity occurs with DA treatment, although this may not be noticeable
 in hemorrhagic or highly hyperintense adenomas. T2 echo gradient imaging
 may be useful for diagnosing hemorrhage.

397

³⁹⁸ Timing After Medical Therapy

For macroprolactinomas, MRI should be repeated at 3-6 months after the start 399 of DA treatment as reduction in size at 3 months after starting cabergoline could 400 predict further long-term response and/or biochemical control.⁷⁰ For 401 microprolactinomas, re-scanning depends on clinical and biochemical follow-up, 402 but may be repeated after 1 year, or at least when considering withdrawal of 403 DAs. As adenoma growth can occur with biochemically resistant prolactinomas 404 treated with DAs, follow-up imaging should be considered for persistently 405 elevated or rising PRL levels. If shrinkage is not demonstrated with DAs and 406 initial PRL level is not unequivocally indicative of prolactinoma, a stalk effect 407 due to a nonfunctioning adenoma should be reconsidered. 408 For treatment-responsive microadenomas and macroadenomas, serial 409

imaging beyond 1 year is not necessary unless PRL levels persistently

increase.^{63,71} However, partially responsive macroadenomas or those close to

the optic chiasm may require periodic annual imaging for the first 3 years and
 less frequently thereafter.⁶³ Symptoms suggestive of pituitary apoplexy warrant
 prompt imaging.

Discordant results showing PRL level normalization without substantial mass shrinkage, or significant shrinkage without complete PRL normalization, may be encountered. Although PRL often normalizes within the first 6 months,⁷² and significant shrinkage can also occur early, some prolactinomas only slowly decrease in size over several years of DA therapy.

When DA withdrawal is being considered, absence of residual adenoma on MRI is a favorable prognostic factor for lack of recurrence.^{2,73,74} MRI should be performed after DA withdrawal if PRL levels rise progressively or if headaches, vision changes, or pituitary dysfunction develop.

424

425 Timing After Surgery

MRI should be performed 3-6 months postoperatively to establish a new 426 baseline. Serial imaging may be performed for resistant, partially resected 427 adenomas at initial imaging intervals of 6-12 months. Completely resected 428 adenomas should be re-imaged only if PRL levels rise, or if headaches, vision 429 changes, or pituitary dysfunction develop.⁶³ If surgery is performed as first-line 430 management for microprolactinomas, and postoperative PRL normalization is 431 achieved, repeat imaging is required only if recurrence of hyperprolactinemia is 432 observed. 433

434

435 **During Pregnancy**

436	Pregnancy is a risk factor for adenoma enlargement, especially for
437	macroadenomas, and risk is increased for patients without prior surgery. ⁷⁵ MRI
438	without contrast should be performed if a pregnant patient with prolactinoma
439	develops more severe or headaches with different characteristics or vision
440	changes, typically indicative of adenoma enlargement. As apoplexy during
441	pregnancy has been reported even in microprolactinomas, ⁷⁶ imaging is required
442	for concerning symptoms.
443	
444	Novel Imaging Strategies
445	There is a limited role for novel imaging strategies in routine clinical
446	practice (strong).
447	• Response to DA therapy may be predicted by functional imaging (weak).
448	Functional imaging applied with hybrid MRI techniques may improve pre-
449	operative prolactinoma localization in selected patients (weak).
450	
451	In patients undergoing surgery, particularly for a microadenoma when the
452	expectation of surgical cure is high, ^{8,77} as well as in those undergoing
453	stereotactic radiosurgery, accurate adenoma localization could reduce
454	hypopituitarism risk. Although dynamic and volumetric MRI sequences are
455	useful in identifying a previously non-visible mass, molecular (functional)
456	imaging may guide targeted intervention. ^{78,79} Molecular ¹¹ C-methionine PET
457	imaging holds promise as an adjunct to MRI for localization of <i>de novo</i> and
458	residual prolactinomas when MRI is indeterminate. ^{79,80}
459	See Supplementary Box 4 for further discussion.

462 COMPLICATIONS

463 Hypogonadism

- Women with hyperprolactinemia, microprolactinoma, and normal gonadal function can be followed by observation (weak).
- Hypogonadal premenopausal women with microprolactinomas can be
 managed by adequate sex hormone replacement without need for further
 intervention except when pregnancy is desired (strong).
- Oral contraceptives may be used in women with hyperprolactinemia
 treated with DA therapy, but they may reduce efficacy of DA therapy and
 may contribute to persistence of galactorrhea (weak).
- Postmenopausal women with microprolactinomas, who usually present
 with mild to moderate prolactin elevation, may not require intervention,
 and can be observed by annual PRL evaluation (weak).
- Males with ongoing hypogonadism for >3-6 months while being treated
 for prolactinoma should be considered for testosterone replacement
 (weak). Caution is needed for large pituitary adenomas. Indication for
 testosterone replacement should be re-evaluated at 6-month intervals
 based on PRL levels, as the gonadotrophic axis may recover and
 ongoing testosterone replacement may no longer be needed (weak).
- Patients with persistent hypogonadotrophic hypogonadism despite DA
 therapy and normal PRL levels who desire fertility may require
 gonadotrophin treatment (strong).
- Replacement of estrogen and testosterone (probably via aromatization to
 estradiol) can reduce DA efficacy. It is important to monitor effects of
 such treatment on PRL levels (weak).

Most participants agreed that evaluation for restoration of gonadal function 488 should be performed at least 6 months after PRL normalization. Recovery 489 usually occurs in about 60% of male patients³³ but more frequently in females. 490 The presence of complete hypopituitarism reduces the chances of recovery 491 from hypogonadism and may justify earlier hormone supplementation. 492 After sex hormone replacement is started, PRL levels may increase.⁸¹ Use 493 of a short-acting testosterone formulation, e.g., testosterone gel, is 494 recommended in patients with large adenomas. This also allows for faster 495 reversal of adverse effects of combined DA/testosterone (e.g., irritability, 496 hypersexuality) should they develop. Off-label aromatase inhibitor therapy may 497 be considered,⁸² although long-term data are limited and there may be 498 additional adverse effects on bone health.⁸³ Clomiphene has been used as an 499 off-label treatment in men with hypogonadism.⁸⁴ 500 Testosterone should not be started when fertility planning is contemplated. 501 Induction of spermatogenesis by human chorionic gonadotropin and recombinant FSH may be considered.⁸⁵ However, a semen analysis should be 503 performed prior to initiating gonadotrophin treatment, as nearly 50% of men with 504 hypopituitarism treated with testosterone had adequate spermatogenesis for 505 fertility in one series.86 506 See **Supplementary Box 5** for further discussion. 507 508 **Bone Disease** Increased fracture risk is recognized as a clinical consequence of prolactinoma (strong). 511

487

512	Clinicians should initiate morphometric investigation by x-ray in
513	prolactinoma patients with back pain or decrease in height (strong).
514	Patients should be evaluated for changes in bone density by dual-energy
515	x-ray absorptiometry (DXA), depending on age, duration of
516	hyperprolactinemia and hypogonadism, and other risk factors (weak).
517	
518	Baseline DXA is recommended for all prolactinoma patients with suspected
519	long-standing (i.e., >6 months) hypogonadism or with other risk factors for
520	osteoporosis, including menopause and previous vertebral fracture.
521	Osteoporosis, particularly if complicated by fractures, should be treated with
522	anti-osteoporotic drugs according to general guidelines. ⁸⁷ In this context, control
523	of hyperprolactinemia may potentially play a role as suggested by indirect
524	evidence, ⁸⁸ but specific studies are needed to assess the risk/benefit ratio.
525	See Supplementary Box 5 for further discussion.
526	
527	TREATMENT
528	Dopamine Agonists
529	Efficacy
530	DA therapy is highly effective at lowering PRL levels, improving clinical
531	consequences of hyperprolactinemia, and reducing adenoma size
532	(strong).
533	Cabergoline is the preferred DA due to its long half-life, high efficacy, and
534	good tolerability (strong). Bromocriptine and quinagolide are less
535	commonly used, depending on regional approval and availability.

536	 Cabergoline is used as primary medical therapy in patients with
537	prolactinoma (Figure 3). For microprolactinomas and well-encased
538	macroprolactinomas (Knosp grade 0 and 1), the curative potential and
539	risks of surgery should be discussed with patients in a multidisciplinary
540	setting prior to medical treatment initiation (strong).
541	 Patients with Knosp grade ≥2 should be treated with cabergoline
542	(strong).
543	Patients with resistance or intolerability to other DA therapy should be
544	switched to cabergoline (strong).
545	The need for long-term DA treatment and the limited chances of
546	permanent cure should be highlighted in patient discussions (strong).
547	In women not desiring fertility, mechanical contraception is advised when
548	starting DA therapy as pregnancy can occur prior to menses re-initiation
549	(weak).
550	
551	DA is an effective treatment for PRL-secreting adenomas, resulting in PRL
552	normalization, adenoma mass reduction, and gonadal function restoration. ²
553	Cabergoline, bromocriptine, and quinagolide control most symptoms, ⁸⁹ but
554	cabergoline has superior efficacy and is the recommended treatment (see
555	Supplementary Box 6 for further discussion). High DA efficacy is maintained in
556	patients with giant prolactinomas, with improved visual fields reported in 97% of
557	patients, normalized PRL levels in 60%, and reduced adenoma volume in
558	74%. ⁹⁰⁻⁹² Frequently employed cabergoline doses range from 0.5 to 3.5
559	mg/week (maximum FDA approved dose is 2 mg weekly), bromocriptine doses

range from 2.5 to 15 mg/day, and quinagolide doses range from 75 to 300
 µg/day.

562	A study on imaging and PRL level regression during DA treatment ⁷²
563	revealed that the greatest decreases in adenoma size and PRL levels occurred
564	within 6 months of therapy initiation. Improvement rates diminished
565	considerably during the subsequent 6 months and even further thereafter. Thus,
566	if a prolactinoma does not exhibit a favorable response in the first 3-6 months of
567	treatment, it is not likely to respond adequately to DA therapy.
568	Normoprolactinemia and >25% tumor volume reduction after 3 months of
569	cabergoline predicts long-term response. ⁹³ After 6 months, lower PRL levels
570	predict long-term PRL normalization (≤ULN: 100%, ≤3×ULN: 61%, >3×ULN:
571	39%) and mass shrinkage on MRI correlates with long-term adenoma
572	shrinkage, ⁹⁴ but results may depend on dose escalation protocols. Other
573	predictors of long-term (>15 month) DA response include lower pretreatment
574	PRL level and smaller adenoma at diagnosis, as well as normalization of PRL
575	with lower DA dose. ⁸⁹
576	
577	Side Effects
578	Frequent, mild side effects of cabergoline include gastrointestinal
579	symptoms, dizziness, and fatigue (strong).
580	Side effects usually improve with time, but may be ongoing and disabling
581	in individual patients (strong).
582	Quality of life may remain impaired in some patients despite effective
583	treatment (strong).

- Administration before bedtime and/or with food may improve tolerability (weak).
- Starting with low doses and escalating slowly may improve tolerability
 (weak).
- In patients with ongoing intolerance to cabergoline, other D2-specific
 dopamine agonists such as quinagolide may be tried with a chance of
 better tolerance (weak).
- DA therapy can cause neuropsychiatric side effects such as compulsive
 buying, gambling, aggression, changes in mood, and hypersexuality,
 particularly in men, which rarely may necessitate discontinuation of DA
 therapy (strong).
- Patients should be informed about the potential for the rare side effect of
 cardiac valve changes with long-term and/or high-dose cabergoline
 treatment (strong). Intervals for screening echocardiography vary in
 different countries. Baseline and follow-up screening is suggested in
 patients considered for long-term or high-dose therapy (weak).
- Cerebrospinal fluid (CSF) rhinorrhea may rarely occur in patients with
 invasive macroadenomas that are reduced in size with DA therapy. If
 suspected, β2-transferrrin or β-trace protein should be measured in nasal
 fluid; if confirmed, surgical repair is required (strong).
- DA-induced apoplexy due to extensive shrinkage of a macroadenoma
 may lead to visual changes. In such cases, surgical repair is likely
 warranted (strong).

The most frequent side effects of cabergoline are gastric discomfort, nausea, 608 and vomiting, as well as mild dizziness.95,96 Intensity of these symptoms 609 depends on individual tolerability, but they are generally mild and rarely impair 610 drug adherence. They mostly appear at treatment initiation and can typically be 611 reduced or eliminated by starting treatment at a low dose and escalating slowly. 612 If intolerance to oral cabergoline persists, patients can switch to a different DA 613 such as quinagolide (a more specific D2R agonist), if available; intolerance may 614 also be an indication for reevaluation for other treatments, including surgical 615 resection.97 616

Mood changes or impulse control disorders can occur in patients with no 617 previous psychiatric disorder.⁹⁸ Changes in impulsivity are more common in 618 men but occur in both males and females and are not dose related; it may lead 619 to gambling, aggressiveness, compulsive spending of money, depression, or 620 mania.⁹⁹ Hypersexuality is more frequent in men with prior PRL-mediated 621 hypogonadism, possibly because of the brisk rebound testosterone surge that 622 occurs with restoration of gonadal function upon starting DA therapy.⁹⁸ In 623 general, these effects are reversible when DA is discontinued and often 624 ameliorated with dose reduction. Screening for mood changes and impulse 625 control disorders with the Patient Health Questionnaire-9 and Barratt 626 Impulsiveness Scale is useful.¹⁰⁰ It is important to discuss these symptoms with 627 the patient's partner and family members, as they may "hide" behaviors such as 628 impulsive gambling with ruinous outcomes. 629

CSF rhinorrhea due to medication-induced adenoma mass shrinkage should
 be managed surgically.¹⁰¹ The diagnosis is made by finding elevated nasal fluid
 levels of β2-transferrrin or β-trace protein. Dose reduction and observation

could be considered if CSF leakage flow is modest. However, operative repair is
 eventually required in 90% of patients with a CSF leak.¹⁰²

The association between high-dose cabergoline and cardiac valvulopathy is
 discussed below and in Supplementary Box 6.

637

Considerations. Discussion of valvular disease screening was based on
 guidelines jointly developed by the British Society of Echocardiography, the
 British Heart Valve Society, and the Society for Endocrinology.¹⁰³ Importantly,
 they diverge somewhat from previously published recommendations:

If long-term treatment with high-dose (>2.0 mg/week) cabergoline is
 anticipated, perform baseline echocardiography to detect any pre existing valve alterations. Baseline evaluation may be performed before
 starting cabergoline therapy or during the first few months of treatment.
 Repeat echocardiography every 2-3 years in patients treated with >2.0

⁶⁴⁷ mg/week of cabergoline. Most participants believe that annual cardiac
 ⁶⁴⁸ examination is unnecessary.

Perform echocardiography after 5-6 years in patients treated with ≤2.0
 mg/week of cabergoline. Some participants believe these repeat
 examinations are not necessary in patients treated with <1.0 mg/week
 and who have no clinical signs of valvular dysfunction.

• Detection of a heart murmur should prompt echocardiography

654

655 Treatment Withdrawal

• As approximately one fifth of patients may remain in remission after discontinuing cabergoline, patients should be evaluated for favorable

658	predictors and dose reduction/treatment withdrawal be considered at
659	regular intervals (strong).
660	Favorable predictors of successful withdrawal include low maintenance
661	doses of cabergoline, treatment duration >2 years, and significant
662	adenoma size reduction (strong).
663	Patients successfully withdrawn from cabergoline should have life-long
664	PRL level evaluations (annually or more frequently if symptoms recur)
665	(strong) and be informed about potential symptoms of recurrence.
666	Patients who recur after cabergoline withdrawal can usually be
667	successfully treated with DA rechallenge (strong).
668	Patients with long-term normalized PRL levels after cabergoline
669	rechallenge may be re-evaluated for another withdrawal trial (weak).
670	As chances of permanent resolution of autonomous lactotroph cell
671	growth increase with menopause or after pregnancy, these patients
672	could undergo a trial of withdrawal (weak).
673	
674	Because of potential long-term side effects with chronic use of DA, cost of long-
675	term medical treatment, and poor compliance in some patients, withdrawal of
676	therapy may be considered under well-defined conditions in patients with a
677	reasonable chance of persistent remission of hyperprolactinemia (see
678	Supplementary Box 6).
679	However, careful selection of patients is critical (Supplementary Table 2).
680	The highest likelihood of persistent remission after withdrawal occurs in patients
681	with a non-invasive and smaller adenoma with a normal PRL concentration and
682	a significant reduction in tumor size after at least two years of low-dose

683	cabergoline (0.25-0.50 mg/week). ^{74,104} Although only one-third of treated
684	patients are likely to meet these criteria, ⁵ in this subgroup, nearly 55% of those
685	with microprolactinoma and 43% with macroprolactinoma will achieve ongoing
005	
686	remission after treatment withdrawal. ¹⁷ Thus, in such conditions, and in the
687	absence of visible mass on MRI, patients should be encouraged to withdraw
688	treatment. Alternatively, DA could be tapered by serial dose decreases and
689	increasing the dosing interval until the minimal effective dose required to
690	maintain a normal PRL level is established. ¹⁰⁵
691	If DA therapy withdrawal is attempted, PRL should be measured every 3
692	months in the first year and annually thereafter. Pituitary MRI may be repeated
693	when hyperprolactinemia reoccurs. In those who recur after withdrawal
694	requiring treatment reinstatement, a second attempt at cabergoline withdrawal
695	may be successful after 2-3 additional years of therapy, particularly in patients
696	with low PRL levels while on treatment who have no visible mass on pituitary
697	MRI. ^{106,107}
698	Studies of DA withdrawal in limited series of menopausal women with
699	prolactinomas showed a favorable outcome, with remission rates higher than
700	those observed in premenopausal women. ¹⁰⁸
701	
702	Surgery
703	Surgical resection of microprolactinomas and well-circumscribed
704	macroprolactinomas (Knosp grade 0 and 1) by an experienced
705	neurosurgeon offers a high chance of cure, is cost-effective, and avoids

long-term DA treatment. Surgery by an expert pituitary neurosurgeon

707	should therefore be discussed alongside DA treatment as a first-line
708	option in this subgroup of patients (strong).
709	Medical treatment is the preferred first-line treatment option in patients
710	with a low chance of surgical remission (Knosp grade \geq 2) (strong).
711	Surgery may be recommended over medical treatment in patients with
712	rapidly progressive vision loss due to sellar mass effect or apoplexy
713	(weak).
714	 Surgery could also be offered to patients who have intolerance or
715	resistance to long-term DA (weak).
716	• Younger age in females may favor a choice of surgical treatment to avoid
717	the need for DA therapy over many decades (weak).
718	 Debulking surgery of a macroprolactinoma is an alternative to DA
719	therapy in patients who desire pregnancy as it reduces the risk of
720	symptomatic mass enlargement during future pregnancy (weak).
721	 Surgical repair should be performed in cases of spontaneous CSF
722	rhinorrhea (strong).
723	
724	Indications for Surgery
725	Transsphenoidal surgery (TSS) performed by experienced neurosurgeons can
726	achieve initial normoprolactinemia in up to 93% of microprolactinomas and 75%
727	of selected macroadenomas ^{6,8} (Supplementary Table 3). It should be
728	recognized, however, that there is about a 20% recurrence rate of
729	hyperprolactinemia following surgical normalization of PRL. ^{109,110} Improved
730	remission and low complication rates warrant reappraisal of the role of surgery

as a viable alternative to first-line DA treatment of prolactinomas in selectedpatients.

If they are surgically resected, prolactinomas can be further classified
according to their cell lineage and based on the WHO classification³ requiring
assessment of specific pituitary hormones and transcription factors (PIT-1 and
ERα for PRL-expressing adenomas). Pure lactotroph adenomas are subtyped
as sparsely or densely granulated. These are distinguished from plurihormonal
mammosomatotroph adenomas, mature plurihormonal PIT1-lineage adenomas,
and mixed somatotroph-lactotroph adenomas, as well as from two precursor
entities, acidophil stem cell and immature PIT1-lineage adenomas.⁷⁵

In centers with experienced multidisciplinary teams and expert pituitary surgeons, the possibility of surgical remission versus long-term DA therapy should be discussed with patients with mass morphology favoring surgical success, while also acknowledging patient preference.^{111,112} The classical indication of "resistance and intolerance to DA" for surgical treatment of prolactinomas remains valid, and is the prevailing indication for surgery in macroprolactinomas⁶ (see **Supplementary Box 6**).

In a recent single-center study, patient preference was the main indication
for TSS for microprolactinoma in 42% of patients, followed by intolerance of DA
(27%), resistance to DA (20%), and combined intolerance and resistance
(12%).⁶ In another study, remission rates were 71-93% for microscopic TSS
and 81-100% for endoscopic surgery.¹¹² Perioperative and postoperative
complication rates were low, i.e., neurosurgical complications were <2% and
mortality 0%.¹¹²

755	Preoperative PRL levels correlate negatively with microprolactinoma
756	remission rates, ¹¹³ such that a remission rate of 92% was seen with
757	preoperative PRL ≤200 ng/mL versus only 40% with preoperative PRL >200
758	ng/mL.8 Furthermore, remission of fully centrally encased small
759	microprolactinomas was 87% versus 45% in those that were lateral and
760	adjacent to the cavernous sinus wall. ¹¹⁴ Early postoperative PRL levels in the
761	low-normal range predicts long-term remission with low recurrence rates. New-
762	onset anterior and posterior pituitary hormone deficiencies are rarely
763	encountered with microprolactinomas resected by experienced
764	neurosurgeons. ^{6,111,112}
765	Not surprisingly, surgical remission rates in macroprolactinomas are inferior
766	to remission rates in microprolactinomas ^{115,116} and decrease significantly with
767	invasiveness, larger adenoma size, and significantly higher pre-operative PRL
768	levels ^{6,90,111,116-118} such that the surgical remission rate in one study was 70.4%
769	in non-invasive macroprolactinomas versus 23.5% in invasive
770	macroprolactinomas, ⁶ while a second study limited to females found a surgical
771	remission rate of 95% for enclosed macroprolactinoma and only 25% for
772	invasive macroprolactinomas. ¹¹⁹ Remission is less likely with suprasellar
773	extension ^{111,116} or with PRL >282 ng/mL (>346 ng/ml, if Knosp grade <3); ¹¹⁸
774	male sex is also a negative predictor for postoperative remission. ¹¹⁶
775	Staging according to the Knosp classification seems to offer a better
776	discrimination for surgical success than does dividing micro- from
777	macroprolactinomas only (Supplementary Table 3). Whereas some studies
778	suggest better outcome for Knosp 0-1 compared to Knosp 2-4, ^{6,120} others
779	suggest higher remission rates for Knosp 0-2 compared to Knosp 3-4.121,122

780	Invasive macroprolactinomas or giant prolactinomas are usually treated with
781	first-line DA therapy, ⁹⁰ and surgery is reserved for spontaneous or DA-induced
782	CSF rhinorrhea. ^{90,101,102} However, surgery may be preferred in the context of
783	rapid or progressive vision loss with large prolactinomas, or for those with large
784	cystic or hemorrhagic components to ensure immediate decompression of
785	visual pathways. ¹²³ Furthermore, debulking surgery may be considered for DA-
786	resistant patients to improve the outcome of subsequent medical
787	treatment. ^{110,124}
788	Women desiring pregnancy may also prefer immediate surgery, as fertility is
789	usually restored following adenoma resection. ^{6,117} In those with
790	macroadenomas, pre-pregnancy adenoma debulking may avoid symptoms from
791	enlargement during pregnancy. If TSS is performed prior to pregnancy, the risk
792	of symptomatic macroadenoma enlargement is reduced from 21% to 4.7%. ¹¹
793	
794	Preoperative Medical Therapy
795	Whether to use preoperative medical therapy remains controversial. A recent
796	meta-analysis showed higher remission rates in surgical series with less
797	frequent preoperative DA use (although the difference was insignificant in
798	sensitivity analyses), ¹¹⁶ potentially supporting the use of first-line surgery with
799	no preoperative medical therapy in appropriate patients. Adenoma fibrosis was
800	found in most patients undergoing surgery after preoperative bromocriptine

801 treatment for >1 month, but the effect was much less pronounced for

⁸⁰² cabergoline.¹²⁵

803

Radiation Therapy

805	Radiation therapy is usually reserved for patients who show poor mass
806	shrinkage in response to DA, and have either nonresectable residual
807	adenoma tissue after surgery or contraindications for surgery (strong).
808	Stereotactic radiotherapy techniques yield improved outcomes and have
809	now become standard of care where available (strong).
810	 Response to radiotherapy may take several years (strong).
811	Patients should be informed about potential side effects occurring even
812	many years after treatment, and should be followed life-long to detect
813	hypopituitarism, optic neuropathy, cranial nerve palsy, or second brain
814	tumors (strong).
815	
816	Radiation therapy is the least used management approach and is mainly offered
817	when medical and surgical treatments have not been successful, usually in
818	patients with size-progressing, aggressive prolactinomas or PRL-secreting
819	malignancies. Expected outcomes are described in Supplementary Box 6 .
820	
821	SPECIAL SITUATIONS
822	Cystic Prolactinomas
823	Cystic prolactinomas may respond to DA therapy and should be
824	considered a viable option, particularly in patients without urgent need of
825	optic chiasm decompression (strong).
826	The diagnostic evaluation should exclude pituitary cystic lesions with
827	hyperprolactinemia caused by stalk compression unlikely to respond to
828	DA therapy (weak).

 In the absence of visual deficits, an MRI follow-up interval of 6 months is likely appropriate (weak).

831

829

The presence of a cystic component is not uncommon in pituitary adenomas, 832 and should be distinguished from predominantly cystic prolactinomas in which 833 more than 50% of the volume is fluid-filled.¹²⁶ This distinction also does not 834 include prolactinomas that undergo cystic degeneration as a result of DA 835 therapy.¹²⁷ Cystic macroprolactinomas can pose a diagnostic challenge, as PRL 836 levels are lower than in similarly sized solid adenomas (50-150 ng/mL), making 837 it difficult to differentiate between a cystic prolactinoma and a non-functioning 838 cystic lesion causing hyperprolactinemia by stalk compression. The rate at 839 which PRL declines after DA therapy initiation is not always helpful in 840 differentiating the two scenarios.¹²⁸ DA therapy demonstrated high efficacy in 841 cyst reduction¹²⁹ and should therefore be considered, particularly in patients 842 with no urgent need of chiasmatic decompression.¹²³ However, it is important to 843 also consider other pituitary cystic lesions with hyperprolactinemia that would 844 not shrink with DA. 845

846

847 **Prolactinomas in Men**

- Males with hypogonadotrophic hypogonadism presenting with
 gynecomastia, loss of libido, erectile dysfunction, and infertility or with
 galactorrhea should be evaluated for hyperprolactinemia and a PRL secreting adenoma (strong).
- Macroprolactinomas in men are more aggressive and show lower
 response rates to DA therapy (strong). Multimodal treatment with DA

854	therapy, surgery, and/or radiation therapy may frequently be required for
855	management, with a need for close follow-up (strong).
856	DA side effects of impulse control disorders are more frequently
857	observed in men and an informative discussion with patients and their
858	partners and families is needed pre-treatment (strong).
859	
860	Prolactinomas in men can be large and invasive, sometimes giant, and present
861	with hypogonadism and mass effects, including vision damage and
862	hypopituitarism. ¹³⁰ PRL levels are typically high, associated with low
863	testosterone and osteoporosis if left untreated. ^{131,132}
864	Diagnosis of hyperprolactinemia is often delayed in elderly men, as
865	decreased libido and erectile dysfunction develop gradually, are not specific,
866	and may be attributed to aging or are underreported. ¹³³
867	Prolactinomas are more aggressive in males, with higher Ki-67, cellular
868	atypia, angiogenic and proliferative features, and invasion. ¹³⁴⁻¹³⁷
869	Treatment with DA is preferred regardless of size or invasion. Men with
870	macroprolactinomas demonstrate PRL normalization in 80-85% of cases and
871	significant mass shrinkage in 90%. ³³ Improvement of visual fields occurs in 85-
872	95% of men harboring macroprolactinomas and vision damage.
873	
874	Mixed GH-PRL Pituitary Adenomas
875	Hyperprolactinemia in patients with pituitary adenomas may occur in
876	combination with excess GH secretion and warrants a different
877	therapeutic approach (strong).

878	 In patients with acromegaly and hyperprolactinemia, stalk effect should
879	be distinguished from adenoma co-production considering adenoma size
880	and follow-up (strong).
881	Pure somatotroph adenomas should be distinguished histologically from
882	mammosomatotroph adenomas (combined secretion of PRL and GH
883	from the same single cell) and somatotroph-lactotroph adenomas
884	(presence of both cell types) (strong; see Supplementary Box 7). A
885	correct diagnosis is important, as prognosis differs between these types
886	(weak).
887	Aggressive prolactinomas should be evaluated for markers of acidophil
888	stem cell adenomas and co-secretion of GH (weak).
889	Patients with hyperprolactinemia should be evaluated at baseline for
890	autonomous GH secretion by screening IGF-1 levels, as clinical features
891	of acromegaly may be masked or occur over time. Demonstration of
892	autonomous GH secretion will alter treatment strategy, which should
893	follow current guidelines on acromegaly (strong).
894	If IGF-1 levels increase above ULN during follow-up and there are no
895	vision changes due to adenoma mass, DA therapy should be stopped for
896	4 weeks to assess for GH hypersecretion (strong).
897	
898	Giant Prolactinomas
899	Giant prolactinomas are rare and are predominantly observed in males;
900	as they usually respond well to DA therapy, they should be managed

⁹⁰¹ medically (strong).

Due to higher morbidity and mortality, surgical resection of these large
 prolactinomas should be restricted to those with apoplexy or CSF
 leakage or to patients with progressive mass growth despite optimal
 treatment (strong).

906

924

Giant prolactinomas are defined as those with diameter >40 mm with significant 907 extrasellar extension, very high PRL concentrations, usually >1000 μ g/L, and no 908 concomitant GH or ACTH secretion.⁹¹ They have a male-to-female ratio of 909 approximately 9:1. The diagnosis is usually delayed until neurologic 910 complications arise from massive extension into surrounding structures, leading 911 to cranial nerve palsies, hydrocephalus, temporal epilepsy, or exophthalmos. 912 Despite their aggressive appearance, these adenomas are mostly benign and 913 respond well to cabergoline.^{18,90-92} Neurologic symptoms improve in most 914 patients with a significant mass size reduction, and PRL normalizes in up to 915 70% of patients.⁹¹ These lesions are usually not completely resectable. 916 917 **Aggressive Prolactinomas** 918 Aggressive prolactinomas are defined as invasive adenomas with an 919 unusually rapid growth rate or adenomas with clinically relevant growth 920 despite maximal tolerated DA doses (strong). 921 Increasing PRL levels in a prolactinoma previously well controlled by 922 cabergoline may indicate development of an aggressive adenoma and, 923

• Rarely encountered patients with prolactinoma complaining of sitespecific symptoms, including neurological deficits or back pain, as well as

very rarely, a carcinoma (weak).

927	patients with obvious discordance between PRL levels and pituitary
928	mass, should be evaluated for metastases, which would define a
929	carcinoma (strong).
930	 Imaging signs of invasiveness coupled with histological markers of
931	proliferation may predict behavior (strong).
932	 In patients with aggressive prolactinomas and documented persistent
933	adenoma growth despite exhausting all treatment modalities (strong), the
934	chemotherapeutic agent temozolomide (TMZ) is recommended.
935	Response to TMZ should be evaluated after 3 months, and treatment
936	continued for at least 6 months in responsive patients (strong), or for as
937	long as responses are observed (weak).
938	The use of immune-checkpoint inhibitors could be a viable option after
939	TMZ failure (weak).
940	
941	Definition
942	Most patients with PRL-secreting adenomas respond well to DA, showing both

PRL normalization and mass shrinkage. However, variable degrees of 943 resistance are encountered, and may indicate specific underlying 944 pathophysiology. The consensus was to define 'resistance' as lack of PRL 945 normalization or lack of relevant mass shrinkage of \geq 30% reduction in maximum 946 diameter when treated with standard DA doses (7.5-10 mg/day of bromocriptine 947 or 2.0 mg/week of cabergoline) for at least 6 months. Importantly, not all 948 patients with resistance require a change in treatment; DA continuation is a 949 good option, for example, in patients without mass effects, where tumor 950 shrinkage is not required due to location, or in patients with 951

952	macroprolactinomas, where the adenoma is controlled, but due to persistent
953	hyperprolactinemia, hypogonadism persists and needs continuous replacement.
954	If PRL is not controlled even by dose escalation to maximally tolerated
955	doses of DA and surgery is considered for debulking, the term suggested is
956	'refractory' prolactinoma. Furthermore, refractoriness should be distinguished
957	from 'aggressiveness,' which should be reserved for patients with ongoing
958	adenoma proliferation despite treatment with maximally tolerated doses of DA.
959	Distant metastases can occur, defining these as carcinomas. ¹³⁸ Although
960	extremely rare overall, carcinomas of lactotroph origin represent 30% of all
961	pituitary carcinomas and are the most common type.75,139
962	
963	Prognosis
964	Most studies of prognostic markers focus on predictive markers of DA
965	resistance and do not specifically focus on aggressiveness or malignancy. Male
966	sex, younger age, and invasiveness are associated with higher risk of DA
967	resistance. A combined clinicopathological classification taking into account
968	both invasion (based on MRI, surgical, and histological findings) and
969	proliferation (Ki-67 index \geq 3%, mitotic count >2/10 high power fields, and
970	positive p53 staining) may predict potential aggressive behavior of pituitary
971	adenomas. ¹³⁹
972	
973	Treatment
974	Escalation to maximally tolerated cabergoline dose is the first step for large
975	residual or growing adenomas that do not respond to lower doses; surgical
976	debulking may improve postoperative medical control, and adjuvant

977	radiotherapy could also be considered. ¹⁴⁰ When these therapies fail, the
978	alkylating chemotherapeutic agent TMZ is currently the best option, ¹⁴¹ with
979	approximately 40% of treated pituitary adenomas showing at least partial
980	remission. ^{13,142} Longer duration of TMZ treatment and its early use, may, in
981	addition to radiation therapy, improve outcomes. ^{139,142-145} When TMZ treatment
982	fails, immunotherapy with the checkpoint inhibitors ipilimumab and nivolumab
983	also demonstrate responses in PRL-secreting carcinomas. ¹⁴⁶⁻¹⁴⁸ Other options
984	that have been studied in patients with aggressive prolactinomas include
985	targeted oncological agents such as everolimus, bevacizumab, and
986	lapatinib, ^{149,150} as well as the estrogen receptor modulator tamoxifen ¹⁵¹ and
987	peptide receptor radionuclide treatment. ¹⁵²
988	Management is discussed in detail in the current European Society of
989	Endocrinology Clinical Practice Guideline. ¹⁴¹ Patients should be followed in
990	multidisciplinary Pituitary Tumor Centers of Excellence. ¹⁵³
991	
992	Pregnancy and Fertility
993	Patients with prolactinoma considering pregnancy should be informed
994	about both medical and surgical options (strong) (Figure 4).
995	A comprehensive examination performed shortly before pregnancy
996	provides baseline information on PRL level, visual fields, and adenoma
997	size (weak).
998	Patients desiring fertility and undergoing pituitary surgery pre-pregnancy
999	should be informed of the potential risk of hypopituitarism and its impact
1000	on fertility (strong).

1001	•	Mechanical contraception should be used to confirm treatment efficacy
1002		prior to pregnancy and establish the menstrual interval (weak).
1003	•	To reduce exposure of the developing fetus to DA therapy, DAs should
1004		be discontinued as soon as pregnancy is confirmed (strong).
1005	•	In patients with large macroprolactinomas, maintenance of DA therapy
1006		during pregnancy is also an option (strong).
1007	•	Although bromocriptine might reduce fetal exposure due to its shorter
1008		half-life, cabergoline is now preferred by the majority of centers relying
1009		on increasing safety data (weak).
1010	•	In patients with macroprolactinoma, adenoma response to DA therapy
1011		should be confirmed prior to conception (strong). In those without mass
1012		response, surgery should be considered prior to conception (strong).
1013	•	Pregnancy in patients with microprolactinomas is usually uneventful, and
1014		patients should be followed clinically every 3 months (strong).
1015	•	Patients with macroprolactinomas have a risk of clinically relevant
1016		adenoma expansion and apoplexy during pregnancy. Patients should be
1017		seen monthly during pregnancy and questioned about local mass effects,
1018		and should undergo visual field evaluation every 3 months (strong).
1019	•	Patients with suspicion of clinically relevant adenoma growth should
1020		undergo MRI without gadolinium (strong).
1021	•	DA therapy that was discontinued at conception may be re-initiated in
1022		patients with clinically relevant adenoma growth (strong).
1023	•	In patients whose enlarged adenomas do not respond to re-initiation of
1024		DA therapy, consideration should be given to surgery or delivery if the
1025		pregnancy is sufficiently advanced (strong).

PRL levels should not be used to assess for adenoma growth during
 pregnancy (strong).

Breastfeeding is usually not contraindicated and may be allowed for a
 period depending on whether treatment reintroduction is needed for
 mass control (strong).

1031

1032 Considerations

Most workshop participants recommend medical treatment with DA as the first 1033 choice of therapy for females with prolactinoma desiring pregnancy (see 1034 **Supplementary Box 7).** However, surgery for noninvasive microprolactinomas 1035 by an experienced pituitary surgeon was also considered reasonable. Risk of 1036 postoperative hypopituitarism in microprolactinomas is very low if surgery is 1037 performed by an experienced pituitary surgeon.^{6,112} By contrast, for patients 1038 with macroprolactinoma, most recommend surgery only if the adenoma is not responsive to DAs and/or if it is close to optic structures. In such cases, 1040 management by a multidisciplinary team comprising expert neurosurgeons, 1041 obstetricians, ophthalmologists, and endocrinologists is recommended.¹⁵⁴ 1042 Patients who had prior surgery have very little risk of adenoma growth during 1043 pregnancy.¹¹ 1044

Rather than routinely switching all patients from cabergoline to bromocriptine in women desiring pregnancy, the majority of workshop participants favored using cabergoline at the lowest effective dose, particularly for patients already well controlled on cabergoline, as there were concerns that switching to bromocriptine may result in loss of PRL level control and negatively impact fertility. In addition, the potential for increased side effects after switching to

bromocriptine may impact compliance and the need for dose adjustments, and 1051 thereby also adversely affect fertility. Continued use of cabergoline during 1052 pregnancy was associated with a higher miscarriage rate in one retrospective 1053 study, with little additional data available.¹⁵⁵ 1054 There was strong consensus against recommending measurement of PRL during pregnancy. Rather, evaluation of clinically relevant pituitary mass expansion during pregnancy should be based on symptoms, and imaging 1057 should be performed if symptoms or signs of mass effects/adenoma expansion 1058 occur.10 1060 Prolactinomas in Children and Adolescents 1061 In addition to the clinical signs and symptoms present in adults, delayed 1062 ٠ puberty due to hypogonadotrophic hypogonadism should trigger 1063 evaluation for hyperprolactinemia in children (weak). 1064 As apoplexy and aggressive prolactinoma behavior are more common in 1065 children than adults, high clinical suspicion warrants prompt investigation 1066 (weak). 1067 Children with macroprolactinomas should undergo genetic testing for MEN1 and AIP mutations (strong). 1069 DA therapy is initiated at low doses (e.g., 0.25 mg/week of cabergoline) • 1070

- (weak), with slow dose increases due to increased probability of side
 effects in children (strong).
- Surgery should be considered in cases where vision is threatened, if
 severe neurological symptoms or CSF leakage is present, or if the mass
 is resistant to DA therapy (strong).

1076	Surgery may be considered in children with microprolactinoma to avoid
1077	long-term medical treatment (weak).
1078	 Radiation therapy should be limited to patients with aggressive
1079	adenomas unresponsive to DA therapy and surgery (weak).
1080	
1081	Prolactinoma in a pediatric patient should raise suspicion for the presence of
1082	germline <i>MEN1</i> and <i>AIP</i> mutations. ¹⁵⁶ Adenomas with these mutations may
1083	have a more aggressive behavior. ¹⁵⁷ (See Supplementary Box 7 for further
1084	discussion.)
1085	DA is recommended as first-line therapy, starting at a low dose and
1086	individualizing dose adjustments due to the potentially increased susceptibility
1087	to side effects in children. ^{158,159} Surgery should be considered in cases of
1088	threatened vision. ¹⁶⁰
1089	Pituitary hemorrhage resulting in apoplexy may be more common within
1090	prolactinomas in children. The level of suspicion for potential apoplexy in
1091	children with prolactinomas and new headache, visual loss, or other sudden
1092	symptoms should be high. ^{161,162} In microprolactinomas, pediatric surgical series
1093	report remission rates around 80%. ¹⁶³
1094	
1095	Patients with Underlying Psychiatric Disorders
1096	 Management of prolactinoma with underlying psychiatric disorders
1097	requires collaboration between the endocrinologist, neurosurgeon, and
1098	psychiatrist (strong).
1099	Initiation of DA treatment in patients with underlying psychiatric illness is
1100	likely safe, but requires caution and psychiatric consultation (weak).

1101	PRL should be measured prior to initiation of an antipsychotic drug
1102	(strong).
1103	PRL levels >10×ULN are uncommon in antipsychotic-mediated
1104	hyperprolactinemia and should trigger suspicion for a prolactinoma
1105	(strong).
1106	Dose reduction or switching to a second-generation antipsychotic that
1107	does not cause hyperprolactinemia, such as aripiprazole, may distinguish
1108	prolactinoma from drug-induced hyperprolactinemia (strong). MRI may
1109	exclude a large lesion with stalk effect (weak).
1110	 DA therapy efficacy may be reduced in patients treated with
1111	antipsychotics, requiring higher doses (weak).
1112	PRL-sparing antipsychotics alone or in combination with established
1113	antipsychotic therapy, may allow DA dose reduction (weak).
1114	Alternative treatment modalities for prolactinomas, including sex
1115	hormone replacement in microprolactinomas or surgery, may be
1116	considered in patients requiring treatment with antipsychotics (weak).
1117	
1118	Management of prolactinoma in patients with psychiatric disorders is
1119	challenging and requires collaboration between the endocrinologist,
1120	neurosurgeon, and psychiatrist. ¹⁶⁴ Hyperprolactinemia resulting from
1121	antagonism of D2R occurs in 30-75% of individuals receiving antipsychotics ¹⁶⁵
1122	within the first 3 months of treatment, and elevations up to 10×ULN have been
1123	described. ¹⁶⁶
1124	PRL measurements prior to initiation of an antipsychotic drug may avoid
1125	unnecessary investigation and concern for an underlying prolactinoma. MRI

should be performed in patients on antipsychotic drugs with PRL levels 1126 >10×ULN, mass effect symptoms such as headache or visual disturbance, or 1127 pituitary hormone deficiencies other than the gonadal axis. Antipsychotic dose 1128 reduction or switching to a PRL-sparing antipsychotic with subsequent reduction 1129 in PRL levels is useful.¹⁶⁶ When withholding antipsychotics, drug-induced 1130 hyperprolactinemia resolves in 48-96 hours.

DA therapy may contribute to exacerbation of underlying psychiatric illness, 1132 although this appears to be uncommon and is subject to publication bias.¹⁶⁷ DA treatment is effective in patients receiving antipsychotics, with higher DA doses 1134 required to achieve biochemical control and reduce adenoma size, although 1135 improvement in visual fields occurs in most patients prescribed first-line DA 1136 therapy¹⁶⁸ (see **Supplementary Box 7**). Switching to a PRL-sparing antipsychotic such as aripiprazole may enable lower doses of DA therapy, or 1138 even cessation, although this is not consistently evident.¹⁶⁸ Addition of 1139 aripiprazole to established antipsychotic therapy is utilized for antipsychotic-1140 mediated hyperprolactinemia.¹⁶⁹ Pituitary surgery should be considered if there 1141 is concern for DA intolerance or poor effectiveness. 1142 1143

Prolactinomas and Menopause 1144

- Female patients with well-controlled microprolactinoma entering 1145
- menopause should undergo a trial of DA withdrawal (strong). 1146
- In postmenopausal women with macroprolactinoma, treatment should be 1147 targeted to controlling adenoma growth (strong). 1148

1149	Normalization of PRL levels in postmenopausal women with
1150	microprolactinoma is not indicated to improve metabolic parameters,
1151	decrease breast cancer risk, or improve bone density (weak).
1152	
1153	Menopause is associated with a physiological decrease in PRL levels. ¹⁷⁰ PRL
1154	normalization occurs in 45% of untreated women with microprolactinoma
1155	entering menopause, ¹⁷¹ and PRL levels remained normal in 52-71% of
1156	postmenopausal women with prolactinomas, most of which were
1157	microadenomas, after withdrawal of DA treatment, irrespective of PRL level
1158	prior to treatment discontinuation. ^{172,173} The prevalence of newly diagnosed
1159	post-menopausal prolactinomas cannot be accurately determined as
1160	microadenomas or small macroadenomas not causing mass effects may remain
1161	unrecognized in the absence of endocrine manifestations. Three series reported
1162	on 37 women diagnosed with prolactinomas after menopause, ¹⁷⁴⁻¹⁷⁶ the majority
1163	of whom harbored macroadenomas (73%) or giant adenomas (18.9%), and
1164	many were discovered incidentally following head imaging. ¹⁰⁸ PRL
1165	normalization and mass shrinkage were achieved with DA therapy in most
1166	patients.
1167	Current evidence does not support microprolactinoma treatment in
1168	asymptomatic postmenopausal women. Macroprolactinomas should be treated
1169	according to standard practice. Breast cancer risk was not increased with
1170	prolactinomas.177,178
1171	
1172	Transgender Individuals

1173	 In transgender women, combined treatment with estradiol and
1174	cyproterone acetate may cause mild and asymptomatic
1175	hyperprolactinemia (strong).
1176	A diagnosis of prolactinoma should be considered when PRL increases
1177	markedly, or with symptoms of mass effect or galactorrhea (weak).
1178	There is no evidence for increased incidence of prolactinomas in
1179	transgender women receiving gender-affirming therapy (weak).
1180	
1181	Hyperprolactinemia related to feminizing hormone treatment occurs in up to
1182	20% of transwomen, and is usually mild and asymptomatic. ¹⁷⁹ PRL levels up to
1183	2×ULN were observed following initiation of estradiol combined with
1184	cyproterone acetate, but levels remained within the normal range in most
1185	patients. ¹⁸⁰ Marked or symptomatic PRL elevations resulting in galactorrhea
1186	should prompt further investigations. ^{181,182}
1187	Prolactinomas have been reported in transgender women receiving
1188	feminizing hormone treatment ^{180,182} (see Supplementary Box 7). However,
1189	there is no definitive link between gender-affirming hormone treatment and
1190	prolactinoma.
1191	
1192	Hyperprolactinemia and Renal Failure
1193	 Assessment for hyperprolactinemia in patients with chronic kidney

Assessment for hyperprolactinemia in patients with chronic kidney
 disease (CKD) should be individualized depending on symptoms and
 hypogonadism (weak).

- Treatment of hypogonadism and underlying hyperprolactinemia by DA
 therapy or sex hormone replacement may be considered with CKD,
 depending on clinical symptoms (weak).

1200	PRL levels are elevated in patients with CKD. In one study, 23% of CKD
1201	patients and creatinine levels <6.8 mg/dL had hyperprolactinemia; the
1202	proportion increased to 77% of those with creatinine levels >6.8 mg/dL and 78%
1203	of those on hemodialysis. ¹⁸³ Elevated PRL levels were reported in patients with
1204	creatinine levels as low as 2.0 mg/dL. ¹⁸⁴ Most of the PRL is monomeric and not
1205	due to accumulated macroprolactin. ¹⁸⁵ Hyperprolactinemia is caused by
1206	delayed circulating PRL clearance as well as increased PRL production. ¹⁸⁶
1207	Hyperprolactinemia is not influenced by intensification of dialysis, ¹⁸⁷ but is
1208	reversed by renal transplantation.
1209	Bromocriptine effectively lowers PRL levels, increases testosterone levels,
1210	and restores sexual potency in men with CKD and hyperprolactinemia. ¹⁸⁸
1211	Interestingly, treatment of CKD patients on hemodialysis with recombinant
1212	erythropoietin may result in PRL normalization. ¹⁸⁹
1213	
1214	FUTURE DIRECTIONS
1215	Cabergoline is highly effective at normalizing PRL levels and shrinking
1216	prolactinomas in most patients, and DA resistance rarely occurs. Nevertheless,
1217	exploration of alternative strategies for medical therapy is warranted, and there
1218	is an unmet need for additional treatments to address clinical challenges in
1219	treating patients with refractory prolactinomas.

- There is a need to facilitate international registries to allow risk stratification
- and optimization of therapeutic strategies. Standardizing treatment response
- may enable comparison of results across series, critically important for a rare
- disease such as prolactinoma.
- 1224

1225 **ACKNOWLEDGMENTS**

- 1226 The authors dedicate the manuscript to our colleague and friend, the late
- 1227 Marcello Bronstein, in honor of his major contributions to the field.
- 1228 The authors thank Bari Laner from the Pituitary Society for organizing the
- consensus workshop, and Shira Berman from Cedars-Sinai Medical Center for
- providing editorial assistance in manuscript preparation.
- 1231 HJM acknowledges charitable funders Wellcome/EPSRC Centre for
- ¹²³² Interventional and Surgical Sciences and the UCLH/UCL BRC Neuroscience.
- 1233

1234 COMPETING INTERESTS

- 1235 The authors declare that they have no competing interests or other interests that
- might be perceived to influence the interpretation of the article.

References

- Casanueva, F. F. *et al.* Guidelines of the Pituitary Society for the diagnosis and management of prolactinomas. *Clin Endocrinol (Oxf)* 65, 265-273 (2006).
- Melmed, S. *et al.* Diagnosis and treatment of hyperprolactinemia: an
 Endocrine Society clinical practice guideline. *J Clin Endocrinol Metab* 96, 273-288 (2011).
- Wan, X. Y. *et al.* Overview of the 2022 WHO Classification of Pituitary Adenomas/Pituitary Neuroendocrine Tumors: Clinical Practices, Controversies, and Perspectives. *Curr Med Sci* 42, 1111-1118 (2022).
- Stiles, C. E., Tetteh-Wayoe, E. T., Bestwick, J., Steeds, R. P. & Drake,
 W. M. A meta-analysis of the prevalence of cardiac valvulopathy in
 hyperprolactinemic patients treated with Cabergoline. *J Clin Endocrinol Metab* (2018).
- Hage, C. & Salvatori, R. Predictors of the Response to Dopaminergic
 Therapy in Patients With Prolactinoma. *J Clin Endocrinol Metab* **105** (2020).
- Giese, S., Nasi-Kordhishti, I. & Honegger, J. Outcomes of
 Transsphenoidal Microsurgery for Prolactinomas A Contemporary
 Series of 162 Cases. *Exp Clin Endocrinol Diabetes* **129**, 163-171 (2021).
- 7 Yagnik, K. J. *et al.* Surgical outcomes of medically failed prolactinomas: a systematic review and meta-analysis. *Pituitary* **24**, 978-988 (2021).

- 8 Zamanipoor Najafabadi, A. H. *et al.* Surgery as a Viable Alternative First-Line Treatment for Prolactinoma Patients. A Systematic Review and Meta-Analysis. *J Clin Endocrinol Metab* **105**, e32-41 (2020).
- Glezer, A. & Bronstein, M. D. Prolactinomas in pregnancy:
 considerations before conception and during pregnancy. *Pituitary* 23, 65-69 (2020).
- Luger, A. *et al.* ESE Clinical Practice Guideline on functioning and nonfunctioning pituitary adenomas in pregnancy. *Eur J Endocrinol* 185, G1-G33 (2021).
- 11 Molitch, M. E. Endocrinology in pregnancy: management of the pregnant patient with a prolactinoma. *Eur J Endocrinol* **172**, R205-213 (2015).
- 12 di Filippo, L., Doga, M., Resmini, E. & Giustina, A. Hyperprolactinemia and bone. *Pituitary* **23**, 314-321 (2020).
- Burman, P. *et al.* Aggressive pituitary tumours and carcinomas, characteristics and management of 171 patients. *Eur J Endocrinol* **187**, 593-605 (2022).
- 14 Guyatt, G. H. *et al.* GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ* **336**, 924-926 (2008).
- Swiglo, B. A. *et al.* A case for clarity, consistency, and helpfulness: stateof-the-art clinical practice guidelines in endocrinology using the grading of recommendations, assessment, development, and evaluation system. *J Clin Endocrinol Metab* **93**, 666-673 (2008).
- Fleseriu, M. *et al.* Consensus on diagnosis and management of
 Cushing's disease: a guideline update. *Lancet Diabetes Endocrinol* 9, 847-875 (2021).

- 17 Chanson, P. & Maiter, D. The epidemiology, diagnosis and treatment of Prolactinomas: The old and the new. *Best Pract Res Clin Endocrinol Metab* **33**, 101290 (2019).
- 18 Shimon, I. Giant Prolactinomas. *Neuroendocrinology* **109**, 51-56 (2019).
- 19 Herman, V., Fagin, J., Gonsky, R., Kovacs, K. & Melmed, S. Clonal origin of pituitary adenomas. *J Clin Endocrinol Metab* **71**, 1427-1433 (1990).
- Melmed, S. Pituitary-Tumor Endocrinopathies. N Engl J Med 382, 937-950 (2020).
- Li, C. *et al.* Somatic SF3B1 hotspot mutation in prolactinomas. *Nat Commun* 11, 2506 (2020).
- 22 Brandi, M. L. *et al.* Multiple Endocrine Neoplasia Type 1: Latest Insights. *Endocr Rev* 42, 133-170 (2021).
- Salenave, S. *et al.* Macroprolactinomas in children and adolescents:
 factors associated with the response to treatment in 77 patients. *J Clin Endocrinol Metab* 100, 1177-1186 (2015).
- Le Bras, M. *et al.* Pituitary adenoma in patients with multiple endocrine neoplasia type 1: a cohort study. *Eur J Endocrinol* **185**, 863-873 (2021).
- 25 Sonigo, C. *et al.* Hyperprolactinemia-induced ovarian acyclicity is reversed by kisspeptin administration. *J Clin Invest* **122**, 3791-3795 (2012).
- Barber, T. M. *et al.* Mechanisms of Central Hypogonadism. *Int J Mol Sci*22, 8217 (2021).
- 27 Sehemby, M. *et al.* Predictors of Chronic LH-Testosterone Axis Suppression in Male Macroprolactinomas With Normoprolactinemia on Cabergoline. *J Clin Endocrinol Metab* **105** (2020).

- 28 Rudman, Y., Duskin-Bitan, H., Masri-Iraqi, H., Akirov, A. & Shimon, I. Predicting hypogonadotropic hypogonadism persistence in male macroprolactinoma. *Pituitary* 25, 882-890 (2022).
- Molitch, M. E. Diagnosis and Treatment of Pituitary Adenomas: A
 Review. JAMA 317, 516-524 (2017).
- 30 Peric, B. *et al.* Obesity and hypercholesterolemia in patients with prolactinomas: Could DHEA-S and growth hormone be the missing link? *Endocr Res* **41**, 200-206 (2016).
- Pinzone, J. J. *et al.* Primary medical therapy of micro- and macroprolactinomas in men. *J Clin Endocrinol Metab* **85**, 3053-3057 (2000).
- Iglesias, P. *et al.* Giant Prolactinoma in Men: Clinical Features and
 Therapeutic Outcomes. *Horm Metab Res* 50, 791-796 (2018).
- 33 Colao, A. *et al.* Outcome of cabergoline treatment in men with prolactinoma: effects of a 24-month treatment on prolactin levels, tumor mass, recovery of pituitary function, and semen analysis. *J Clin Endocrinol Metab* **89**, 1704-1711 (2004).
- Tirosh, A., Benbassat, C., Lifshitz, A. & Shimon, I. Hypopituitarism patterns and prevalence among men with macroprolactinomas. *Pituitary* 18, 108-115 (2015).
- Fleseriu, M. *et al.* Hormonal Replacement in Hypopituitarism in Adults:
 An Endocrine Society Clinical Practice Guideline. *J Clin Endocrinol Metab* 101, 3888-3921 (2016).
- 36 Dobolyi, A. *et al.* Secretion and Function of Pituitary Prolactin in Evolutionary Perspective. *Front Neurosci* **14**, 621 (2020).

- 37 Karavitaki, N. *et al.* Do the limits of serum prolactin in disconnection hyperprolactinaemia need re-definition? A study of 226 patients with histologically verified non-functioning pituitary macroadenoma. *Clin Endocrinol (Oxf)* 65, 524-529 (2006).
- Alexopoulou, O. *et al.* Outcome of pituitary hormone deficits after surgical treatment of nonfunctioning pituitary macroadenomas. *Endocrine* **73**, 166-176 (2021).
- 39 De Sousa, S. M. C. *et al.* Vasculogenic hyperprolactinemia: severe prolactin excess in association with internal carotid artery aneurysms. *Pituitary* **20**, 676-682 (2017).
- 40 Burke, W. T. *et al.* Prolactinomas and nonfunctioning adenomas: preoperative diagnosis of tumor type using serum prolactin and tumor size. *J Neurosurg*, 1-8 (2019).
- Cote, D. J. *et al.* Oral Contraceptive and Menopausal Hormone Therapy
 Use and Risk of Pituitary Adenoma: Cohort and Case-Control Analyses.
 J Clin Endocrinol Metab **107**, e1402-e1412 (2022).
- 42 Schievink, W. I. *et al.* Hyperprolactinemia due to spontaneous intracranial hypotension. *J Neurosurg* **122**, 1020-1025 (2015).
- Tsur, A., Dreyfuss, E., Ness-Abramof, R., Pollack, R. & Cahn, A. Role of Cannulated Prolactin Test in Evaluation of Hyperprolactinemia - A Retrospective Study. *Endocr Pract* 26, 1304-1311 (2020).
- 44 Whyte, M. B. *et al.* Importance of cannulated prolactin test in the definition of hyperprolactinaemia. *Pituitary* **18**, 319-325 (2015).

- 45 Mennella, J. A. & Pepino, M. Y. Short-term effects of alcohol consumption on the hormonal milieu and mood states in nulliparous women. *Alcohol* **38**, 29-36 (2006).
- Petersenn, S. Biochemical diagnosis in prolactinomas: some caveats.
 Pituitary 23, 9-15 (2020).
- 47 Delcour, C., Robin, G., Young, J. & Dewailly, D. PCOS and
 Hyperprolactinemia: what do we know in 2019? *Clin Med Insights Reprod Health* 13, 1179558119871921 (2019).
- 48 Honegger, J. *et al.* Diagnosis of Primary Hypophysitis in Germany. *J Clin Endocrinol Metab* **100**, 3841-3849 (2015).
- 49 Borba, V. V., Zandman-Goddard, G. & Shoenfeld, Y. Prolactin and autoimmunity: The hormone as an inflammatory cytokine. *Best Pract Res Clin Endocrinol Metab* **33**, 101324 (2019).
- Fleseriu, M., Langlois, F., Lim, D. S. T., Varlamov, E. V. & Melmed, S.
 Acromegaly: pathogenesis, diagnosis, and management. *Lancet Diabetes Endocrinol* 10, 804-826 (2022).
- de Vries, F. *et al.* Opioids and Their Endocrine Effects: A Systematic
 Review and Meta-analysis. *J Clin Endocrinol Metab* **105**, 1020-1029
 (2020).
- 52 Molitch, M. E. Drugs and prolactin. *Pituitary* **11**, 209-218 (2008).
- 53 Zhu, Y. *et al.* Prolactin levels influenced by antipsychotic drugs in schizophrenia: A systematic review and network meta-analysis. *Schizophr Res* 237, 20-25 (2021).
- Aliberti, L. *et al.* Hypeprolactinemia: still an insidious diagnosis.
 Endocrine 72, 928-931 (2021).

- 55 Overgaard, M. & Pedersen, S. M. Serum prolactin revisited: parametric reference intervals and cross platform evaluation of polyethylene glycol precipitation-based methods for discrimination between hyperprolactinemia and macroprolactinemia. *Clin Chem Lab Med* 55, 1744-1753 (2017).
- Saleem, M., Martin, H. & Coates, P. Prolactin Biology and Laboratory
 Measurement: An Update on Physiology and Current Analytical Issues.
 Clin Biochem Rev 39, 3-16 (2018).
- 57 Wallace, I. R. *et al.* Ten-year clinical follow-up of a cohort of 51 patients with macroprolactinemia establishes it as a benign variant. *J Clin Endocrinol Metab* **95**, 3268-3271 (2010).
- 58 Olukoga, A. O. & Kane, J. W. Macroprolactinaemia: validation and application of the polyethylene glycol precipitation test and clinical characterization of the condition. *Clin Endocrinol (Oxf)* **51**, 119-126 (1999).
- 59 Raverot, V. *et al.* Prolactin immunoassay: does the high-dose hook effect still exist? *Pituitary* **25**, 653-657 (2022).
- Nachtigall, L. B. *et al.* Physicians' awareness of gadolinium retention and MRI timing practices in the longitudinal management of pituitary tumors:
 a "Pituitary Society" survey. *Pituitary* 22, 37-45 (2019).
- 61 Gallo-Bernal, S. *et al.* Nephrogenic Systemic Fibrosis in Patients with Chronic Kidney Disease after the Use of Gadolinium-Based Contrast Agents: A Review for the Cardiovascular Imager. *Diagnostics (Basel)* **12** (2022).

- Alkabbani, A. G. *et al.* Is a stable or decreasing prolactin level in a patient with prolactinoma a surrogate marker for lack of tumor growth? *Pituitary* **17**, 97-102 (2014).
- 63 Varlamov, E. V., Hinojosa-Amaya, J. M. & Fleseriu, M. Magnetic resonance imaging in the management of prolactinomas; a review of the evidence. *Pituitary* 23, 16-26 (2020).
- 64 Lombardi, M. *et al.* Lower prolactin levels during cabergoline treatment are associated to tumor shrinkage in prolactin secreting pituitary adenoma. *Horm Metab Res* **46**, 939-942 (2014).
- 65 Schlechte, J., Dolan, K., Sherman, B., Chapler, F. & Luciano, A. The natural history of untreated hyperprolactinemia: a prospective analysis. *J Clin Endocrinol Metab* 68, 412-418 (1989).
- 66 Hinojosa-Amaya, J., Varlamov, E., McCartney, S. & Fleseriu, M. in Pituitary Tumors: A Comprehensive and Interdisciplinary Approach (eds Jürgen Honegger, Martin Reincke, & Stephan Petersenn) 722 (Academic Press, 2021).
- Kreutz, J. *et al.* Intensity of prolactinoma on T2-weighted magnetic resonance imaging: towards another gender difference. *Neuroradiology* 57, 679-684 (2015).
- Burlacu, M. C., Maiter, D., Duprez, T. & Delgrange, E. T2-weighted magnetic resonance imaging characterization of prolactinomas and association with their response to dopamine agonists. *Endocrine* **63**, 323-331 (2019).

- 69 Dogansen, S. C. *et al.* Clinicopathological significance of baseline T2weighted signal intensity in functional pituitary adenomas. *Pituitary* 21, 347-354 (2018).
- Biagetti, B. *et al.* Shrinkage by the third month predicts long-term
 response of macroprolactinoma after cabergoline. *Eur J Endocrinol* 185, 587-595 (2021).
- 71 Eroukhmanoff, J. *et al.* MRI follow-up is unnecessary in patients with macroprolactinomas and long-term normal prolactin levels on dopamine agonist treatment. *Eur J Endocrinol* **176**, 323-328 (2017).
- Akinduro, O. O. *et al.* Radiographic and Hormonal Regression in
 Prolactinomas: An Analysis of Treatment Failure. *World Neurosurg* 129, e686-e694 (2019).
- 73 Kharlip, J., Salvatori, R., Yenokyan, G. & Wand, G. S. Recurrence of hyperprolactinemia after withdrawal of long-term cabergoline therapy. *J Clin Endocrinol Metab* **94**, 2428-2436 (2009).
- Xia, M. Y., Lou, X. H., Lin, S. J. & Wu, Z. B. Optimal timing of dopamine agonist withdrawal in patients with hyperprolactinemia: a systematic review and meta-analysis. *Endocrine* **59**, 50-61 (2018).
- 75 Melmed, S. *et al.* Clinical Biology of the Pituitary Adenoma. *Endocr Rev*43, 1003-1037 (2022).
- 76 Kuhn, E., Weinreich, A. A., Biermasz, N. R., Jorgensen, J. O. L. & Chanson, P. Apoplexy of microprolactinomas during pregnancy: report of five cases and review of the literature. *Eur J Endocrinol* **185**, 99-108 (2021).

- 77 Honegger, J., Nasi-Kordhishti, I., Aboutaha, N. & Giese, S. Surgery for prolactinomas – a better choice? *Pituitary* (2019).
- Bashari, W. A. *et al.* Modern imaging of pituitary adenomas. *Best Pract Res Clin Endocrinol Metab* 33, 101278 (2019).
- 79 Bashari, W. A. *et al.* (11)C-methionine PET aids localization of microprolactinomas in patients with intolerance or resistance to dopamine agonist therapy. *Pituitary* **25**, 573-586 (2022).
- 80 Bakker, L. E. H. *et al.* Implementation of functional imaging using (11)Cmethionine PET-CT co-registered with MRI for advanced surgical planning and decision making in prolactinoma surgery. *Pituitary* **25**, 587-601 (2022).
- Prior, J. C., Cox, T. A., Fairholm, D., Kostashuk, E. & Nugent, R.
 Testosterone-related exacerbation of a prolactin-producing
 macroadenoma: possible role for estrogen. *J Clin Endocrinol Metab* 64, 391-394 (1987).
- Akirov, A. & Rudman, Y. The Role of Aromatase Inhibitors in MaleProlactinoma. *J Clin Med* 12 (2023).
- 83 Burnett-Bowie, S. A., McKay, E. A., Lee, H. & Leder, B. Z. Effects of aromatase inhibition on bone mineral density and bone turnover in older men with low testosterone levels. *J Clin Endocrinol Metab* **94**, 4785-4792 (2009).
- 84 Ribeiro, R. S. & Abucham, J. Recovery of persistent hypogonadism by clomiphene in males with prolactinomas under dopamine agonist treatment. *Eur J Endocrinol* **161**, 163-169 (2009).

- Salenave, S., Trabado, S., Maione, L., Brailly-Tabard, S. & Young, J.
 Male acquired hypogonadotropic hypogonadism: diagnosis and
 treatment. *Ann Endocrinol (Paris)* 73, 141-146 (2012).
- 86 Drincic, A. *et al.* Men with acquired hypogonadotropic hypogonadism treated with testosterone may be fertile. *Pituitary* **6**, 5-10 (2003).
- 87 Mancini, T., Casanueva, F. F. & Giustina, A. Hyperprolactinemia and prolactinomas. *Endocrinol Metab Clin North Am* **37**, 67-99, viii (2008).
- 88 Mazziotti, G. *et al.* High prevalence of radiological vertebral fractures in women with prolactin-secreting pituitary adenomas. *Pituitary* **14**, 299-306 (2011).
- Giraldi, E. A. & loachimescu, A. G. The Role of Dopamine Agonists in
 Pituitary Adenomas. *Endocrinol Metab Clin North Am* 49, 453-474
 (2020).
- 90 Moraes, A. B., Silva, C. M., Vieira Neto, L. & Gadelha, M. R. Giant prolactinomas: the therapeutic approach. *Clin Endocrinol (Oxf)* **79**, 447-456 (2013).
- Maiter, D. & Delgrange, E. Therapy of endocrine disease: the challenges in managing giant prolactinomas. *Eur J Endocrinol* **170**, R213-227 (2014).
- 92 Huang, H. Y., Lin, S. J., Zhao, W. G. & Wu, Z. B. Cabergoline versus bromocriptine for the treatment of giant prolactinomas: A quantitative and systematic review. *Metab Brain Dis* **33**, 969-976 (2018).
- Lee, Y. *et al.* Early prediction of long-term response to cabergoline in patients with macroprolactinomas. *Endocrinol Metab (Seoul)* 29, 280-292 (2014).

- 94 Tirosh, A., Benbassat, C. & Shimon, I. Short-Term Decline in Prolactin Concentrations Can Predict Future Prolactin Normalization, Tumor Shrinkage, and Time to Remission in Men with Macroprolactinomas. *Endocr Pract* 21, 1240-1247 (2015).
- Johnson, M. D., Woodburn, C. J. & Vance, M. L. Quality of life in patients with a pituitary adenoma. *Pituitary* **6**, 81-87 (2003).
- 96 Duskin-Bitan, H. & Shimon, I. Prolactinomas in males: any differences? *Pituitary* 23, 52-57 (2020).
- 97 Stumpf, M. A. M. *et al.* How to manage intolerance to dopamine agonist in patients with prolactinoma. *Pituitary* (2023).
- 98 De Sousa, S. M. C. *et al.* Impulse Control Disorders in Dopamine Agonist-Treated Hyperprolactinemia: Prevalence and Risk Factors. *J Clin Endocrinol Metab* **105** (2020).
- 99 Ioachimescu, A. G., Fleseriu, M., Hoffman, A. R., Vaughan Iii, T. B. & Katznelson, L. Psychological effects of dopamine agonist treatment in patients with hyperprolactinemia and prolactin-secreting adenomas. *Eur J Endocrinol* **180**, 31-40 (2019).
- Hinojosa-Amaya, J. M. *et al.* Depression and Impulsivity Self Assessment Tools to Identify Dopamine Agonist Side Effects in Patients
 With Pituitary Adenomas. *Front Endocrinol (Lausanne)* **11**, 579606
 (2020).
- Buchfelder, M., Zhao, Y. & Schlaffer, S. M. Surgery for Prolactinomas toDate. *Neuroendocrinology* **109**, 77-81 (2019).

- 102 Lam, G., Mehta, V. & Zada, G. Spontaneous and medically induced cerebrospinal fluid leakage in the setting of pituitary adenomas: review of the literature. *Neurosurg Focus* **32**, E2 (2012).
- Steeds, R. *et al.* Echocardiography and monitoring patients receiving dopamine agonist therapy for hyperprolactinaemia: A joint position statement of the British Society of Echocardiography, the British Heart Valve Society and the Society for Endocrinology. *Clin Endocrinol (Oxf)*90, 662-669 (2019).
- 104 Souteiro, P., Belo, S. & Carvalho, D. Dopamine agonists in prolactinomas: when to withdraw? *Pituitary* **23**, 38-44 (2020).
- Paepegaey, A. C. *et al.* Cabergoline Tapering Is Almost Always
 Successful in Patients With Macroprolactinomas. *J Endocr Soc* 1, 221-230 (2017).
- Vilar, L. *et al.* Second Attempt of Cabergoline Withdrawal in Patients with
 Prolactinomas after a Failed First Attempt: Is it Worthwhile? *Front Endocrinol (Lausanne)* 6, 11 (2015).
- 107 Kwancharoen, R. *et al.* Second attempt to withdraw cabergoline in prolactinomas: a pilot study. *Pituitary* **17**, 451-456 (2014).
- 108 Greenman, Y. Prolactinomas and menopause: any changes in management? *Pituitary* 23, 58-64 (2020).
- 109 Gillam, M. P., Molitch, M. E., Lombardi, G. & Colao, A. Advances in the treatment of prolactinomas. *Endocr Rev* **27**, 485-534 (2006).
- 110 Primeau, V., Raftopoulos, C. & Maiter, D. Outcomes of transsphenoidal surgery in prolactinomas: improvement of hormonal control in dopamine agonist-resistant patients. *Eur J Endocrinol* **166**, 779-786 (2012).

- 111 Kreutzer, J. *et al.* Operative treatment of prolactinomas: indications and results in a current consecutive series of 212 patients. *Eur J Endocrinol* **158**, 11-18 (2008).
- 112 Tampourlou, M., Trifanescu, R., Paluzzi, A., Ahmed, S. K. & Karavitaki, N. THERAPY OF ENDOCRINE DISEASE: Surgery in microprolactinomas: effectiveness and risks based on contemporary literature. *Eur J Endocrinol* **175**, R89-96 (2016).
- Baussart, B. *et al.* Pituitary surgery as alternative to dopamine agonists treatment for microprolactinomas: a cohort study. *Eur J Endocrinol* 185, 783-791 (2021).
- Micko, A., Vila, G., Hoftberger, R., Knosp, E. & Wolfsberger, S.
 Endoscopic Transsphenoidal Surgery of Microprolactinomas: A
 Reappraisal of Cure Rate Based on Radiological Criteria. *Neurosurgery* 85, 508-515 (2019).
- 115 Ma, Q. *et al.* The Chance of Permanent Cure for Micro- and Macroprolactinomas, Medication or Surgery? A Systematic Review and Meta-Analysis. *Front Endocrinol (Lausanne)* **9**, 636 (2018).
- Wright, K. *et al.* Determinants of Surgical Remission in Prolactinomas: A
 Systematic Review and Meta-Analysis. *World Neurosurg* **154**, e349-e369 (2021).
- 117 Losa, M., Mortini, P., Barzaghi, R., Gioia, L. & Giovanelli, M. Surgical treatment of prolactin-secreting pituitary adenomas: early results and long-term outcome. *J Clin Endocrinol Metab* 87, 3180-3186 (2002).

- 118 Osorio, R. C. *et al.* Correlation between tumor volume and serum prolactin and its effect on surgical outcomes in a cohort of 219 prolactinoma patients. *J Neurosurg*, 1-11 (2022).
- 119 Ikeda, H., Watanabe, K., Tominaga, T. & Yoshimoto, T. Transsphenoidal microsurgical results of female patients with prolactinomas. *Clin Neurol Neurosurg* **115**, 1621-1625 (2013).
- Zielinski, G., Ozdarski, M., Maksymowicz, M., Szamotulska, K. & Witek,
 P. Prolactinomas: Prognostic Factors of Early Remission After
 Transsphenoidal Surgery. *Front Endocrinol (Lausanne)* **11**, 439 (2020).
- 121 Abou-Al-Shaar, H. *et al.* The role of endoscopic endonasal surgery in the management of prolactinomas based on their invasiveness into the cavernous sinus. *Pituitary* **25**, 508-519 (2022).
- 122 Force, B. K. *et al.* Endoscopic Endonasal Transsphenoidal Surgery for Patients with Prolactinomas: Indications and Outcomes. *World Neurosurg* **168**, e626-e635 (2022).
- 123 Donoho, D. A. & Laws, E. R., Jr. The Role of Surgery in the Management of Prolactinomas. *Neurosurg Clin N Am* **30**, 509-514 (2019).
- 124 Vroonen, L. *et al.* Prolactinomas resistant to standard doses of cabergoline: a multicenter study of 92 patients. *Eur J Endocrinol* 167, 651-662 (2012).
- 125 Menucci, M., Quinones-Hinojosa, A., Burger, P. & Salvatori, R. Effect of dopaminergic drug treatment on surgical findings in prolactinomas. *Pituitary* 14, 68-74 (2011).
- 126 Nakhleh, A. *et al.* Management of cystic prolactinomas: a review.*Pituitary* **21**, 425-430 (2018).

- Yousem, D. M., Arrington, J. A., Zinreich, S. J., Kumar, A. J. & Bryan, R.
 N. Pituitary adenomas: possible role of bromocriptine in intratumoral hemorrhage. *Radiology* **170**, 239-243 (1989).
- 128 Hage, C. & Salvatori, R. Speed of response to dopaminergic agents in prolactinomas. *Endocrine* **75**, 883-888 (2022).
- Faje, A. *et al.* Dopamine Agonists Can Reduce Cystic Prolactinomas. J *Clin Endocrinol Metab* **101**, 3709-3715 (2016).
- 130 Colao, A. *et al.* Gender differences in the prevalence, clinical features and response to cabergoline in hyperprolactinemia. *Eur J Endocrinol* **148**, 325-331 (2003).
- Mazziotti, G. *et al.* Vertebral fractures in males with prolactinoma.*Endocrine* **39**, 288-293 (2011).
- 132 Shimon, I., Benbassat, C., Tzvetov, G. & Grozinsky-Glasberg, S. Anemia in a cohort of men with macroprolactinomas: increase in hemoglobin levels follows prolactin suppression. *Pituitary* **14**, 11-15 (2011).
- Shimon, I. *et al.* Hyperprolactinemia diagnosis in elderly men: a cohort of28 patients over 65 years. *Endocrine* 65, 656-661 (2019).
- 134 Delgrange, E., Trouillas, J., Maiter, D., Donckier, J. & Tourniaire, J. Sexrelated difference in the growth of prolactinomas: a clinical and proliferation marker study. *J Clin Endocrinol Metab* 82, 2102-2107 (1997).
- 135 Fainstein Day, P. *et al.* Gender differences in macroprolactinomas: study of clinical features, outcome of patients and ki-67 expression in tumor tissue. *Front Horm Res* **38**, 50-58 (2010).

- Nishioka, H., Haraoka, J. & Akada, K. Growth potential of prolactinomas in men: is it really different from women? *Surg Neurol* 59, 386-390; discussion 390-381 (2003).
- 137 Schaller, B. Gender-related differences in prolactinomas. A clinicopathological study. *Neuro Endocrinol Lett* 26, 152-159 (2005).
- 138 Lasolle, H., Ilie, M. D. & Raverot, G. Aggressive prolactinomas: how to manage? *Pituitary* 23, 70-77 (2020).
- Raverot, G. *et al.* Aggressive pituitary tumours and pituitary carcinomas.
 Nat Rev Endocrinol **17**, 671-684 (2021).
- Maiter, D. Management of Dopamine Agonist-Resistant Prolactinoma.*Neuroendocrinology* **109**, 42-50 (2019).
- 141 Raverot, G. *et al.* European Society of Endocrinology Clinical Practice Guidelines for the management of aggressive pituitary tumours and carcinomas. *Eur J Endocrinol* **178**, G1-G24 (2018).
- 142 McCormack, A. *et al.* Treatment of aggressive pituitary tumours and carcinomas: results of a European Society of Endocrinology (ESE) survey 2016. *Eur J Endocrinol* **178**, 265-276 (2018).
- 143 Losa, M. *et al.* Temozolomide therapy in patients with aggressive pituitary adenomas or carcinomas. *J Neurooncol* **126**, 519-525 (2016).
- Lasolle, H. *et al.* Temozolomide treatment can improve overall survival in aggressive pituitary tumors and pituitary carcinomas. *Eur J Endocrinol* **176**, 769-777 (2017).
- 145 Elbelt, U. *et al.* Efficacy of Temozolomide Therapy in Patients With Aggressive Pituitary Adenomas and Carcinomas-A German Survey. *J Clin Endocrinol Metab* **105** (2020).

- 146 Goichot, B. *et al.* Should pituitary carcinoma be treated using a NET-like approach? A case of complete remission of a metastatic malignant prolactinoma with multimodal therapy including immunotherapy. *Clin Endocrinol (Oxf)* **98**, 633-637 (2023).
- 147 Ilie, M. D. *et al.* Real-life efficacy and predictors of response to immunotherapy in pituitary tumors: a cohort study. *Eur J Endocrinol* **187**, 685-696 (2022).
- Raverot, G. & Ilie, M. D. Immunotherapy in pituitary carcinomas and aggressive pituitary tumors. *Best Pract Res Clin Endocrinol Metab* 36, 101712 (2022).
- Zhang, D. *et al.* Effect of Everolimus in Treatment of Aggressive
 Prolactin-Secreting Pituitary Adenomas. *J Clin Endocrinol Metab* **104**, 1929-1936 (2019).
- Cooper, O. *et al.* EGFR/ErbB2-Targeting Lapatinib Therapy for
 Aggressive Prolactinomas. *J Clin Endocrinol Metab* **106**, e917-e925
 (2021).
- 151 Bazuhair, T., Aleid, B. & Almalki, M. Effect of Tamoxifen on the Management of Dopamine Agonist-Resistant Prolactinomas: A Systematic Review. *Cureus* **15**, e35171 (2023).
- 152 Petersenn, S. & Heaney, A. P. Targeted systemic and peptide radioligand therapy for aggressive pituitary tumors and carcinomas. *Rev Endocr Metab Disord* **21**, 277-286 (2020).
- 153 Casanueva, F. F. *et al.* Criteria for the definition of Pituitary Tumor
 Centers of Excellence (PTCOE): A Pituitary Society Statement. *Pituitary*20, 489-498 (2017).

- Zhong, H. P. *et al.* Multidisciplinary team efforts improve the surgical outcomes of sellar region lesions during pregnancy. *Endocrine* 66, 477-484 (2019).
- 155 Sant' Anna, B. G. *et al.* A Brazilian multicentre study evaluating pregnancies induced by cabergoline in patients harboring prolactinomas. *Pituitary* **23**, 120-128 (2020).
- 156 Martinez de LaPiscina, I. *et al.* Clinical and genetic characteristics in patients under 30 years with sporadic pituitary adenomas. *Eur J Endocrinol* **185**, 485-496 (2021).
- 157 Tatsi, C. & Stratakis, C. A. Aggressive pituitary tumors in the young and elderly. *Rev Endocr Metab Disord* **21**, 213-223 (2020).
- 158 Breil, T. *et al.* Clinical Features and Response to Treatment of Prolactinomas in Children and Adolescents: A Retrospective Single-Centre Analysis and Review of the Literature. *Horm Res Paediatr* 89, 157-165 (2018).
- 159 Brichta, C. M., Wurm, M., Krebs, A., Schwab, K. O. & van der Werf-Grohmann, N. Start low, go slowly - mental abnormalities in young prolactinoma patients under cabergoline therapy. *J Pediatr Endocrinol Metab* **32**, 969-977 (2019).
- 160 Hoffmann, A., Adelmann, S., Lohle, K., Claviez, A. & Muller, H. L. Pediatric prolactinoma: initial presentation, treatment, and long-term prognosis. *Eur J Pediatr* **177**, 125-132 (2018).
- 161 Culpin, E. *et al.* Pituitary tumour apoplexy within prolactinomas in children: a more aggressive condition? *Pituitary* **21**, 474-479 (2018).

- Jankowski, P. P. *et al.* Pituitary tumor apoplexy in adolescents. *World Neurosurg* 83, 644-651 (2015).
- 163 McCormack, A. Childhood-onset prolactinomas-Should earlier surgery be considered? *Clin Endocrinol (Oxf)* **95**, 571-573 (2021).
- 164 Chanson, P. Treatments of psychiatric disorders, hyperprolactinemia and dopamine agonists. *Best Pract Res Clin Endocrinol Metab* 36, 101711 (2022).
- 165 Alosaimi, F. D. *et al.* Prevalence and risk factors of hyperprolactinemia among patients with various psychiatric diagnoses and medications. *Int J Psychiatry Clin Pract* 22, 274-281 (2018).
- Haddad, P. M. & Wieck, A. Antipsychotic-induced hyperprolactinaemia:
 mechanisms, clinical features and management. *Drugs* 64, 2291-2314 (2004).
- 167 Chang, S. C., Chen, C. H. & Lu, M. L. Cabergoline-induced psychotic exacerbation in schizophrenic patients. *Gen Hosp Psychiatry* **30**, 378-380 (2008).
- 168 Allard, L. *et al.* Efficacy and safety of dopamine agonists in patients treated with antipsychotics and presenting a macroprolactinoma. *Eur J Endocrinol* **183**, 221-231 (2020).
- 169 Besag, F. M. C., Vasey, M. J. & Salim, I. Is Adjunct Aripiprazole Effective in Treating Hyperprolactinemia Induced by Psychotropic Medication? A Narrative Review. CNS Drugs 35, 507-526 (2021).
- 170 Balint-Peric, L. A. & Prelevic, G. M. Changes in prolactin levels with the menopause: the effects of estrogen/androgen and calcitonin treatment. *Gynecol Endocrinol* **11**, 275-280 (1997).

- 171 Karunakaran, S., Page, R. C. & Wass, J. A. The effect of the menopause on prolactin levels in patients with hyperprolactinaemia. *Clin Endocrinol* (*Oxf*) **54**, 295-300 (2001).
- Santharam, S. *et al.* Impact of menopause on outcomes in prolactinomas after dopamine agonist treatment withdrawal. *Clin Endocrinol (Oxf)* 89, 346-353 (2018).
- 173 Indirli, R. *et al.* Cabergoline Withdrawal Before and After Menopause:Outcomes in Microprolactinomas. *Horm Cancer* **10**, 120-127 (2019).
- Maor, Y. & Berezin, M. Hyperprolactinemia in postmenopausal women.*Fertil Steril* 67, 693-696 (1997).
- 175 Shimon, I. *et al.* Women with prolactinomas presented at the postmenopausal period. *Endocrine* **47**, 889-894 (2014).
- Santharam, S. *et al.* Prolactinomas diagnosed in the postmenopausal period: Clinical phenotype and outcomes. *Clin Endocrinol (Oxf)* 87, 508-514 (2017).
- 177 Dekkers, O. M. *et al.* Breast cancer risk in hyperprolactinemia: a population-based cohort study and meta-analysis of the literature. *Eur J Endocrinol* **173**, 269-273 (2015).
- 178 Soto-Pedre, E., Newey, P. J., Bevan, J. S. & Leese, G. P. Morbidity and mortality in patients with hyperprolactinaemia: the PROLEARS study. *Endocr Connect* 6, 580-588 (2017).
- Hembree, W. C. *et al.* Endocrine Treatment of Gender Dysphoric/Gender-Incongruent Persons: An Endocrine Society Clinical
 Practice Guideline. *J Clin Endocrinol Metab* **102**, 3869-3903 (2017).

- 180 Nota, N. M. *et al.* Prolactin levels during short- and long-term cross-sex hormone treatment: an observational study in transgender persons. *Andrologia* **49**, e12666 (2017).
- 181 Defreyne, J. *et al.* Transient Elevated Serum Prolactin in Trans Women Is Caused by Cyproterone Acetate Treatment. *LGBT Health* 4, 328-336 (2017).
- 182 Raven, L. M., Guttman-Jones, M. & Muir, C. A. Hyperprolactinemia and association with prolactinoma in transwomen receiving gender affirming hormone treatment. *Endocrine* **72**, 524-528 (2021).
- 183 Cowden, E. A., Ratcliffe, W. A., Ratcliffe, J. G., Dobbie, J. W. & Kennedy,
 A. C. Hyperprolactinaemia in renal disease. *Clin Endocrinol (Oxf)* 9, 241248 (1978).
- Hou, S. H., Grossman, S. & Molitch, M. E. Hyperprolactinemia in patients with renal insufficiency and chronic renal failure requiring hemodialysis or chronic ambulatory peritoneal dialysis. *Am J Kidney Dis* 6, 245-249 (1985).
- 185 Rodriguez-Puyol, D. *et al.* Molecular heterogeneity of circulating prolactin in chronic uremic men and renal transplant recipients. *J Clin Endocrinol Metab* 62, 352-356 (1986).
- 186 Veldhuis, J. D., Iranmanesh, A., Wilkowski, M. J. & Samojlik, E. Neuroendocrine alterations in the somatotropic and lactotropic axes in uremic men. *Eur J Endocrinol* **131**, 489-498 (1994).
- 187 Lo, J. C. *et al.* Hyperprolactinemia in end-stage renal disease and effects of frequent hemodialysis. *Hemodial Int* **21**, 190-196 (2017).

- Weizman, R. *et al.* Sexual dysfunction associated with
 hyperprolactinemia in males and females undergoing hemodialysis.
 Psychosom Med 45, 259-269 (1983).
- Schaefer, R. M., Kokot, F., Kuerner, B., Zech, M. & Heidland, A.
 Normalization of serum prolactin levels in hemodialysis patients on
 recombinant human erythropoietin. *Int J Artif Organs* 12, 445-449 (1989).

Table 1: Etiology of Hyperprolactinemia.

Physiologic				
Pregnancy				
Breast/nipple stimulation				
Stress				
Sleep				
Coitus				
Exercise				
Pathologic				
Hypothalamic-Pituitary Stalk Damage				
Adenomas				
Craniopharyngioma				
Rathke's cleft cyst				
Suprasellar pituitary mass extension				
Meningioma				
Dysgerminoma				
Hypothalamic/pituitary metastases				
Granulomatous disorders				
Infiltrations				
Pituitary and/or brain irradiation				
Intracranial hypotension				
Trauma: pituitary stalk section, sellar surgery, severe head injury				
Pituitary				
Prolactinoma				
Acromegaly				

Macroadenoma (compressive)

Idiopathic

Plurihormonal adenoma

Lymphocytic hypophysitis

Parasellar mass

Systemic Disorders

Ectopic PRL secretion

Primary hypothyroidism

Chronic renal failure

Polycystic ovary syndrome

Cirrhosis

Pseudocyesis

Epileptic seizures

Malnutrition

Anorexia nervosa

Chest: neurogenic, chest wall trauma, piercings, surgery, herpes zoster

Genetic

Inactivating PRL receptor mutation

Pharmacologic

Dopamine Receptor Blockers

Phenothiazines: chlorpromazine, perphenazine

Butyrophenones: haloperidol

Thioxanthenes

Metoclopramide, domperidone, alizapride

Dopamine Synthesis Inhibitors

α-Methyldopa				
Catecholamine Depleters				
Reserpine				
Cholinergic Agonists				
Physostigmine				
Antihypertensives				
Labetalol				
Reserpine				
Verapamil				
H ₂ Antihistamines				
Cimetidine				
Ranitidine				
Estrogens				
Oral contraceptives*				
Anticonvulsants				
Phenytoin				
Neuroleptics				
Chlorpromazine				
Risperidone				
Promazine				
Promethazine				
Trifluoperazine				
Fluphenazine				
Butaperazine				
Perphenazine				

Thiethylperazine	ĺ	
Thioridazine		
Haloperidol		
Pimozide		
Thiothixene		
Molindone		
Opiates and Opiate Antagonists		
Heroin		
Methadone		
Apomorphine		
Morphine		
Antidepressants		
Tricyclic antidepressants		
Selective serotonin reuptake inhibitors		
*Controversial: see discussion in text		

*Controversial; see discussion in text.

Modified from Kaiser U, Ho K. Pituitary physiology and diagnostic evaluation. In:

Melmed S, Koenig R, Rosen C, Auchus R, Goldfine A, eds. Williams Textbook

of Endocrinology, 14th ed. Elsevier; 2019.

Figure Legends

Figure 1. Neuroendocrine regulation of PRL secretion.

Dopamine traverses the hypophyseal portal system from the hypothalamus to the anterior pituitary, where it binds the D2R and blocks PRL secretion. Suprasellar and infundibular lesions involving the stalk and pharmacologic agents with antagonist activity at the D2R can result in an increase of PRL secretion. By contrast, hypothalamic TRH and VIP stimulate PRL secretion in the pituitary, as does estrogen. PRL is systemically cleared by the kidney so chronic kidney insufficiency can cause elevated levels.

D2R, dopamine 2 receptor; GH, growth hormone; PRL, prolactin; TRH, thyrotrophin-releasing hormone; VIP, vasoactive intestinal peptide. Modified from Huang W, Molitch ME. Evaluation and management of galactorrhea. *Am Fam Physician*. 2012;85:1073-1080.

Figure 2. Diagnostic algorithm for prolactinoma.

Clinical signs and symptoms of hyperprolactinemia, laboratory findings of hypogonadotrophic hypogonadism or sellar mass on MRI should all trigger evaluation of PRL. If moderately elevated (≤200 ng/mL), diagnoses other than prolactinoma may be more likely and should be considered. Equivocal or questionable results inconsistent with clinical findings should prompt further investigation related to diagnostic procedures. If PRL >200 ng/mL, prolactinoma is more likely. Imaging results inconsistent with clinical findings should prompt investigation for nonpituitary mass and stalk effect, or high-dose hook effect. MRI, magnetic resonance imaging; PRL, prolactin; ULN, upper limit of normal.

80

Figure 3. Treatment algorithm for prolactinoma.

Prolactinomas are treated with surgery or DA depending on adenoma size, clinical factors, and patient preference. In microadenomas, patient preference for observation or HRT may also be considered depending on menopausal and gonadal status (dashed line). Follow-up should consider PRL levels, changes on MRI, need for HRT, complications/side effects, and potential for DA withdrawal. Recurrence or lack of remission should prompt DA dose increase or consideration for surgery; intolerability may be addressed by switching to a different DA or surgery. In all of these cases, management at PTCOE is recommended.

DA, dopamine agonist; HRT, hormone replacement therapy; macro, macroadenoma; micro, microadenoma; mo, month; MRI, magnetic resonance imaging; PRL, prolactin; PTCOE, Pituitary Tumors Centers of Excellence.

Figure 4. Prolactinoma management considerations for pregnancy and fertility.

For patients desiring pregnancy, surgery by an experienced surgeon may be considered if cure is likely (dashed line). In patients treated with DA, mechanical contraception should be used until mass shrinkage is observed on MRI. During pregnancy, patients should be closely followed for signs of mass increase; MRI should be used without gadolinium contrast. PRL levels should not be tested. If the mass increases, restart DA if previously discontinued and/or consider surgery in second trimester if absolutely necessary.

81

DA, dopamine agonist; Gd, gadolinium; MRI, magnetic resonance imaging;

PRL, prolactin; ULN, upper limit of normal.

	1	
Evidence	•	Very low quality (VLQ): expert opinion supported by one or
		few small uncontrolled studies
	•	Low quality (LQ): supported by large series of small
		uncontrolled studies
	•	Moderate quality (MQ): supported by one or few large
		uncontrolled studies or meta-analyses
	•	High quality (HQ): supported by controlled studies or large
		series of large uncontrolled studies with sufficiently long
		follow-up
Recommendations	•	Weak: based on VLQ or LQ evidence
	•	Strong: based on MQ or HQ evidence

Box 1: Grading of Evidence and Recommendations.

Based on principles for grading of evidence for guidelines (Guyatt GH, et al. GRADE: an emerging consensus on rating quality of evidence and strength of recommendations. *BMJ* 2008;336:924-926 and Swiglo BA, et al. A case for clarity, consistency, and helpfulness: state-of-the-art clinical practice guidelines in endocrinology using the grading of recommendations, assessment, development, and evaluation system. *J Clin Endocrinol Metab* 2008;93:666-673) as well as on previously published consensus statements from the Pituitary Society (Fleseriu M, et al. Consensus on diagnosis and management of Cushing's disease: a guideline update. *Lancet Diabetes Endocrinol* 2021;9:847-875).