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Abstract

The neutral red retention time (NRRT) assay isuldef detecting decreased
lysosomal membrane stability in haemocytes samipted bivalves, a phenomenon
often associated with exposure to environmentdufaoits including nanomaterials.
Bivalves are popular sentinel species in ecotorgylnd use of NRRT in study of
species in the genus Mytilus is widespread in @mirental monitoring. The NRRT
assay has been used asravivo test for toxicity of carbon nanoparticles (Moore MN
Readman JAJ, Readman JW, Lowe DM, Frickers PE,|8gés 2009. Lysosomal
cytotoxicity of carbon nanopatrticles in cells oétimolluscan immune system: Am
vivo study.Nanotoxicology. 3 (1), 40-45). We here report application of dssay
adapted to a microtitre plate format to a panehefal and metal oxide nanoparticles
(2ppm). This showed that copper, chromium and ¢aotzadoparticles are toxic by this
criterion while gold and titanium nanoparticles act. As the former three
nanoparticles are often reported to be cytotoxideathe latter two are thought to be
non-cytotoxic, these data support use of NRRT gangraln vitro assay in

nanotoxicology.
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1. Introduction

The unusual properties of nanomaterials providenthéth several possible routes to
toxicity in biological systems. Their small sizensgtimes enables them to cross important
biobarriers e.g. skin, blood-brain, intestine, madéfoetus (Tedesco and Sheehan, 2010;
Elsaesser and Howard, 2012; Jiang et al., 2014ir Vbry large surface area to volume ratio
enables a greater proportion of atoms to be displayn the particle surface compared to
corresponding macromaterials (Nel et al., 2008l et al., 2018 Moreover, specific
functional groups on nanoparticle surfaces maylifatg biospecific interactions allowing a
range of possible biological effects (Hoet et aDP4; Moore, 2006; Klaper et al., 2014).
Nanomaterials can also translocate within the hurbady into other systems such as
circulatory and lymphatic vessels (Gwinn and Vatihgn, 2006; Buzea et al., 2007; Elsaesser
and Howard, 2012). Thus, nanoparticles have sigifi potential to cause adverse health

effects in humans and other organisms upon protbegposure.

Because of increasing commercial production andofisanomaterials, issues
of their accumulation and fate in the environmend dheir possible effects on
ecosystems arise (Moore, 2006; Tedesco and She20id;, Ivask et al., 2014). The
majority of human habitation worldwide is within@m of coastlines and the aquatic
environment collects domestic, agricultural, shagpiand industrial runoffs from
these coastal zones. This makes aquatic ecosysartisularly at risk to potential
toxicity of nanomaterials of anthropogenic originvertebrates are key elements of

the aquatic food chain and mussels are amongshtis¢ abundant of these (Baun et

3
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al., 2008). As filter-feeders, mussels are extplisiselective in the particle size-
range which they ingest (Defossez and Hawkins, 19@ard and Kach, 2009) and
can bioconcentrate metals and organic pollutantisinviheir tissues. This has led to
their widespread study in ecotoxicology (Moore, 3.99/iddows and Donkin, 1992)
and filter-feeders have been suggested as espeaitithctive targets for probing the
environmental fate of nanomaterials (Moore, 200&rdlVand Kach, 2009; Canesi et

al., 2012).

Lysosomes are important subcellular organelles ¢batain many hydrolytic
enzymes, carry out protein degradation and det®afye foreign compounds. At the
cellular level, lysosomal digestion pathways ineéyshagocytosis, endocytosis and
autophagy. The lysosomal membrane protects thesalytand therefore the rest of the
cell, from leakage of degradative enzymes. Howernwlfunctioning of lysosomes
and their accumulation of toxic pollutants have rhdéieked to lysosomal storage
diseases and result in lysosomal injury and oxtéatiamage, in some cases leading
to cell death (Moore et al., 2007). The neutral ret@ntion time (NRRT) assay takes
advantage of this phenomenon by measuring decrdasedof retention of a dye,
neutral red (ACS no. 553-24-2), within phagocytaemocytes of a range of aquatic
organisms including mussels, crustaceans andRebdli, 1992; Tedesco et al, 2008;
Lowe et al 1995; Svendsen et al, 2004). In the [@o@entinel specie$)ytilus edulis,
hemocytes are essential immune system componemt&w@dbd and Galloway,

2004). NRTT has been reported as a useful indiadttre organism’s overall health
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status because animals exposed to pollutants dftéee compromised lysosomal
stability (Moore et al., 2009; Borenfreund and Peerl985; Piola et al., 2013). A
spectrophotometric version of the assay was deedldyy Babich and Borenfreund
(1990) and a microscopic slide observation methad developed by Moore et al.,
(2009). This assay takes advantage of the tendefhclzaemocytes to take up
nanoparticles most probably by either phagocytasis macro-endocytosis and
involves exposing haemocytes to nanopatrticles amcaoscope slide (Moore et al.,
2009). In this short report, we have adapted theshodology to a microtitre plate
format enabling high-throughput screening of langenbers of replicates, doses and
nanoparticles simultaneously (Fig. 1). As proopahciple, we have assessed a panel

of metal and metal oxide nanoparticles with thisags



94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

2. Materialsand Methods

2.1. Mytilus edulissampling

M. edulis individuals (4-6cm shell-length) were collectedrir an intertidal site in
Cork Harbour, Ireland (location: 51.49°N, 8 18°Wjolns et al., 2003). All Animals
were acclimated in tanks for a week with a 12 htlidark cycle at a temperature of

15°C and 34-36%. salinity, fed and with regular aiag of water.

2.2.Nanoparticle suspension preparation

Metal or metal oxide nanoparticles (copper oxidéantum dioxide, gold,
chromium oxide and cobalt oxide) of nominal sizé&)rm were purchased from
Sigma-Aldrich (Dorset, UK). Nanopowders (10mg) wewspended in 10 ml of 20
mM citric acid adjusted to pH 7, and sonicatedlflorusing a tip sonicator. A stepped
microtip was used and the total power transferredhie suspension was 2.4W
(determined by the calorimetric method). Ultrasowas applied as 15s pulses with
15s breaks between them (Taurozzi et al., 20133. Siispensions were left at°60
overnight and were then filtered using a 220nm pgize cellulose acetate filter

(Millipore, Watford UK).

2.3.Exposure of haemolymph to nanoparticles
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Haemolymph samples were freshly extracted for NRi®Say as described by
Moore et al. (2009). In the present work, haemolgrfrpom each of five animals was
extracted from adductor muscle using a 20 gaugedefmic needle fitted on a 1 ml
syringe containing 1Q0 tris buffered saline buffer, which was pooledpmvide a
total volume of 2 ml haemolymph solution. Threeltgically independent replicates
were used (i.e. haemolymph was taken from 3x5 iddal animals). Samples were
constantly vortexed to resuspend the haemolymph prellent aggregation.
Haemolymph was then evenly aliquoted (50Q) followed by exposure to
nanoparticles at a final concentration of 2 ppmifdr at ambient temperature (20°C).
Tubes were gently shaken every 5 min to optimiggosure. The above procedure
was applied to a panel of metal or metal oxide particles and a control sample was

treated identically but without the presence ofapaticle.

2.4.Neutral red retention time (NRRT) assay

Following nanoparticle exposure, 1Q0 haemolymph from all six treatment
groups was loaded into individual wells of a 964welicrotitre plate (Sarstedt,
Wexford Ireland). This was performed with threeapdndent biological replicates.
Fifty pl stock neutral red dye solution (200 uM)samhen added. Four plates were
used in parallel for time-points 15, 30, 60 andn®@. All plates were placed in the
dark allowing 15, 30, 60 or 90 min, respectivelyr tlye uptake. Dye and medium

were quickly removed from the plates after inculmatand washed with 150 pL
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fixative solution (1% formaldehyde, 1% calcium cide) for 2 min. Plates were then
rapidly drained, followed by addition of 200ul eadtion buffer (1% acetic acid and
50% ethanol) and left in the dark for 20 min atmotemperature. Absorbance of
extracted dye was measured using a microplate rg&ie808iu Ultra Microplate

Reader, Bio-Tek Instrument Inc., Potton UK) at as@langth of 570 nm.
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3. Resultsand Discussion

3.1. Neutral red retention time assay of metal oxide nanoparticles

Haemolymph fromM. edulis was exposed to a panel of metal or metal oxide
nanoparticles at a final concentration of 2ppm (&g Lysosomal membrane stability
was tested by measuring NRRT at four different tpoets; 15, 30, 60 and 90 min.
Results were analysed and statistically compardket@ontrol group using a one-way
anova test with confidence limit of 95% (Figure Rysosomal membrane stability
showed a significant decrease (p<0.05) upon exposar copper, cobalt and
chromium nanoparticles at all time-points testeddidating toxic effects on
lysosomes of these nanomaterials. However, nofgignt effects were observed on
exposure of titanium or gold nanoparticles, sudgggsthey are less toxic by the

criterion of thisin vitro assay.

3.2.Toxicity of metal or metal oxide nanoparticles

The particles selected for this study have preWobsen reported to display a
range of toxicity in biological systems. Titaniunoxide nanoparticles (which are
widely used commercially as a component of sunssjeare generally regarded as
less toxic to aquatic species (Federici et al, 208@wever, it should be noted that, in
mice, NO and tumour necrosis factor alpha prodactvere elicited after exposure to

titanium dioxide nanoparticles (<10nm). This finglisuggested that both damage to

9



161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

the cell structure and macrophage dysfunction ntay leading to reduction in both
non-specific and specific immune responses in sord&idual animals (Liu et al
2010). Copper oxide and chromium oxide nanopadieale notorious for their toxic
effects, and have been implicated in toxicity tan#target organisms (lvask et al,
2014), reduction of immune status (Zha et al 2088nage to animal tissues (Chen et
al, 2006; Griffitt et al, 2007), and induction adactive oxygen species (Fahmy and
Cormier, 2009; Horie et al 2011). Cobalt oxide naarticles readily enter cultured
human cells where they are found to have a negetffeet on cell viability (Papis et
al.,, 2009). They have been reported to induce pymRNA damage in a
concentration-dependent manner. Various redox eezgotivities were decreased
after treatment with cobalt nanoparticles, sugggspiotential toxic risk and inhibition

of antioxidant capacity (Jiang et al, 2012).

3.3.Potential for high-throughput assay

The assay format reported here includes minimisatd biological variation in
haemocyte populations by pooling haemolymph acrbss individual animals.
Moreover, three independent replicates gave esdlgntientical results and allowed
reproducible discrimination across the nanopartjgdmel studied. Use of 96-well
microtitre plates makes possible high-throughpualysis of large numbers of

samples, replicates and concentrations withinithe-scale suggested by Moore et al.

10
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(2009). This could facilitate rapid quantitative afysis of novel engineered
nanoparticles. An especially attractive featuréhed assay format is that it mimics the
kinds of strategies that many nanoparticles mosbaisly employ in nature to gain
entry to cells such as phagocytosis or macro-ertdeisy This is an ancient and long-

established property of eukaryote cells (ElsaemsdiHoward, 2012).
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Figure 1 Schematic overview of NRTT assay.

Figure 2 Neutral red retention time (NRRT) assay in respotsea panel of
nanoparticles. Neutral red dye extracted from eagolsaemocytes was measured

spectrophotometrically at 570nm in a plate reatjes 0.05 versus control values).
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Neutral red retention time assay used haemolymph of five pooled mussels.
Assay was miniaturised for reading in a plate reader, facilitating many samples and

replicates.
Copper, chromium and cobalt nanoparticles were toxic while gold and titanium were not.



