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Abstract 23 

The neutral red retention time (NRRT) assay is useful for detecting decreased 24 

lysosomal membrane stability in haemocytes sampled from bivalves, a phenomenon 25 

often associated with exposure to environmental pollutants including nanomaterials. 26 

Bivalves are popular sentinel species in ecotoxicology and use of NRRT in study of 27 

species in the genus Mytilus is widespread in environmental monitoring. The NRRT 28 

assay has been used as an in vivo test for toxicity of carbon nanoparticles (Moore MN, 29 

Readman JAJ, Readman JW, Lowe DM, Frickers PE, Beesley A. 2009. Lysosomal 30 

cytotoxicity of carbon nanoparticles in cells of the molluscan immune system: An in 31 

vivo study. Nanotoxicology. 3 (1), 40-45). We here report application of this assay 32 

adapted to a microtitre plate format to a panel of metal and metal oxide nanoparticles 33 

(2ppm). This showed that copper, chromium and cobalt nanoparticles are toxic by this 34 

criterion while gold and titanium nanoparticles are not. As the former three 35 

nanoparticles are often reported to be cytotoxic while the latter two are thought to be 36 

non-cytotoxic, these data support use of NRRT as a general in vitro assay in 37 

nanotoxicology. 38 

39 
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1. Introduction 40 

The unusual properties of nanomaterials provide them with several possible routes to 41 

toxicity in biological systems. Their small size sometimes enables them to cross important 42 

biobarriers e.g. skin, blood-brain, intestine, maternal-foetus (Tedesco and Sheehan, 2010; 43 

Elsaesser and Howard, 2012; Jiang et al., 2014). Their very large surface area to volume ratio 44 

enables a greater proportion of atoms to be displayed on the particle surface compared to 45 

corresponding macromaterials (Nel et al., 2009; Nel et al., 2013). Moreover, specific 46 

functional groups on nanoparticle surfaces may facilitate biospecific interactions allowing a 47 

range of possible biological effects (Hoet et al., 2004; Moore, 2006; Klaper et al., 2014). 48 

Nanomaterials can also translocate within the human body into other systems such as 49 

circulatory and lymphatic vessels (Gwinn and Vallyathan, 2006; Buzea et al., 2007; Elsaesser 50 

and Howard, 2012). Thus, nanoparticles have significant potential to cause adverse health 51 

effects in humans and other organisms upon prolonged exposure.  52 

Because of increasing commercial production and use of nanomaterials, issues 53 

of their accumulation and fate in the environment and their possible effects on 54 

ecosystems arise (Moore, 2006; Tedesco and Sheehan, 2010; Ivask et al., 2014). The 55 

majority of human habitation worldwide is within 100km of coastlines and the aquatic 56 

environment collects domestic, agricultural, shipping and industrial runoffs from 57 

these coastal zones. This makes aquatic ecosystems particularly at risk to potential 58 

toxicity of nanomaterials of anthropogenic origin. Invertebrates are key elements of 59 

the aquatic food chain and mussels are amongst the most abundant of these (Baun et 60 
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al., 2008).  As filter-feeders, mussels are exquisitely selective in the particle size-61 

range which they ingest (Defossez and Hawkins, 1997; Ward and Kach, 2009) and 62 

can bioconcentrate metals and organic pollutants within their tissues. This has led to 63 

their widespread study in ecotoxicology (Moore, 1985; Widdows and Donkin, 1992) 64 

and filter-feeders have been suggested as especially attractive targets for probing the 65 

environmental fate of nanomaterials (Moore, 2006; Ward and Kach, 2009; Canesi et 66 

al., 2012).  67 

Lysosomes are important subcellular organelles that contain many hydrolytic 68 

enzymes, carry out protein degradation and detoxify some foreign compounds. At the 69 

cellular level, lysosomal digestion pathways include phagocytosis, endocytosis and 70 

autophagy. The lysosomal membrane protects the cytosol, and therefore the rest of the 71 

cell, from leakage of degradative enzymes. However, malfunctioning of lysosomes 72 

and their accumulation of toxic pollutants have been linked to lysosomal storage 73 

diseases and result in lysosomal injury and oxidative damage, in some cases leading 74 

to cell death (Moore et al., 2007). The neutral red retention time (NRRT) assay takes 75 

advantage of this phenomenon by measuring decreased time of retention of a dye, 76 

neutral red (ACS no. 553-24-2), within phagocytic haemocytes of a range of aquatic 77 

organisms including mussels, crustaceans and fish (Regoli, 1992; Tedesco et al, 2008; 78 

Lowe et al 1995; Svendsen et al, 2004). In the popular sentinel species, Mytilus edulis, 79 

hemocytes are essential immune system components (Rickwood and Galloway, 80 

2004). NRTT has been reported as a useful indicator of the organism’s overall health 81 
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status because animals exposed to pollutants often have compromised lysosomal 82 

stability (Moore et al., 2009; Borenfreund and Puerner 1985; Piola et al., 2013). A 83 

spectrophotometric version of the assay was developed by Babich and Borenfreund 84 

(1990) and a microscopic slide observation method was developed by Moore et al., 85 

(2009). This assay takes advantage of the tendency of haemocytes to take up 86 

nanoparticles most probably by either phagocytosis or macro-endocytosis and 87 

involves exposing haemocytes to nanoparticles on a microscope slide (Moore et al., 88 

2009). In this short report, we have adapted this methodology to a microtitre plate 89 

format enabling high-throughput screening of large numbers of replicates, doses and 90 

nanoparticles simultaneously (Fig. 1). As proof of principle, we have assessed a panel 91 

of metal and metal oxide nanoparticles with this assay. 92 

93 
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2. Materials and Methods 94 

2.1. Mytilus edulis sampling 95 

M. edulis individuals (4-6cm shell-length) were collected from an intertidal site in 96 

Cork Harbour, Ireland (location: 51.49°N, 8 18°W; Lyons et al., 2003). All Animals 97 

were acclimated in tanks for a week with a 12 h light/dark cycle at a temperature of 98 

15°C and 34–36‰ salinity, fed and with regular changing of water.  99 

 100 

2.2.Nanoparticle suspension preparation 101 

Metal or metal oxide nanoparticles (copper oxide, titanium dioxide, gold, 102 

chromium oxide and cobalt oxide) of nominal sizes <50nm were purchased from 103 

Sigma-Aldrich (Dorset, UK). Nanopowders (10mg) were suspended in 10 ml of 20 104 

mM citric acid adjusted to pH 7, and sonicated for 1h using a tip sonicator. A stepped 105 

microtip was used and the total power transferred to the suspension was 2.4W 106 

(determined by the calorimetric method). Ultrasound was applied as 15s pulses with 107 

15s breaks between them (Taurozzi et al., 2010). The suspensions were left at 60oC 108 

overnight and were then filtered using a 220nm pore size cellulose acetate filter 109 

(Millipore, Watford UK).  110 

 111 

2.3.Exposure of haemolymph to nanoparticles 112 
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Haemolymph samples were freshly extracted for NRRT assay as described by 113 

Moore et al. (2009). In the present work, haemolymph from each of five animals was 114 

extracted from adductor muscle using a 20 gauge hypodermic needle fitted on a 1 ml 115 

syringe containing 100µl tris buffered saline buffer, which was pooled to provide a 116 

total volume of 2 ml haemolymph solution. Three biologically independent replicates 117 

were used (i.e. haemolymph was taken from 3x5 individual animals). Samples were 118 

constantly vortexed to resuspend the haemolymph and prevent aggregation. 119 

Haemolymph was then evenly aliquoted (500 µL) followed by exposure to 120 

nanoparticles at a final concentration of 2 ppm for 1 h at ambient temperature (20°C). 121 

Tubes were gently shaken every 5 min to optimise exposure. The above procedure 122 

was applied to a panel of metal or metal oxide nanoparticles and a control sample was 123 

treated identically but without the presence of nanoparticle. 124 

 125 

2.4.Neutral red retention time (NRRT) assay 126 

Following nanoparticle exposure, 100 µl haemolymph from all six treatment 127 

groups was loaded into individual wells of a 96-well microtitre plate (Sarstedt, 128 

Wexford Ireland). This was performed with three independent biological replicates. 129 

Fifty µl stock neutral red dye solution (200 µM) was then added. Four plates were 130 

used in parallel for time-points 15, 30, 60 and 90 min. All plates were placed in the 131 

dark allowing 15, 30, 60 or 90 min, respectively, for dye uptake. Dye and medium 132 

were quickly removed from the plates after incubation and washed with 150 µL 133 
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fixative solution (1% formaldehyde, 1% calcium chloride) for 2 min. Plates were then 134 

rapidly drained, followed by addition of 200µl extraction buffer (1% acetic acid and 135 

50% ethanol) and left in the dark for 20 min at room temperature. Absorbance of 136 

extracted dye was measured using a microplate reader (Elx808iu Ultra Microplate 137 

Reader, Bio-Tek Instrument Inc., Potton UK) at a wavelength of 570 nm. 138 

 139 

140 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

9 

 

3. Results and Discussion 141 

3.1. Neutral red retention time assay of metal oxide nanoparticles 142 

Haemolymph from M. edulis was exposed to a panel of metal or metal oxide 143 

nanoparticles at a final concentration of 2ppm (Fig. 1). Lysosomal membrane stability 144 

was tested by measuring NRRT at four different time points; 15, 30, 60 and 90 min. 145 

Results were analysed and statistically compared to the control group using a one-way 146 

anova test with confidence limit of 95% (Figure 2). Lysosomal membrane stability 147 

showed a significant decrease (p<0.05) upon exposure to copper, cobalt and 148 

chromium nanoparticles at all time-points tested, indicating toxic effects on 149 

lysosomes of these nanomaterials. However, no significant effects were observed on 150 

exposure of titanium or gold nanoparticles, suggesting they are less toxic by the 151 

criterion of this in vitro assay. 152 

 153 

3.2.Toxicity of metal or metal oxide nanoparticles 154 

The particles selected for this study have previously been reported to display a 155 

range of toxicity in biological systems. Titanium dioxide nanoparticles (which are 156 

widely used commercially as a component of sunscreens) are generally regarded as 157 

less toxic to aquatic species (Federici et al, 2007). However, it should be noted that, in 158 

mice, NO and tumour necrosis factor alpha production were elicited after exposure to 159 

titanium dioxide nanoparticles (<10nm). This finding suggested that both damage to 160 
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the cell structure and macrophage dysfunction may occur, leading to reduction in both 161 

non-specific and specific immune responses in some individual animals (Liu et al 162 

2010). Copper oxide and chromium oxide nanoparticles are notorious for their toxic 163 

effects, and have been implicated in toxicity to non-target organisms (Ivask et al, 164 

2014), reduction of immune status (Zha et al 2009), damage to animal tissues (Chen et 165 

al, 2006; Griffitt et al, 2007), and induction of reactive oxygen species (Fahmy and 166 

Cormier, 2009; Horie et al 2011). Cobalt oxide nanoparticles readily enter cultured 167 

human cells where they are found to have a negative effect on cell viability (Papis et 168 

al., 2009). They have been reported to induce primary DNA damage in a 169 

concentration-dependent manner. Various redox enzyme activities were decreased 170 

after treatment with cobalt nanoparticles, suggesting potential toxic risk and inhibition 171 

of antioxidant capacity (Jiang et al, 2012).  172 

 173 

3.3.Potential for high-throughput assay 174 

The assay format reported here includes minimisation of biological variation in 175 

haemocyte populations by pooling haemolymph across five individual animals. 176 

Moreover, three independent replicates gave essentially identical results and allowed 177 

reproducible discrimination across the nanoparticle panel studied. Use of 96-well 178 

microtitre plates makes possible high-throughput analysis of large numbers of 179 

samples, replicates and concentrations within the time-scale suggested by Moore et al. 180 
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(2009). This could facilitate rapid quantitative analysis of novel engineered 181 

nanoparticles. An especially attractive feature of this assay format is that it mimics the 182 

kinds of strategies that many nanoparticles most probably employ in nature to gain 183 

entry to cells such as phagocytosis or macro-endocytosis. This is an ancient and long-184 

established property of eukaryote cells (Elsaesser and Howard, 2012). 185 

 186 
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Figure legends 289 

Figure 1 Schematic overview of NRTT assay. 290 

Figure 2 Neutral red retention time (NRRT) assay in response to a panel of 291 

nanoparticles. Neutral red dye extracted from exposed haemocytes was measured 292 

spectrophotometrically at 570nm in a plate reader (*p< 0.05 versus control values). 293 

 294 

 295 

 296 

 297 
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Figure 2
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• Neutral red retention time assay used haemolymph of five pooled mussels. 

• Assay was miniaturised for reading in a plate reader, facilitating many samples and 

replicates. 

• Copper, chromium and cobalt nanoparticles were toxic while gold and titanium were not. 

  


