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Abstract: Once released into the environment, engineered nanomaterials (ENMs) undergo complex
interactions and transformations that determine their fate, exposure concentration, form, and likely
impact on biota. Transformations are physical, chemical, or biological changes that occur to the
ENM or the ENM coating. Over time, these transformations have an impact on their behaviour
and properties. The interactions and transformations of ENMs in the environment depend on their
pristine physical and chemical characteristics and the environmental or biological compartment into
which they are released. The uniqueness of each ENM property or lifecycle results in a great deal of
complexity. Even small changes may have a significant impact on their potential transformations.
This review outlines the key influences and outcomes of ENM evolution pathways in aquatic envi-
ronments and provides an assessment of potential environmental transformations, focusing on key
chemical, physical, and biological processes. By obtaining a comprehensive understanding of the
potential environmental transformations that nanomaterials can undergo, more realistic models of
their probable environmental behaviour and potential impact can be developed. This will, in turn, be
crucial in supporting regulatory bodies in their efforts to develop environmental policy in the field
of nanotechnology.

Keywords: environmental transformations; engineered nanomaterial; chemical transformations;
physical transformations; biological transformations; aquatic environments

1. Introduction

Engineered nanomaterials (ENMs) are intentionally produced nanomaterials (NMs)
possessing unique physicochemical properties due to their small size [1]. More specifically,
NMs are described as materials with at least one dimension in the nanoscale (1–100 nm).
Their small size results in an increase in surface area to volume ratio, making NMs more
chemically reactive than their bulk-scale counterparts [2]. Additionally, at the lower end
of the nanoscale spectrum, NMs display quantum effects, whereby properties such as
fluorescence, conductivity, magnetic permeability, and chemical reactivity deviate from
standard bulk material behaviour and become a function of particle size [3]. These novel
properties make ENMs desirable for several new applications, thus making them more
frequently incorporated into consumer products such as cosmetics, paints, textiles, and
electronics [4], as well as being utilised in industrial-scale processes and novel biomedical
practices. Clearly, the rapid growth in ENM use translates into an increased presence
of these materials in the environment [5]. Critically, in assessing ENMs’ environmental
role, it is necessary to consider their complete life cycle. This encompasses all stages of
potential transformations, from the moment of manufacture through consumer use and
ultimate disposal [6]. The control and monitoring of ENMs is relatively straightforward
during the manufacturing stage, and at this stage, the responsibility to provide safety data
for pristine ENMs should be with the manufacturer [7]. However, product behaviour
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and transformation outcomes become far less predictable once nano-products fall into the
consumer realm.

During their lifetime, ENMs may be disposed of in landfills and potentially find their
way into soil, air, or aquatic environmental compartments. This can occur at different
stages in their life cycle, such as during synthesis, product manufacturing, distribution,
the use phase, or disposal. Due to their small size and reactive nature, ENMs may also be
released from waste management facilities into surface waters rather than being retained
within solid waste. It was estimated that 63.0–91.0% of over 260,000–309,000 metric tonnes
of global ENM production in 2010 ended up in landfills, with the balance released into
soils (8.0–28.0%), water bodies (0.4–7.0%), and the atmosphere (0.1–1.5%) [8]. Of those
that are released into aquatic environments, titanium dioxide (TiO2), zinc oxide (ZnO),
carbon nanotubes (CNTs), and silver (Ag) ENMs are thought to be the most commonly
identified [6]. Consumer use of personal care products is a primary route for aquatic
deposition, often via waste-water treatment plants (WWTPs), and this brings about the
potential for a range of transformation reactions to occur.

Clearly, the increasing incorporation of ENMs into consumer products is matched by
the growing need to improve our understanding of their behaviour and apply appropriate
risk assessments. However, if we are unable to accurately monitor and predict ENM
behaviour, then our ability to safely manage their risks is limited. This will reduce public
confidence and affect the nanotechnology industry’s potential to thrive [9].

The prediction of ENM transformations is hindered by our limited understanding
of the complex chemical, physical, and biological transformation processes ENMs can
undergo. This is a consequence of their highly reactive nature and is especially pertinent in
aquatic environments, which can be considered a major compartment for transformations
to occur or a conduit for ENMs to transform during transport to other environmental
compartments [10].

Transformations are dynamic reactions that are dependent not only on the intrinsic
physicochemical properties of ENMs, such as size, composition, surface area, surface
charge, and morphology, but also on external media drivers such as temperature, pH, ionic
strength, and the presence of inorganic and organic aquatic species [5]. In recent years,
several studies have attempted to incorporate more complex variables into mathematical
models of ENM fate in aquatic systems to better understand these dynamic reactions. A
study by Dale et al. [11] suggests that modelling has progressed from early developments
of model flow analysis (MFA) to more complex ENM fate and transport (F&T) modelling.
However, environmental conditions, including temperature, pH, ionic strength, etc., are
still rarely included in models. There is a drive to produce more dynamic models that
incorporate these variables in the hope that they will give a more accurate representation
of real-life outcomes [11].

Another area of limitation for testing environmental transformations is the issue of
kinetics. Many transformations are rapid processes, and yet others are kinetically sluggish,
taking months or even years to occur. One study [2] used thermal transformations as
a proxy for the ageing of a library of comparably sized laboratory synthesised ENMs
with core compositions of copper oxide (CuO), zinc oxide (ZnO), and ceria (CeO2) and
functional surface coatings of polyvinylpyrrolidone (PVP). These were then compared with
a manufacturer-purchased, uncoated ceria dioxide. The thermal heating of the particles
enabled the investigators to establish long-term environmental behaviour for these metal
oxide ENMs over a shorter time period. The work showed that particle capping helped
limit transformation, but even PVP capping of particles allowed a degree of physical and
chemical ENM transformation to take place [2].

Amendments to regulations, including Registration, Evaluation, Authorization, and
Restriction of Chemicals (REACH) Annexes, which aim to properly account for the dis-
tinct properties of ENMs, have recently been established in order to enhance the safety
assessment of ENMs [12,13]. However, most safety test methods were originally designed
for soluble bulk chemicals and are not well suited to ENMs. Thus, it is important that
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they be adapted or revised with the intent to properly assess suspensions of ENMs that
do not readily dissolve or that may transform. In 2015, the Organisation for Economic
Co-operation and Development’s (OECD) Working Party on Manufactured Nanomaterials
(WPMN) listed environmental transformations as a knowledge gap, calling for the devel-
opment of test guidelines and guidance documents specific to ENMs to support chemical
regulatory systems. ENMs currently being used or newly entering the market must be
adequately tested to ensure they will not result in a negative impact on the environment or
environmental organisms. To understand their potential impacts and carry out a sufficient
risk assessment, an understanding of how ENMs are released into the environment, how
they transform, and how these changes affect their environmental fate and impact on
organisms is needed. Currently, internationally standardised test methods to provide such
crucial data to risk assessors are lacking.

This review outlines the key issue of ENM behaviour in aquatic environments and,
through examples in the literature, provides an insight into the assessment of ENM envi-
ronmental transformations, outlining key chemical, physical, and biologically mediated
processes. Particular attention is given to aquatic media composition and its influence on
solid-state and species-driven transformations. Though transformations are considered
here as distinct mechanisms, multiple transformations typically occur simultaneously and
at different rates. This is due not only to the high interdependence on ENM intrinsic
properties, such as surface area and size, but also to external factors such as media com-
position, pH, temperature, and ionic strength acting in tandem [2,10]. In many instances,
transformations are interconnected, whereby one process will facilitate another.

2. Chemical, Physical and Biological Transformations
2.1. Transformation Overview

Once released into the environment, ENMs are likely to undergo various transforma-
tions influencing their chemical, physical, and biological properties (Figure 1) [5]. Table 1
highlights the factors determining the outcome of transformations and the property or
variable having the greatest control over the transformation. Furthermore, Table 2 gives
examples of transformations noted for commonly used ENMs, specifically TiO2, CuO,
CeO2, Ag, ZnO, and graphene, in aquatic environments. Table 3 gives the observations
of the specific examples explored. All the transformations that ENMs undergo have the
potential to alter their solid-state properties. This, in turn, can have significant impacts on
environmental and toxicological behaviour. Only through a full understanding of their
potential transformation pathways and changes can we anticipate the extent of the impact
these ENMs may have.

Table 1. Factors determining the outcome of transformations and the specific property driving the
transformation.

Factors Determining the Outcome of
Transformations Influencing Properties or Variables

ENM morphology Size, shape, available surface area

ENM chemistry Reactivity potential, possible reactions
(e.g., oxidation), surface charge, aggregation state

Environment pH, temperature, organic material
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Table 2. Examples of published transformation studies for commonly used ENMs in aquatic environments.

ENMs Common Aquatic Environment Transformations Examples from Literature

TiO2

Interaction with organic species and biomodification
Photochemical reaction

Redox
Aggregation

[14–18]
[19–21]
[19,22]

[15,16,18,21,23,24]

ZnO

Sulfidation
Phosphitization

Interaction with organic species and biomodification
Photochemical
Aggregation
Dissolution

[25–29]
[27,28,30,31]

[14,32–35]
[10,34]

[32,33,36,37]
[29–31,36]

CuO

Redox
Dissolution
Sulfidation

Interaction with organic species and biomodification
Aggregation

[38,39]
[40–45]
[38,40]

[39,42,45–48]
[41,42,45,48]

CeO2

Redox
Phosphitization

Interaction with organic species and biomodification
Aggregation

[49–51]
[51–55]

[17,56–58]
[51,57]

Ag

Redox
Dissolution
Sulfidation

Carbonation
Interaction with organic species and biomodification

Aggregation
Photochemical

[59–62]
[59,61,63–69]
[25,68,70–76]

[60,77,78]
[60,62,63,70]

[63,78–80]
[66,81]

Graphene

Photochemical reactions
Aggregation

Biodegradation
Interaction with organic species and biomodification

[82–85]
[83,85]
[83,86]
[82,83]

Table 3. Specific examples of published transformation studies discussed in this review.

Redox
Nanomaterial Observations References

Cerium dioxide
Valence state changes upon exposure to elevated temperatures [2]
Redox changes are dependent on exposure medium [87,88]
Undergo dissolution, facilitating the release of toxic Ag+ ions
Significantly enhanced as pH is reduced [10]

Elemental silver (Ag0) An increase in system variables’ concentration, such as chloride and sulfide, will
have a proportional effect on the rate of transformation
Organic ligands, including NOM, may slow down redox processes.

[60]

Zinc oxide Redox changes are dependent on exposure medium [87,88]

Cadmium sulfide Redox changes influenced by the presence of macromolecules and organic ligands
from natural organic matter [87,89]

Dissolution
Nanomaterial Observations References
Citrate-stabilised silver Dissolution influenced the toxicity [90]
Silver Dissolution rate increased at high ionic strength and low pH [44]

Copper oxide
Dissolution is affected by the water characteristics—more soluble in deionised than
natural pond water; however, the dissolution rate was faster in pond water
compared to deionised water

[43]

Zinc oxide Under oxic conditions, ZnO NPs were dissolved within a few hours. By contrast,
ZnO NP dissolution under anoxic conditions was much slower. [29]
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Table 3. Cont.

Sulfidation
Nanomaterial Observations References

Silver

Partly sulfidised Ag ENMs released fewer toxic Agg+ ions than pristine Ag ENMs
over 48- and 120-h intervals. [71]

Increasing the presence of NOM suppressed the sulfidation of Ag nanowires in the
aquatic environment. [91]

The presence of divalent cations compared to monovalent ions in solution,
accelerated sulfidation rates [91]

Smaller AgNPs could result in an enhanced sulfidation rate owing to the reaction
rate’s dependency on the specific surface area of the NP [75]

The increased HS−/Ag ratio and NOM presence influenced sulfidation. The
presence of NOM was also found to influence the sulfidation of AgNPs. [68,75]

The presence of HA promoted sulfidation by replacing the surface coating, thus
increasing the available surface area [68]

Sulfidation mitigated the toxicity of constructed wetlands [76]
PVP-coated Ag Sulfidation was found to reduce dissolution and limit toxicity [72]

Zinc oxide Stabilisation through sulfidation can reduce toxicity as it reduces dissolution and ion
release [26,28]

Posphatization
Nanomaterial Observations References

Zinc oxide

pH-dependent and more likely in acidic environments than alkaline environments [92]
A decrease in toxicity in embryonic zebrafish [28]
Altered morphology [31]
Transformation products are larger than their pristine counterparts, and thus,
surface reactivity is decreased, leading to reduced dissolution and muted toxic
potential

[31]

Physical and chemical changes occur [53–55]

Cerium dioxide
Increased concentrations of phosphate will encourage desorption, limiting
persistence and reducing toxicity risk [10]

Phosphate was capable of immobilising CeO2 through phosphate complexation in
plant roots [93]

Carbonation
Nanomaterial Observations References

Silver

Inorganic silver carbonate (Ag2CO3) coatings have been applied as capping agents
to stabilise them against aggregation [60]

At an alkaline pH, negatively charged CO3
2− surface capping could inhibit

aggregation
[78]

Surface Corona Reactions
Nanomaterial Observations References
Silver Positively charged proteins enhanced the dissolution and sulfidation of AgNPs [68]
ZnO, TiO2, SiO2 and
Al2O3

Adsorption of HA was dependent on pH and decreased as the solution became
more basic [14]

Titanium dioxide NPs with clay were toxic to zebrafish embryo development while NPs in the
presence of HA displayed a protective effect [18]

Gold In low ionic-strength solutions, HA provided an additional coating, thereby
providing additional resistance from pH induced aggregation [94]

Zinc oxide Reduction in toxicity in the presence of HA [35]
Photochemical Transformation
Nanomaterial Observations References
Titanium dioxide UV irradiation in the environment significantly increased aggregation [21]

Graphene oxide Simulated sunlight can rapidly reduce the GO, producing by-products of CO2 and
low-molecular weight species [84]

Silver NOM-facilitated photo-reduction of ionic Ag in river water, could precipitate NPs of
different sizes and morphologies [84]

C-60 Particles underwent surface oxidation and hydroxylation in the presence of
dissolved O2

[95]
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Table 3. Cont.

Physical Transformations
Nanomaterial Observations References

Surface coatings

Surface coatings can be lost through biodegradation, which ultimately results in
aggregation [96]

Using temperature as a proxy for ageing led to enhanced degradation of the PVP
coating [2]

Silver Lower aggregation and higher particle stability was reported with increasing pH [80]

Copper oxide The aggregation and sedimentation of CuO NPs in soil solutions was influenced by
the NP size and the soil properties [48]

Biodegradation
Nanomaterial Observations References
C-60 (fullerenes) Not susceptible to biodegradation due to cage-structure [10]
Single walled carbon
nanotubes

Biodegradation observed when incubated with horseradish peroxidase and H2O2
via enzyme catalysis [97]

Biomodification
Nanomaterial Observations References
Cerium dioxide Shape changes and presence of aggregation [93]

CNT Degradation of the lipid-coating which enabled the CNT to aggregate, aiding in
their destabilisation [98]

Polystyrene NPs quickly acquired specific macromolecular coronas on their surfaces, which
induced aggregation and increased uptake and gut retention [99]

Titanium dioxide NPs with EPS coronas adsorbed more heavy metals compared to NPs without EPS
coronas [17]

Cerium dioxide NPs with EPS coronas adsorbed more heavy metals compared to NPs without EPS
coronas [17]Nanomaterials 2023, 13, 2098 4 of 30 
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2.2. Chemical Transformations

A chemical transformation is the conversion of a compound into one with a different
structure, valency, or composition. There are numerous chemical transformations that can
occur due to various internal and external factors. These can involve a change to the entire
ENM; a change to the surface functionalisation, if present; or the formation of a core-shell
material by surface reactions when only the top layer of the ENM core is modified [100].

Chemical transformations influence particle behaviour. Dominant chemical reactions
in aquatic media are governed by redox (reduction/oxidation) reactions, dissolution, pre-
cipitation, and complexation, either as substitutions of parts/whole of the ENM or on its
surface, the latter forming an environmental organic corona (Figure 2).
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2.2.1. Redox

Reduction-oxidation (redox) reactions are critical to ENM chemical transformations.
These reactions result from an electron transfer between two different chemical moieties, as
shown in Equations (1)–(3), resulting in new moieties that may be more or less reactive in
that specific environment than their earlier counterparts [10,101].

Oxidation: A→ Ax+ + e− (1)

Reduction: Bx+ + e− → B (2)

Overall Reaction: A + Bx+ → Ax+ + B (3)

Redox reactions drive dissolution and complexation with other chemical constituents
by altering the oxidation state of the ENM and thus the ENM’s reactivity. Oxidation and re-
duction reactions are highly influenced by the water chemistry of the environment that they
find themselves in. Oxidising zones can be found in natural waters, surface environments,
and aerated soils, while reduction areas can be found in groundwater, wastewater, and
sediment. Redox cycling is very common in tidal zones due to their dynamic environmental
conditions, which can result in a complex cycle of ENM transformations [5,100,101].

Redox reactions with ENMs are governed by the availability of dissolved oxygen (O2)
or reducing agents (e.g., organic matter), but are also dependent on intrinsic physicochemi-
cal properties of ENMs such as size, surface charge, composition, and reactivity (Figure 3).
In addition, redox chemical changes are temperature dependent [87]. For instance, Briffa
et al. showed that cerium dioxide ENMs undergo valence state changes upon exposure to
elevated temperatures [2]. They are also dependent on ionic strength, as observed by Tantra
et al. when measuring the redox potential of six different sizes of nanomaterials, using
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an oxidation-reduction potential (ORP) electrode probe, in deionised water and various
ecotoxicity media [87,88]. Furthermore, redox chemical reactions may be influenced by the
presence of macromolecules and organic ligands from natural organic matter (NOM), as
observed by Hoffmann et al. when studying cadmium sulphide nanoparticle growth and
colloid stability [87,89].
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Understanding the degradation and release of redox reaction products, such as dis-
solved species, can help elucidate solid-state transformations of the parent material as
well as provide valuable toxicity data. For example, in oxidising aquatic environments,
elemental silver (Ag0) ENMs are likely to undergo dissolution, facilitating the release of
toxic Ag+ ions [10]. Such reactions are exploited in the textile industry for their biocidal
properties. The dissolution of elemental silver is accompanied by the release of an elec-
tron, which can facilitate the production of damaging reactive oxygen species (ROS) [60].
This may be beneficial in commercial products such as cleaners and detergents, or bio-
textiles like antibacterial socks [102]. Furthermore, biogenic Ag nanoparticles have been
successfully used to induce cytotoxicity in human-derived cancer cells through oxidative
stress mechanisms [103]. However, increased incorporation of these materials in consumer
products and in the biomedical industry will lead to increased incidental releases into the
environment [5]. The uptake and internalisation of ENMs within cells has the potential to
cause detrimental cellular effects and could pose a risk to humans and aquatic species [104].
It has been shown that internalisation of ENMs causes ROS production, the extent of which
may also be ligand-specific. For example, it has been shown that both positively and
negatively charged ligands bound to gold ENMs are able to induce ROS production. There
is a much higher percentage of ROS produced by Daphnia magna (D. magna) enterocytes
that are exposed to positively charged cetrimonium bromide (CTAB)-coated gold ENMs
compared to negatively charged citrate-coated ENMs [105]. Oxidative stress is a commonly
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used marker for NM-induced cellular stress. ENMs may be internalised by organisms
via endocytic or passive processes, allowing the delivery of toxic dissolution products to
cellular constituents, the so-called “Trojan Horse” effect [1].

Redox reactions are dependent on the media composition and conditions. In addition
to oxygen dependence, these reactions may also be affected by pH if the ENM transforma-
tion involves protons or hydroxide ions. Dissolution of Ag, for example, is significantly
enhanced as pH is reduced. This is because of increased Ag solubility in more acidic
environments. It has been shown that for Ag in naturally oxidised aquatic environments,
an increase in both the potential of electrochemical reactions and pH typically leads to
the precipitation of AgCl complexes. This contrasts with sulfidation, which occurs in
natural waters isolated from the air or in anoxic environments such as WWTPs. In the
intermediary zone between oxidised and reduced water systems, Ag typically exists as
solid elemental Ag0, though systems rarely stay in equilibrium. Additionally, this will
depend on the concentration of other system variables, such as chloride and sulfide. An
increase in concentration will have a proportional effect on the rate of transformation, while
the presence of organic ligands, including NOM, may slow down these processes [60].
Transformations to Ag2S species are likely to be limited to terrestrial environments, as
seawater rarely reaches low enough potential values due to its aerobic nature.

Overall, it can be noted that redox reactions are very common and likely to occur in the
environment. However, by understanding the potential life-cycle pathways of ENMs that
may undergo redox reactions, including whether these ENMs will be found in oxidizing or
reducing environments, it may be possible to implement a safety-by-design approach to
take these redox transformations into consideration. This means that scientists should aim
to design safer ENMs through aspects such as core-shell modification or capped particles,
whereby the surface is more resistant and resilient. This information can also help inform
governing bodies for regulatory purposes.

2.2.2. Dissolution

Dissolution, which is the formation of a solution by dissolving a solute in a solvent,
is inherently difficult to assess. Variables such as experimental set-up, contamination,
heterogeneity of samples, and structural defects can make the quantification of dissolution
challenging [87]. In principle, measuring dissolution involves analysing the concentration
of a dissolved ionic species in a specific medium over a given period of time [10]. Filtration
and ultracentrifugation are commonly employed for the purposes of separation of the dis-
solved and non-dissolved phases [7]. However, many of the techniques already established
require some adaptations to account for nanoscale properties.

Their small size means that ENMs will simply pass through many of the filters de-
signed for bulk-material separation. One of the major difficulties is the separation of
dissolved ionic species from particulate matter. Membrane filtration through either ultrafil-
tration or dialysis membranes relies on the passage of material through filters. These are
most commonly 0.2 or 0.45 µm filters, with the key difference being that the former is forced
through the membrane with pressure, whereas the latter separates based on concentration
gradients [87]. In addition, although there will likely be an element of ENM retention on
filter papers or membranes, the nominal pore size may allow individual nanoparticles
through the filter pores [87]. An investigation considering the effect of pH, particle size,
and crystal form on dissolution found that membrane dialysis gave comparable results
to the syringe filter method but took too long to complete, thus compromising the exper-
imental design [106]. Therefore, it is important to consider not only accuracy, precision,
and experimental reproducibility but also practicality and appropriateness within time
constraints for a given experiment.

Coupling these processes with analytical mass spectrometry methods, such as induc-
tively coupled optical emissions spectrometry (ICP-OES) and inductively coupled plasma
mass spectrometry (ICP-MS), may prove useful for determining dissolved ionic species
content. While in both techniques an argon plasma is used to ionise the elements in a
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sample, ICP-OES uses the emitted radiation from the plasma to analyse the excited atoms,
while ICP-MS uses MS to measure the ions’ mass [107]. One main difference between
the techniques is that ICP-MS has a lower detection limit extending to parts per trillion,
while the lower limit for ICP-OES is parts per billion. However, ICP-OES has a higher
tolerance to total dissolved solids (up to 30.0%) when compared to ICP-MS (about 0.2%).
For determining dissolved ionic species content, complete separation of particulate matter
and dissolved ionic content needs to be guaranteed, as, except for single-particle ICP-MS
methods, mass spectrometry instruments identify ions based on mass and are unable to
distinguish between dissolved species and particulate matter.

Determining the dissolution rate of ENMs is important to understand changes related
to their bioavailability, redox activity, fate, and toxicity. Dissolution is often used as
a measure of a nanomaterial’s biodurability and, in turn, toxicity [108]. Lee et al., for
instance, found that dissolution influenced the toxicity of citrate-stabilised silver ENMs
and polyethylene glycol-coated silver ENMs to zebrafish embryos in two different ionic
environments [90]. Unfortunately, to date, many studies on ENM dissolution have not
determined dissolution rates and rate constants [108]. One of the few works to have
done so is that of Yadav et al., who found that dissolution is affected by the water’s
characteristics [43]. The authors showed that CuO NPs were more soluble in deionised
water (0.054 mg/L) than in natural pond water (0.035 mg/L); however, the dissolution
rate was faster in pond water (0.049 h−1) compared to deionised water (0.034 h−1) [43].
This highlights how dependent transformations are on the environment. Supporting this
dependency on the environment, Stetten et al. [29] found that under oxic conditions, ZnO
NPs were dissolved within a few hours; however, under anoxic conditions, dissolution
was much slower. In the study of Yadav et al., the dependence of transformations on the
chemistry of the NP in question is also highlighted. Natural pond water consists of NOM,
minerals, and other contaminants that could affect the dissolution and dissolution kinetics.
NOM can produce a protective coating on NPs that mitigates their dissolution. Decreasing
the pH and increasing the ionic strength of the medium enhances the dissolution of ENMs.
Indeed, Mbanga et al. showed that the dissolution rate of Ag NPs increased at high ionic
strength and low pH [44].

The dissolution rate of ENMs in environmental media is a regulatory information re-
quirement within REACH and of importance in other chemical regulations worldwide [109].
Some data and methods are available on the dissolution kinetics of metal and metal oxide
ENMs and can be used for the development of an ENM-specific dissolution test guideline
(TG). However, current methods for the determination of dissolution rates were primarily
designed for bulk dissolvable chemicals such as OECD TG 105 [110]. Few methods that
take the nanodimensions into consideration actually exist (e.g., ISO 19057). Extensive
consideration of available methods has concluded that, when implemented for ENM disso-
lution testing, they all have associated advantages and disadvantages. TG 105 describes
two methods (a static batch test and a dynamic test) to determine solubility, which can be
adapted for ENMs [110]. The recent (2021) OECD guidance document 318 which focuses
on the dispersion stability of nanomaterials, is the first step towards reliably assessing their
behaviour in media [111]. These tools would help support governments and regulators in
implementing effective risk assessment policies for ENMs.

In recent years, there have been dedicated research efforts to provide approaches
and data to support the development of the TG. There are some comprehensive studies
that have been carried out in relation to dissolution, such as the work of Keller et al. [112]
and Koltermann-Jülly et al. [113]. Overall, there are multiple ongoing activities relating to
dissolution work being conducted as part of EU-funded research projects and at the OECD.
The multifold dimensions and complexity of developing such guidelines for such complex
and transformational materials need to be recognised.
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2.2.3. Structural Transformation
Sulfidation

Redox reactions can initiate species-driven chemical changes such as sulfidation. This
is an important consideration, as although in this review transformations are discussed
separately, in reality, multiple transformations can happen concurrently and/or sequentially.
Having knowledge about ENM physicochemical properties and media parameters, such as
dissolved O2, pH, ionic strength, and solubility constants, enables predictions to be made
using geochemical speciation models and phase diagrams [10].

One study considered the effect of sulfidation on Ag ENMs and its impact on dissolu-
tion [71]. The authors used deionised water and various biological media complemented
with artificial seawater. They found that in all cases, partly s Ag ENMs released fewer
toxic Ag+ ions than pristine Ag ENMs over 48- and 120-h intervals and that this reduced
toxicity to aquatic organisms. Levard et al. [71] also found that toxicity was significantly
reduced in the higher ionic strength solutions compared to those of lower ionic strength.
It was reported that this was independent of sulfidation and likely to be due to chloride
complexation with dissolved species to form AgCl species [71]. Zhang et al. [91] found that
increasing the presence of NOM actually suppressed the sulfidation of Ag nanowires in the
aquatic environment. The authors [91] explained that the Ag nanowires could coordinate
and be complex with the N and S-containing ligands in the NOM, forming strong-bonded
coatings that would decrease the dissolution of the Ag nanowires and thus their interaction
with sulfides. Furthermore, Zhang et al. [91] found that the zeta potential of Ag nanowires
in the presence of NOM was more negative than that of pure Ag nanowires. Hence, the
electrostatic repulsion between the negatively charged Ag nanowires and sulphide ions
increased in the presence of NOM, with the consequence that the sulfidation rate was
reduced. Meanwhile they [91] reported that the presence of divalent cations, including
Mg2+ and Ca2+ in solution accelerated sulfidation rates when compared to monovalent ions
such as Na+ and K+. Other work [72] considered the effect of sulfidation on PVP-coated Ag
ENMs, and, again, sulfidation was found to reduce dissolution and limit toxicity. This study
also showed that the PVP coating failed to protect the Ag particles from corrosion and,
consequently, elemental silver (Ag0) was oxidised upon reacting with sulphur (HS−) and
then re-precipitated as Ag2S nano-bridges between adjacent particles, forming aggregates
with a lower dissolution potential.

Prasher et al. concluded that smaller AgNPs could result in an enhanced sulfidation
rate owing to the reaction rate dependency on the specific surface area of the NP and found
that the increased HS−/Ag ratio also significantly enhanced sulfidation [75]. The presence
of NOM was also found to influence the sulfidation of AgNPs. In contrast to the findings of
Zhang et al. [64], Zhang et al. observed that the presence of HA promoted the sulfidation
of AgNPs by replacing the surface coating of NPs, thus increasing the available surface
area [68]. Similarly, Thalmann et al. [70] found that the sulfidation rate increased with
increasing NOM concentrations. The discrepancy with the observations made by Zhang
et al. in [64] could be explained by the different morphologies of the Ag nanomaterials. For
AgNPs, their stability was promoted and their aggregation reduced by NOM [68]. As a
result, the surface area of AgNPs increased, such that more AgNPs were able to react with
sulphide ions [68]. In the case of Zhang et al. [64], the Ag nanowires were already well
dispersed in the absence of NOM. Thus, their surface area was unaffected by NOM. Rather,
the absorption of NOM on the Ag nanowires reduced sulphide ions’ access to react with Ag.
Sulfidation is usually accompanied by substantial aggregation and sedimentation and a
lower dissolution rate, inevitably affecting the bioavailability and fate of NPs. Indeed, Cao
et al. reported that sulfidation mitigated the toxicity of AgNPs in constructed wetlands [76].

ZnO ENMs also have the potential to release toxic Zn2+ via dissolution [26]. It has
been shown that under ambient temperature conditions and in the presence of sufficient
concentrations of sulfide, the ZnO ENMs would completely transform to ZnS(s) within
5 days. The authors suggested that this is a highly likely transformation in the anoxic river
and lake sediment environments, where typical sulphide concentrations range from 1 to
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100 µgL−1 [26]. In wastewater treatment facilities, sulphide concentrations are expected to
rise from a few µgL−1 to 10 mgL−1, further increasing the likelihood of occurrence. This
is important for Zn ENMs, as many of the consumer products that contain ZnO ENMs
are likely to pass through water-treatment facilities prior to being discharged into various
aquatic environments such as rivers, lakes, seawater, and WWTPs. Critically, stabilisation
of ZnO ENMs through sulfidation can reduce toxicity as it reduces dissolution and ion
release [26]. Indeed, Lee et al. showed that sulfidation of ZnO NPs reduced embryonic
zebrafish toxicity, which was attributed to the hindrance of zinc release by the sulphates that
probably enclosed the NPs [28]. However, this also increases environmental persistence.

Phosphatisation

Phosphatisation has a similar mechanism to sulfidation but is instead driven by the
phosphate constituents within the media. Phosphatisation of ZnO ENMs has been shown to
be pH-dependent and more likely in acidic environments than in alkaline environments [92].
Xu et al. [92] demonstrated that phosphatisation at the surface of ZnO ENMs greatly
enhanced their ability to remove harmful lead ions in polluted water. This highlights
that artificial or natural phosphate capping of ENMs can be beneficial for the remediation
of trace metal-polluted waters, such as those in acid mine drainage (AMD). Similar to
sulfidation, the phosphatisation of ENMs can mitigate toxicity in microorganisms. For
instance, Lee et al. reported a decrease in toxicity in embryonic zebrafish when inducing
ZnO NP’s transformations with phosphor [28].

Lv et al. found that the addition of a low concentration of phosphate to ZnO ENMs
resulted in an altered morphology when observed with TEM [31]. The ZnO ENMs were
transformed from uniform spheres (30–50 nm) to amorphous and aggregated crystalline
phases. This was further investigated with X-ray absorption near edge structure (XANES)
showing the structural transformation from ZnO to hopeite (Zn3(PO4)2·4H2O) [31]. Phos-
phate transformation products for ZnO ENMs are larger than their pristine counterparts,
and thus, surface reactivity is decreased, leading to reduced dissolution and muted toxic
potential, as well as the potential to scavenge harmful trace metals through adsorption onto
porous phosphate surfaces [31].

Phosphatisation is also highly relevant to other metal-oxide ENMs. Zhang et al. [55],
Briffa et al. [54], and Romer et al. [53] have all shown that physical and chemical changes
occur when cerium dioxide (CeO2) nanoparticles are exposed to phosphate-rich conditions
at pH 5.5 [53–55]. Figure 4 shows an example of the change in shape and morphology
to sea-urchin-like structures as zirconium-doped cerium dioxide ENMs are exposed to a
phosphate solution at pH 5.5 [54].

Hartmann reported that CeO2 was found to aggregate in aquatic environments, typ-
ically depositing within the soil sediment through adsorption. However, increased con-
centrations of phosphate will encourage the desorption of CeO2 ENMs from natural col-
loids [10]. thus limiting environmental CeO2 persistence and reducing the toxicity risk
to some organisms, particularly filter feeders. Work by Zhang et al. demonstrated that
phosphate was capable of immobilising CeO2 through phosphate complexation in plant
roots [93]. The authors found that this inhibited further translocation and toxicity from
CeO2 and that plant biomass was reported to be higher for samples treated with phosphate.
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Carbonation

Carbonate (CO3
2−) concentration in different environmental media plays a significant

role in driving carbonate complexation and precipitation [10]. Carbonation also affects
particle stability. For example, inorganic silver carbonate (Ag2CO3) coatings have been
applied as capping agents to Ag ENMs to stabilise them against aggregation. In addition,
these coatings can be acquired naturally following release into aquatic environments [60].
Natural precipitation of Ag2CO3 at particle surfaces is only likely in alkaline environments,
as metal carbonates are unstable at pH below 7 [60]. Carbonation is, therefore, unlikely
to occur in many of the natural environments in which Ag ENMs may be released [60].
Piccapietra et al. demonstrated that at an alkaline pH, negatively charged CO3

2− surface
capping could inhibit aggregation [78]. However, they found that when increased concen-
trations of divalent Ca2+ (more than 2 mM) were introduced to the media and pH was
reduced below 5, CO3

2− species were neutralised, moving the zero-point of charge close to
zero and resulting in agglomeration [78].

2.2.4. Surface Corona Reactions

Upon being released into the environment, ENMs have the potential to interact with
other substances such as macromolecules, other NOMs such as humic substances [10], and
biomolecules such as proteins or carbohydrates that are released by organisms as part of
natural processes. These processes are typically characterised by adsorption and desorption,
often resulting in surface coatings analogous to protein or environmental coronas [5].

Proteins also play a crucial role in the transformation of ENMs released into the
environment, as they will react according to the surface charge of the proteins. Zhang
et al. recently demonstrated that positively charged proteins enhanced the dissolution and
sulfidation of AgNPs when compared to negatively charged proteins [68].

These interactions can lead to scenarios where ENMs either adsorb a substance such
as humic acid (HA) onto their surfaces or become adsorbed onto other environmental
substances, typically larger colloids [10]. Clearly, these processes facilitate transformation,
altering the surface properties of the ENMs and having the potential to impact mobility,
behaviour, and eventually environmental fate.

Yang et al. investigated humic acid adsorption behaviour for ZnO, TiO2, SiO2, and
Al2O3. HA adsorption occurred for all ENMs except for SiO2, and the authors propose
that electrostatic charge differences were responsible for the inability of SiO2 to adsorb
HA due to paired repulsive negative charges [14]. The authors reported that the highest
rates of adsorption were observed for TiO2 and
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authors attributed the beneficial effect of HA to a combination of hetero-aggregation and
adsorption of HA, which decreased the availability of the TiO2 NPs [18].

Work by Diegoli et al. considered the effect of using the Suwannee River Humic
Acid Standard on acrylate and citrate-capped gold nanoparticles [94]. They found that
in low-ionic-strength solutions, Suwannee River Humic Acid provided an additional
coating to capped gold ENMs, thereby providing additional resistance from pH-induced
aggregation. However, it was found that humic acid did not prevent aggregation in
the presence of high-ionic-strength solutions, which would be comparable to hard-water
environments [94]. Clearly, these processes are technically challenging to quantify in natural
environments due to the outweighing likelihood of heteroaggregation and variable external
media parameters. These are all factors that need to be kept in mind when developing risk
and testing guidelines.

Adsorption of molecules, including biomolecules, to ENMs’ surfaces alters the identity,
stability, and toxicity of the ENM towards organisms. NOM and biomolecules may replace
surfactants or ligands that originally provided charge or coating to the ENM surface in
order to ensure dispersion [114]. The replacement of these ligands by NOM or biomolecules
may cause stabilisation or destabilisation, leading to ENM transformation and possibly
agglomeration. The presence of this environmental corona also transforms the ENM surface,
as newly acquired biomolecules may result in a change in ENM shape, thereby also altering
toxicity. For instance, Qin et al. showed a reduction in the toxicity of ZnO NPs in the
presence of HA [35]. While the exposure of zebrafish embryos to ZnO NPs displayed
toxicity effects, the presence of HA resulted in an increase in survival rate as a result of
the reduction of adhesion of ZnO NPs on the embryonic chorionic surface [35]. Shape and
morphology have been shown to have an impact on solubility as specific surface areas
are influenced. Smaller ENMs are more likely to be energetically unstable and prone to
dissolve [115] due to a larger available surface area and proportionally more atoms on the
surface.

2.2.5. Photochemical Transformation

Light may cause excitation of ENMs, free radical formation, and/or changes to an
ENM’s surface/coating. Thus, changes can be due to incident light wavelength, the
ability of light to penetrate the outer layers of the material, and photosensitivity or photo-
degradation potential.

Photochemical reactions can have significant effects in the case of several metal oxide
ENMs, in particular TiO2, and to a lesser extent Ag, CuO, and CeO2 [10]. Natural UV
radiation must be accounted for when considering aquatic environments such as rivers and
seawater. In addition, a growing number of wastewater treatment plants utilise artificially
induced UV for water disinfection treatments [116].

Photochemical transformations are a form of chemical reaction in which materials
absorb light [10]. The main transformation that occurs is the degradation of natural
surfaces or artificial surface coatings present on ENMs. There are two principal types of
photochemical degradation: photolysis and photocatalysis [10]. Photolysis is characterised
by the absorbance of photons, which excites electrons to higher energy bands. As excited
electrons are inherently unstable, they will emit radiation as they fall back to their ground
state. It is at this point that the release of radicals such as ROS takes place. The release
of ROS has the subsequent effect of damaging molecular bonds and, hence, causing the
breakdown of surface structures on ENMs [10]. Photocatalysis on the other hand occurs
in the presence of a catalyst, which can speed up chemical reactions [10]. Once again, the
production of ROS and damage to surface structures are associated with this mechanism.

Nano-TiO2 is well known for its photoactivity and ability to adsorb UV radiation [20].
This is one of the main reasons it is used in cosmetics, particularly in sunscreen products.
However, due to the potential that TiO2 has to generate ROS and oxidative tissue dam-
age, much concern has been raised about the implications for toxicity and environmental
impact [22]. An investigation by Sun et al. found that UV irradiation of TiO2 in the envi-
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ronment significantly increased aggregation [21]. They found that 50 h of UV irradiation
accelerated the aggregation rate by 27 times, resulting in hydrodynamic aggregate diam-
eters greater than 620 nm. Clearly, this transforms nano-TiO2 to result in a size that is
outside the regulatory definitions for ENMs. Furthermore, the authors found the growth of
hydroxyl surface groups as identified with attenuated total reflectance Fourier transform
infrared spectroscopy (ATR-FTIR) [21]. ATR-FTIR provides information related to the
presence of specific functional groups. Shifts in the frequency of absorption bands and
changes in relative band intensities indicate changes in the chemical structure [117]. Thus,
ATR-FTIR spectroscopy can be used to determine the resultant surface chemistry, especially
following induced chemical or physical modifications [117]. Sun et al. [21] found that by
increasing the UV irradiation time, successive growth of three IR bands at 3630, 3670, and
3730 cm−1 was observed, which correspond to the presence of hydroxyl groups. These
changes to surface charge are expected to be the causal factor for rapid aggregation in this
study via electrostatic de-stabilisation.

Studies on graphene oxide (GO) reveal that GO can undergo photochemical reactions
when exposed to sunlight in natural environments [84]. Simulated sunlight can rapidly
reduce the GO, producing by-products in the form of CO2 and low-molecular-weight
species. In addition to degradation, photochemical reactions can result in the synthesis
of ENMs from precursor materials in aquatic environments. Hou et al. suggested that
NOM-facilitated photo-reduction of ionic Ag in river water could precipitate nano-sized Ag
particulates of different sizes and morphologies [84]. They proposed a mechanism for Ag
ion reduction when adsorbed onto NOM [84]. This is especially anticipated in river waters
fed by municipal waste and industrial effluent. Importantly, photochemical reactions can
occur over variable timescales. The study by Hou et al. found that the initial photoreaction
and CO2 production from GO photoreduction were rapid and independent of dissolved
O2 [84]. However, dissolved O2 was critical in driving photo-reduction over longer time
periods (>10 h) when compared to nitrogen-saturated environmental conditions [84].

Another study by Hwang and Li considered the photochemical transformation of
nano-C-60 under environmentally relevant conditions [95]. They found that the particles
underwent surface oxidation and hydroxylation in the presence of dissolved O2 when
investigated with X-ray photoelectron spectroscopy (XPS) and ATR-FTIR. However, no
core change or dissolution occurred during the 21-day study. This is likely due to most
photochemical reaction products being water-insoluble and prone to remaining on the
surface of the particle [95]. They also found that photochemical transformations in the
absence of dissolved O2 were negligible [95].

2.3. Physical Transformations

Physical transformations are essentially aggregation and agglomeration. The interac-
tions between particles in solution are broadly governed by the DLVO theory (Deryaguin,
Landau, Verwey, and Overbeek), which states that the interaction energy between parti-
cles in solution is the sum of the repulsive electrostatic forces and attractive forces [10].
Aggregation and agglomeration are particularly dominant physical transformations that
can occur at any time throughout an ENM life cycle and can result in the conformation
of a particle community [6]. Agglomeration and aggregation differ in that agglomeration
involves the reversible conformation of particle groups under the weak attraction of Van
der Waals forces, whereas aggregation is characterised by irreversible clustering due to
strong chemical or electrostatic bonds (Figure 5). Aggregation and agglomeration are
strongly dependent on the intrinsic physicochemical properties of the ENMs, such as size,
surface charge, and capping agent, though they are also strongly influenced by the aquatic
solution chemistry [118]. Once again indicating the importance of having a thorough un-
derstanding of ENM chemical and physical properties along with potential environmental
pathways makes for predicting and understanding potential transformations, behaviour,
and ultimately toxicity.
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Figure 5. Comparison between aggregated and agglomerated particles, showing aggregates con-
sisting of more tightly bound particles than agglomerates between the same type of nanomaterial
(homo-) and different nanomaterials (hetero-).

Since in environmental systems the concentrations at which ENM dispersions will be
found are likely to be dilute, homoagglomeration and/or homoaggregation, which occur
between the same type of NM, are unlikely, and heteroagglomeration and/or heteroaggre-
gation, which occur between different types of NMs, will tend to dominate. This may result
in changes in transport, dissolution, reactivity, and bio-uptake, as have been recorded for
NPs including silver [101,119] and zinc oxide [65,101,120].

Aggregation typically leads to an alteration in the fractal geometry of ENMs with
the potential to increase size and reduce the surface area to volume ratio, as well as
increasing environmental persistence through reduced rates of dissolution [5]. Importantly,
a subsequent decrease in reactivity may reduce environmental toxicity. Surface area and
toxicity are particularly important, as any reduction in available surface area will reduce
the available surface for ROS generation [121].

In most cases, ENM manufacturing involves the addition of stabilising functional
surface coatings, specifically to prevent or minimise aggregation. However, the process of
ageing has been shown to degrade the ENM surface coating. Kirschling et al. demonstrated
that surface coatings such as polyethylene oxide can be lost through biodegradation, which
ultimately results in aggregation [96]. Both TiO2 and ZnO are liable to photochemical
oxidation, which can degrade particle coatings and induce aggregation [10].

Briffa et al. found that using temperature as a proxy for ageing led to enhanced
degradation of PVP coatings for various metal oxide NPs, including CeO2, CuO, and
ZnO [2]. Despite this, even at a high temperature (~80 ◦C), capped ENMs still provided
greater resistance to the effects of aggregation than their uncapped counterparts. The pH of
the medium has also been shown to influence aggregation since it controls the oxidative
dissolution and surface charge of ENMs. For instance, Fernando and Zhou showed different
behaviour for Ag NPs at low and high pH. Lower aggregation and higher particle stability
were reported with increasing pH [80].

Qiu et al. observed that the aggregation and sedimentation of CuO NPs in soil
solutions were influenced by the size of the NPs as well as the soil properties [48]. The
authors found that larger-sized (80 nm) CuO NPs tended to settle without aggregation or via
hetero/homo-aggregates, while smaller-sized (50 nm) CuO NPs formed hetero-aggregates
with natural colloids in the soil, and the rate of sedimentation was accelerated [48]. The
presence of dissolved organic matter increased the residual concentration of CuO NPs in
soil solutions and thus their mobility [48].
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2.4. Biological Transformations

Biological transformations in environmental media are highly relevant to solid-state
transformations. These transformations share many similarities with the mechanisms
mentioned for “interactions with organic media”, in which adsorption and desorption
of macromolecules and organic ligands are key [10]. However, interaction with living
organisms is also necessary to fulfil the definition of a biological transformation. These are
changes that occur in the ENM and are related to living organisms or tissues (intercellular
or extracellular) and environmental media [5,101].

Biological interactions, in the same way as physical interactions, can affect the surface
charge, aggregation state, and reactivity. These could occur in the core or the coating and
possibly change the NMs’ transport, bioavailability, and toxicity [5] by affecting surface
charge, aggregation, and reactivity [100]. Biological transformations, such as bio oxidation,
biodegradation, and interaction with macromolecules and organic ligands, including
NOM and humic substances, have the potential to influence bioavailability, environmental
reactivity, eco-persistence, and toxicity and, therefore, cannot be ignored [5].

Biological transformations fall into two broad categories: biodegradation and biomod-
ification (Figure 6). Biodegradation occurs when microorganisms cause the breakdown or
decomposition of materials such as graphene oxide [10]. In contrast, biomodifications are
biologically mediated processes that are facilitated by organisms’ uptake or as an indirect
consequence of interactions with living matter [10].
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2.4.1. Biodegradation

Biodegradation occurs when microorganisms, such as bacteria and fungi, break down
compounds. Biodegradation is well documented for several carbon-based nanoprod-
ucts, including fullerenes (C-60) as well as single-wall and multiwall carbon nanotubes
(SWCNT/MWCNT). One study using the OECD Ready Biodegradability Test (OECD TG
301) showed that C-60 (fullerenes) were not susceptible to biodegradation and that this
was most likely due to its cage structure [10]. However, the sheet-like arrangement of
carbon atoms in graphene may result in it becoming more susceptible to biodegradation
and changing into more water-dispersible forms.

In contrast, other studies that were not conducted according to standardised OECD
test guidelines report positive results on biodegradation. For example, single-walled carbon
nanotubes were incubated with horseradish peroxidase and H2O2 via enzyme catalysis [97].
Clearly, this shows that the type of test method employed can be critical to the outcome of
the transformation and can potentially lead to classification errors. Therefore, standardised
testing protocols are vital to obtaining data to guide regulatory bodies. Some recent
advances have been made in determining graphitic material degradation. Chen, Qin, and
Zeng found that using naphthalene-degrading bacteria and associated enzymes resulted
in the successful degradation of graphene oxide, graphite, and reduced graphene oxide
materials [86]. Considering the increased use of carbon-based ENMs, this is encouraging
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as it offers a biological tool that can potentially be used to remediate waters polluted with
carbon-based materials.

2.4.2. Biomodification

Biomodification is a transformation process that occurs following uptake by an organ-
ism or due to an indirect biotic process. These processes may occur due to ingestion by
organisms or through uptake into plants through roots [10,55]. A subset of examples from
the numerous biomodification studies in the literature are discussed below.

Translocation and transformations in plants have been shown to be highly dependent
on plant species and environmental concentrations of phosphate [93]. For example, a
study examining CeO2 translocation and transformation found that where phosphate was
removed from the media composition, plant translocation of Ce3+ from root to stem was
enhanced, particularly for wheat and corn species. This is likely due to the immobilising
effects of the phosphate, which was removed [93]. When the nutrient solution contained
phosphate, pristine octahedral CeO2 formed rod-shaped complexes on root surfaces during
immobilisation. In the absence of phosphate from the nutrient media, nano-CeO2 floccu-
lated as aggregates in the root vacuoles [93]. This strongly suggests the interconnecting
link that phosphatisation and biomodification have on nano-CeO2, especially with respect
to facilitating chemical species changes and physical aggregation. In addition, this is of
critical importance for aquatic environments, which receive high amounts of discarded
phosphate-containing fertilizers.

ENM uptake and transformations both have an effect on the organism. One study
found that D. magna were able to ingest lipid-coated (lysophophatidylcholine) nanotubes,
using the lipid coating as a food source [98]. This resulted in the degradation of the lipid
coating, which enabled the CNT to aggregate, aiding in their destabilisation.

Another study considered the acquisition of an eco-corona by polystyrene NMs [99].
D. magna neonates were exposed to a conditioning medium, allowing D. magna to secrete
organism-specific proteins into the solution. The neonates were then removed from the
conditioning media, and the polystyrene NPs were added. It was found that the polystyrene
NPs quickly acquired specific D. magna macromolecular coronas on their surfaces, which
induced aggregation and heightened uptake and gut retention [99]. In a separate study,
Zhang et al. found that NPs coated with extracellular polymeric substances (EPS), organic
polymers produced by microorganisms, formed EPS-NP coronas, which increased the
accumulation of heavy metals and the biotoxicity of NPs [17]. The authors revealed that
EPS coronas on TiO2 NPs and CeO2 NPs adsorbed more heavy metals (Cd2+, Pb2+, Cu2+,
Ni2+, and Ag+) compared to NPs without EPS coronas [17]. Whilst such results showed the
ability of EPS-NPs to absorb and remove heavy metals by forming metal complexes, they
can also increase the toxicity of NPs by accumulating highly toxic heavy metals in marine
environments [17].

Another study considered the effect that aggregation had on uptake by suspension-
feeding bivalves. The study found that 100-nm ENMs were much more readily ingested
as aggregates than the same 100-nm fully dispersed ENMs [122]. This also led to a longer
gut retention time, which enhanced the likelihood of organismal toxicity. Clearly, the main
ways in which organisms are likely to change the solid-state characteristics of ENMs are
through surface coating enhancement or removal or through the acquisition of a biological
or ecological coating. These transformation processes typically occur simultaneously
with other transformation processes and often instigate secondary processes, including
aggregation or morphological changes.

The main characteristics of the transformations reviewed have been summarised in
Table 4.
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Table 4. Summary table of the main characteristics of the transformations reviewed in this paper.

Transformation
Classification Type of Transformation Key Features Environmental Impact

Chemical Redox

Influenced by media composition
and conditions

Dependent on intrinsic
physicochemical properties of ENMs

Influenced by the presence of
macromolecules and organic ligands

Drives reactivity
Internalisation may cause

ROS production

Chemical Dissolution Used as a measure of bio-durability
and toxicity

Enhanced by environmental
parameters

Enhances toxicity

Chemical Sulfidation

Influenced by media composition
and conditions

Usually accompanied by substantial
aggregation and sedimentation and a

lower dissolution rate

Sulfidation can reduce toxicity
in low redox environments, as

it reduces the dissolution

Chemical Phosphatization

pH dependent and more likely in acidic
environments than

alkaline environments
Decreases particle surface reactivity

Drives particle size increase
and reduces dissolution.

Can mitigate toxicity

Chemical Carbonation Affects particle stability Inhibits aggregation

Chemical Surface corona reactions
ENM surface properties modified

Positively charged proteins enhance
dissolution and sulfidation

Biomolecules may result in
increased biocompatibility of

ENMs, thereby also
altering toxicity

Chemical Photochemical May increase aggregation Generates ROS and oxidative
tissue damage

Physical Aggregation and
agglomeration

Potential decrease in reactivity and
toxicity, resulting from an increase

in size

Increases environmental
persistence

Biological Biodegradation May break down ENMs into less
harmful counterparts

Decreases environmental
persistence

Biological Biomodification May convert ENMs to more
biocompatible forms

Potentially increases
bioavailability and

bioaccumulation; may also
increase toxicity

3. Detection and Quantification of Transformations

Apart from understanding the potential transformations ENMs may undergo, it is
important to be able to detect and quantify these transformations. The environmental trans-
formations of ENMs are similar to those of bulk materials, yet they are usually enhanced
due to nano-specific properties [6]. Therefore, various techniques are available to assess
ENM transformations, many of which have been adapted from solid-state characterisation
for bulk-materials including microscopy, spectroscopy, chromatography, and filtration [10].
Table 5 associates the detection method with specific ENM categories and highlights the
advantages and disadvantages of the methods. This table is not meant to be comprehensive
but rather give a general overview, and interested readers could refer to the work of Surangi
et al. for a more comprehensive overview.
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Table 5. ENM detection methods along with information regarding suitable ENM categories, the
main information gained, and advantages and disadvantages.

Characterisation
Method

ENM Types Suitable
for the Method

Main Information
Gained

Advantages Disadvantages

Electron microscopy
(SEM, TEM, STEM)

Inorganic ENMs Morphological and
compositional
information

(quantitative)

Allows direct comparisons
between pristine and

aged ENMs.
Size, morphology, and
surface conditions can

be studied.
Chemical composition

provided by EDX.
Structural information is

available from TEM/STEM.

Ex-situ methods.
iSEM may be
unsuitable for

ultrasmall ENMs.
Laborious sample

preparation.
2D representation of a

3D material.
Operator bias.

Dynamic Light
Scattering (DLS)

Can be applied to any
ENM category but
cannot differentiate
between different

ENMs if present as
mixtures

Provides
information on the
hydrodynamic size

(Hd) and zeta
potential (ζ) and

allows the
determination of

particle size
distribution.

Gives information on
hydrodynamic size (Hd) and

zeta potential (ζ).

Cannot distinguish
between isolated

particles, clusters, and
mixtures of sizes, or

particles with different
compositions.

Assumes all particles
are spherical.

Nanoparticle
Tracking Analysis

(NTA)

Suitable for visualising
and analysing

inorganic and organic
particles in suspension;

Cannot differentiate
between different

ENMs if present as
mixtures

Can track different
sized particles

simultaneously.

Allows visual tracking of
particles, allowing

observation of aggregates.
Can also track different-sized

particles simultaneously.

Requires an optimum
concentration
for analysis.

It cannot distinguish
between individual

particles and agglomer-
ates/aggregates.

Inductively coupled
plasma mass

spectrometry/optical
emission

spectrometry
(ICP-MS, ICP-OES)

Suitable for detecting
and quantifying heavy
(inorganic) elements.

Directly measure
the particle number

concentration
(in single

particle mode).

Allows quantification of
dissolved ions in solution
and directly measures the

particle number
concentration.

Signal intensity varies
with each isotope.

Interferences can occur
when plasma-formed
species have the same

mass as the ionised
analyte species.

May require prior
knowledge of particle

composition
Ultraviolet-visible

spectroscopy
(UV-Vis)

Can be used to
determine

concentrations and
provide information

about the physical and
electronic structures of

both organic and
inorganic compounds.

Provides
information on the
optical properties,
size, concentration,
and agglomeration

state of the
nanoparticles.

Can provide quantitative
and qualitative analysis.
Easy to handle and use.

Non-destructive.

Unable to analyse
compounds that do not

interact with light in
the UV and visible

areas of the spectrum.
Can only be used

to characterise
suspensions and is not

suitable to measure
solid or

gaseous samples.
Attenuated Total

Reflection—Fourier
Transform Infrared

Spectroscopy
(ATR-FTIR)

Can provide
information for both

inorganic and organic
substances.

Provides
information on the
surface composition
and ligand binding.

Capable of analysing
nanomaterial samples in

suspension or powder form.
Does not require ultra-high

vacuum conditions.

Limited spatial
resolution.
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Table 5. Cont.

Characterisation
Method

ENM Types Suitable
for the Method

Main Information
Gained

Advantages Disadvantages

X-ray Photoelectron
Spectroscopy (XPS)

Inorganic coatings, but
can also be extended to

natural organic
coatings.

Determination of
chemical

composition
surfaces and

oxidation states.

Allows for the determination
of electronic structure,

elemental composition, and
oxidation states.

Highly sensitive to surface
modifications.

Requires ultra-high
vacuum conditions.

Overlapping peaks in
the spectra can

complicate surface
analysis.

Contamination by
adsorbed water or

volatile organic
compounds makes
carbon and oxygen
analysis difficult.

High-Performance
Liquid

Chromatography
(HPLC)

Quantifies ligands
conjugated to soft

nanoparticles such as
polymers and

liposomes.

Suitable for the
separation of

nanoparticles in
mixed samples or
for the evaluation
of the nanoparticle

surface upon
interaction with the

stationary phase.

Can detect and measure very
small amounts of a substance.
Can separate and analyse a

sample quickly.

Nanoparticles may
stick to the column.

Limited sample size,
which can make it
difficult to analyse

large samples or many
samples at once.

Liquid
Chromatography-

Mass Spectrometry
(LCMS)

Used to characterise
colloids in natural

organic matter but can
also be used to study

trace metal
distributions over
colloidal particles.

Quantifies ligand
density through
cleavage of the
surface ligands

from the
nanoparticles.

Robust analytical technique
that provides the high

sensitivity and selectivity
required to detect the exact
molecular weight of a wide

range of samples.
Can separate and identify

solutes in low concentrations
(in parts per million) in a

complex mixture.
Major advantage of LCMS

over HPLC is that LCMS can
achieve a complete

elucidation of the chemical
structure of the molecule.

Only works with
volatile buffers.

Residual impurities
being analysed should

be ionised.

Electron microscopy, including transmission electron microscopy, scanning electron
microscopy, and scanning tunnelling electron microscopy, allows for direct comparisons
to be made between pristine and aged (transformed) ENMs. Microscopy techniques are
highly valuable and allow the size, morphology, and surface conditions of ENMs to be
assessed [123]. While extremely useful for qualitative and semi-quantitative analysis of
transformational change, microscopy has some limitations. For instance, acquired im-
ages give no true indication of the sample dispersion state prior to sample preparation
and drying, and the effect of smaller particles overlaying larger particles can distort mea-
surements [124]. Moreover, accurate determination of primary size and size distribution
requires that a minimum number of particles be measured to achieve statistical relevance.
Microscopy is limited by numerous factors, including the 2D representation of a 3D mate-
rial, operator bias, lower size resolution, and non-uniformity of environmental samples [7].
Lower detection limits can seriously impede the characterisation of ENMs, as a signifi-
cant particle number concentration could be effectively “invisible” to the instrument [7].
Consequently, this could result in an inappropriate classification of ENMs and in turn an
ineffective risk assessment. In addition, these microscopes can be coupled with ancillary
instruments such as energy dispersive X-ray spectroscopy (EDS) and electron energy loss
spectrometry (EELS), enabling data acquisition for the surface distribution of elements
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as well as oxygen-state determination. Microscopy is critical for morphology, size, and
size-distribution data, which are vital for ENM classification under REACH.

Spectroscopic analytical instruments routinely used in ENM characterisation can offer
suitable assessments for ENM transformation. For instance, dynamic light scattering (DLS)
provides information about the hydrodynamic size (Hd) and zeta (ζ)-potential and allows
the user to record any change between pristine and aged particles. However, the key
limitation here is that DLS records only hydrodynamic diameter, making it impossible to
distinguish between particles in isolation and aggregated clusters, and, in addition, it is
only suitable for spherical-shaped particles [124]. Further to this, DLS cannot distinguish
between particles of different compositions within mixtures or clearly distinguish a mixture
of sizes [124]. In contrast, nanoparticle tracking analysis (NTA) allows visual tracking
of particles through time hence aggregates can be clearly seen [124,125]. Through this
technique, polydispersed samples can be analysed by easily tracking a range of different-
sized particles simultaneously.

Inductively coupled plasma optical emission spectrometry (ICP-OES) allows valuable
quantification of the concentration of dissolved ionic species in solution. This is highly
useful, as the comparative dissolution of pristine particles against aged particles can act as
a reciprocal marker for the remaining solid state of the affected ENM. However, the low
expected concentration of ENMs and their dissolved constituents in environmental matrices
will complicate measurements, and it is likely that some variables will fall below the lower
limits of detection. ICP-MS (mass spectrometry) and single-particle ICP-MS have paved the
way for particle number concentration to be determined directly [7]. This is a highly sensi-
tive mass-based spectrometric method that requires minimal sample preparation, limiting
the potential for human-induced transformation. Single-particle ICP-MS is also capable of
high throughput and has been successfully used alongside field-flow fractionation (FFF) to
measure the size and particle number concentrations of mixed Au (60 nm) and Ag (60 nm)
along with bimetallic particles of Au and Ag composition combined [126]. As such, changes
in particle size concentration will elucidate physical changes and behavioural patterns for
specific ENMs. Like other analytical techniques, there are still limitations. For example,
there is the persistent problem of lower limits of detection, though single particle ICP-MS
does provide lower detection limits compared to other techniques [126]. If a significant
particle size concentration of a sample falls below the limits of detection for the instrument,
then this could again result in the misclassification of the ENM [7]. However, a study by
Cascio et al. [127] found that detectable levels of Ag ENMs in consumer products using
ICP-MS were found to be in close agreement with other instruments, including UV-Vis and
TEM. This highlights the importance of carrying out multimethod characterisation in order
to corroborate findings.

4. Knowledge Gaps and Future Challenges

Several knowledge gaps and future challenges exist around environmental transforma-
tions that must be overcome to ensure ENMs are produced using a safe-by-design approach.
Despite recent advances in knowledge, the chemical, physical, and biological processes
that drive transformations are still not fully understood. In addition, experimental studies
are typically carried out with high ENM concentrations, which are not truly representative
of environmental quantities and may elucidate mechanistic processes. These studies offer
little value for predictive modelling in environmental settings with low-expected ENM
concentrations. The toxicity behaviour of ENMs in natural aquatic systems differs from
that found in spiked laboratory systems, with the concentration levels of ENMs in the latter
usually being much higher. For instance, Lee et al. noted low acute toxicity of AgNPs and
ZnONPs in zebrafish embryos in natural aquatic systems, while high acute toxicity was
reported for spiked concentrations of AgNPs and ZnONPs [128]. Furthermore, it is not
always possible to compare natural aquatic systems due to variations in biotic and abiotic
factors as well as ecological and geological conditions.
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Another inherent limitation is the current characterisation and detection methods
employed for environmental transformation. Furthermore, ENMs are likely to undergo
multiple transformations simultaneously, including oxidation/reduction and dissolution;
interaction with NOM; and aggregation; as well as differential rates of degradation of
surface coatings, making transformation a non-linear process [2,5]. For this reason, it is
recommended that multiple solid-state characterisation methods be used to capture various
processes at once and allow for an understanding of their effects on the properties of ENMs.

Access to data is profoundly limited, especially once ENMs have entered the con-
sumer realm, where knowledge of specific uses, ageing processes, and disposal becomes
much more scarce [10]. The variable nature of this data gives rise to various outcomes,
making accurate modelling and future predictions of ENM behaviour extremely difficult
to manage. Various mathematical models have been developed including material flow
analysis and fate and transport models [11]. However, the models lack spatial resolution
and require greater inputs of variables to account for the complex and dynamic nature of
natural systems.

Despite progress in understanding ENM environmental transformations, many uncer-
tainties remain, which pose challenges to current regulatory regimes. This is particularly
relevant when ENMs undergo environmental transformations that may alter them from
their pristine (as classified) state, especially where the rates of such processes may not be
possible to constrain under current knowledge limitations.

5. Conclusions

The increased global production and use of ENMs is leading to aquatic and terrestrial
contamination. Once released into the environment, ENMs undergo complex biotic and
abiotic interactions, resulting in transformations that determine their fate, exposure con-
centration, form, behaviour, and toxicity. Transformations are changes that occur to the
nanomaterial or its coating, the conformation of several nanomaterials, or all of these. To
investigate the behaviour, fate, and toxicity of ENMs, the majority of studies have made
use of spiked media with ENM concentrations higher than those usually representative of
natural aquatic environments. However, such concentrations still demonstrate the potential
threat of ENMs, which is crucial in regulating and managing their use. Initiatives, such
as the Green Circular Economy, can help mitigate ENM levels in the environment. As a
result, it would be beneficial if methods and technologies to recover ENMs and reuse them
were developed.

This review focused on the issue of environmental transformations in ENMs. Con-
sideration has been given to the likely chemical, physical, and biological transformations
expected to occur to ENMs as they pass through different aquatic environments. The
complexity of these transformations and the fact that they are so specific to a scenario due
to their dependence on the properties of the ENM and environment were highlighted.

Chemical processes, including redox-driven dissolution, species-driven transforma-
tion, and photochemical alterations, have been considered for several relevant ENMs.
Furthermore, processes of physical aggregation and biological transformation through
biodegradation and biomodification have also been discussed for carbon-based nano-
products and CeO2. Methods of detection and quantification have been highlighted, along
with their benefits and limitations, such as the limits of detection and implications for
regulatory classification.

Clearly, much work is required to progress our understanding of transformation
processes in environmental media. Only through a complete understanding of ENM
transformations throughout their entire lifecycle can we fully understand, model, and
predict an ENM’s behaviour and potential toxicity. Once we are able to achieve this, we
can proceed to inform safer design, production, and use of ENMs by advising the relevant
scientific and regulatory stakeholders.
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