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Abstract: The current race for space exploration has hastened the development of electrochemical
technologies for the in-situ utilisation of planetary resources for the synthesis of vital chemicals such
as O2 and fuels. Understanding the physicochemical properties, such as the density and kinematic
viscosity, of aqueous solutions is essential for the design of electrochemical devices for the electrolysis
of water and CO2, particularly at low temperatures. The density and kinematic viscosity of highly
concentrated Mg(ClO4)2 and KOH solutions have been determined, both at low temperatures and in
the presence of CO2 gas. It was found that, for all of the solutions, independent of the concentration
or nature of the electrolyte, as the temperature was decreased to 255 K, the density and the viscosity of
the solutions increased. Upon saturation with CO2, no significant change to the density and viscosity
of Mg(ClO4)2, at all of the temperatures measured, was observed. Conversely, the CO2 saturated
solutions of KOH showed significant changes in density and viscosity at all temperatures, likely due
to the formation of carbonates. The effects of these changes on the diffusion coefficient for dissolved
CO2 is also discussed.

Keywords: kinematic viscosity; brines; sub-zero temperatures; CO2RR

1. Introduction

The current exploration of extra-terrestrial surfaces relies on unmanned probes, such
as Curiosity on the surface of Mars, Rosetta and its associated lander, Philae, which landed
on the comet Churyumov–Gerasimenko, and the Voyager probes. However, human explo-
ration and colonisation to the farthest reaches of our solar system face many challenges,
which need to be overcome. To explore and colonise other planets for extended periods of
time, human astronauts will need essential supplies, such as oxygen and chemicals that can
be used as fuels. However, there are prohibitive weight limits to space travel; therefore, the
practice of in-situ resource utilisation to generate products with local materials is essential
in this endeavour. For example, future plans for the exploration of the Martian surface
by humans involve refueling the ascent vehicles on the surface using in-situ resources.
Transporting the necessary fuel from Earth would require almost 40 Mt of oxygen and
methane, which clearly poses a significant challenge in weight transport [1,2] However,
the first experiments to generate oxygen on the surface have already taken place. By
December 2021, the Mars Oxygen In Situ Resource Utilisation experiment (MOXIE) had
generated around 50 g of O2 via a solid oxide fuel cell at 800 ◦C from the compressed
Martian atmosphere [1].

Other electrocatalytic processes could be carried out to produce the necessary chemi-
cals, such as hydrogen or methane, through the electrolysis of CO2 dissolved in water [3,4].
The Phoenix lander observed gulley formations on the surface of Mars, likely caused by the
flow of liquid over the surface, which, coupled with soil analysis, led to the conclusion that
perchlorate brines exist under certain conditions on the surface of Mars [5–11]. Previous
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research has shown that lowering the temperature below 0 ◦C increases the production of
CH4 and CO and decreases the production of H2 when CO2 is electrocatalytically reduced
in brines of Mg(ClO4)2 [3]. The non-standard temperature and pressure conditions of
extra-terrestrial regions need to be considered when designing catalytic processes, and they
can sometimes be advantageous.

Parameters such as the pressure, temperature and electrolyte salinity are a rich area of
research for the electrocatalytic conversion of CO2 on Earth [12–14] The ever-increasing
concentration of CO2 in our atmosphere is causing climate change at an alarming rate.
One avenue to mitigate the excessive accumulation of CO2 in the atmosphere is to cap-
ture CO2 at major production sites and either store it underground as CO2 clathrates or
convert it to value-added products [15–20]. The electrocatalytic reduction of CO2 is one
of many potential methods of CO2 conversion. Using concentrated electrolytes and low
temperatures for a CO2 reduction reaction (CO2RR) is another avenue to increase CO2
solubility. Up to a point, the addition of salts to water lowers the freezing point, which
means that electrocatalytic reactions can be carried out in the liquid phase at sub-zero
temperatures [21–25].

It has been demonstrated that electrochemical processes can be carried out in solid
aqueous electrolytes [26,27]; however, by increasing the electrolyte concentration, the
freezing point of the solution can be depressed to maintain a liquid phase, which is more
technologically advantageous. Blagden’s Law, Equation (1), can be used to estimate the
depression in the freezing point of the electrolyte, ∆T, where K is the cryoscopic constant of
the solvent, m is the molality (moles solute per kg solvent) and i is the Van’t Hoff factor,
which describes the number of ions a species forms when fully dissociated.

∆T = K × m × i (1)

Care should be taken when using Equation (1) as it does not account for the chemical
activity of the ions and is only applicable for ideal solutions. Equation (1) can be used for general
approximations, such as for the freezing point of sea water; however, at high concentrations,
non-linear behaviour occurs and the freezing point begins to rise again [28,29]. Using brines
as electrolytes enables the depression of the freezing point whilst, in theory, also favouring
the increase in the solubility of certain gases, such as CO2, methane and O2 [30]. As such,
the increase in the reactants might also increase the rate of the electrochemical reaction
involving these gases. For example, in Mg(ClO4)2 brines, as the temperature is lowered to
−35 ◦C, the solubility of O2 increases to around 1.1 mM and the current, due to O2 reduction,
increases [31]. In previous works, we have also reported an increase in the reaction rate of
the electrochemical conversion of CO2 and methane at sub-zero temperatures in aqueous
brines of Mg(ClO4)2 and KOH [3].

At high pressures or low temperatures, gas clathrates are formed, where cages of
water molecules encapsulate gas molecules [32]. These phases are well-known as, in the
mining industry, they can form in gas pipelines, causing costly blockages, and because
CH4 versions are found in permafrost or in the deep ocean. The CH4 hydrates found
in the ocean and permafrost are a double-edged sword; they could be a huge reservoir
of energy if electrocatalytic technology can be developed to exploit them, but there is a
small possibility that if oceanic temperatures continue to rise, the hydrates may become
unstable, releasing CH4 into the atmosphere and leading to runaway warming [33,34].
Several groups have explored the opportunity recovery of energy from CH4 clathrates and
simultaneously sequestrated CO2 as clathrates through the direct swapping of CH4 by CO2
in one clathrate cavity.

Changes in temperature not only have an effect on the solubility of CO2 in aqueous
electrolytes, but they also have a marked effect on the dynamic viscosity, η, and the density,
ρ. These factors are not only important in the engineering of future technology, but also for
fundamental processes such as the mass transport of ions. The Nernst-Plank Equation (2) is
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used to describe the mass transfer to an electrode, encompassing the processes of diffusion,
convection and migration.

Ji(x) = −Di
∂Ci(x)

∂x
− ziF

RT
DiCi

∂φ(x)
∂x

+ Civ(x) (2)

where at a distance x from an electrode for a species i, J is the flux (mol s−1 cm−2), D is
the diffusion coefficient (cm2 s−1), C is the concentration (mol cm−3), z is the charge, F is
the Faraday constant, R is the gas constant, T is the temperature (K), ϕ is the electrostatic
potential (V) and v is the velocity (cm s−1). The diffusion coefficient, D, can be derived
from the Einstein-Stokes Equation (3),

D =
kBT

4πηre f f
(3)

where kB is the Boltzmann constant, reff is the effective radius of the species (m) and η is
the dynamic viscosity of the solution (Pa s). The dynamic viscosity is derived from the
kinematic viscosity, ν (m2 s−1), and the density via Equation (4).

η (Pa s) = ν
(

m2 s−1
)
× ρ

(
kg m−3

)
(4)

when designing electrolysers for any catalytic process involving a liquid reaction media, the
viscosity of the media is important for the physical design aspects as the viscosity will affect
the flow-through components. However, as Equation (2) shows, the flux of any reactants or
products of the reaction is heavily influenced by the diffusion coefficient, which is, in-turn,
heavily affected by the viscosity. Given the importance of the viscosity for mass transport
during electrochemical reactions, such as CO2 conversion [35–38] and water splitting [39],
herein we report the values of the density and dynamic viscosity at sub-zero temperatures
down to 255 K for Mg(ClO4)2 and KOH brines in the absence of, and upon saturation with,
CO2 gas.

These results can then be used to better understand the anti-Arrhenius behaviour seen
during the electrochemical conversion of CO2 and the oxidation of methane at temperatures
below −5 ◦C reported in our previous work [3]. A more complete understanding of the
electrochemical conversion of CO2 at low temperatures will further promote the design of
electrochemical devices for space exploration and colonisation.

2. Results and Discussion
2.1. Determination of the Density of Mg(ClO4)2 and KOH Solutions as a Function of Temperature

Figure 1 shows the densities of the Mg(ClO4)2 and KOH solutions as a function of
the temperature. As expected, the density of all the solutions increases linearly with the
decreasing temperature. At 255 K, 3.8 mol kg−1 is close to the saturation of the Mg(ClO4)2
solution, and below this temperature, precipitation of 6H2O·Mg(ClO4)2 occurs [28], which
is the most stable form under Martian conditions [40]. Upon CO2 saturation, the solution
of 3.8 m Mg(ClO4)2 showed no significant change in the density at any T measured,
suggesting little absorption of CO2 in the solution. These results are in agreement with the
poor solubility of CO2 at the pH of the Mg(ClO4)2 solutions (pH = 8). The previous work by
our group using mass spectroscopy found that, in the same electrolyte, the concentration
of CO2 increased from 1.12 mM at 293.15 K to 5.08 mM at 253 K [3]. However, such small
changes in the concentration of CO2 in the solution are below the detection limit and within
the standard deviation of the measurements using the methodology used in this work.

Upon saturation with CO2, the density of 8.5 m KOH increases by 0.04 g cm−3 across
all the measured temperatures (Table 1). This indicates that the amount of CO2 absorbed is
constant over all temperatures in this range. Alternatively, as in the case of the Mg(ClO4)2,
the variation in the concentration of CO2 is, again, too small to be seen via this methodology.
In this regard, previous works have shown that, at room temperature, the concentration
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of absorbed CO2 increases with the concentration of KOH [41] due to the formation of
(bi)carbonates, but at very high concentrations of the electrolyte, the CO2 solubility is
limited due to the so-called “salting out” effect [42,43]. The balance between these factors—
that is, (bi) carbonate formation and the salting out effect—and the expected increase in the
CO2 solubility due to the lower temperature may account for the observed constant CO2
concentration across the temperatures measured.
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Figure 1. Density as a function of temperature between 255 K and 298 K with CO2 (red) and without
CO2 (black). (A) Results for 3.8 m Mg(ClO4)2. (B) Results for 8.5 m KOH.

Table 1. Measured density of 3.8 m Mg(ClO4)2 and 8.5 m KOH solutions, with and without CO2 saturation.

3.8 m Mg(ClO4)2 CO2 sat. 3.8 m Mg(ClO4)2 8.5 m KOH CO2 sat. 8.5 m KOH

T/K ρ/g cm−3

298 1.4006 ± 0.0011 1.4000 ± 0.0011 1.3024 ± 0.0010 1.3430 ± 0.0011
273 1.4332 ± 0.0011 1.4307 ± 0.0011 1.3300 ± 0.0010 1.3706 ± 0.0011
263 1.4445 ± 0.0011 1.4451 ± 0.0011 1.3409 ± 0.0011 1.3821 ± 0.0011
255 1.4562 ± 0.0012 1.4566 ± 0.0012 1.3493 ± 0.0011 1.3847 ± 0.0011

Standard uncertainty for T = 0.5 K. Standard uncertainty for ρ is in the table.

2.2. Determination of the Viscosity of the Mg(ClO4)2 and KOH Solutions as a Function
sof Temperature

The measured kinematic viscosity, ν, was converted to the dynamic viscosity, η, via
Equation (4), and the results are shown in Table 2. For ν, the expanded uncertainty was
6 × 10−4 mm s−1. Over the temperature range investigated, the values of the viscosity for
both the Mg(ClO4)2 and KOH solutions fit an Arrhenius relationship, Equation (5),

η = Ae
Ea
RT (5)

where R is the gas constant, A is the preexponential factor (Pa s) and Ea is the activation
energy (kJ mol−1). The Arrhenius plots are shown in Figure 2A,B. Figure 2A shows little
difference between η for the CO2 saturated and unsaturated Mg(ClO4)2 solution. This
agrees with the interpretation of the ρ results, where there is little absorption of CO2.
Previous work has attributed the increase in viscosity for concentrated Mg(ClO4)2 solutions
to the formation of solvation spheres on a picosecond timescale around the ions, which act
as suspended spheres in the solution, which in turn increases the viscosity [44].
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Table 2. Calculated η values for Mg(ClO4)2 and KOH solutions with and without saturation with CO2.

3.8 m Mg(ClO4)2 CO2 sat. 3.8 m Mg(ClO4)2 8.5 m KOH CO2 sat. 8.5 m KOH

T/K η/mPa s

298 2.77 ± 0.04 2.78 ± 0.04 2.27 ± 0.03 2.91 ± 0.08
273 5.45 ± 0.09 5.48 ± 0.07 4.44 ± 0.06 5.89 ± 0.18
263 7.67 ± 0.10 7.82 ± 0.11 6.29 ± 0.09 8.45 ± 0.31
255 10.65 ± 0.14 10.66 ± 0.2 8.58 ± 0.11 11.06 ± 0.43

Standard uncertainty for T = 0.5 K. Standard uncertainty for η are in the table.
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On the other hand, Figure 2B shows an increase in the difference in η for the unsat-
urated and CO2 saturated KOH solutions as the temperature decreases. As ρ indicates
that the concentration of CO2 is constant across the temperature range, the change in η
must be due to changes in the strength of the intermolecular forces of attraction. When
the CO2 dissolves, it reacts with the available water and sets up an equilibrium between
CO3

2−, HCO3
− and H2CO3. In concentrated KOH, the most abundant ion is HCO3

−,
which causes an associated lowering of the pH [41]. The carbonate ions can form hydrogen
bonds and interact with the wider water network, which increases the intermolecular forces
of attraction, and therefore the viscosity.

In order to obtain the activation energy of the system, Figure 2C,D show the Arrhenius
linear representation of the measured values of the viscosity as a function of the temperature
using Equation (6).

ln η = ln η∞ +
Ea

R
· 1
T

(6)
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η∞ can be interpreted as the viscosity of the solution at infinite temperature (Pa s) and Ea
is the energy input needed for molecules in the solution to flow past each other. These
parameters are derived for each of the solutions, as shown in Table 3. There is a small
increase in Ea when KOH is saturated with CO2, which supports the idea that there is an
increase in the strength of the interactions between the ions.

Table 3. Viscosity at infinite temperature and the activation energy for each solution derived from
the linear fit in Figure 2C,D.

Solution 10−3 η∞/mPa s Ea/kJ mol−1 R2 Values for Figure 2C,D

3.8 m Mg(ClO4)2 1.14 ± 0.03 19.3 ± 0.4 0.999
CO2 sat. 3.8 m Mg(ClO4)2 1.32 ± 0.04 19.0 ± 0.4 0.998

8.5 m KOH 1.03 ± 0.03 19.1 ± 0.5 0.998
CO2 sat. 8.5 m KOH 1.07 ± 0.02 19.6 ± 0.3 0.999

2.3. Determination of the Diffusion Coefficient of CO2 in Mg(ClO4)2 and KOH

Using the values for η determined in the previous section and Equation (3), the values
for D were calculated, and the results are shown in Table 4. The hydrodynamic radius of
the CO2 was assumed to be the same as in pure water [45], but loosely dependent on the
temperature [46] As T decreases, the diffusion coefficient also decreases in both solutions.
The larger η values for 8.5 m KOH correspond with lower D values compared to 3.8 m
Mg(ClO4)2. According to Equation (2), the lower values of the diffusion coefficient indicate
a lower flux and a decrease in the mass transport of CO2 through the solutions. The results
obtained using pulsed-field gradient 13C NMR showed a trend of a decrease in D with
increasing salinity of the brines; for example, 2.06 10−9 m2 s−1 in 1.0 m NaCl decreasing to
1.29 10−9 m2 s−1 in 5.0 m NaCl [45]. The results obtained using a Taylor dispersion method
show that D also decreases with the temperature in pure water [46]; therefore, the results
presented in Table 4 fit with the trends presented in the literature.

Table 4. Calculated diffusion coefficient for CO2 in 3.8 m Mg(ClO4)2 and 8.5 m KOH at various temperatures.

CO2 sat. 3.8 m Mg(ClO4)2 CO2 sat. 8.5 m KOH

T/K D/10−10 m2 s−1

298 7.01 ± 0.03 6.71 ± 0.2
273 3.43 ± 0.02 3.19 ± 0.09
263 2.37 ± 0.02 2.19 ± 0.07
255 1.71 ± 0.02 1.65 ± 0.06

Standard uncertainties for D reported in table. Standard uncertainty for T = 0.5 K. Expanded uncertainty for D in
3.8 m Mg(ClO4)2 = 4 × 10−14 and in 8.5 m KOH = 2 × 10−13 (0.95 level of confidence).

Interestingly, our previous work showed an increase in the electrochemical conver-
sion of CO2 in brines at sub-zero temperatures, with and without mass transport control.
Therefore, even though the physicochemical properties of the solution, such as the den-
sity and viscosity, influence the diffusion of the gaseous reactant species, other intrinsic
parameters promote Anti-Arrhenius behaviour so that, at low temperatures, the catalytic
activity increases.

3. Materials and Methods
3.1. Preparation of Materials

Solutions of KOH (Sigma Aldrich, Gillingham, UK > 85%) and Mg(ClO4)2 (Alfa Aesar,
Heysham, UK > 95%) were prepared by weighing out the required mass of solid using an
analytical balance (measuring to 0.01 mg) and dissolving in a weighed mass of ultrapure
water (Millipore Milli-Q® Integral 3, 18.2 MΩ cm−1, <5 ppb total organic carbon) to make
the correct concentration in mol kg−1. All solutions were left in a temperature controlled
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1:1 glycerol:water bath and cooled using a HUBER TC45E cooler with a temperature control
±0.5 K until they reached the desired temperature. Solutions were saturated with CO2
(BOC, N4 grade) by bubbling for 20 min at room temperature and pressures of 0.5 bar, and
then for another 10 min at each temperature before each measurement was taken. Given
the units involved in Equation (1), all the concentrations in the manuscript are reported in
molality (moles solute per kg solvent). The supplier and purity of the reactants are included
in Table 5.

Table 5. CAS registry number, supplier and purity of materials used in this work.

Component CAS Reg. No. Supplier Purity

KOH 1310-58-3 Sigma Aldrich >85%

Mg(ClO4)2 10034-81-8 Alfa Aesar >95%

CH3CN 75-05-8 Fisher Scientific 99.9%

3.2. Density Measurements

Pycnometers (±0.0100 cm3) were acquired from Fisher Scientific and calibrated using
acetonitrile (Fisher Scientific, Morecambe, UK, 99.9%, Extra Dry over Molecular Sieves)
at 298 K, 273 K, 263 K and 255 K. For density measurements, the pycnometers were filled
with solutions that had been pre-cooled in the temperature-controlled bath and then left
again to reach the desired temperature before measurements were taken (usually > 10 min).
The reported densities for 8.5 m KOH and 3.8 m Mg(ClO4)2 are an average of at least
12 measurements from three different samples. The reported error is calculated via the root
sum of the squares of the error in the pycnometer and the error in the calibration curve fit
(error in volume of pycnometer ± 3 × 10−4 cm−3).

3.3. Viscosity Measurements

To measure the kinematic viscosity, an Ubbelohde viscometer (Paragon Scientific,
Birkenhead, UK, ±0.17%) suspended in the same temperature-controlled bath was used.
When solutions were introduced to the viscometer, the sample was again left to cool to
temperature before any measurement took place. The flow time was measured with a
digital stopwatch capable of measuring ±0.1 s. Kinematic viscosity (ν) was calculated
using the equation,

υ
(

mm2s−1
)
= A

(
mm2 s−2

)
× t (s) (7)

where t is the flow time and A is the calibration constant of the viscometer. Kinematic
viscosities are an average of at least 15 measurements from three different samples and the
standard deviation of the measurements taken as the error.

The measured kinematic viscosity, ν, was converted to the dynamic viscosity, η, via
Equation (4) and the errors propagated via root sum of the squares.

3.4. Methodology Validation

To validate the methodology, density and viscosity measurements were determined
for pure water and KOH solutions and are compared to previous works. As can be seen in
Table 6, in the case of water, both the density and the dynamic viscosity are within 1% of
the literature results [47]. For 8.5 m KOH, the density value reported in this work is within
1% of the literature value; however, the dynamic viscosity has a 4% deviation [48]. Such an
error can be associated with the hygroscopic nature of KOH solutions causing a decrease in
the concentration of the solutions during measurement of the viscosity.
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Table 6. Comparison between density and viscosity measurements obtained in this work and in
previous reports. a Reference [47]. b Calculated from reference [48].

P at 298 K/g cm−3 η at 298 K/mPa s

This Work Literature This Work Literature

water 1.0005 ± 0.0008 0.997 a 0.900 ± 0.004 0.890 a

8.5 m KOH 1.3024 ± 0.0010 1.309 b 2.271 ± 0.008 2.362 b

Standard uncertainty for T = 0.5 K. Standard uncertainty for ρ and η are given in the table. Expanded un-
certainty for water, U(ρ) = 2 × 10−5 g cm−3, U(η) = 1 × 10−4 mPa s. Expanded uncertainty for 8.5 m KOH,
U(ρ) = 3 × 10−5 g cm−3, U(η) = 1 × 10−4 mPa s. (0.95 level of confidence).

For 3.8 m Mg(ClO4)2, there are few values in the literature with which to compare. How-
ever, for 4.23 m Mg(ClO4)2 at 298 K, Sohnel et al. recorded a value of ρ = 1.4373 g cm−3 [49].
Herein, we record ρ = 1.4006 g cm−3 at the same temperature for the lower concentration
of 3.8 m. Similarly, for 8.21 m KOH at 273 K, Kelly et al. recorded ρ = 1.4373 g cm−3 and
η = 4.409 mPa s [50]. In comparison, the values recorded herein for 8.5 m KOH at 273 K are
1.3300 g cm−3 and 4.44 mPa s. Again, we ascribe deviations to the hygroscopic nature of
concentrated KOH solutions.

4. Conclusions

The density and dynamic viscosity of the highly concentrated KOH and Mg(ClO4)2
solutions were measured and reported at temperatures below 273 K. The high electrolyte
concentration results in the depression of the freezing point of the aqueous solution down
to 255 K. It was found that as the temperature decreased, the η and ρ for all the solutions
increased. The ρ increased linearly and the η followed an Arrhenius relationship. Given
the importance of these solutions for the development of electrolysers on other planetary
objects, the density and dynamic viscosity of the same KOH and Mg(ClO4)2 solutions
saturated with CO2 are also reported.

The 3.8 m Mg(ClO4)2 showed no significant differences in η or ρ at any measured
temperature after saturation with CO2. The results are associated with the poor solubility
of CO2 at the pH of the Mg(ClO4)2. Conversely, the 8.5 m KOH solutions showed marked
changes in their physicochemical behaviour upon saturation with CO2. A constant increase
in the ρ was observed; at the same time, a much greater increase was observed in the η at
lower temperatures. We conclude that the formation of (bi) carbonate species due to the
reaction between the CO2 and KOH increased the strength of the interactions between the
ions, resulting in a larger change in the viscosity at lower temperatures.

At low temperatures, the diffusion coefficient of CO2 is significantly reduced in these
solutions, which will result in less mass transport through the electrolyte. This indicates
that the increase in the CO2 reduction current at low temperatures seen in our previous
work is due to an increase in the kinetics of the reaction, not an increase in the transport
of CO2 to the electrode surface [3]. However, the benefit of the increased activity at low
temperatures is finely balanced with the disadvantageous increase in the viscosity of the
solutions and the decrease in the diffusion of CO2.

On the basis of these results, we believe that the increase in the electrochemical
activity in the electrochemical reduction of CO2, and possibly the oxidation of CH4 at
low temperatures [3], could be related to the large DC electric field near the surface
due to changes in the double layer (DL) associated with the high concentration of the
electrolyte and the low temperature. The electric field from the solvated cations in the DL
can substantially favour the formation of key intermediates of the reactions, thus increasing
the kinetics of the reaction [51]. These insights are crucial for the further investigation of
catalytic reactions at low temperatures in brines.
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Abbreviations

MOXIE Mars Oxygen In Situ Resource Utilisation experiment
CO2RR CO2 reduction reaction
∆T depression in freezing point of the electrolyte
K cryoscopic constant of the solvent
m molality (moles solute per kg solvent)
i Van’t Hoff factor
η dynamic viscosity (mPa s)
ρ density (g cm−3)
J flux (mol s−1 cm−2)
D diffusion coefficient (cm2 s−1)
C is the concentration (mol cm−3)
z charge
F Faraday constant
R gas constant
T temperature (K),
ϕ electrostatic potential (V),
v velocity (cm s−1)
ν kinematic viscosity (mm2 s−1)
A preexponential factor (Pa s),
Ea activation energy (kJ mol−1)
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