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Organoids are three-dimensional multicellular tissue constructs. When cultured in vitro,

they recapitulate the structure, heterogeneity, and function of their in vivo counterparts.

As awareness of the multiple uses of organoids has grown, e.g. in drug discovery and

personalised medicine, demand has increased for low-cost and efficient methods of

producing them in a reproducible manner and at scale. Here we focus on a bioreactor

technology for organoid production, which exploits fluid flow to enhance mass transport

to and from the organoids. To ensure large numbers of organoids can be grown within

the bioreactor in a reproducible manner, nutrient delivery to, and waste product removal

from, the organoids must be carefully controlled. We develop a continuum mathematical

model to investigate how mass transport within the bioreactor depends on the inlet flow

rate and cell seeding density, focusing on the transport of two key metabolites: glucose

and lactate. We exploit the thin geometry of the bioreactor to systematically simplify our

model. This significantly reduces the computational cost of generating model solutions,

and provides insight into the dominant mass transport mechanisms. We test the validity

of the reduced models by comparison with simulations of the full model. We then exploit

our reduced mathematical model to determine, for a given inlet flow rate and cell seeding

density, the evolution of the spatial metabolite distributions throughout the bioreactor. To

assess the bioreactor transport characteristics, we introduce metrics quantifying glucose

conversion (the ratio between the total amounts of consumed and supplied glucose),

the maximum lactate concentration, the proportion of the bioreactor with intolerable

lactate concentrations, and the time when intolerable lactate concentrations are first

experienced within the bioreactor. We determine the dependence of these metrics on

organoid-line characteristics such as proliferation rate and rate of glucose consumption

per cell. Finally, for a given organoid line, we determine how the distribution of metabolites

and the associated metrics depend on the inlet flow rate. Insights from this study can

be used to inform bioreactor operating conditions, ultimately improving the quality and

number of bioreactor-expanded organoids.
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1. INTRODUCTION

Organoid technology is becoming increasingly prominent as
a biomedical tool, with applications in drug discovery and
personalisedmedicine. In biomedical research, brain, kidney, and
liver organoids are used to understand the underlying biological
mechanisms in tissue development and tissue-drug interactions
(Eisenstein, 2018; Kondo and Inoue, 2019; Tuveson and Clevers,
2019; Bock et al., 2020).

Organoids are three-dimensional, multicellular structures
which, when grown in vitro, recapitulate the structure, function,
and heterogeneous cellular composition of in vivo tissues (Drost
and Clevers, 2018). Their three-dimensional geometry means
they are more representative of in vivo tissues than 2D cell
cultures (Young and Reed, 2016). “Organoid expansion” refers
to the growth of multiple organoids from pluripotent stem
cells, which are typically derived from patient biopsies or from
other organoids (de Souza, 2018). The stem cells are embedded
in a supporting extra-cellular matrix (ECM) and cultured in
carefully-controlled conditions designed to promote organoid
growth. The surrounding ECM provides the biochemical and
biomechanical cues needed for the cells to proliferate and
differentiate into specialised cells, as happens in vivo (Huang
et al., 2012; Eisenstein, 2018).

Current methods for organoid expansion are labour intensive,
with organoids typically being produced in small numbers at
specialist research laboratories. New technologies are required
to manufacture large numbers of organoids with uniform and
reproducible characteristics, to meet the demands of applications
such as high-throughput screening in drug development. One

FIGURE 1 | (Top) Schematic of “CXP1” bioreactor (Ellis et al., 2019). (Bottom) Two-dimensional cross-section of the bioreactor, with arrows indicating the

half-Poiseuille flow profile. Blue is media, yellow is hydrogel, grey is organoid biomass. The glucose concentrations within the media and hydrogel are given by cM and

cH, respectively. Similarly, the lactate concentrations within hydrogel and media are denoted wM and wH, respectively. (Bottom right) Example of colorectal cancer

organoid. Confocal image using 20X objective of Cell Insight Cx7. Organoid stained for nuclear (blue) and cytoskeletal (red) markers for imaging. Scalebar 50 µm.

Reproduced with permission from Cellesce.

such technology exploits bioreactors, which aim to deliver
sufficient nutrients and growth factors to the cells to promote
cell proliferation and differentiation, and to prevent the
accumulation of toxins, which can lead to cell death. For a more
detailed overview of bioreactor technologies used for 3D cell
culture see, for example, Martin et al. (2004), Pörtner and Giese
(2006), and Wendt et al. (2009).

This study is motivated by proprietary organoid expansion
bioreactor technology developed by Cellesce (Ellis et al., 2019).
The “Cellesce Expansion 1 (CXP1)” bioreactor is currently used
to expand colorectal cancer organoids, see Figure 1. Flow of
media through the system enhances the delivery of nutrients
to, and the removal of waste products from, organoids seeded
in a hydrogel layer. In this application, oxygen is present at
high concentrations, and is not a limiting factor for organoid
growth. The key metabolites of interest here are glucose, essential
for colorectal cancer organoid growth, and lactate. Lactate can
have a detrimental effect on cell behaviour, such as metabolism
(Romero-Garcia et al., 2016), and sufficiently high levels can lead
to cell death. Lactate can be produced via anaerobic respiration
and aerobic glycolysis (Liberti and Locasale, 2016). We do not
focus on the precise mechanisms of lactate production here, but
instead determine how the media flow promotes lactate removal.
We note that while colorectal cancer organoids tolerate high
lactate concentrations, the intention is to use CXP1 to expand
a range of normal (healthy) and pathological organoids. Since
different organoid types have distinct requirements (e.g. nutrient
levels required for cell proliferation and lactate tolerances),
understanding the mass transport of glucose and lactate within
the bioreactor is important. While we acknowledge the biological

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 2 June 2021 | Volume 9 | Article 670186

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Ellis et al. A Reduced-Order Model for Organoid Expansion

complexity of organoid culture, spatiotemporal knowledge of
these two metabolites provide useful and practical information
on the operation of CXP1, and provides the framework for more
complex models in the future.

Key priorities in the CXP1 bioreactor design and operation
are uniformity of organoid size and system reproducibility, to
ensure there is minimal variation in organoid characteristics
between and within batches grown under the same operating
conditions. Themain control parameters for the CXP1 bioreactor
are the inlet flow rate (controlled via a peristaltic pump) and
the initial cell seeding density (the organoids are grown from
single cells). Optimisation of these control parameters requires
spatiotemporal information about the flow and metabolite (here
glucose and lactate) concentrations throughout the bioreactor
(Galban and Locke, 1999a). Such data are impractical, inefficient,
and expensive to collect through experimental means alone.

To complement experimental studies, mathematical models
of bioreactor systems can be used to predict media flow
profiles and the associated metabolite concentrations that cannot
easily be measured in vitro, thus providing useful insights to
ensure CXP1 operation is maintained within tolerable operating
regions of these metabolites. Here, we adopt a continuum
modelling approach, in which the dependent variables (cell
density, fluid velocity, metabolite concentrations) are assumed
to vary continuously in space and time. Our resulting model
comprises a system of partial differential equations (PDEs). A
key advantage of such a mathematical modelling approach is the
ability to quickly, efficiently and accurately analyse the system as
control parameters are varied. A continuum, rather than discrete,
cell-based approach is often used to model bioreactor systems,
which is justified due to the typical cell numbers (O(106) cells)
andmetabolite concentrations (CXP1: 16mM in 15mL of culture
media) present. We model the organoids (cell aggregates) as
effective (bulk) reaction terms over the hydrogel, which can
be formally obtained through an asymptotic homogenisation
procedure (see, for example, Dalwadi et al., 2018; Dalwadi and
King, 2020).

Here we review existing mathematical models for metabolite
transport in bioreactor systems. A variety of different
mathematical modelling approaches have been applied to
related problems in tissue engineering, including: ordinary
differential equation (ODE) models (Sachs et al., 2001); PDE
models (Galban and Locke, 1999a,b; Shipley et al., 2009, 2011;
Shipley and Waters, 2012; Chapman et al., 2014, 2017; Pearson
et al., 2014); computational approaches (Nguyen et al., 2018;
Mehrian et al., 2020b); and agent-based models (Drasdo and
Höhme, 2005; Byrne et al., 2007; Byrne and Drasdo, 2009). For a
more comprehensive review of continuummodelling approaches
for tissue engineering, see O’Dea et al. (2012). As noted above, in
this work we use a continuum modelling approach to develop a
PDE model for metabolite transport within a specific bioreactor
set-up. We focus on a systematic model reduction of this model,
taking an approach similar to that used in Shipley et al. (2011),
Shipley and Waters (2012), and Chapman et al. (2017). In so
doing, we highlight two key advantages of model reduction.
First, we identify the physical mechanisms that dominate the
system behaviour on the timescale of interest. Secondly, reduced

models are more tractable than their full model counterpart and,
as such, can be solved more rapidly numerically or, in some
cases, analytically. This facilitates more detailed exploration of
parameter space, which is important for subsequent optimisation
of bioreactor operating conditions, and allows more detailed
biological models to be incorporated.

We develop a mathematical model of the CXP1 system, with
the goal of determining how glucose and lactate levels within
the CXP1 bioreactor change as the operating conditions (e.g.
media inlet flow rate and cell seeding density), and organoid
growth characteristics, vary. We introduce a reaction-advection-
diffusion system for glucose and lactate transport in the CXP1
bioreactor. The hydrogel and media are viewed as two distinct
regions, coupled by interfacial conditions. We restrict attention
to a two-dimensional slice through the bioreactor, and obtain
numerical solutions to the governing equations. Motivated by
typical parameter values of the bioreactor, we perform an
asymptotic analysis to systematically reduce the model from a
two-dimensional geometry to a one-dimensional model, in which
vertically-averaged concentration profiles vary with horizontal
position along the length of the bioreactor. We validate this
reduced model through successful comparisons with numerical
solutions of the full system. We exploit the reduced models to
explore the parameter space of cell characteristics and bioreactor
operating regimes. To assess glucose and lactate levels, we
introduce the following quantitative, time-dependent metrics:
glucose conversion (the ratio between the total amounts of
consumed and supplied glucose);maximum lactate concentration
within the bioreactor; proportion of domain with intolerable
lactate levels (i.e. lactate levels above a tolerated concentration);
and time when intolerable lactate levels are first experienced.
For a given organoid type, we determine how these metrics
change as the inlet flow rate varies. In this way, we aim to show
how quantitative insights gained from this modelling approach
can inform the selection of experimental bioreactor operating
conditions, and ultimately improve the quality and quantity of
bioreactor-expanded organoids.

The structure of the paper is as follows. In the Methods
section, we introduce the full mathematical model, and then
systematically derive two reduced models (referred to as the
longwave approximation and the sublimit approximation) for
glucose and lactate transport within the bioreactor. In the
Results section, we verify that simulations of the reduced models
are in good agreement with solutions of the full model for
physiologically relevant parameter regimes. We demonstrate the
advantages of the model reductions, highlighting, in particular,
the physical insights obtained from systematic derivation of
the reduced models from the full system. We then use the
longwave approximation model to investigate how the glucose
and lactate concentrations within the bioreactor change for
different organoid lines. We examine the evolution of the
concentration profiles and demonstrate how our quantitative
metrics to assess metabolite behaviour are heavily dependent on
organoid line characteristics, such as proliferation and nutrient
consumption rates. We then investigate, for a specific organoid
line, how the media inlet flow rate affects the metabolite
concentrations, and explain how this information can be used to
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optimise the bioreactor control parameters. The paper concludes
with a Discussion where we summarise our results and outline
future directions for our modelling approach.

2. METHODS

We derive an unsteady two-dimensional model for glucose and
lactate transport within the CXP1 bioreactor. Schematics of
the CXP1 bioreactor and our model geometry are presented
in Figure 1. We use COMSOL Multiphysics R© to solve the full
mathematical model numerically and use the insights provided
by the numerical simulations to motivate systematic reductions
of the full model. The resulting reduced models are solved
using a combination of analytical (method of characteristics) and
numerical (Chebfun toolbox and ode45 inMATLAB) techniques.

2.1. Bioreactor Set-Up
We consider organoids grown from single cells seeded in a
homogeneous thin layer of hydrogel in the bioreactor (lower
yellow layer in Figure 1). A typical initial seeding density for
the CXP1 bioreactor is 4 × 105 cellmL−1-6 × 105 cellmL−1. We
assume that all cells seeded within the hydrogel are viable and
become organoids, and that there is negligible settling (which
is a fair assumption given the relative time of the gelation of
the well-mixed solution, compared to the settling time of the
cells). The hydrogel acts as a porous scaffold for the seeded
cells, providing the anchorage for cells and the biomechanical
and biochemical cues required for cell growth (Huang et al.,
2012). The bioreactor is placed within an incubator which
maintains constant temperature, O2 (atmospheric levels), and
CO2 concentration. Nutrient-rich culture media, with typical
glucose concentration of 16 mM, is stored in an upstream
reservoir and is fed into the system through an inlet pipe, and
slowly flows across the bioreactor (upper blue layer in Figure 1),
with typical flow velocity of 10−6ms−1. The media is then
removed from the bioreactor through an outlet pipe. The top
of the culture media layer is a free surface. We assume there
is no flow within the hydrogel. We consider colorectal cancer
organoids, which are expanded in the bioreactor for 7 days. The
organoids are grown from single stem cells (roughly 10µm in
diameter) until they are approximately 40-80 µm in diameter
and comprise approximately 50 cells. The organoids are then
extracted from the hydrogel and tested for size, viability, and
number of cells per organoid. The total number of organoids per
bioreactor is also recorded. Finally, the extracted organoids are
frozen and stored for future use (for example, drug assays).

We consider the bioreactor design, e.g. the hydrogel and
media depths, to be fixed (though modelling can provide insights
into the role of system geometry on the resulting metabolite
concentrations). The glucose concentration in the upstream
reservoir is also fixed. The bioreactor operating parameters that
can be varied are the media inlet flow rate and the cell seeding
density in the hydrogel. The key biological question we seek to
answer using mathematical modelling is “how do the bioreactor
operating conditions and cell characteristics influence the glucose
and lactate concentrations within the CXP1 bioreactor.”

2.1.1. Parameter Values
The CXP1 geometry and relevant parameter values (e.g.
bioreactor length, hydrogel and culture media layer depths,
maximum culture media flow velocity, and initial cell seeding
density) are outlined in Ellis et al. (2019) and stated in Table 1.
The hydrogel used in the CXP1 protocol is Corning Matrigel
Matrix and the culture media is a modified form of Dulbecco’s
modified Eagle medium (DMEM), both of which are described
in Ellis et al. (2019).

The diffusivities of glucose and lactate in hydrogel and
media used in our model are taken from the literature (see
Table 1). Our model can be specialised for different cell lines,
via characterisation of their rates of proliferation and glucose
consumption. In Table 1, we state typical values for rates of
cell proliferation and glucose consumption, estimated from
CXP1 experimental data of several colorectal cancer organoid
cell lines. We were also able to obtain averaged values for
lactate concentration in the culture media layer at the end
of the experiment empirically, which are similar to the values
predicted by the model. Estimating model parameter values
from experimental data can be challenging, although there have
been advances in predicting cellular proliferation rates, e.g. via
machine learning methods (Mehrian et al., 2020a).

While the current CXP1 operating conditions have been
empirically chosen to be specialised for colorectal cancer
organoids, a key advantage of mathematical modelling is that
it facilitates consideration of metabolite transport within CXP1
for other cell lines (which is the intent of Cellesce). This
knowledge will streamline the adaptation of the CXP1 bioreactor

TABLE 1 | Definitions of dimensional model parameters, together with typical

values.

Parameter Definition Typical value

DCH Diffusivity of glucose in hydrogel 6.0× 10−10m2 s−1

(Suhaimi et al., 2015)

DCM Diffusivity of glucose in media 6.0× 10−10m2 s−1

(Suhaimi and Das, 2016)

DWH Diffusivity of lactate in hydrogel 1.2× 10−9m2 s−1

(Zhou et al., 2008)

DWM Diffusivity of lactate in media 1.4× 10−9m2 s−1

(Shipley et al., 2011)

c−∞ Glucose concentration in upstream

reservoir

0.36 molm−2

[u] Maximum velocity of media flow 1× 10−6 ms−1

L Length of bioreactor 9× 10−2m

hH Height of hydrogel layer 1× 10−3m

hM Combined height of hydrogel and

media

3× 10−3m

N0 Initial cell seeding density 2.7× 1010cell m−2 to

4× 1010cell m−2

p Proliferation rate 3.9× 10−6s−1

νC Rate of glucose consumption per unit

cell density

9.4× 10−17m2 cell−1 s−1

Where no citation is given, parameters are taken from the CPX1 set-up.
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to expanding organoids with significantly different behaviour, e.g.
non-cancerous organoids.

2.2. Mathematical Model
2.2.1. Governing Equations
Motivated by the specific bioreactor set-up, parameter values, cell
densities, andmetabolite concentrations, discussed in section 2.1,
we neglect stochastic effects and adopt a continuum modelling
approach. We consider a two-dimensional slice of the bioreactor,
and adopt a Cartesian coordinate system x = (x, z) with
origin at the bottom-left corner of the domain (see Figure 1).
We denote time by t. The hydrogel region of the bioreactor is
(x, z) ∈ [0, L]×[0, hH] (yellow region in Figure 1) and themedia
region is (x, z) ∈ [0, L] × [hH , hM] (blue region in Figure 1).
We denote the glucose concentration by c = c(x, z, t) and the
lactate concentration by w = w(x, z, t), with subscriptsM and H
to denote concentrations in the media and hydrogel, respectively.
We define the model parameters introduced below, together with
their typical values, in Table 1.

In the hydrogel, the glucose and lactate are transported
via diffusion and glucose is consumed by organoids, which
subsequently produce lactate. For the organoids (cell aggregates),
we model the reaction terms through effective (bulk) sink/source
terms over the hydrogel. Such an approach can bemathematically
justified through a formal averaging procedure, such as the
asymptotic homogenisation carried out for related systems in
Dalwadi et al. (2018) and Dalwadi and King (2020). The
equations governing metabolite transport within the hydrogel,
(x, z) ∈ [0, L]× [0, hH], are then:

∂cH

∂t
= DCH∇

2cH − r(t, x, cH ,wH)n(t), (2.1)

∂wH

∂t
= DWH∇

2wH + s(t, x, cH ,wH)n(t), (2.2)

where r and s denote the rates of glucose consumption and lactate
production per cell, respectively (units mol cell−1 s−1) and n(t) is
the cell density at time t (units cellm−2). We assume the cells
proliferate at rate p, so that the cell density is

n(t) = N0e
pt , (2.3)

where N0 is the spatially uniform initial cell-seeding density.
While cell growth is likely to have some dependence on the
glucose consumption and local lactate concentration, we assume,
as a first approximation, that glucose and lactate concentrations
are not growth-rate limiting. Thus, due to the spatially uniform
initial cell density, the cell density does not vary in space.

During glycolysis, one glucose molecule produces energy and
two lactate molecules (Liberti and Locasale, 2016). Motivated by
this, we impose

s = 2r. (2.4)

In general, we expect the glucose consumption to be a
monotonically increasing function of glucose concentration. For
simplicity, we assume that

r = νCcH , (2.5)

where νC is a constant (units m2 cell−1 s−1) representing the rate
of glucose consumption per unit cell density.

In the media, (x, z) ∈ [0, L] × [hH , hM], the advection-
diffusion equations for metabolite transport are:

∂cM

∂t
+ u(z)

∂cM

∂x
= DCM∇2cM , (2.6)

∂wM

∂t
+ u(z)

∂wM

∂x
= DWM∇2wM , (2.7)

where u(z) is the horizontal media flow. Given the slow nature
of the flow and geometry of the flow domain, the flow is well-
approximated by pressure-driven lubrication flow with a free
surface, so that u(z) is the half-Poiseuille flow:

u(z) = [u]

(

z − hH
)2

(

hM − hH
)2
, (2.8)

where [u] is the maximum flow velocity.
Governing equations Equations (2.1)-(2.8) require

appropriate boundary, initial, and interfacial conditions.
The boundaries in the hydrogel are solid walls and we impose
zero flux of glucose and lactate at x = 0, L:

−DCH
∂cH

∂x
= −DWH

∂wH

∂x
= 0. (2.9)

We assume the concentrations of glucose and lactate in the
inlet pipe are maintained at the constant values c−∞ and 0,
respectively. We assume pointwise continuity of metabolite flux
at the inlet, x = 0:

u(z)cM − DCM
∂cM

∂x
= u(z)c−∞, u(z)wM − DWM

∂wM

∂x
= 0;

(2.10)

and we impose no diffusive flux of metabolites at the
outlet, x = L:

−DCM
∂cM

∂x
= −DWM

∂wM

∂x
= 0, (2.11)

noting that themetabolites can leave the bioreactor via advection.
We impose no-flux conditions for the metabolites at the base of
the hydrogel, z = 0, and at the top of the media layer, z = hM :

−DCH
∂cH

∂z
= −DWH

∂wH

∂z
= 0 at z = 0,

−DCM
∂cM

∂z
= −DWM

∂wM

∂z
= 0 at z = hM . (2.12)

At the media-hydrogel interface, z = hH , we impose continuity
of metabolite concentration and flux:

cM = cH , wM = wH ,

DCM
∂cM

∂z
= DCH

∂cH

∂z
,DWM

∂wM

∂z
= DWH

∂wH

∂z
. (2.13)

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 5 June 2021 | Volume 9 | Article 670186

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Ellis et al. A Reduced-Order Model for Organoid Expansion

A schematic of these boundary conditions on the domain
geometry is given in Figure 2.

As initial conditions, we assume that the glucose
concentration in the media equals the glucose concentration
in the upstream reservoir, c = c−∞, the glucose concentration
in the hydrogel is zero, and that there is no lactate throughout
the bioreactor:

cH = 0, cM = c−∞, wH = wM = 0 at t = 0. (2.14)

2.2.2. Typical Timescales
The typical parameter values, given in Table 1, reveal that the
physical processes included in our model act over three different
timescales: hours, days, and months, as shown in Table 2.
Diffusion in the z-direction occurs over the timescale of hours;
media flow, glucose consumption, lactate production, and cell
proliferation occur over the timescale of a day; and x-diffusion
occurs over the timescale of months. This scaling analysis
reveals that flow markedly enhances metabolite transport in the
x-direction and that, within the media, advection dominates
diffusive transport of metabolites in the horizontal direction.
The separation of timescales renders the system stiff and, as
such, care is needed when implementing numerical methods
for its solution. At the same time, it leads naturally to the
identification of large and small dimensionless parameters which
can be exploited for model reduction (see section 2.3).

2.2.3. Non-dimensionalisation
We non-dimensionalise the problem to identify the relative
importance of each transport mechanism. We introduce the
following non-dimensional variables, for i ∈ {H,M}:

X =
x

L
, Z =

z

ǫL
, T =

t

[t]
, U(Z) =

u

[u]
, (Ci,Wi) =

(ci,wi)

c−∞
, (2.15)

TABLE 2 | Timescale groupings of the various physical processes present in the

CXP1 bioreactor.

Physical process Timescale

O
(h
o
u
r)

z diffusion glucose

in hydrogel

ǫ2L2

DCH

= 1.5× 104s = 4.2h

z diffusion glucose

in media

ǫ2L2

DCM

= 1.5× 104 s=4.2 h

z diffusion lactate

in hydrogel

ǫ2L2

DWH

= 7, 500 s= 2.1 h

z diffusion lactate

in media

ǫ2L2

DWM

= 6, 400 s = 1.8 h

O
(d
a
y)

Flow
L

[u]
= 9× 104 s = 25 h

Glucose

consumption

1

νCN0
= 2.7× 105 − 4× 105 s= 74− 110 h

Lactate production
1

2νCN0
= 1.3× 105 − 2.0× 105 s = 37− 55 h

Cell proliferation
1

p
= 2.6× 105 s = 72 h

O
(m

o
n
th
) x diffusion glucose

in hydrogel

L2

DCH

= 1.4× 107s = 3, 800h

x diffusion glucose

in media

L2

DCM

= 1.4× 107 s = 3, 800 h

x diffusion lactate

in hydrogel

L2

DWH

= 6.8× 106 s = 1, 900 h

x diffusion lactate

in media

L2

DWM

= 5.8× 106 s = 1, 600 h

We use “x” and “z” to denote “vertical” and “horizontal”, respectively. The timescale for

each process is the value such that the each dimensionless parameter grouping, defined

in Equation (2.21) as the ratio of the timescale of interest to the timescale of the physical

process, is equal to one.

FIGURE 2 | Schematic of the boundary conditions for the media (blue) and hydrogel (yellow) layers for Equations (2.1), (2.2), (2.6), and (2.7). At the media-hydrogel

interface, we impose continuity of concentration and flux. At the air-media interface and at the impermeable hashed boundaries, we impose no flux. The black arrows

indicate the half-Poiseuille flow profile.
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where X = (X,Z), ǫ = hM/L ≪ 1 is the ratio between vertical
and horizontal lengthscales, [t] is the timescale, and [u] is the
maximum flow velocity. The bioreactor domain is then (X,Z) ∈
[0, 1]×[0, 1] and themedia-hydrogel interface is at dimensionless
position Z = HH = : hH/(ǫL). Metabolite concentrations
are non-dimensionalised with the upstream reservoir glucose
concentration, c−∞. We fix the timescale of interest to be 1 day,
so that we consider the transport on the same timescale as cell
growth.

Using the scalings Equation (2.15), the governing equations
Equations (2.1)-(2.7) become,

ǫ2
∂CH

∂T
= dCH

(

ǫ2
∂2CH

∂X2
+

∂2CH

∂Z2

)

− ǫ2ρCHe
PT , (2.16)

ǫ2
∂WH

∂T
= dWH

(

ǫ2
∂2WH

∂X2
+

∂2WH

∂Z2

)

+ 2ǫ2ρCHe
PT , (2.17)

for (X,Z) ∈ (0, 1)× (0,HH) and

ǫ2
∂CM

∂T
+ ǫ2µU(Z)

∂CM

∂X
= dCM

(

ǫ2
∂2CM

∂X2
+

∂2CM

∂Z2

)

(2.18)

ǫ2
∂WM

∂T
+ ǫ2µU(Z)

∂WM

∂X
= dWM

(

ǫ2
∂2WM

∂X2
+

∂2WM

∂Z2

)

(2.19)

for (X,Z) ∈ (0, 1)× (HH , 1), with

U(Z) =
(Z −HH)2

(1−HH)2
. (2.20)

The dimensionless parameters in Equations (2.16)-(2.20) are:

µ =
[u][t]

L
, ρ = [t]νCN0, P = p[t],

(dCH , dCM , dWH , dWM) =
[t]

L2
(DCH ,DCM ,DWH ,DWM).

(2.21)

We provide a physical interpretation of these dimensionless
parameters and their typical values in Table 3. The boundary and
initial conditions, Equations (2.9)-(2.14), become:

− dCH
∂CH

∂X
= 0, −dWH

∂WH

∂X
= 0 at X = 0, 1, (2.22)

µUCM − dCM
∂CM

∂X
= µU, at X = 0 (2.23a)

µUWM − dWM
∂WM

∂X
= 0 at X = 0, (2.23b)

− dCM
∂CM

∂X
= 0, −dWM

∂WM

∂X
= 0 at X = 1, (2.24)

∂CH

∂Z
=

∂WH

∂Z
= 0 at Z = 0, (2.25)

TABLE 3 | Definitions of non-dimensionalised model parameters with their typical

values.

Parameter Definition Typical value

ǫ Ratio of vertical to horizontal lengthscales 1/30

dCH Ratio of timescale of interest to timescale

of diffusion of glucose in hydrogel

6.4× 10−3

dCM Ratio of timescale of interest to timescale

of diffusion of glucose in media

6.4× 10−3

dWH Ratio of timescale of interest to timescale

of diffusion of lactate in hydrogel

1.28× 10−2

dWM Ratio of timescale of interest to timescale

of diffusion of lactate in media

1.49× 10−2

µ Ratio of timescale of interest to timescale

of flow

0.96

ρ Ratio of timescale of interest to that of

glucose consumption per cell

0.22-0.32

P Ratio of timescale of interest to timescale

of cellular proliferation

1/3

HH Ratio of hydrogel height to the combined

height of hydrogel and media layers

1/3

Wtol Dimensionless maximum tolerated lactate

concentration

0.7

For the simulations in this paper, we take ρ = 0.27 unless otherwise stated.

∂CM

∂Z
=

∂WM

∂Z
= 0 at Z = 1, (2.26)

CM = CH , WM = WH at Z = HH , (2.27)

dCH
∂CH

∂Z
= dCM

∂CH

∂Z
at Z = HH , (2.28a)

dWH
∂WH

∂Z
= dWM

∂WM

∂Z
at Z = HH , (2.28b)

CH = 0, CM = 1, WH = WM = 0 at T = 0. (2.29)

2.2.4. Numerical Solution of Full Model
We solve the full two-dimensional system, Equations (2.16)-
(2.19) and (2.22)-(2.29), using the parameter values given
in Table 3, via a finite-element method, using COMSOL
Multiphysics R© software. The results are checked to be
independent of mesh size (results not shown). We plot the
metabolite concentration profiles at dimensionless times
T = 1, 3, 7, corresponding to 1, 3, and 7 days, in Figure 3. Note
that we observe little variation in metabolite concentration in the
vertical direction for the parameter values given in Table 3.

2.3. Model Reduction
As discussed in section 2.2.2, the different transport mechanisms
in the system have associated timescales that can be grouped
into either hours, days, or months. This is made explicit in
the dimensionless system through the presence of the small
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FIGURE 3 | Metabolite concentrations at 1, 3, and 7 days into a typical simulation. The horizontal lines at Z = 1/3 represents the media-hydrogel interface. (Top)

Glucose distribution C (X,Z,T) at (A) T = 1, (B) T = 3, (C) T = 7. (Bottom) Lactate distribution W (X,Z,T) at (D) T = 1, (E) T = 3, (F) T = 7. Parameter values: see

Table 3.

parameter ǫ. We propose a systematic model reduction, with
the key advantage of reducing the complexity of the model
while retaining the physical processes which dominate over the
timescale of interest.

2.3.1. Longwave Approximation
Motivated by the long, thin geometry of the bioreactor,
characterised by ǫ ≪ 1, and the lack of variation in Z
compared to X revealed in Figure 3, we now systematically
average Equations (2.16)-(2.19) and (2.22)-(2.29) in Z to derive
the appropriate reduced lubrication model, referred to as the
longwave approximation.

In the asymptotic analysis that follows, we consider the limit
ǫ → 0, and assume all other dimensionless parameters remain
O(1) as ǫ → 0. This distinguished limit is consistent with the
values of dimensionless parameters given inTable 3, and assumes
that diffusion in the vertical direction is the dominant transport
mechanism for the bioreactor geometry. We note that our choice
of time scaling, [t] = 1 day, means that we are investigating this
system over the timescale of days. We could study the behaviour
of this system over shorter timescales, and its transition to the
timescale of days, if we systematically considered the timescale
T = O(ǫ2). However, this will not be of fundamental importance
to the problem we study here, and we do not pursue this further.

We consider the following asymptotic expansions for the
dependent variables:

f ∼ f0 + ǫ2f1 + · · · , as ǫ → 0, where f ∈ {CM ,CH ,WM ,WH}.
(2.30)

We note that the O(ǫ2) size of the first-correction term is
standard in lubrication-type models, and arises due to the
size of the terms neglected in the leading-order problem. In
the standard manner, we substitute Equation (2.30) into the
governing equations, Equations (2.16)-(2.19) and (2.22)-(2.29),
and equate coefficients ofO(ǫn).

At leading order, the metabolite transport is given by

0 =
∂2fj0

∂Z2
where f ∈ {C,W} and j ∈ {H,M}. (2.31)

Hence, we see that the leading-order mass transport is driven
entirely by vertical diffusion, consistent with our discussion of
timescales above.

Integrating Equation (2.31) subject to the leading-order
versions of the appropriate boundary conditions, Equations
(2.25)-(2.28), we deduce that CH0,CM0,WH0,WM0 are
independent of vertical position, Z. This is consistent with
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the numerical solutions seen in Figure 3. Given the continuity of
concentration condition, Equation (2.27), we deduce that

CH0(T,X) = CM0(T,X), WH0(T,X) = WM0(T,X) for all Z.
(2.32)

However, the correct dependence of the metabolite profiles on T
and X is currently undetermined.

To calculate this dependence, we proceed to O(ǫ2) and derive
an appropriate solvability condition. At O(ǫ2), the governing
equations are

dCH
∂2CH1

∂Z2
=

∂CH0

∂T
− dCH

∂2CH0

∂X2
+ ρCH0e

pT , (2.33)

dWH
∂2WH1

∂Z2
=

∂WH0

∂T
− dWH

∂2WH0

∂X2
− 2ρCH0e

pT ,

for (X,Z) ∈ (0, 1)× (0,HH)and
(2.34)

dCM
∂2CM1

∂Z2
=

∂CM0

∂T
+ µU(Z)

∂CM0

∂X
− dCM

∂2CM0

∂X2
, (2.35)

dWM
∂2WM1

∂Z2
=

∂WM0

∂T
+ µU(Z)

∂WM0

∂X
− dWM

∂2WM0

∂X2

for (X,Z) ∈ (0, 1)× (HH , 1). (2.36)

Integrating each equation over the vertical coordinate and
applying the no flux conditions, Equations (2.25) and (2.26), at
O(ǫ2) yields:

dCH
∂CH1

∂Z

∣

∣

∣

∣

Z=HH

=HH

(

∂CH0

∂T
− dCH

∂2CH0

∂X2
+ ρCH0e

PT

)

, (2.37)

dWH
∂WH1

∂Z

∣

∣

∣

∣

Z=HH

=HH

(

∂WH0

∂T
− dWH

∂2WH0

∂X2
− 2ρCH0e

PT

)

, (2.38)

− dCM
∂CM1

∂Z

∣

∣

∣

∣

Z=HH

= (1−HH)

(

∂CM0

∂T
+ µŪ

∂CM0

∂X
− dCM

∂2CM0

∂X2

)

,

(2.39)

− dWM
∂WM1

∂Z

∣

∣

∣

∣

Z=HH

= (1−HH)

(

∂WM0

∂T
+ µŪ

∂WM0

∂X
− dWM

∂2WM0

∂X2

)

,

(2.40)

where the depth-averaged flow velocity, Ū is given by:

Ū =
1

1−HH

∫ 1

HH

U(Z) dZ =
1

3
. (2.41)

Recalling the continuity of flux condition, Equation (2.28), and
that CH0 = CM0 and WH0 = WM0, we combine the above
expressions for the glucose and lactate concentrations in the
media and hydrogel to derive the longwave approximation:

α
∂CM0

∂T
+ β

∂CM0

∂X
= δC

∂2CM0

∂X2
− γCM0e

PT , (2.42)

α
∂WM0

∂T
+ β

∂WM0

∂X
= δW

∂2WM0

∂X2
+ 2γCM0e

PT , (2.43)

where we have introduced the following parameters for ease
of notation:

θ =
HH

1−HH
, α = 1+ θ , β = µŪ, γ = θρ,

δC = dCM + θdCH , δW = dWM + θdWH . (2.44)

We derive the appropriate boundary and “initial” conditions
for Equations (2.42) and (2.43) in a similarmanner, by integrating
the leading over terms of Equations (2.22)-(2.24) and (2.29) over
Z between 0 and 1. We solve Equations (2.42) and (2.43) subject
to the following boundary and “initial” conditions:

βCM0 − δC
∂CM0

∂X
= β at X = 0, (2.45)

βWM0 − δW
∂WM0

∂X
= 0 at X = 0, (2.46)

∂CM0

∂X
=

∂WM0

∂X
= 0 at X = 1, (2.47)

CM0 =
1

α
andWM0 = 0 at T = 0 for 0 ≤ X ≤ 1. (2.48)

The reason we refer to Equation (2.48) as “initial” conditions is
because they actually represent asymptotic matching conditions
with the earlier timescale problem we mentioned previously.
This is the reason why there is a discontinuity in the boundary
and “initial” conditions as X,T → 0. If it were of interest to
understand this limit further, one could investigate this region
using the scalings X = O(ǫ), T = O(ǫ2). Given that this
asymptotic region does not affect any of our subsequent analysis,
for brevity we do not pursue it further here.

Equations (2.42), (2.43), and (2.45)-(2.48) define the longwave
approximation model. We will analyse this reduced system in
more detail in section 3. First, we derive a further reduction
of the longwave approximation, by exploiting the separation in
scales between horizontal diffusion and the remaining transport
mechanisms, namely advection with the media flow, glucose
consumption, and lactate production.

2.3.2. Sublimit of Longwave Approximation
From the typical parameter values given in Table 3, we note that
the timescale of horizontal diffusion is significantly longer than
the remaining transport mechanisms. Given that the longwave
approximation derived in section 2.3.1 is a distinguished
asymptotic limit, we can include the separation of scales involved
in horizontal diffusion by directly considering the sub-limit dCH ,
dCM , dWH , dWM → 0, corresponding to δC, δW → 0 in Equations
(2.42), (2.43), and (2.45)-(2.48). We refer to this as the sublimit
approximation. This procedure results in the following governing
equations for advection-dominated transport:

α
∂CM0

∂T
+ β

∂CM0

∂X
= −γCM0 exp(PT), (2.49)

α
∂WM0

∂T
+ β

∂WM0

∂X
= 2γCM0 exp(PT), (2.50)

with boundary and initial conditions

CM0 = 1, WM0 = 0 at X = 0, (2.51)

CM0 =
1

α
, WM0 = 0 at T = 0. (2.52)

We note that the limit we have taken is singular in that the small
parameters (diffusivities) pre-multiply the second-order spatial
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derivatives. As such, we have lost the ability to prescribe the
outlet boundary conditions at X = 1, though we note that this
boundary condition could be imposed through the analysis of an
appropriate (weak) boundary layer near X = 1.

A benefit of this sublimit reduction is that we are able to
construct analytic solutions for the glucose concentration, using
the method of characteristics. The solution is split into two
distinct regions: Region 1, given by 0 < βT < αX; and Region 2,
given by 0 < αX < βT:

CM0 =



















1

α
exp

( γ

αP

(

1− ePT
))

for 0 < βT < αX, (2.53)

exp

(

γ

αP

(

e
−P
(

α
β
X−T

)

− ePT

))

for 0 < αX < βT, (2.54)

The solution (2.59)-(2.3.2) is discontinuous across the boundary
separating the two regions, X = βT/α, which we refer to as
the dividing characteristic. The reason for this is that Region 1
is forced by the initial conditions whereas Region 2 is forced by
the boundary conditions, and there is a discontinuity in these
conditions nearT = 0,X = 0 (which could be smoothed through
an appropriate asymptotic analysis of the earlier timescale, as
mentioned previously). As no information from the boundary
condition propagates into Region 1, cells in Region 1 do not
feel the effect of any replenishment by the flow. As such, we
refer to Region 1 as the unreplenished region and Region 2 as the
replenished region.

Using the method of characteristics, we can write the lactate
concentration as a single integral of known functions:

WM0(S, τ ) =

∫ τ

0
2γCM0(T(S, τ ),X(S, τ ))e

PT(S,τ ) dτ

withWM0 = 0 at τ = 0, (2.55)

where we define the characteristic variables (S, τ ) as

S = αX − βT and τ =















T

α
for βT < αX, (2.56)

X

β
for αX < βT. (2.57)

As outlined in the Supplementary Material, we can evaluate the
integral in Equation (2.56) to obtain the solution

WM0 =















2

α

(

1− exp
( γ

Pα

(

1− ePT
)))

for 0 < βT < αX,(2.58)

2

(

1− exp

(

γ

Pα

(

e
−P
(

α
β
X−T

)

− ePT
)))

for 0 < αX < βT. (2.59)

We note that the quantity 2CM0 + WM0 is conserved along the
characteristics defined by dX/dT = α/β (i.e. in the advective
frame of reference). This means that the following relationships
are satisfied between glucose and lactate concentrations:

2CM0 +WM0 =
2

α
for 0 < βT < αX, (2.60)

2CM0 +WM0 = 2 for 0 < αX < βT, (2.61)

where the differing constants are due to the “initial” information
on the characteristics arising from the actual initial conditions
for 0 < βT < αX (Region 1) and the replenishment boundary
conditions for 0 < αX < βT (Region 2).

3. RESULTS

3.1. Model Behaviour and Comparison
We now discuss and compare results obtained from our reduced
models and the full system. This will allow us to understand when
each reduced model is a useful systematic reduction.

The longwave approximation model, Equations (2.42), (2.43),
and (2.45)-(2.48), is solved numerically using the Chebfun
toolbox in MATLAB. For the sublimit approaximation model,
Equations (2.49)-(2.52), we obtain an analytical expression for
the glucose concentration, and the lactate concentration is
numerically computed from Equation (2.50) subject to Equation
(2.51) with a Runge-Kutta method using the in-built ODE solver
ode45 in MATLAB. For each numerical approach, we perform
convergence tests to ensure the results are independent of mesh
size (results not shown).

Computationally, there is a significant difference between
the models: on a standard desktop, the full problem is solved
in O(180s); the longwave approximation in O(20s); and the
sublimit approximation in O(4s). That is, there is a nearly ten-
fold speed-up in solving the longwave approximation compared
to the full model, and the sublimit is five times quicker to
solve than the longwave approximation. As we see later, rapid
computation of solutions will allow us to perform parameter
sensitivity analyses efficiently.

To present the model solutions over space and time, we
average solutions of the full 2D model over Z, to facilitate
comparison with solutions of the reduced models (Figure 4).
We see that the glucose concentration behaviour appears to
be split into two approximate regions, divided by a straight
line in (X,T)-space that goes through the origin and reaches
the end of the X-domain (X = 1) at T ≈ 4 (Figure 4A).
In the lower-right region, the glucose concentration appears
to be approximately constant in space, and to decrease over
time. However, in the upper-left region, there is a clear spatial
dependence in the glucose concentration, which appears to
decrease in X until it reaches the lower-right region. The
lactate concentration behaviour appears to be split into the same
two approximate regions (Figure 4B), though the demarcation
is less defined than for glucose. In the lower-right region,
the lactate concentration also appears to be approximately
constant in space, but now increases over time. In the upper-
left region, the lactate concentration appears to approximately
increase in X until it reaches the lower-right region. To
compare these results with the reduced models, we also present
solutions for the longwave approximation (Figures 4C,D) and
sublimit approximation (Figures 4E,F).We see that the longwave
approximation is an excellent approximation of the full system
through the entire domain. The sublimit is also a good
approximation of the full model except in a small neighbourhood
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FIGURE 4 | Results showing how the glucose (A,C,E) and lactate (B,D,F) concentrations change over time during a typical simulation. (A,B) Results from

Z-averaged full model. (C,D) Longwave approximation. (E,F) Sublimit of longwave approximation, where the upper left and lower right regions are the replenished and

unreplenished regions, respectively. Parameter values: see Table 3.

of the dividing characteristic, αX = βT. The sublimit solution
is discontinuous across the dividing characteristic because it
neglects horizontal diffusion. Appropriate smoothing could be
included in the sublimit by investigating a thin boundary layer
in the neighbourhood of this discontinuity in which diffusive
effects are once again important. We also note that the dividing
characteristic is in approximately the same place as the boundary
between regions noted in the full model in Figures 4A,B. We
investigate and interpret this observation below.

At this stage, we conclude that when information close to the
dividing characteristic is of interest, the longwave approximation
should be used instead of the sublimit approximation. If this
information is not important, the sublimit approximation should
be used since it is faster to solve than the full model and the
longwave approximation, and it admits analytic solutions for
glucose concentration.

We emphasise that our analytic solutions in the sublimit
approximation allow us to understand observations from the full

Frontiers in Bioengineering and Biotechnology | www.frontiersin.org 11 June 2021 | Volume 9 | Article 670186

https://www.frontiersin.org/journals/bioengineering-and-biotechnology
https://www.frontiersin.org
https://www.frontiersin.org/journals/bioengineering-and-biotechnology#articles


Ellis et al. A Reduced-Order Model for Organoid Expansion

numerical solutions. That is, we can use our analytic solutions
from the sublimit model to physically interpret our results and
provide insight into the underlying physical system. For example,
the dividing characteristic (αX = βT) in the sublimit model
represents the division between information propagated from the
initial and the boundary conditions. Physically, this means that
the effect of fresh media is only experienced at position X at time
T = αX/β . At earlier times, glucose delivery to organoids at
position X is due to the glucose initially present in the system.
This allows us to determine the metabolite transit time. That is,
the average time taken for metabolite within the fresh media to
traverse the entire bioreactor

T∗ =
α

β
=

1+ HH
1−HH

µŪ
≈ 4.7 days. (3.1)

The above estimate is in good agreement with our observations of
the full solution—that different model solutions arise in the two
regions on either side of the straight line through the origin that
reachesX = 1 atT ≈ 4. Hence, we now interpret this observation
physically; the regions are separate according to whether or not
they have experienced fresh media. Since the media does not
traverse the bioreactor with a constant velocity, the metabolite
transit time is not the same as the timescale associated with
the maximum flow velocity of the system, [t] = 25 h. The
relevant timescale is, therefore, not the one associated with the
experimentally imposed flow rate, but rather the metabolite
transit timescale, which is associated with the averaged velocity
distribution of metabolite across the bioreactor.

Additionally, the analytic solution of our sublimit
approximation provides insight into why the glucose and lactate
concentration appear to be spatially-independent in the lower-
right regions (Figure 4). In Region 1 (where 0 < βT < αX),
the analytical solutions for metabolite concentrations from
the sublimit model are independent of the spatial coordinate.
Region 1 is the non-replenished region, i.e. it is not replenished
from the inlet and subsists on its initial conditions. Given
spatially-uniform initial conditions, spatial effects are not seen
in the concentration profiles until the wave of replenishment is
experienced; this marks the onset of Region 2.

To quantitatively compare the model predictions, we consider
the following time-dependent variables: minimum glucose
concentration, Cmin(T) = min

X
(C(X,T)); maximum lactate

concentration, Wmax(T) = max
X

(W(X,T)); spatial position of

maximum lactate concentration, Xmax(T), where W(Xmax,T) =

Wmax(T); and the lactate concentration at outlet, W(X = 1,T).
We emphasise that Equation (2.32) allows us to denote the
metabolite concentrations CM0 = CH0 = C andWM0 = WH0 =

W for ease of notation.
In Figure 5A, we plot the minimum glucose concentration,

Cmin(T), against time for our two reduced one-dimensional
models and the Z-averaged full model and compare these values
to the predicted minimum glucose concentration in hydrogel,
which is found using the full two-dimensional model. We see
that the predicted minimum glucose from each model reduction

generally agrees well with the minimum glucose within the
hydrogel from the full model. The only exceptions to this are
around 4-5 days, where the sublimit model disagrees slightly with
the other models, and for early times (< 1 day). The first of
these is due to the dividing characteristic being important for
this metric around 4.7 days, as discussed above. The second is
due to our choice of timescale in deriving the reduced model.
That is, our reduced models focus over the timescale of days
and neglect the initial transient behaviour in the system, as
mentioned previously.

Similar plots showing how the maximum lactate
concentration, Wmax(T), changes over time are presented
in Figure 5B. Again, the Z-averaged full model and the longwave
approximation are in good agreement with the predicted value
within the hydrogel. Given that there is initially no lactate in the
system, this metric avoids the issue with the early time transient
behaviour that occurs for the minimum glucose concentration
metric. The sublimit approximation systematically overestimates
the lactate concentration, though we note that this is preferable
to underestimation, given the detrimental effects of high lactate
concentrations. The overestimation arises because the sublimit
approximation neglects the removal effect of lactate transport
through horizontal diffusion over the dividing characteristic.

We compare the position at which the maximum lactate
concentration occurs, Xmax(T), in Figure 5C. We see that Xmax

is increasing in time, which is consistent with advection being
the dominant transport mechanism over the timescale of days
(Table 2), as the lactate produced is advected towards the
outlet by the media. As seen in Figures 5A,B, the sublimit
approximation agrees less well with the full model than the
longwave approximation, which has excellent agreement.

It is infeasible to obtain experimental data for maximum
lactate concentrations, which we would need to validate our
model. Therefore, we consider the lactate concentration at the
media outlet, W(X = 1,T), which is measurable empirically, in
Figure 5D. We compare the reduced models to the Z-averaged
full solution, the average concentration within the hydrogel at
the outlet, and the maximum value in the hydrogel (which are
all obtained from numerical solutions to the full 2D system).
We find that the lactate concentration at the media outlet
is very similar to the maximum lactate concentration within
the hydrogel and can, therefore, be used as a proxy for it.
The sublimit is a good prediction of the outlet and maximum
lactate concentrations at 4 days and earlier, but overestimates the
maximum concentration within the hydrogel at 5 days and later.
This is again due to the dividing characteristic, and its exit from
the domain at 4.7 days.

3.2. Bioreactor Characterisation
In this section, we start by exploiting our reduced modelling
approach to characterise the conditions within the bioreactor.
We show how the metabolite concentrations depend on the
bioreactor operating parameters such as the inlet flow rate and
cell seeding density, and the characteristics of the cells, such as
the rates of cell proliferation and glucose consumption. Armed
with this insight, we then show how the operating parameters
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FIGURE 5 | Comparison of outputs from the different mathematical models and their evolution in time: (A) minimum glucose concentration, Cmin(T ); (B) maximum

lactate concentration, Wmax(T ); (C) spatial position of maximum lactate concentration, Xmax(T ) s.t. W(Xmax, T ) = Wmax(T ); (D) lactate concentration at outlet of

bioreactor, W(X = 1,T ). The red points represent the values predicted in the hydrogel region of the full 2D model. Parameter values: see Table 3.

can be selected to ensure the biochemical environment within the
bioreactor promotes cell growth.

We investigate and quantify the metabolite
behaviour by introducing the following time-dependent
metrics. We previously defined the maximum lactate
concentration,Wmax(T), as

Wmax(T) = max
X

(

W(X,T)
)

. (3.2)

We now introduce the cumulative glucose conversion, Q(T), as

Q(T) =
glucose consumed

glucose supplied
=

∫ T
0

∫ 1
0 γC exp(PT) dXdT

∫ T
0 (1−HH)µŪ dT

. (3.3)

In general, it is desirable to choose operating parameters that
ensure high glucose conversion, so the maximum amount of
glucose supplied to the bioreactor is utilised by the cells,
and resource wastage is minimised. However, high glucose

conversion will also cause high lactate levels, and lactate
concentrations above a critical tolerance, Wtol, can adversely
affect organoid growth. To assess this, we define a point X to be
uninhabitable if W(X,T) > Wtol. We use the metric proportion
of domain which is uninhabitable, PU (T), defined as

PU (T) =

∫ 1

0
H
[

W(X,T)−Wtol

]

dX, (3.4)

where H is the Heaviside function. In general, it is desirable to
choose operating parameters such that PU is minimised for the
duration of the bioreactor run. In addition to the time-dependent
metrics, it is also helpful to quantify the time at which intolerable
lactate levels are first experienced, which we refer to as the turn-off
time, and define as

Toff = min(T) for T ∈
{

T :W(X,T) ≥ Wtol

}

. (3.5)

In general, it is desirable to choose operating parameters such that
Toff is larger than the duration of the bioreactor run.
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There is a trade-off between high glucose conversion and
minimising the fraction of the domain which is uninhabitable.
We show how the mathematical model can be used to identify
parameter regimes which strike a balance between promoting
glucose conversion and facilitating waste removal in section 3.2.2.

In addition to the metrics we have introduced to assess
metabolite distribution, an important cell-specific metric is the
glucose consumption rate per cell. In our model, the glucose
consumption rate per cell is proportional to the glucose
concentration and, thus, we can use results such as Figure 4C
to understand the spatial variation in glucose consumption rate
per cell. We see that cells nearer the inlet have higher rates of
glucose uptake than those closer to the media outlet, and this
spatial heterogeneity could lead to spatial variation in cell growth
within the physical system.

3.2.1. Characterising Model Behaviour for Different

Organoid Lines
Organoid lines differ in many ways including, but not
limited to, proliferation rate, glucose consumption rate, the
maximum lactate concentration cells can tolerate without
affecting cell properties, and minimum glucose level needed for
cellular proliferation. To understand the metabolic environment
experienced by different organoid lines within the bioreactor, we
perform a discrete parameter sensitivity analysis in which we
vary the rates of proliferation, P, and glucose consumption per
cell, ρ, for the bioreactor operating regime specified in Table 3.
We consider organoid lines whose proliferation rates take the
values P = 1/6 and P = 1, which we refer to as low and high
proliferation, respectively, and whose glucose consumption rates
take values ρ = 0.027 and ρ = 2.7, referred to as low and high

consumption, respectively. We consider five different organoid
lines: (i) with P = 1/6 and ρ = 0.027; (ii) with P = 1/6
and ρ = 2.7; (iii) with P = 1 and ρ = 0.027; (iv) with
P = 1 and ρ = 2.7; and the typical organoid line considered
in Figure 4 (v) with P = 1/3 and ρ = 0.27. In Figure 6, we
plot the metabolite concentration profiles C andW for these four
organoid lines, (i-iv), expanded under an operating regime which
does not otherwise differ. The same results for organoid line (v)
are shown in Figures 4C,D.

In Figures 6A,E, we show organoid line (i), cells with low
proliferation and low glucose uptake rates. The lactate levels
are very low throughout the bioreactor domain and the domain
remains within tolerable lactate concentrations for the entire
experiment. The glucose concentration in the replenished region
is high and remains close to its inlet value, C = 1, so the media
flow supplies significantly more glucose into the system than
is consumed by the cells. The glucose concentration becomes
increasingly homogeneous as time evolves, and consequently the
rate of glucose consumption per cell becomes more spatially
homogeneous across the bioreactor as time evolves.

We consider organoid line (ii), with low proliferation and high
glucose uptake rates, in Figures 6B,F. We see that this larger
uptake ratemeans that the lactate concentration quickly increases
and the majority of the region becomes intolerable, even for
slowly proliferating cells. While cells close to the inlet still have
reasonably high glucose and low lactate levels, resulting in the
rate of glucose uptake per cell being high at the inlet, this quickly
decreases as one moves into the bioreactor.

For rapidly proliferating cells with a low rate of glucose uptake
[organoid line (iii)] Figures 6C,G, we see the environment is
tolerable until around day 4 of the experiment. At this point,

FIGURE 6 | Evolution of glucose (left grid) and lactate (right grid) concentration profiles over the duration of a typical experiment for different organoid lines under

the same operating conditions. The rates of cell proliferation rates and glucose consumption per cell are: (A,E) organoid line (i), p = 1/6, ρ = 0.027; (B,F) organoid

line (ii), p = 1/6, ρ = 2.7; (C,G) organoid line (iii), p = 1, ρ = 0.027; (D,H) organoid line (iv), p = 1, ρ = 2.7. The other parameters used are given in Table 3.
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there are approximately 55 times more cells within the hydrogel
than at the start of the experiment. This suggests that the selected
operating conditions provide tolerable conditions and allow
reasonable rate of glucose consumption per cell up to a critical
number of cells, but beyond this critical number, the low glucose
concentration means the cells have a very low rate of glucose
consumption. The lactate concentration is reasonably spatially
homogeneous, which suggests that all cells will be subject to
a similar metabolic environment and therefore be affected by
lactate to a similar degree.

Finally, we consider cells with high proliferation and high
uptake [organoid line (iv)], in Figures 6D,H. The glucose
concentration within the bioreactor decays very quickly over
the course of a day, and it is never replenished sufficiently
by the media flow. As such, the glucose consumption per cell
is consistently small away from the inlet region. In the same
vein, the lactate concentration quickly increases to above the
tolerable level over the course of a day. In contrast to the low
proliferation organoid line (ii) (Figures 6B,F), the maximum
lactate concentration for organoid line (iv) occurs close to the
inlet rather than in the middle of the bioreactor. This is because
the rapid expansion of cells means that lactate is produced very
quickly throughout the bioreactor, and so is maximised in the
location where glucose is mainly consumed. This indicates that
the media flow is too slow to facilitate significant waste removal
for this organoid line. We note that our cell growth model is not
dependent on metabolite concentration, so the cell proliferation
rate is unaffected when the metabolic environment is harsh.
This limitation is most prominent for the high proliferation
and high uptake organoid line, where the cells continue to
proliferate exponentially in the presence of no glucose and high
lactate levels.

Using the metrics we introduced above, we now quantify
the behaviour of the bioreactor environment during cell culture
for each of the five organoid lines. In Figure 7, we plot the

total glucose conversion, Q(T) (Equation 3.3), maximum lactate
concentration, Wmax(T) (Equation 3.2), and proportion of
uninhabitable domain, PU (T) (Equation 3.4) (strongly related to
the turn-off time), for each of the five organoid lines.

The glucose conversion generically increases over time, as
the cells grow. However, the shape of this increase over time
varies significantly between the different organoid lines. While
solely considering the standard case [organoid line (v), given by
parameters in Table 3] would suggest that the glucose conversion
is approximately linear in time, the additional organoid lines
show that this behaviour is not universal. Cells with high rates
of glucose consumption [organoid lines (ii) and (iv)] have a
sharp increase in glucose conversion over the first 2 days before
plateauing. For low rates of glucose consumption, the shape
of the glucose conversion curve strongly depends on the cell
proliferation rate. For low proliferation [organoid line i], the
conversion is low throughout and appears linear. However, for
high proliferation [organoid line (iii)], the curve has an S-shape.
That is, the conversion starts off low, then rapidly increases before
plateauing. This rapid increase is linked to the increase in the
number of cells in the bioreactor for organoid line (iii), and so
we would expect organoid line (i) to exhibit a similar S-shape if
the experiment went on for longer.

We show the maximum lactate concentration in Figure 7B,
where the red line represents W = Wtol, to understand which
of these organoid lines are growing in tolerable environments.
This graph is qualitatively very similar to that of the glucose
conversion, Figure 7A. For the value of Wtol we use, we see that
the maximum lactate concentration reaches the tolerated level
within 1 day for high uptake cells [organoid lines (ii) and (iv)].
In comparison, the standard case [organoid line (v)] reaches
the maximum tolerated level approximately halfway through the
experiment. For the low uptake organoid lines, the proliferation
rate again makes a significant difference. For high proliferation
[organoid line (iii)], the maximum tolerated level is again

FIGURE 7 | Comparison of (A) glucose conversion Q, Eqaution (3.3), (B) maximum lactate concentration Wmax(T ), Equation (3.2), where the red line represents the

maximum tolerated lactate concentration, W = Wtol, and (C) proportion of domain which is uninhabitable at time T, PU , Equation (3.4), for different organoid lines

cultured within the bioreactor under the same operating conditions. The proliferation rates and rate of glucose consumption per cell for each organoid line are:

(i) p = 1/6, ρ = 0.027, (ii) p = 1/6, ρ = 2.7, (iii) p = 1, ρ = 0.027, (iv) p = 1, ρ = 2.7, and (v) p = 1/3, ρ = 0.27. The other parameters used are given in Table 3. The

line styles correspond to rate of cellular proliferation: solid, P = 1/6; dashed, P = 1/3; and dotted, P = 1. The line colours correspond to rate of glucose consumption

per cell density: purple, ρ = 0.027; blue, ρ = 2.7; and green, ρ = 2.7.
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reached approximately halfway through the experiment, whereas
for low proliferation [cell line (i)] the lactate never reaches
harmful levels.

We examine the time at which the lactate concentration
equals the tolerated lactate concentration in Figure 7C, a graph
showing the time-dependent proportion of the domain which is
uninhabitable, PU (T), for each organoid line. Notably, we see that
as soon as some of the domain becomes uninhabitable, the rest of
the domain follows over a short timescale. This can be explained
through the insight gained from our sublimit approximation.
That is, as Region 1 (αX > βT > 0) has yet to experience
replenishment from the inlet, the lactate concentration in this
region is approximately spatially homogeneous, and an increase
above the tolerable level will quickly be experienced in a large part
of the domain. The turn-off time Toff (Equation 3.5) can also be
determined from Figure 7C—it is the first time at which PU (T)
is non-zero. We see that the high glucose consumption organoid
lines [(ii) and (iv)] have much smaller turn-off times than the
other organoid lines. The lactate concentration for organoid line
(i) does not reach Wtol during the experiment, so the turn-off
time is larger than the run time of the experiment.

There is a trade-off between promoting: (1) high glucose
conversion, to ensure resources are not wasted; (2) high glucose
consumption rate per cell, to ensure cells absorb sufficient
glucose to proliferate; and (3) increasing the turn-off time, to
ensure the lactate concentrations within the bioreactor remain
tolerable everywhere throughout the experiment. Our model
framework allows for efficient quantification of all these metrics.
By determining how these metrics vary with bioreactor operating
parameters, we can then identify operating conditions that
enhance cell growth. We illustrate this in the next section.

3.2.2. Determining Operating Conditions for a Given

Organoid Line
In this subsection, we focus on the standard organoid line (v),
with proliferation rate and glucose consumption rate given in
Table 3. This is the organoid line with a “medium" rate of glucose

consumption per cell, and a doubling time of 3 days. The current
operating conditions lead to lactate concentrations above the
tolerated level for half of the experimental run time, suggesting
that these operating conditions are sub-optimal.

We now determine how the metrics depend on the inlet
flow rate for this organoid line, and show how this leads to the
identification of flow rates that enhance cell growth. We focus
on flow rate as this is an experimental parameter that is easily
varied. We investigate flow rates over two order of magnitudes,
[u] ∈

[

1× 10−7, 1× 10−5
]

ms−1, all within the range of the
peristaltic pump used in the CXP1 protocol.

In Figure 8, we show how the metrics vary with inlet flow
rate. To illustrate the dependence of the metrics on flow rate,
we first present time-dependent results for five different flow
rates. The glucose conversion monotonically increases in time
(Figure 8A), due to the increasing number of cells causing an
increased glucose consumption. The effect of increasing flow rate
is to decrease the glucose conversion. This is because stronger
flows correspond to feeding more glucose into the system over
a given time period as well as the media spending less time
within the bioreactor, so there is less time for the glucose to be
consumed by the cells. However, we also note that the conversion
is relatively insensitive to flow rate: increasing the flow by two
orders of magnitude only decreases the conversion by a factor of
around six.

While the time-dependent maximum lactate concentration
within the domain monotonically increases for a given flow rate,
the effect of varying the flow rate is non-monotonic (Figure 8B).
For a given run time of the experiment, there is a flow rate that
maximises themaximal lactate concentration.We emphasise that
this flow rate will depend on the experimental run time. The
reason for there being a flow rate which maximises the maximal
lactate concentration (the “worst” flow rate, in some sense) is due
to two competing factors. Firstly, the rate of glucose consumption
per cell, and therefore the rate of lactate production, increases
with increasing flow rate. Secondly, for slower flow rates the
media is not able to advect sufficient quantities of lactate out of

FIGURE 8 | Results for a specific organoid line within the CXP1 bioreactor showing the evolution of: (A) glucose conversion Q, Equation (3.3), (B) maximum lactate

concentration Wmax(T ), Equation (3.2), where the red line respresents the maximum tolerated lactate concentration, W = Wtol, and (C) proportion of domain which is

uninhabitable at time T, PU , Equation (3.4), against time for five different flow rates. For [u] = 10−5ms−1, the value of PU is zero. The peak flow velocities

[u] ∈ {10−7, 5× 10−7, 10−6, 2× 10−6, 10−5}ms−1 used correspond to the dimensionless flow velocity parameter µ ∈ {0.096, 0.48, 0.96, 1.92, 9.6}, respectively.

Remaining parameter values: see Table 3.
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the bioreactor to maintain a tolerable lactate level. These two
factors combine to produce a worst possible flow rate for a given
experimental run time. We also note that up until approximately
one day (T = 1), the maximum lactate concentration is the same
for all the flow rates considered. This reflects the fact that there is
a lag in the production of lactate, and that the lactate production
is initially set by the initial conditions rather than the operating
regime of the bioreactor.

In Figure 8C, we plot the proportion of the domain which
is uninhabitable against time, for the five different flow rates
considered. In general, a lower flow rate corresponds to a sharper
increase in the uninhabitable proportion once initially triggered.
This is because more of the domain is in the non-replenished
Region 1 for lower flow rates, and the metabolite concentrations
are approximately spatially independent in Region 1, for reasons
discussed above. In addition, we note that a large enough flow
rate can ensure that none of the domain becomes uninhabitable
for the duration of the experimental run, as we see for a flow
rate of 1 × 10−5ms−1. However, we also note that increasing
the flow rate can have an unwanted effect on the turn-off time.
From Figure 8C, we see that increasing the flow rate slightly
decreases the turn-off time, up to a point. As noted above, for
large enough flow rates the system never exhibits intolerable
lactate concentrations.

We now consider a more finely refined investigation of the
effect of flow rate of the system metrics. In Figure 9, we consider
the effect of flow rate both on the glucose conversion at day 7
(Figure 9A) and on the turn-off time (Figure 9B).

We see that the relationship between glucose conversion at 7
days and media flow velocity is monotonically decreasing, and
the rate of decrease is larger for flows faster than [u] = 10−6ms−1

(Figure 9A). However, as noted above, the turn-off time is not
monotonic in the flow rate (see also Figure 8C). We see that
there is a minimal turn-off time when the flow is approximately
2 × 10−6ms−1. This is the worst possible flow rate from the
point of view of ensuring the domain remains tolerable for as
long as possible. For flow rates below this, the bioreactor is

transport-limited, either by insufficient glucose delivery to cells
or by insufficient waste removal from the bioreactor. For flow
rates above this, the turn-off time is proliferation-limited, where
the rate at which the cell population is growing sets the timescale
at which lactate is produced.

An advantage of our mathematical modelling framework is
that we have been able to easily explore a wide range of parameter
values, in this case the flow rate, and explore the nonlinear
effects of varying experimental parameters. For example, an
experimentalist may start with a slow flow rate of 10−7ms−1

and conduct a set of experiments over which they increased the
flow. Over an order of magnitude increase in flow, they would
see no improvement in turn-off time, and therefore might be
discouraged from increasing the flow any further. In such a
scenario, they would miss finding the flow rate values required
for turn-off times greater than 4 days.

The “optimal" operating conditions for the bioreactor will
determine glucose and lactate concentrations which (1) yield a
specified value for glucose conversion; (2) maintain a glucose
consumption rate per cell which is sufficient for cellular
proliferation; and (3) predict a turn-off time which is greater
than the run time of the experiment. The specific values and
relative importance of each of these requirements will depend
on the user. Our model reduction facilitates rapid calculation
of each metric. Hence, our work could be combined with an
optimisation algorithm, with user-specified cost functions, to
produce an efficient framework that can identify the bioreactor
operating conditions that optimise for growth of organoids.

4. DISCUSSION

We have presented an unsteady, two-dimensional model of
metabolite transport that predicts metabolite concentrations
within the CXP1 bioreactor system. We used an asymptotic
analysis to systematically derive two reduced models which
exploit the extreme spatial and temporal parameter ratios

FIGURE 9 | (A) Glucose conversion Q, Equation (3.3), at time T = 7 and (B) turn-off time Toff (the time when intolerable lactate levels first experienced) for the CXP1

bioreactor varying with flow rate, for a given organoid line. Peak flow velocities [u] ∈
[

10−7, 10−5
]

ms−1 correspond to dimensionless flow rate, µ, in the range

µ ∈ [0.096, 9.6] and the other parameter values are given in Table 3.
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in the system. Our model predicts the spatiotemporal
distribution of the metabolic environment within the bioreactor,
information which is challenging to obtain experimentally. Both
reduced models are one-dimensional in space; the longwave
approximation comprises two coupled reaction-advection-
diffusion equations, whereas the sublimit approximation
comprises two coupled reaction-advection equations. Our
systematic analysis allows us to relate parameters in the
reduced models to geometric and operating parameters of
the CXP1 system, such as the ratio between the depth of
the hydrogel and media layers, and the fluid flux over the
hydrogel. We have shown that both reduced models provide
good approximations of the full model for most physically
relevant parameter regimes. The longwave approximation is an
excellent representation throughout the entire domain, whereas
the sublimit approximation is a good representation everywhere
apart from one specific line in space-time that we are able
to calculate.

Although the above may appear to suggest that the sublimit
approximation is not useful, it does have additional benefits
over the longwave approximation. A notable benefit is that it
admits analytic solutions in the entire domain. Interpreting these
analytic results, and understanding why they are discontinuous
across the specific line in space-time, provides insight into
the underlying physical system. We find that the specific line
in space-time is a dividing characteristic in the (hyperbolic)
sublimit approximation we derive. We are able to infer that
this line divides the domain into two regions, depending on
whether or not the effect of replenishment from the inlet has
been experienced.

The flow of media through the bioreactor has the dual
function of delivering nutrients to, and removing waste from,
the growing organoids. As such, the inlet flow rate needs
to be chosen carefully. The systematic reduction we have
performed yields models that are easier to solve numerically
than the full model. More importantly, they provide insight
into the behaviour of the full model, particularly the dominant
transport mechanisms. This systematic reduction has enabled us
to efficiently characterise the experimental parameter space for
given cell characteristics. One key outcome from this analysis
is our prediction of a “worst-case” flow rate that minimises the
turn-off time (the time when intolerable lactate concentrations
first occur), Equation (3.5). Our model reduction has allowed us
to understand why this minimum arises: for higher flow rates,
the lactate is washed away more quickly (the bioreactor is in
a proliferation-limited regime), for lower flow rates the lactate
is produced more slowly since glucose is not delivered quickly
enough (the bioreactor is in a transport-limited regime).

To understand how outcomes change as the control
parameters are varied, we introduced the following time-
dependent metrics which characterise bioreactor performance:

• Glucose conversion is the ratio between the total amounts
of consumed and supplied glucose. It is desirable to
minimise the amount of resources, e.g. glucose, required
for bioreactor operation, which corresponds to maximising
glucose consumption.

• Maximum lactate concentration within the bioreactor
represents the worst metabolic environment experienced
by the cells. High lactate concentrations have a detrimental
effect on cells (Romero-Garcia et al., 2016), and therefore an
ideal bioreactor operating regime would have low maximum
lactate concentrations.

• Proportion of uninhabitable domain is the fraction of
the domain where the lactate concentrations exceeds the
maximum tolerated level for the specific organoid line. An
operating regime is improved if the proportion of the domain
which is uninhabitable decreases, and an “ideal” operating
regime would maintain lactate levels below the maximum
tolerable level for the entire experiment.

• Turn-off time is the time at which lactate concentration first
reaches levels which are intolerable for the cells. To optimise
operating conditions, the turn-off time should be increased.
Ideally, the turn-off time should exceed the run time of
the experiment.

Different bioreactor operating conditions will yield different
values of these metrics. The relative importance of each metric
will depend on the particular organoid line being investigated
and the specific user requirements. Our work provides a
framework for efficiently determining desirable bioreactor
operating conditions for given cell properties.

In this study, we performed a systematic model reduction to
study metabolite transport within the CXP1 bioreactor, whose
geometry differs significantly from other bioreactors, such as
hollow fibre or perfusion bioreactors. An important insight
gained from our model reduction is the identification of the
transport mechanisms that are dominant on our timescale of
interest. We performed model reductions in two ways: (1)
we exploited the slender geometry of the system, to obtain
the longwave approximation; and then (2) we exploited the
separation of timescales of the physical processes in play, to
derive the sublimit approximation. By systematically reducing
our original model [Equations (2.16)-(2.19) and (2.22)-(2.29)],
we have simplified a two-dimensional parabolic PDE system
first to a one-dimensional parabolic PDE system (the longwave
approximation), and then to a one-dimensional hyperbolic PDE
system (the sublimit approximation). A significant advantage
of this approach is the analytical tractability of the sublimit
approximation. As a result, we can construct explicit expressions
for the metabolite concentrations across the entire bioreactor
that reveal both the spatiotemporal-dependence and the
dependence on the control parameters, e.g. flow rate, of the
metabolite concentrations in the bioreactor. We have shown
that the reduced models serve as excellent approximations of
the full system and are much easier to solve numerically.
We have also identified the small region of space-time
where the assumptions required for the validity of sublimit
model break down.

There are a number of interesting possible extensions to this
work. For example, the optimal operating conditions are likely to
change during the course of organoid growth. Future modelling
work could predict how, and when, operating conditions
should change to account for this growth. While we have
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considered steady flows, it would be straightforward to extend
our framework to examine more complex flow behaviours,
such as oscillating flows, or three-dimensional effects. The
potential use of unsteady flows will be of particular interest when
minimisation of spatial variation in metabolite concentrations
across the bioreactor is important, as we have seen that steady
flows with little spatial variation in metabolite concentration also
have very low conversion (see Figures 6A,E, 7A). The ability
to change the mathematical flow model when predicting the
metabolite concentrations is particularly useful because it can be
done in advance of engineering the prototype bioreactors needed
to test the system experimentally.

In this work, we considered a spatially constant cell
density, with growth rates independent of the local biochemical
environment. Future modelling work will represent individual
organoids as small, localised regions within the hydrogel where
glucose consumption and lactate production occur, and regulate
organoid growth. We will use a mathematical homogenisation
approach (see e.g. Sanz-Herrera et al., 2008; Shipley et al., 2009;
Dalwadi et al., 2018; Dalwadi and King, 2020) to systematically
average the behaviour over the microscale to obtain a macroscale
governing equation for the hydrogel layer with effective glucose
consumption, lactate production, and organoid growth terms.
This in turn will increase our understanding of the relationship
between the bioreactor operating parameters and the mean and
variation in organoid size, ultimately facilitating optimisation
of the bioreactor operating conditions to minimise organoid
size variation.

The mathematical modelling approach developed in this
paper provides a framework for establishing how organoid
viability can be improved by varying bioreactor operating
conditions. The framework has the flexibility to consider different
organoid lines, via characterisation of their proliferation and
nutrient consumption rates and their tolerance to the presence
of waste metabolite. Our work has the potential to improve
the quality and reproducibility of bioreactor-expanded organoid

output. We intend our theoretical framework to be used to scale-
up the production of viable organoids, contributing to overall
organoid technology development, and enabling organoids to
be exploited as a powerful tool for accelerating drug discovery
and testing.
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