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SPECIAL ARTICLE

Zebrafish regulatory genomic resources for diseasemodelling and
regeneration
Ada Jimenez Gonzalez1, Damir Baranasic2,3,4 and Ferenc Müller1,*

ABSTRACT
In the past decades, the zebrafish has become a disease model with
increasing popularity owing to its advantages that include fast
development, easy genetic manipulation, simplicity for imaging, and
sharing conserveddisease-associated genes and pathwayswith those
of human. In parallel, studies of disease mechanisms are increasingly
focusing on non-coding mutations, which require genome annotation
mapsof regulatory elements, such as enhancers and promoters. In line
with this, genomic resources for zebrafish research are expanding,
producing a variety of genomic data that help in defining regulatory
elements and their conservation between zebrafish and humans. Here,
we discuss recent developments in generating functional annotation
maps for regulatory elements of the zebrafish genome and how this
can be applied to human diseases. We highlight community-driven
developments, such as DANIO-CODE, in generating a centralised and
standardised catalogue of zebrafish genomics data and functional
annotations; consider the advantages and limitations of current
annotation maps; and offer considerations for interpreting and
integrating existing maps with comparative genomics tools. We also
discuss the need for developing standardised genomics protocols and
bioinformatic pipelines and provide suggestions for the development of
analysis and visualisation tools that will integrate various multiomic
bulk sequencing data together with fast-expanding data on single-cell
methods, such as single-cell assay for transposase-accessible
chromatin with sequencing. Such integration tools are essential to
exploit the multiomic chromatin characterisation offered by bulk
genomics together with the cell-type resolution offered by emerging
single-cell methods. Together, these advances will build an expansive
toolkit for interrogating themechanisms of human disease in zebrafish.

KEYWORDS: Diseasemodelling, Genomic resources, Regeneration

Zebrafish models in studying gene regulation underlying
disease and regeneration
Zebrafish is a vertebrate model used by nearly 1000 laboratories
worldwide (Mullins et al., 2021). The increased popularity of zebrafish
is due to the ease of genome manipulation, and developmental and
scalable phenotyping of transparent embryos (Howe et al., 2017).

Furthermore, most human genes associated with disease have at least
one zebrafish orthologue (Howe et al., 2013), making zebrafish an
attractive genetic experimental model to test the function of disease
genes and their regulation (Kettleborough et al., 2013). The high
conservation of coding genes is accompanied by conserved key
pathways and their downstream targets (Amatruda and Zon, 1999; van
der Vaart et al., 2012) and supports the utility of zebrafish in genetic
analyses.

Genome-wide association studies show that a large proportion of
disease-associated gene variants occur in non-coding regions that
include cis-regulatory elements (CREs; see Glossary, Box 1), such as
promoters (Box 1) and enhancers (Box 1) (Watanabe et al., 2019).
Disease-associated non-coding variants, their mechanisms of gene
expression regulation, and their role in disease are still mostly unknown,
requiring extensive functional annotation (Box 1) and characterisation
(Alsheikh et al., 2022). Mutations in enhancers can affect gene
expression through altered transcription factor (TF) binding. For
example, NEUROD1, a TF associated with diabetes, was found to bind
less efficiently to a variant enhancer sequence in pancreatic islets,
leading to reduced enhancer activity and, as a result, increased
susceptibility to type 2 diabetes in East Asian populations (Pasquali
et al., 2014). Mutations can also impact enhancer tethering to its target
gene promoter by enhancer looping (Box 1), as shown in Alzheimer’s
disease (Kikuchi et al., 2019). In this case, single-nucleotide
polymorphisms (SNPs) disrupt the binding sites of CCCTC-binding
factor (CTCF; Box 2), a key factor involved in the formation of
chromatin loops, leading to misexpression of the disease-associated
genes, GATS (CASTOR3P) and PILRB. Variants can also add
regulatory functionality through the creation of new promoters, as
was the case for the variant found upstream of the globin genes in
α-thalassemia patients (DeGobbi et al., 2006). Besides point mutations,
larger-scale chromosomal rearrangements can disrupt promoter
targeting by misplacing enhancers and deregulating the expression of
non-target genes, as seen in neuroblastomas (Helmsauer et al., 2020).

Zebrafish embryos –with their ease of transgenesis and evolutionary
conserved cis-regulatory logic during development – allow in vivo
reporter assays to detect the effects of human-disease-associated, non-
coding elements (Ghiasvand et al., 2011; Rada-Iglesias et al., 2011;
Smemo et al., 2012; Pasquali et al., 2014; Kramer et al., 2022; Ferre-
Fernández et al., 2022). These assays rely on extreme sequence
conservation of candidate regulatory elements, which are enriched in
developmental regulator genes often associated with disease (Elgar,
2009; Harmston et al., 2013; Pérez-Rico et al., 2017; Polychronopoulos
et al., 2017). For example, the deletion of a highly conserved zebrafish
enhancer of gata2a mimics dysregulated haematopoiesis characteristic
of GATA2 deficiency in humans (Dobrzycki et al., 2020). This disease
model was used in combination with single-cell RNA sequencing
(RNA-seq) and single-cell assay for transposase-accessible chromatin
with sequencing (ATAC-seq) to reveal that the lack of gata2a favours
the erythroid lineage by reducing the accessibility of certain TFs in
myeloid cells (Mahony et al., 2023). Furthermore, a dual fluorescence
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*Author for correspondence (f.mueller@bham.ac.uk)

A.J., 0000-0001-7702-6135; D.B., 0000-0001-5948-0932; F.M., 0000-0002-
0996-774X

This is an Open Access article distributed under the terms of the Creative Commons Attribution
License (https://creativecommons.org/licenses/by/4.0), which permits unrestricted use,
distribution and reproduction in any medium provided that the original work is properly attributed.

1

© 2023. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2023) 16, dmm050280. doi:10.1242/dmm.050280

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s

mailto:f.mueller@bham.ac.uk
http://orcid.org/0000-0001-7702-6135
http://orcid.org/0000-0001-5948-0932
http://orcid.org/0000-0002-0996-774X
http://orcid.org/0000-0002-0996-774X
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0


reporter system has recently been developed, which can simultaneously
report the effects of SNPs alongside a common variant in conserved
enhancers to verify their potential transcriptional impact (Bhatia et al.,
2021). Even in cases inwhich sequence conservation is not sufficient to
detect homologous enhancers between fish and human, conserved TF

binding sites may predict shared function (Wong et al., 2020).
Transgenic manipulation of enhancers with conserved TF binding site
combinations in zebrafish has pinpointed a shared mechanism for
pancreatic hypoplasia caused by mutations in the human pancreatic
regulatory elements (Bordeira-Carriço et al., 2022).

Unlike humans, who can readily regenerate their skin, liver and
fingertips, but not whole limbs or full organs, zebrafish can completely
regenerate their spinal cord, brain, heart, kidney and fins. The
regenerative mechanisms of these organs differ, yet they often include
the reactivation of developmental pathways (reviewed in Goldman and
Poss, 2020). With the emergence of regeneration cell atlases generated
by single-cell transcriptomics (Wang et al., 2020; Hu et al., 2022;
Jimenez et al., 2022), regeneration genetics is expected to increasingly
utilise zebrafish in seeking vertebrate-conserved mechanisms (Suzuki
et al., 2019), with the promise of potentially inducing gene reactivation
in human organs for regenerative therapies (Goldman and Poss, 2020).
Such mechanisms likely include regeneration-responsive enhancers in
the heart, fin, retina (Kang et al., 2016; Hoang et al., 2020; Thompson
et al., 2020) and inner ear hair cells (Jimenez et al., 2022).

Gene manipulation strategies benefit from annotated
cis-regulatory elements and chromatin maps
Annotation of enhancers and promoters is key to the development of
genetic manipulation technology. Spatio-temporally controlled
transgenic gain-of-function models require annotated, functionally
validated CREs (Ertzer et al., 2007; Yuan et al., 2018; Liu et al.,
2020). Loss-of-function models can also benefit from spatio-
temporally controlled manipulation of endogenous genes, such as
tissue-specific knockout using the Cre/lox system (Mukherjee and
Liao, 2018; Hans et al., 2021) or cell-type-specific transgenic
expression of genome-editing tools, such as Cas9 and associated
guide RNAs (Ablain et al., 2015; Yin et al., 2015). Controlled
activation of these transgenic effectors avoids early embryonic
lethality, reduces pleiotropy, and offers precise modelling of disease
states that result from tissue- and time-specific regulation of genes.

Annotation of promoters helps design reagents for transcriptional
inhibition, such as the guide RNAs for either promoter deletion or
for targeting nuclease-deficient Cas9 variant (dCas9; Box 1) to
promoters, which offers an alternative to genetic lesions and to
morpholino knockdown (Long et al., 2015). Such strategies
critically depend on precise annotation of transcription start sites
(TSSs; Box 2) that need to be targeted for efficient inhibition of
gene expression by dCas9 (Baranasic et al., 2022).

Annotation of the genome regulatory landscape has additional
benefits when considering loci for transgenesis. The chromatin
environment in which a transgene lands can influence how efficiently
it is expressed (called position effect). This is particularly important
for transposon-mediated transgenesis, which predominantly occurs
in active genomic regions (Vrljicak et al., 2016). To avoid position
effects, safe harbour landing sites (Box 1) should be identified, which
then can be targeted by site-specific recombination (Mosimann et al.,
2013; Roberts et al., 2014). To detect such sites, maps of accessible
chromatin and chromatin interaction topology (Box 2) can be
informative. For the latter, zebrafish maps of chromatin interactions
generated by Hi-C (Box 2) (Kaaij et al., 2018; Yang et al., 2020;
Wike et al., 2021), and maps of interaction boundaries informed by
CTCF- (Franke et al., 2021) and Cohesin- (Meier et al., 2018)
binding sites (Box 2), offer guidance.

Zebrafish disease models benefit from in vivo labelling of cells
and lineages, which enables in vivo tracking and sorting of specific
cell populations. Although enhancer traps (Box 1) can identify a
range of cell lineage markers (Kikuta et al., 2007; Kawakami et al.,

Box 1. Glossary
Cis-regulatory elements (CREs): non-coding DNA sequences, such
as promoters and enhancers, that regulate the transcription of
neighbouring genes for proper spatiotemporal expression.
Constitutive orphan predicted element (COPE): regulatory element
open throughout development but without having an active chromatin
mark at any stage.
Dynamic orphan predicted element (DOPE): regulatory element
active at some point in development but without having an active
chromatin mark at any stage.
ENCODE: encyclopaedia of elements aiming to characterise the
regulatory elements within the human genome.
Enhancer: cis-regulatory element that activates gene expression in a
spatiotemporal manner by interacting with transcription factors and other
proteins that promote the assembly of the transcription machinery at the
promoter of a gene. These sequences can be located either upstream,
downstream or within the introns of a gene, often exhibiting long-range
effects. Enhancers can be inactive, active or primed. This can be
determined based on the presence of particular histone marks
(e.g. H3K4me1 and/or H3K27ac) and the levels of chromatin
accessibility (Box 2).
Enhancer looping: folding of chromatin to bring distally located
enhancers to the vicinity of a promoter in order to activate gene
expression.
Enhancer trap: reporter assay consisting of a construct containing a
minimal promoter and a reporter gene that is randomly integrated within
the genome. The aim of this approach is to detect the spatial activity of a
nearby enhancer activating the expression of the reporter gene through
interaction with the inserted promoter.
Functional annotation: assignment of functional and biological
information to a DNA sequence.
ModENCODE: model organism encyclopaedia of DNA elements
characterising the regulatory elements in the Caenorhabditis elegans
and Drosophila genomes.
nf-core: community-created resource aiming for the development of
pipelines following standardised guidelines under the Nextflow system.
This allows reproducibility between analyses, using the same tools and
their versions.
Nuclease-deficient Cas9 variant (dCas9):Cas9 variant with amutated
catalytic domain that remains inactive. This ‘dead’ Cas9 conserves its
target-specific binding activity, and it is used in CRISPR interference
assays, allowing gene knockdown, or in gene activation approaches
when linked to transcriptional activators.
Predicted ATAC-seq-supported developmental regulatory elements
(PADREs): regulatory elements defined with ATAC-seq chromatin
accessibility data and their function determined from ChIP-seq data
integration of key histone modifications and predicted by the
computational tool ChromHMM.
Promoter: cis-regulatory element instructing where transcription will
initiate. It contains binding sites for general transcription factors, which
are part of the transcription pre-initiation complex together with e RNA
polymerase II.
Safe harbour landing sites: regions of the genome in which the
integration of an ectopic DNA sequence does not disrupt the activity of
the host genome.
Self-organising map (SOM): artificial neural network used to cluster
multidimensional data.
Syntenic anchors: conserved non-repetitive sequences in two different
genomes showing a high degree of similarity.
Synteny: blocks of syntenic anchors appearing in the same order in a
given chromosome between organisms.
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2010), they depend on the serendipitous targeting of candidate loci.
Cas9 knock-in of fluorescent reporters (reviewed in Liu et al., 2019)
is a promising alternative (Kimura et al., 2014) to transposon
transgenesis for cell labelling. This also benefits from annotated
CREs for the precise control of fluorescent reporters or of Gal4
drivers (Kawakami et al., 2016).

State-of-the-art zebrafish regulatory genomics resources
and the challenges ahead
Expansion of zebrafish modelling of gene regulatory mechanisms in
disease and regeneration relies on exploring and understanding the
degree of sequence similarity between zebrafish and human regulatory
elements. To assess the degree of conservation between fish and
mammals, the regulatory element repertoire of zebrafish needs
extensive mapping, similar to that achieved by large multinational
mapping programmes such as ENCODE (Box 1) in humans
(ENCODE Project Consortium, 2004). ENCODE and modENCODE
(Box 1) (Brown and Celniker, 2015) significantly improved annotation
of regulatory elements in human and key animal models. Recognising
the need for generation of similar regulatory genomics resources, the
zebrafish user community established the international network
DANIO-CODE. DANIO-CODE collated and reanalysed ∼1800
genomics datasets by standardised pipelines, making them publicly

available in the DANIO-CODE Data Coordination Center (DCC;
https://danio-code.zfin.org). The DCC, representing 38 developmental
stages, 21 assay types and 34 tissues, allows the sharing of raw and
analysed data with public visualisation tracks. DANIO-CODE has
functionally annotated 140,000 developmental candidate regulatory
non-coding elements to comprehensively identify candidate promoters
and enhancers by combining histone modification marks with ATAC-
seq-supported open chromatin (Box 2) during zebrafish development.
These predicted ATAC-seq-supported developmental regulatory
elements (PADREs; Box 1) include annotations of precisely defined
developmental promoteromes, including an alternative promoter
catalogue verified by cap analysis of gene expression (CAGE-seq;
Box 2). The PADREs have been classified into functionally distinct
subcategories (Fig. 1), and their cell-type specificity has been predicted
by integration with enhancer annotations emerging from
developmental single-cell ATAC-seq (Fig. 2) (McGarvey et al.,
2022). Additionally, detection of enhancer RNAs (eRNAs; Box 2)
(Andersson et al., 2014) by analysing CAGE-seq data and sequence
conservation tracks [e.g. cyprinid Phastcons (Chen et al., 2019)] may
support the identification of enhancer candidates. Guidance on
DANIO-CODE resources is provided in Box 3. DANIO-CODE
resources will be beneficial for exploring the regulatory genome
architecture of disease-associated genes and for the manipulation of

Box 2. Chromatin features and technologies to identify them
Chromatin features and technical approaches
Transcription start site (TSS): position within the genomic sequence in which the RNA polymerase starts transcribing a gene. TSS positions should be
used for the identification of promoters. TSSs can be defined through cap analysis of gene expression (CAGE-seq). CAGE-seq is a genomic approach that
allows accurate recognition of gene TSSs and analysis of the transcriptome. This approach relies on specifically sequencing the 5′ end of capped only RNA,
thus allowing determination of the exact position from which these RNAs are transcribed.
Enhancer RNAs (eRNAs): type of long non-coding RNA transcribed from an active enhancer region that can be detected through CAGE-seq signal. The
majority of eRNAs are transcribed in opposite directions from both DNA strands (i.e. bidirectionally transcribed).
Chromatin accessibility: this term refers to the extent to which chromatin is less condensed and therefore available or ‘open’ for transcription factors and
other regulatory proteins to interact with it. The degree of accessibility is associated with the gene regulatory activity of a particular sequence, with open
regions being found in active enhancers or promoters. As open chromatin is easily accessible by enzymes like transposases, the openness of a particular
region of the chromatin can be determined through assays such as assay for transposase-accessible chromatin with sequencing (ATAC-seq). ATAC-seq
uses a hyperactive mutant transposase to incorporate sequencing adaptors while simultaneously cleaving the DNA.
Histone modifications: post-translational modifications of histone tails, also known as histone marks, that are often associated with changes in chromatin
regulatory activity. These modifications are traditionally detected by chromatin immunoprecipitation with sequencing (ChIP-seq) using specific antibodies
for these marks to pull down their bound DNA. CUT&RUN (cleavage under targets and release using nuclease) is an alternative method that recognises
protein–DNA interactions using a protein A–Tn5 transposase fusion approach that specifically targets the antibody-bound chromatin. Unlike ChIP-seq, this
method allows for extremely low-input materials, avoids crosslinking and the crosslinking-related artifacts, and requires a lower number of sequencing
reads, reducing costs. FitCUT&RUN is a variation of the CUT&RUN approach using Fc fragment of immunoglobulin G tagging. This is an antibody-free
approach that addresses the problem of a lack of ChIP-seq- and CUT&RUN-compatible antibodies. Below, we summarise the properties of a few of these
modifications that have been proved to be related to cis-regulatory elements.

• H3K4me3: histone mark predominantly found at gene promoters often associated with the expression of the marked gene.
• H3K4me1: histone mark associated with active or primed enhancers leading to gene expression of their target genes.
• H3K27ac: histone mark found in active enhancers and promoters associated with active expression.
• H3K27me3: histone mark linked to a particular example of transcriptional silencing known as polycomb repression and associated with chromatin

compaction. This mark helps maintain the correct expression patterns of genes during development and cell differentiation.

Chromatin interaction topology and technical approaches
Topology-defining boundaries: genomic regions that define the three-dimensional organisation of the genome by acting as insulators or barriers.
Topologically associating domain (TAD): genomic region in which sequences show a high degree of interaction compared to the loci outside the
structure. TADs are demarcated by topology-defining boundaries. These can be determined through chromosome conformation capture approaches.
CCCTC-binding factor (CTCF): zinc-finger protein that binds to a highly conserved sequence and acts as a transcriptional activator, repressor or
promoter–enhancer insulator. CTCF is often found at TAD boundaries and it is thought to play a key role in forming and maintaining these structures. CTCF
binding can be detected with ChIP-seq.
Cohesin: protein complex forming a ring-shaped structure that promotes proper chromosome segregation during mitosis and mediates DNA looping,
therefore contributing to promoter–enhancer interactions and gene expression regulation.
Chromosome conformation capture: molecular technique that allows analysis of the spatial organisation of the chromatin within the nucleus.
- 4C-seq: derivative of the chromosome conformation capture approach. 4C-seq enables studying all the genomic regions interacting with a selected locus.
- Hi-C: chromosome conformation capture-based technology that enables the genome-wide study of the three-dimensional architecture of the chromatin,

including TADs, by measuring the frequency of interactions between DNA fragments.
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their transcription. However, limitations and challenges remain that can
be overcome with advances in technology and data integration.

Expanding and refining the non-coding function elements of the
genome
In DANIO-CODE, the candidate regulatory elements are classified by
a limited number of chromatin marks available (Fig. 1 and Box 2).
Functional annotations and epigenome mapping need to be refined
withmoremarks, including those reflecting sites of active transcription

[i.e. H3K36me3 (Zhang et al., 2018)] or those mapping
heterochromatin [H3K9me2/3 (Laue et al., 2019)]. Additionally,
there are limitations in detecting dynamic TF binding to regulatory
elements in small cell number lineages owing to difficulties in using
crosslinked chromatin for chromatin immunoprecipitation with
sequencing (ChIP-seq; Box 2). Technologies such as CUT&RUN
(Box 2) and FitCUT&RUN (Box 2) address these limitations, and
there are increasing examples of successfully implementing them in
zebrafish (Akdogan-Ozdilek et al., 2022; Wang et al., 2022; Truong
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Fig. 1. The main features of regulatory elements as determined by DANIO-CODE. (A) Regulatory elements defined by PADREs in DANIO-CODE are
identified by ATAC-seq, which assesses chromatin accessibility, and ChIP-seq, which assesses histone modifications, and their function (i.e. level of active
transcription) is predicted by the computational tool ChromHMM. This approach has allowed the identification and characterisation of candidate regulatory
regions within the zebrafish genome, as shown in the schematic. Further considerations from the DANIO-CODE-available data are also included here. Within
the promoter region, transcription of mRNA by RNA polymerase II occurs at the accessible TSS that is defined using CAGE-seq. The example promoters
shown, TssA1 and TssA2, are accessible due to histone methylation (H3Kme3 or H3Kme1) and acetylation (H3K27ac), which make the chromatin less
condensed. From the active enhancer region, eRNA is bidirectionally transcribed, which is also detected by CAGE-seq. The active enhancers shown, EnhA1
and EnhFlank, have H3Kme1 and H3K27ac histone modifications. Prior to activation, enhancers can exist in a primed state, known as primed enhancers,
such as EnhWk1, which is associated with the H3Kme1 histone mark only. Promoter–enhancer interaction spans are detected by chromosome conformation
capture techniques, 4C-seq and Hi-C, that can analyse interactions between genomic regions and the three-dimensional architecture of the chromatin. ChIP-
seq can also be used to detect CTCFs, which are zinc-finger proteins that bind to highly conserved sequences and act as promoter–enhancer insulators.
Finally, transcription can be repressed in polycomb-repressed regions by specific histone marks, such as H3K27me3 for ReprPC, which make the chromatin
more condensed. (B) ChromHMM states have been included on the right for further reference (Baranasic et al., 2022). Each of the states are characterized
by different levels of histone marks. The left side of this panel shows the different biologically relevant functions assigned to these states. ATAC-seq, assay
for transposase-accessible chromatin with sequencing; CAGE-seq, cap analysis of gene expression; ChIP-seq, chromatin immunoprecipitation with
sequencing; CTCF, CCCTC-binding factor; EnhA1, active enhancer 1; EnhFlank, enhancer flanking; EnhWk1, weak enhancer; eRNA, enhancer RNA;
PADRE, predicted ATAC-seq-supported developmental regulatory element; Pois, poised; Quies, quiescent; ReprPC, repressed polycomb; TSS, transcription
start site; TssA1/2, active transcription start site 1/2; TssFlank1/2, TSS flanking.
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et al., 2023). Besides the single-cell-based approaches, bulk RNA-seq
data can also be interrogated for investigating TF activity dynamics that
may inform targeting motifs in conserved regulatory elements. This
can be done by the ISMARA tool (Table 1) (Balwierz et al., 2014),
which has recently been applied to zebrafish promoter data (Baranasic
et al., 2022). ISMARA has also been used to identify type 2 diabetes-
associated regulatory elements in humans and to validate these results
in zebrafish (Kirchner et al., 2016; Mattis et al., 2023). Similar human-
disease-relevant studies can be achieved with the implementation of
these emerging tools and technologies.

Enhancer–target gene matchmaking
A key challenge in the interpretation of function of disease-
associated non-coding variants is the difficulty in identifying the

correct target genes of the enhancer. Enhancers can act up to two
megabases away from their targets (Long et al., 2016) and can reside
in introns of unaffected bystander genes (Lettice et al., 2003).
Promoter–enhancer targeting predictions have been made (Clément
et al., 2020), and promoter–enhancer interaction maps generated
from 4C-seq (Box 2) data may help in distinguishing targets at
sufficiently high resolution. However, 4C-seq data are only
available for a selected set of long-range regulated genes in
DANIO-CODE. Zebrafish Hi-C data identified zebrafish
topologically associating domains (TADs; Box 2), which are
minable in the UCSC Genome Browser (Table 1) or in HiGlass
(https://www.4dnucleome.org/). Together with TAD-boundary-
associated CTCF-binding site maps (Box 2), this approach may
inform promoter–enhancer interaction span.
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Fig. 2. Proposed integration pipeline for bulk chromatin and single-cell multiomics. The numbers in fields indicate the flow of proposed data integration
pipelines for zebrafish regulatory genomics. Bulk chromatin multiomics integrates CRE classification information from ATAC-seq data (1) with CRE annotation
information from ChIP-seq data to predict regulatory element function using the computational tool ChromHMM (2) (Baranasic et al., 2022). This feeds
predicted developmental regulatory elements into PADREs (3). Single-cell ATAC-seq can then provide further cell cluster resolution (4) to allow cell-type
assignment (5) (McGarvey et al., 2022). Integration of the bulk and single-cell data will reveal cell-type-specific CREs within PADREs (6). Alongside this,
single-cell RNA-seq can reveal cell-type-specific TF binding (7), and sequence conservation tracks can identify disease-associated human CREs (8). Once
the cell type, target gene, TF and TFBS have been defined (9), a mutant reporter zebrafish line can be generated to function as a model of a human disease
(10). CNS, central nervous system; CRE, cis-regulatory element; EnhA1, active enhancer 1; EnhFlank, enhancer flanking; EnhWk1, weak enhancer;
PADRE, predicted ATAC-seq-supported developmental regulatory element; Pois, poised; Quies, quiescent; ReprPC, repressed polycomb; sc-ATAC-seq,
single-cell ATAC-seq; sc-RNA-seq, single-cell RNA sequencing; SNP, single-nucleotide polymorphism; TF, transcription factor; TFBS, transcription factor
binding site; TssA1/2, active transcription start site 1/2; TssFlank1/2, TSS flanking.
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Species conservation tracks inform human disease biology
To enhance the applicability of the DANIO-CODE project to human
disease, we must be able to identify homologous or functional
equivalents to enhancers associated with human disease. This can be
achieved by the integration of PADREs with annotated vertebrate
conservation tracks to capture highly syntenic conserved sequences.
Manual curation of conservation profiles can be improved with tools
that allow non-syntenic comparisons. Several comparative genomics
tools are listed in Table 1. The VISTA toolkit (Frazer et al., 2004) was
used to predict disease-associated regulatory variants that were then
functionally tested in vivo, and identified novel enhancers associated
with the craniofacial abnormality Pierre Robin sequence (Bhatia et al.,
2015). TheAncora database holds a catalogue of highly conserved non-
coding elements in vertebrate genomes and visualises their density
distribution. The results in density profiles may help in identifying their
genomic targeting range (Engström et al., 2008). The conservation
information fromAncora identifies potential transcriptional targets of a
signalling pathway. This principle was demonstrated when it identified
an enhancer that was targeted by bone morphogenetic protein (BMP)
signaling, associated with neurological disorders (Zhang et al., 2020).
The Genomicus browser (Nguyen et al., 2022) offers homology
prediction and synteny (Box 1) analysis for studying the genetic basis
of diseases in zebrafish. For example, synteny analysis informed the

development of a zebrafish model of poikiloderma with neutropenia
that closely recapitulated the human syndrome (Colombo et al., 2015).
Synteny information also provided new insights into Krabbe’s disease
pathogenesis upon molecular cloning and knockdown of
galactocerebrosidase in zebrafish (Zizioli et al., 2014), and for
investigating glycogen storage in a zebrafish model of Pompe disease
(Bragato et al., 2020). To improve detection of non-alignable
enhancers, a multispecies comparison approach was developed called
Independent Point Projection (IPP; Baranasic et al., 2022), which
improves the resolution of synteny by increasing the number of
syntenic anchors (Box 1) between fish and mammals (Table 1). This
tool narrows the search space for enhancers that may not be alignable
but share TF binding site composition, thus increasing the predictability
of functional equivalence between candidate CREs in different species.
Although this approach is not yet available as a web tool, it is available
in GitHub for application and further development (Table 1).

Expanding the zebrafish reference genome
Zebrafish regulatory resources need to be continually improved to serve
as an up-to-date resource for the user community. Adding enhancers
identified in zebrafish adult tissues (Yang et al., 2020) to the DANIO-
CODE database is in progress at the time of writing this article.
Furthermore, integration of recently acquired high-resolution chromatin

Box 3. Guidance on DANIO-CODE resources
The DANIO-CODE Data Coordination Center (https://danio-code.zfin.org/) enables data visualisation and access to datasets with publicly available track
hubs in the UCSC Genome Browser with two versions of the zebrafish genome assembly (danRer10 and danRer11). The DANIO-CODE atlas is based on
strict thresholds to call regulatory regions to minimise background. Therefore, to expand enhancer discovery, users ought to explore the underlying signals
(Fig. 1) and manually curate potentially missing regulatory elements. The list below includes a brief description of the information provided by the DANIO-
CODE Track Hub collection, but please refer to DANIO-CODE Track Hub for complete documentation:

• Tracks for individual assay types:
- ATAC-seq
- Bisulfite sequencing (BS-seq)
- CAGE-seq
- ChIP-seq
- Hi-C
- Micrococcal nuclease digestion with deep sequencing (MNase-seq)
- RNA-seq

• Cell types: tracks for the cell-type assignment to PADREs using single-cell ATAC-seq data.
• Consensus promoters: the DANIO-CODE Promoterome Atlas provides identified consensus promoters.
• Conservation and CRISPR targets: the conservation tracks and CRISPR targets tracks were kindly provided by Shawn Burgess at the National Human

Genome Research Institute. These tracks mimic the public ZebrafishGenomics track hub.
• COPEs (Box 1) and pooled DOPEs (Box 1): this collection contains two tracks with regions that have an ATAC-seq signal, but without observable CRE-

associated chromatin marks.
• Distal PADRE SOM (Box 1) classes: this collection contains tracks with PADREs that are not near promoter regions, clustered based on their patterns of

openness throughout development.
• Enhancer validation: a collection of tracks to validate enhancer elements.
• H3K27ac ensembles: clusters of early developmental PADREs with uninterrupted H3K27ac signal connecting them.
• Mouse H3K27me3 on zebrafish coordinates: a signal of virtual whole-embryo mouse H3K27me3 ChIP-seq data on mapped zebrafish coordinates

(mm_H3K27me3) and the annotations of the respective projected coordinates in mouse (mouse coordinates).
• Stage types: annotation tracks for regulatory elements defined by different methods.

Below we list the available DANIO-CODE resources, with detailed video tutorials on how to use them and contribute to them:

• Videos with tutorials and example usages of the resource: https://youtube.com/playlist?list=PLiWQCe7dGqm6AtA0oP7qIaEQNa-7Z7fh5
- DANIO-CODE Track Hub for UCSC Genome Browser for danRer10: http://genome.ucsc.edu/cgi-bin/hgTracks?db=danRer10&hubUrl=https://danio-

code.zfin.org/trackhub/DANIO-CODE.hub.txt
- DANIO-CODE Track Hub for UCSC Genome Browser for danRer11: http://genome.ucsc.edu/cgi-bin/hgTracks?db=danRer11&hubUrl=https://danio-

code.zfin.org/trackhub/DANIO-CODE.hub.txt
• Session for WashU Epigenome Browser: https://github.com/DANIO-CODE/DANIO-CODE_Data_analysis/tree/master/Figures/Figure1#figure-1c=
• Motif Activity Response Analysis (MARA): https://ismara.unibas.ch

- DANIO-CODE results: https://ismara.unibas.ch/danio-code
• Regulatory motifs and regulatory site annotations: https://swissregulon.unibas.ch/sr/downloads
• Code repository for DANIO-CODE processing pipelines: https://gitlab.com/danio-code
• Code repository for data analysis in this paper: https://github.com/DANIO-CODE/DANIO-CODE_Data_analysis
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conformation datasets and fast-expanding non-coding RNA
annotations is also planned by the DANIO-CODE partners. The
zebrafish reference genome is in its 11th iteration (Genome Reference
ConsortiumZebrafish Build 11GRCz11); however, an end-to-end full-
length reference genome has yet to be achieved. To this end, long-read
sequencing offers high-confidence assembly of repeat-rich sequences,
as was shown by the finalised human genome (Nurk et al., 2022). In
zebrafish, long-read sequencing was applied to improve the poorly
assembled chromosome 4 and has filled some gaps in the current
reference genome (Yang et al., 2020; Chernyavskaya et al., 2022;
Hadzhiev et al., 2023).

The zebrafish regulatory genomics resources will also benefit from
improved standardisation of pipelines. The nf-core (Box 1) pipeline
development project (Ewels et al., 2020) is being adapted by AQUA-
FAANG (https://www.aqua-faang.eu/), which aims to annotate
regulatory elements in farmed teleosts, including the cyprinid
common carp. When published, AQUA-FAANG will offer lucrative
teleost comparative genomic resources for zebrafish laboratories.

Expanding and integrating single-cell and multiomic data
Bulk data have predominantly contributed to zebrafish regulatory
genomics resources, which are far from comprehensive and need to

Table 1. Summary of available visualisation and comparative genomics resources

Resource Description URL

Visualisation UCSC Genome
Browser, Ensembl,
WashU Epigenome
Browser

Popular and widely used genome browsers.
Ensembl is a genome browser with information
for vertebrate species including evolutionary
distance, sequence variation and
transcriptional regulation. WashU Epigenome
Browser is a genome browser containing data
in the form of track hubs for a range of species,
techniques and conservation data.

https://genome.ucsc.edu/
https://www.ensembl.org/index.html
http://epigenomegateway.wustl.edu/browser/

awesome-genome-
visualization

A comprehensive list of visualisers, genome
browsers or genome-browser-like
implementations that accommodate user-
specific requirements, providing a more
tailored approach to genome visualisation and
analysis.

https://github.com/cmdcolin/awesome-genome-
visualization

Gosling.js Gosling.js is a user-friendly toolkit specifically
designed to simplify the implementation of
interactive data visualisation and enhance the
scalability of multiomic data.

http://gosling-lang.org/

JBrowse 2 JBrowse 2 is a lightweight browser that
empowers users to design their own plug-ins,
catering to unique needs, or utilise the existing
options in the JBrowse 2 Plugin-store. This tool
facilitates visualisation of multiple sequence
alignments and enables smooth interfacing
with the UCSC Genome Browser resources.

https://jbrowse.org/jb2/

General comparative
and functional
genomics tools

ISMARA This tool allows the creation of gene regulatory
networks from gene expression or ChIP-seq
data.

https://ismara.unibas.ch/mara/

CellOracle CellOracle is a toolkit designed to conduct virtual
gene perturbation analysis. It accomplishes
this by utilising single-cell omics data along
with models of gene regulatory networks.

https://morris-lab.github.io/CellOracle.
documentation/

Ancora Catalogue of highly conserved non-coding
elements in metazoan genomes.

http://ancora.genereg.net/

Genomicus Genome browser with information across
species and their evolutionary time.

https://www.genomicus.bio.ens.psl.eu/genomicus-
100.01/cgi-bin/search.pl

Vista Visualisation tool allowing the alignment of
genomic sequences to compare conserved
sequences in a set of genomes.

https://genome.lbl.gov/vista/index.shtml

Zebrafish-specific
comparative
genomics tools

Independent Point
Projection (IPP)

Projection tool using ‘bridging’ species as an
anchor to improve accuracy in genomics
comparison.

https://github.com/tobiaszehnder/IPP

UCSC Genome Browser
(DANIO-CODE Track
Hub)

Collection of DANIO-CODE available data and
characterisation of regulatory elements
including PADREs, consensus promoters and
enhancer atlas.

https://genome.ucsc.edu/cgi-bin/hgTracks?
db=danRer10&hubUrl=https://danio-code.zfin.org/
trackhub/DANIO-CODE.hub.txt

https://genome.ucsc.edu/cgi-bin/hgTracks?
db=danRer11&hubUrl=https://danio-code.zfin.org/
trackhub/DANIO-CODE.hub.txt

WashU Epigenome
Browser (DANIO-
CODE tracks)

Collection of DANIO-CODE data in the
Washington University genome browser.

https://github.com/DANIO-CODE/DANIO-CODE_
Data_analysis/tree/master/Figures/Figure1#figure-
1c=

This list includes a selection of general and zebrafish-specific tools and direct access to their sources. ChIP-seq, chromatin immunoprecipitation with sequencing;
PADRE, predicted ATAC-seq-supported developmental regulatory element.
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be expanded. The bulk-data-based atlases will inevitably miss
regulatory elements that are active in highly dynamic, stage-specific
cells or in lineages with small cell numbers (Fig. 2). Combining the
increasing number of single-cell open chromatin atlases and
cell-type- and physiological-context-specific atlases, such as those
for regeneration (Jimenez et al., 2022; McGarvey et al., 2022; Sur
et al., 2023 preprint; Lange et al., 2023 preprint), with lower-
resolution but more granular multiomic bulk data will improve cell-
type resolution of regulatory annotations. However, until more
single-cell data are accumulated and integrated, users are
encouraged to critically browse the DANIO-CODE collection for
biochemical chromatin features that were not interrogated by single-
cell tools.
Thus, there remains the need to dissect the contribution of

individual cells and lineages to emerging functional annotations
from bulk tissue and from heterogeneous sorted cells. Integration of
bulk and sorted cell data with single-cell ATAC data allows
deconvolution, which can estimate the cell-type proportion and its
contribution to the bulk data. Packages are available for bulk RNA-
seq deconvolution (see Avila Cobos et al., 2020), but deconvoluting
single-cell ATAC-seq still needs computational tool development.
Popular genome browsers, such as the UCSC Genome Browser,
Ensembl genome browser and WashU Epigenetic Browser
(Table 1), are optimised for bulk data (Cunningham et al., 2022;
Li et al., 2022; Nassar et al., 2023). For a compendium of further
genomics analysis and visualisation tools see Table 1, which also
includes a user-friendly toolkit, Gosling.js (http://gosling-lang.org/)
(Lyi et al., 2022), and the lightweight browser JBrowse 2 (Diesh
et al., 2023) offering expansion by user plug-ins.
A particularly pressing limitation of zebrafish regulatory annotations

is the general lack of high-quality antibodies recognising zebrafish TFs
and other chromatin-associated proteins. However, single-cell RNA-
seq data offer high-resolution analysis of TF activities, which, when
integrated with single-cell chromatin accessibility (Box 2) data, can
link TFs to their enhancer targets, as has recently been demonstrated
using CellOracle (Table 1) in zebrafish and with a related approach in
mouse embryos (Fig. 2) (Argelaguet et al., 2022 preprint; Kamimoto
et al., 2023).
Taken together, multiomic data integration tools, such as

CellOracle, and yet-to-be-developed data visualisation tools will be
necessary to maximise output from bulk and single-cell genomics and
to generatemore comprehensive regulatory genomic atlases for disease
modelling and other applications (Fig. 2). Such new tools will be
needed to combine the advantages of single-cell ATAC in cell-type
resolution and sensitivity of feature detection with the advantages of
bulk regulatory genomics. Until major breakthroughs are made in
single-cell technologies for chromatin interrogation, it is expected that
atlases with accurate prediction of regulatory elements’ function, target
gene, TF targeting, and cell-type and stage specificity will emerge by
combining bulk and single-cell chromatin and transcriptome
annotations (Fig. 2).

Concluding remarks
Zebrafish regulatory genomics has not yet advanced diseasemodelling
to the same degree as other aspects of zebrafish genetics. However, it is
expected that improving genomic regulatory resources will lead to
better understanding of the molecular pathways and their
transcriptional targets involved in disease. In summary, profiling
functional non-coding elements offers support in several ways. First, it
enables more refined control of gene editing and transgenesis tools
developed for disease and regeneration models. Second, the
information derived from regulatory elements and their activities

allows the identification, characterisation and manipulation of specific
disease-associated cell populations. Last, dissecting regulatory element
function and sequence and chromatin regulatory determinants can
contribute to molecular understanding of conserved human disease
and regenerationmechanisms andmay, in the future, support treatment
and diagnosis development.
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Escalada, I., Akerman, İ., Tena, J. J., Morán, I., Gómez-Marıń, C., VanDeBunt,
M. et al. (2014). Pancreatic islet enhancer clusters enriched in type 2 diabetes
risk-associated variants. Nat. Genet. 46, 136-143. doi:10.1038/ng.2870
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