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1. Introduction [167]

Adaptation of our movements is crucial to retain motor accuracy
in a changing environment. Appropriate motor adaptation relies on
cerebellar activity [1—4], and the application of cerebellar anodal
transcranial direct-current stimulation (atDCS) during lab-based
visuomotor adaptation task has been reported to facilitate error
reduction in young healthy subjects [5—7] and in older adults
[8,9]. This beneficial behavioural effect appears to extend to other
adaptation paradigms including force-field adaptation [10], loco-
motor adaptation [11] and saccadic adaptation [12]. However,
recent studies have reported no effect of cerebellar tDCS on joystick
visuomotor adaptation [13,14](but see Ref. [15]) and the original
study [5] has been difficult to replicate and revealed only small-
to-medium effect sizes [13].

Here, we wished to replicate the facilitatory effect of cerebellar
atDCS on visuomotor adaptation. To increase the likelihood of
observing an effect of cerebellar stimulation, we used a within-
subject design and a novel adaptation task paradigm designed to
bias learning towards primarily cerebellum-dependent processes
[16,17]. In this task, a stepwise increasing rotation of 10° every 40
trials required participants to adapt movements to reduce errors.

2. Methods [525]

Twenty-seven healthy, right-handed [18] participants (17 fe-
male, 18—32 years) gave informed consent (Oxford University
R53867/RE001) to participate in a within-subject, double-blind
study. Participants received cerebellar anodal and sham tDCS in
two sessions (order counterbalanced across the group) while per-
forming a visuomotor adaptation task on separate days. Partici-
pants had no contraindications to tDCS, no neurological or
psychiatric history, and no neuroactive medications.

Participants controlled a cursor on a screen using a joystick and
made fast, accurate and ballistic movements to ‘shoot’ through a

https://doi.org/10.1016/j.brs.2022.10.006
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target at one of eight possible locations aligned around the central
starting position (Fig. 1A). The cursor remained visible and no spe-
cific endpoint feedback was provided. Each movement had to be
completed within 750 ms, after which the target disappeared. Par-
ticipants performed 80 baseline trials (no rotation imposed) fol-
lowed by 8 blocks of 40 trials each with an initial offset between
joystick and cursor movement of 10°, increasing a further 10° every
40 trials to a maximum of 80° (Fig. 1B). To probe retention, three
blocks with no visual feedback were interspersed, after each of
which participants had a 20 second break. On completing the
main task participants performed 144 baseline trials.

A DC-Stimulator (Neuroconn GmbH, Ilmenau, Germany) deliv-
ered a 1.5 mA (0.06 mA/cm2) current via two 5 x 5 cm electrodes
(Easycap, Germany) using Ten20® conductive paste. The anode
was centered on the right cerebellar cortex, 3 cm right of the inion,
in line with the pre-auricular point, and the cathode was centered
over the right buccinator muscle [5] (Fig. 1C). Real stimulation
delivered a 1.5 mA current for 20 minutes (green block in Fig. 1B).
Sham stimulation delivered 1.5mA for 30 seconds (10 second
ramp up/down) at the beginning and end of the 20 minute stimu-
lation period[52]. At the end of each session, participants reported
any adverse sensations. Both participant and experimenter inde-
pendently recorded the perceived stimulation condition.

Cursor movements were analyzed on a trial-by-trial basis using
in-house software written in Matlab (Mathworks Inc, Natick, USA).
Joystick position was sampled at 60Hz, filtered with a zero-phase
filter (25Hz cut-off), and numerically differentiated to determine
velocity. For each trial, the angular error (°) was defined as the
angle between a line connecting the starting position with the po-
sition of peak velocity of the cursor and the line connecting the
starting position with the target. Positive values indicate a clock-
wise error (‘overshooting’). Trials with premeditated or otherwise
poorly-defined movements were excluded from further analysis
(12.3 + 12.2[mean =+ SD] trials (0.02 + 0.02%) excluded per subject).

Adaptation error was calculated as the mean error across all tri-
als excepting the first 8 of each rotation block, to capture the rapid
error reduction of adaptation performance excluding the initial
exposure to the rotation [5,19]. Adaptation error was calculated
for the stimulation period alone (Fig. 1B: green block) and for the
full task period (Fig. 1B: red blocks). Retention was calculated as
the mean error in all blocks with no visual feedback [5] (Fig. 1B:
pale blue blocks). Linear mixed models were constructed with
stimulation and session as fixed effects and a varying intercept
for subject. P-values were obtained by likelihood ratio tests of the
full model with the effect in question against the model without
the effect.

1935-861X/© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Results.

A. Visuomotor Adaptation Task. Participants used a joystick to shoot targets on a screen. Targets appeared in one of eight possible locations radially aligned around the centre
starting position, separated by 45° (middle panel). After 80 baseline trials, the visual feedback of the cursor was rotated by 10°. This resulted in a 10° offset between joystick
movement and cursor movement (right panel). Over time, participants learned to adapt to this offset.

B. No effect of cerebellar tDCS on visuomotor adaptation or retention. Participants adapted to a visuomotor rotation while receiving sham or real anodal tDCS to the cerebellum.
Participants shot targets on a screen. They began by performing 80 trials with no rotation imposed serving as the baseline in both conditions. After the baseline, stepwise increasing
rotated visual feedback (red blocks), required participants to adapt movements to reduce errors. One block at each angle and each block consisted of 40 trials of 4 seconds duration
each. The numbers in the red and blue boxes indicate the degree to which the visual feedback was rotated, with 0° indicating no rotation. The imposed rotation reached a maximum
of 80°. Interspersed blocks in which visual feedback was removed (crossed out eye) served to probe retention of the adapted movement. The rotation was washed out after task (144
trials, no rotation). Behavioural data is shown as angular error at each trial averaged across participants. Shaded area represents standard error of the mean. There was no difference
in angular error between the real condition (red) and sham condition (blue).

C. Electrical Field Magnitude in cerebellum. The injected current (left) and mean electrical field magnitude (right) induced by cerebellar anodal tDCS in a representative participant.
The distribution of the electrical field magnitude in the cerebellum is shown on the SUIT flatmap [20]. The electric field induced in the brain was estimated using SimNIBS 3.2.3. The
head model was built from the representative subject's T1-weighted structural image using the standard headreco pipeline. The cerebellum grey and white matter segmentation
estimated using headreco was replaced by a more refined segmentation obtained using CERES, after visual inspection revealed superior segmentation results from CERES [21]. The
anode was centered on the right cerebellar cortex, 3 cm right of the inion, in line with the pre-auricular point. The cathode was positioned over the right buccinator muscle. (For
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)

3. Results [261] Here, we wanted to probe implicit mechanisms of adaptation.
Awareness of any offset between the joystick and the cursor might

Both participant and experimenter blinding was successful increase the use of explicit strategies, potentially engaging different
(Correctly identified current condition: Participant 37%, Experi- neural substrates [17]. When asked, 13 participants remained un-
menter 48%). Baseline performance did not differ between sessions aware of any perturbation. Analysing this small subset of partici-

(1v2:%2(1)=0.58, p = 0.45), nor between real and sham sessions pants, a trend towards real stimulation improving adaptation was
(x2(1) = 2.15, p = 0.14). Baseline performance did not differ during seen (2(1) = 3.22, p = 0.07) but this could be explained by baseline
real and sham stimulation (2(1) = 1.36, p = 0.24). differences (%2(1) = 12.3, p > 0.1).

As expected, participants learned to compensate for the We saw no effect of stimulation on retention, either across the
imposed rotation across the experiment (Initial eight v last eight whole experiment (y2(1) = 1.62, p = 0.2) or during the stimulation
trials t(53) = 5.5, p < 0.001). However, participants performed bet- phase (x2(1) = 0.9, p = 0.34).
ter in Session 2 than Session 1 across the task (yx2(1) = 4.54,

p = 0.03), though this improvement was smaller in the stimulation 4. Discussion [129]
period alone (%2(1) = 2.85, p = 0.09). We therefore included ses-

sion as a cova.riate of no interest.into our mod.el ip all further ana- Potential explanations for our failure to replicate a significant
lyses. Adaptation performance did not differ significantly between  pepavioural effect of cerebellar tDCS, include significant between-
real and sham stimulation either during stimulation (32(1) = 1.05, session differences. However, given our sample size, and the null

p = 0.3) or across the whole task (72(1) = 015, p = 0.7). Finally, to finding when only considering the first session, at the most the
avoid any session effects, we tested for an effect of stimulation in behavioural effect of cerebellar tDCS appears much smaller than

the first session only. Adaptation performance did not differ signif- previously reported [5].
icantly between subjects receiving real and sham stimulation in the While session order effects pose a difficulty for motor adapta-
first session (F(1,25) = 0.23, p = 0.64). tion experiments, within-subject studies are crucial in controlling

for the physiological variability in tDCS studies. Our results
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highlight the critical need to investigate the physiological, brain-
state and task-dependent factors influencing tDCS to reconcile con-
flicting evidence on behavioural effects of cerebellar tDCS. An
investigation into the precise physiological changes in the cere-
bellum in response to tDCS could help navigate the vast parameter
space and further the development of cerebellar tDCS for clinical
applications.

Data availability

Behavioural data is available at: https://github.com/carobellum/
cerebellar_tdcs_adaptation.

MRI data will be shared on the data sharing platform of the
Wellcome Centre for Integrative Neuroimaging which is currently
under development. In the interim, MRI data is available upon
request.
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