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Abstract 

 

Humans often act in the best interests of others. However, how we learn which actions result in 

good outcomes for other people and the neurochemical systems that support this ‘prosocial 

learning’ remain poorly understood. Using computational models of reinforcement learning, 

functional magnetic resonance imaging and dynamic causal modelling, we examined how different 

doses of intranasal oxytocin, a neuropeptide linked to social cognition, impact how people learn to 

benefit others (prosocial learning) and whether this influence could be dissociated from how we 

learn to benefit ourselves (self-oriented learning). We show that a low dose of oxytocin prevented 

decreases in prosocial performance over time, despite no impact on self-oriented learning. 

Critically, oxytocin produced dose-dependent changes in the encoding of prediction errors (PE) in 

the midbrain-subgenual anterior cingulate cortex (sgACC) pathway specifically during prosocial 

learning. Our findings reveal a new role of oxytocin in prosocial learning by modulating 

computations of PEs in the midbrain-sgACC pathway.  

 

 

 

 

Keywords: Intranasal oxytocin; dose-response; reinforcement learning; prosocial behaviour; 

subgenual anterior cingulate (sgACC); mesolimbic pathways 
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Introduction 

 
Prosocial behaviours - actions intended to benefit other people - are crucial for social cohesion1. 

From small acts of kindness to major sacrifices, prosocial behaviours have intrigued many 

disciplines for centuries2. While debate persists about the intrinsic motives that guide us towards 

behaving prosocially, there is consensus that, in order to help, we must be able to learn the impact 

our actions have on others2,3.  

Reinforcement learning (RL) theory provides a neurobiologically plausible framework to 

explain how humans and other species form action-outcome associations4. Recent evidence has 

shown that humans rely on the same reinforcement learning algorithms when learning to benefit 

themselves (self-oriented learning)3 and others (prosocial learning). Yet these algorithms are 

implemented by distinct circuits in the brain and have different influences on behaviour5. Both self-

oriented and prosocial reinforcement learning are driven by the difference between expected and 

actual outcomes, known as prediction errors (PE)3. PE are signalled through changes in the phasic 

release of dopamine in the forebrain6,7 and drive learning by updating the expected value of future 

choice options8,9. Humans learn faster when they are the recipients of the rewards themselves as 

compared to others (self-bias). The encoding of PE for prosocial and self-directed outcomes 

partially map to common anatomical substrates, such as the nucleus accumbens3. However, the 

encoding of prosocial PE specifically engages additional brain pathways anchored in the subgenual 

anterior cingulate cortex (sgACC)3, a region that is thought to play a key role in many aspects of 

social cognition10.  

In addition to identifying the neuroanatomical pathways where prosocial learning 

computations take place, understanding the neurochemical systems that support prosocial learning 

and govern the neurocomputational mechanisms through which they are implemented is critical. 
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Ultimately, this would allow us to identify putative molecular targets that could enhance prosocial 

behaviour in behavioural disorders characterised by dysfunctional social behaviour, such as 

antisocial behaviour, where we currently lack efficient therapies11. 

Oxytocin, a hypothalamic neuropeptide repeatedly implicated in social cognition and 

behaviour12, is a strong molecular candidate for targeting prosocial learning and its underlying 

neurocomputational mechanisms. First, oxytocin plays a crucial role in the encoding of social 

feedback during learning, through interactions with the dopaminergic mesolimbic pathways13. 

Second, a single dose of intranasal oxytocin has been shown to modulate the neurocomputational 

processes that take place during reinforcement learning, i.e. intranasal oxytocin increases 

representations of social value in the amygdala during economical exchanges14, blunts the encoding 

of PE when humans have to learn that others should not be trusted15; it also facilitates learning by 

rendering the impact of positive relative to negative feedback more equivalent and by reducing 

conflict detection and increasing error awareness16. Third, the sgACC, where PEs are encoded 

during prosocial learning specifically, receives oxytocinergic innervation17 and expresses mRNA 

of the oxytocin receptor gene abundantly18. Taken together, these lines of evidence converge on 

the hypothesis that oxytocin might act as a biological facilitator of prosocial learning by impacting 

on the neural computations that take place in the midbrain-sgACC pathway when we learn to 

benefit others.  

Here, we set out to test this hypothesis by examining the effect of three doses of intranasal 

oxytocin or placebo on self-oriented versus prosocial learning. We recruited 24 healthy men to 

participate in a double-blind, placebo-controlled, within-subjects, dose-response study where we 

administered 9, 18, 36 IU of intranasal oxytocin or placebo to each participant in four different 

days using a nebuliser (Figure 1a). We asked participants to perform a reinforcement learning task 

that can dissociate neural mechanisms for prosocial and self-benefitting learning3. In this task 
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rewards would be paid either to the participant (self-oriented learning condition) or to a stranger (a 

confederate; prosocial learning condition), whom the participants were briefly introduced to at the 

start of the study. On each trial participants had to choose between one of two abstract symbols. 

One symbol was associated with a high probability (75%) and one was associated with a low 

probability (25%) of obtaining a reward. These contingencies were not instructed but had to be 

learned through trial and error from feedback on whether the reward was received presented at the 

end of each trial (Figure 1b).  

Using computational models of reinforcement learning and functional magnetic resonance 

imaging (fMRI), we show that prosocial and self-orientated learning processes exhibit two key 

differences. First, participants are better at learning how to get rewards for themselves than for 

others (self-bias). Second, while performance for oneself is maintained at high levels throughout 

the task, performance declines over time when rewards are for someone else. Intranasal oxytocin 

produced a dose-response effect specific to the prosocial condition. Compared to placebo, a low 

dose of oxytocin, but not the medium or high doses, prevented the decrease in prosocial 

performance over time with no effect on self-orientated learning. Moreover, intranasal oxytocin 

produced dose-dependent changes in the encoding of PE in the midbrain-sgACC pathway during 

prosocial learning. A low dose, compared to placebo, strengthened the encoding of PE in this 

pathway by increasing excitatory midbrain-to-sgACC transmission, while a high dose decreased 

excitatory midbrain-to-sgACC transmission. Overall, we reveal both behavioural and neural 

influences of oxytocin on prosocial learning that can be dissociated from oxytocin’s effects on self-

oriented learning. Our findings could have important implications for strategies to foster prosocial 

behaviours in health and disorder.  

 

Results 
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We confirmed that all participants believed our cover story at the end of their participation. Even 

though the prior contact between participants and confederates was standardized and kept to a 

minimum, humans form quick and strong first impressions about others19 which could then 

influence how prosocial learning evolved in the task. For this reason, we assessed participants’ 

impression of the confederate right after they interacted using an impression scale20. We then 

examined whether our confederates might have elicited any form of strong preference bias. We did 

not detect any significant differences between the average ratings of the confederates and the 

middle point of the impression scale (T(23) = -0.549, p = 0.588), which suggests that the 

confederates were perceived neutrally.  

 

Only a low dose of intranasal oxytocin prevents decreases in prosocial performance over 

time but does not impact on self-oriented learning 

 

We first examined participants’ ability to complete the task in both learning conditions (self-

oriented or prosocial) and all treatment levels (placebo, low, medium, high).  Participants selected 

the option with the higher chance of receiving a reward significantly above chance (50%) during 

both self-oriented and prosocial learning in all treatment levels (smallest T(23) = 5.191, p = 0.007) 

(Supplementary Figure S2).  

To examine whether we could replicate previous evidence that humans show a self-bias 

when learning to get rewards for themselves compared to others3,21, we used data from the placebo 

level (collapsing across trial blocks). We found that our participants were, on average, more likely 

to select the option with the higher probability of being rewarded when they were playing for 

themselves than when they were playing for others (2(1)=19.459, pboot<0.001) (Supplementary 
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Figure S3). Therefore, our findings support the idea that humans show bias towards self-oriented 

learning as opposed to prosocial learning.  

We then proceeded by investigating whether varying doses of intranasal oxytocin impacted 

on the probability of selecting the higher reward option during self-oriented and prosocial learning. 

We used a generalized logistic mixed model where we predicted trial-by-trial choices (0 = lowest 

chance of selecting the reward option; 1 = highest chance of selecting the reward option) using trial 

number (1-16 within each block), block (1-4), learning condition (self-oriented or prosocial) and 

treatment level (placebo, low, medium or high) plus all possible interactions as fixed effects and 

individuals as a random effect.  

We found a significant main effect of trial number in predicting trial-by-trial performance 

(2 (15) = 733.648, pboot < 0.001;  = 0.079) which suggested that participants, irrespective of 

learning condition, block or treatment level improved their performance over trials (none of all 

possible interactions between trial and block, learning condition or treatment were significant; 

therefore, we excluded all interactions with trial from the final analysis to obtain a more 

parsimonious model - BICfull-reduced > 100) (Table 1). This analysis further confirmed that 

participants were able to complete the task successfully.  

We also found a significant three-way interaction of learning condition x block x treatment 

(2 (9) = 23.382, pboot = 0.005) (Table 1). We followed up this significant three-way interaction by 

investigating all possible post-hoc pairwise comparisons. However, none of the post-hoc tests 

survived Holm-Bonferroni correction for multiple comparison. Plotting the data (Figure 2) 

suggested that the three-way interaction was driven by the following: while participants learnt to 

get rewards both for themselves and others, performance in the self-oriented learning condition 

remained high across blocks and treatment levels, while performance in the prosocial learning 
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condition decreased in the last block for all treatment levels except for the low dose (Figure 2). 

Therefore, intranasal oxytocin can affect processes that maintain prosocial performance at steady 

levels throughout the task, and that this effect is specific for the low dose.  

 

Behaviour is best explained by a model with separate learning rates for self-oriented and 

prosocial learning 

 

Next, we used computational models of reinforcement learning to measure two key learning 

parameters. The learning rate (α) represents the speed at which people update future outcome 

expectations based on past outcomes. The temperature parameter () represents the exploitation - 

exploration trade-off during action selection, i.e. extent to which the subject decides to stay with 

what they expect to be the most rewarding option vs exploring other potentially rewarding actions. 

We modelled learning during the task by fitting five models based on the Rescorla-Wagner 

reinforcement learning algorithm22 to data pooled across all treatment levels. The models varied in 

their combination of α and β parameters they included for each learning condition (Table 2).  

Model selection using both fixed and random effects approaches showed the best model 

was M3, which included different learning rate parameters for self-oriented and prosocial learning 

(self and prosocial, respectively), and one single temperature parameter for both conditions. This 

model had the lowest integrated BIC (11079.22) highest exceedance probability (0.99) and 

explained the greatest variance of individual behaviour, among all participants and treatment levels 

(r2 = 0.69; Table 2). M1, a null model where we fixed a single  = 0 across learning conditions 

showed the worst performance, as compared to all the other models where we fitted a learning rate 

parameter for at least one learning condition (Table 2). This finding strengthens our conclusion that 
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participants successfully learnt the task. We additionally verified the following: i) that parameters 

in our winning could be estimated independently from each other (Supplementary Figure S4); ii) 

that our winning model won for each treatment level (Supplementary Figure S5 and Supplementary 

Table S1); iii) that our winning model was identifiable (Supplementary Figure S6); and iv) that the 

estimated parameters were recoverable (Supplementary Figure S7). Furthermore, using choices 

simulated from the maximum a posteriori estimates of the parameters previously estimated for each 

of our participants, we also verified that our winning model could predict their actual choices (r2 

ranged between 0.224 and 0.841; smallest p = 0.019) (Supplementary Table 2). 

In line with previous work using a similar task3, we found considerable heterogeneity in the 

way our participants performed during the prosocial as opposed to self-oriented learning blocks 

(Supplementary Figures S3 and S8). Therefore, we also conducted exploratory analyses testing 

whether interindividual differences in prosocial learning (prosocial and probability of selecting the 

higher reward option) during the placebo visit could be predicted by global impression scale scores. 

None of these correlations were significant (all p > 0.05) (Supplementary Table S3). 

 

Intranasal oxytocin does not impact the rate at which people learn during self-oriented or 

prosocial learning 

 

Next, we used the parameters of our validated winning model to test for the effects of learning 

condition, treatment, and learning condition x treatment on the learning rate and temperature 

parameters. We found a significant main effect of learning condition (2 (1) = 5.773, pboot = 0.016), 

which reflected the fact that our participants showed higher learning rates during self-oriented as 

compared to prosocial learning (Supplementary Figure S8). This finding is consistent with the self-
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oriented bias found in performance. The main effect of treatment (2 (3) = 0.670, pboot = 0.877) and 

the learning condition x treatment interaction (2 (3) = 3.016, pboot = 0.403) were not significant. 

We also tested the main effect of treatment on the temperature parameter, which was not significant 

(2 (3) = 2.650, pboot = 0.449) (Supplementary Figure S9). 

 

Intranasal oxytocin modulates the encoding of prediction errors in the midbrain and sgACC 

during prosocial learning in a dose-dependent manner 

 

In the RL framework, two quantities are computed during learning: i) expected value of the chosen 

action at the cue phase (when participants see the options they can choose from); ii) PEs at the 

feedback phase (when participants receive feedback about whether their choice was rewarded or 

not). Hence, we investigated whether intranasal oxytocin impacted on brain representations of 

expected value of chosen actions and PEs during self-oriented and prosocial learning. We used the 

output of the winning model to estimate these parameters. 

First, we used data from the placebo session to examine whether the BOLD signal in three 

a priori defined anatomical regions-of-interest, the nucleus accumbens, the sgACC, and the 

midbrain, tracked PEs during self-oriented and prosocial learning as hypothesised. We found that 

PEs for both the self-oriented and prosocial conditions were tracked in the nucleus accumbens 

(self-oriented condition: mean parameter estimate 0.404 CI95% [0.260, 0.548]; prosocial 

condition: 0.217 CI95% [0.129, 0.305]) and the midbrain (self-oriented condition: 0.291 CI95% 

[0.239, 0.343]; prosocial condition: 0.269 CI95% [0.213, 0.325]). The BOLD signal 

representations of PEs in the nucleus accumbens were stronger in the self-oriented condition than 

in the prosocial conditions (2 (1) = 5.033, pboot = 0.026). There was no significant effect of learning 
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condition in the midbrain (2 (1) = 0.337, pboot = 0.576). Critically, we found that the sgACC 

specifically encoded PEs in the prosocial but not in the self-oriented conditions (self-oriented 

condition: -0.056 CI95% [-0.138, 0.026]; prosocial condition: 0.500 CI95% [0.364, 0.636]; self-

oriented versus prosocial conditions comparison: (2 (1) = 34.335, pboot < 0.001) (Supplementary 

Figure S10). Parameter estimates for the BOLD signal representations of PEs in the prosocial 

condition in the sgACC correlated positively with inter-individual differences in learning rates in 

the prosocial condition (r(22) = 0.664, pboot = 0.001), but not in the self-oriented condition (r(22) = 

0.349, pboot = 0.103) (Supplementary Figure S11). Direct comparisons of these two correlations 

yielded no significant differences (Z=-1.378, p=0.084). Parameter estimates for the BOLD signal 

representations of PEs during the self-oriented and prosocial learning conditions in the nucleus 

accumbens and the midbrain correlated positively with inter-individual differences in learning rates 

in both conditions (Nucleus accumbens: self-oriented condition – r(22) = 0.655, pboot = 0.001; 

prosocial condition  – r(22) = 0.590, pboot = 0.003; Self-oriented vs prosocial condition - Z=0.330, 

p=0.741; Midbrain: self-oriented condition – r(22) = 0.545, pboot = 0.007; prosocial condition  – 

r(22) = 0.594, pboot = 0.003; Self-oriented vs prosocial condition - Z=-0.220, p=0.826;) 

(Supplementary Figure S11). We also conducted exploratory whole-brain analyses comparing the 

BOLD signal representations of PEs between the self-oriented and the prosocial learning conditions 

but no cluster survived correction for multiple comparisons (see Supplementary Figure S12 for 

brain regions where the BOLD signal tracked PEs in each condition separately).  

 Next, we tested whether oxytocin impacted on BOLD signal representations of PEs in our 

three ROIs. We found significant interactions between learning condition and treatment for the 

sgACC (2(3)=16.431, pboot=0.004) and midbrain (2 (3)=11.058, pboot=0.011) (see Supplementary 

Table S3 for main effects). In the sgACC, this interaction was driven by an inverted-U-like dose-
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response like pattern, where the low dose increased the BOLD signal representations of PEs in the 

prosocial condition, but the high dose decreased the BOLD signal representations, as compared to 

placebo (Figure 3; please see Supplementary Table S4 for post hoc tests). For the midbrain, we 

noted the same inverted-U-like dose-response pattern we describe for PEs in the prosocial 

condition in the sgACC (Figure 3; see Supplementary Table S4 for post hoc tests). None of the 

three doses of intranasal oxytocin affected the BOLD signal representation of PEs in the sgACC 

and midbrain during the self-oriented condition (Figure 3). For the nucleus accumbens, only the 

main effect of learning condition was significant (2 (1) = 18.803, pboot < 0.001): the BOLD signal 

representations of PEs in this region were stronger in the self-oriented than the prosocial conditions 

across treatment levels (Figure 3; Supplementary Table S3). 

Since we did not define any strong a priori hypothesis about specific brain regions encoding 

the expected value of the chosen action (at the cue phase), we conducted exploratory whole-brain 

analyses. We found that the expected value of both self-oriented and prosocial chosen actions was 

tracked positively by the BOLD signal in a network of areas encompassing the basal ganglia, 

frontal and occipital cortices and the cerebellum (Supplementary Figure S13). Direct comparisons 

between the self-oriented and prosocial conditions did not yield significant differences (no cluster 

survived correction). Intranasal oxytocin did not impact on the BOLD representations of expected 

values of the chosen actions neither during self-oriented or prosocial learning (no cluster depicting 

treatment or learning condition x treatment effects survived correction). 

 

Intranasal oxytocin modulates the encoding of prediction errors in the functional coupling 

between the midbrain and sgACC during prosocial learning in a dose-dependent manner 
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Prediction errors are typically encoded in dopaminergic midbrain neurons6. The sgACC also 

receives dense dopaminergic innervation from the midbrain23,24. Hence, it is plausible that the 

strength of the functional coupling between the midbrain and sgACC might track PEs in the 

prosocial condition. To test this hypothesis, we used our placebo data to conduct 

psychophysiological interaction (PPI) analyses with the midbrain as the seed region. We found that 

the BOLD signal tracking PEs in the midbrain was positively coupled with the BOLD signal in the 

sgACC in the prosocial learning, but not the self-oriented learning conditions (self-oriented 

learning: 0.069 CI95% [-0.053, 0.191]; prosocial learning: 0.501 CI95% [0.369, 0.633]; self-

oriented versus prosocial learning comparison: (2 (1) = 27.132, pboot < 0.001); Supplementary 

Figure S14). The magnitude of the coupling between the BOLD signal tracking PEs in the midbrain 

and the sgACC was positively correlated with inter-individual differences in learning rates in the 

prosocial condition (r(22) = 0.859, pboot < 0.001), but not in the self-oriented condition (r(22) = 

0.308, pboot < 0.153; self-oriented versus prosocial learning comparison: Z=3.071, p=0.001; 

Supplementary Figure S15). We also found that the BOLD signal tracking PEs in the midbrain was 

coupled with the BOLD signal tracking PEs in the nucleus accumbens during both self-oriented 

and prosocial learning (self-oriented learning: 0.534 CI95% [0.474, 0.594]; prosocial learning: 

0.304 CI95% [0.218, 0.390]). However, in this encoding was stronger for self-oriented as compared 

prosocial learning (2 (1) = 16.955, pboot < 0.001). The strength to which PEs during self-oriented 

and prosocial learning were encoded in the functional coupling between these two regions 

correlated positively with learning rates in both the self-oriented (r(22) = 0.721, pboot < 0.0001) and 

the prosocial learning conditions (r(22) = 0.682, pboot < 0.001) (Supplementary Figure S15).  

 We then tested whether these effects were influenced by oxytocin administration 

(Supplementary Table S5). In the prosocial learning condition, a low dose compared to placebo 
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strengthened the PE-tracking functional coupling between the midbrain and sgACC while the high 

dose had the opposite effect, weakening the PE-tracking functional coupling between these two 

regions (in the same way that was observed when analysing each region separately). In contrast, 

intranasal oxytocin did not impact on the PE-tracking functional coupling between the midbrain 

and sgACC in the self-oriented learning condition (learning condition x treatment interaction 

2(3)=15.727, pboot < 0.001, Figure 4; please see Supplementary Table S6 for post hoc tests.  

For the functional coupling between the midbrain and the nucleus accumbens, only the 

main effect of learning condition was significant (2(1)=109.904, pboot<0.001). This main effect 

reflected that the encoding of PEs in the functional coupling between the midbrain and the nucleus 

accumbens was stronger during self-oriented as compared to prosocial learning (T(22)=12.555, p 

< 0.001). 

 

Intranasal oxytocin affects the encoding of PEs in the midbrain-sgACC pathway during 

prosocial learning by modulating excitatory midbrain-to-sgACC forward transmission and 

midbrain self-regulation in a dose-dependent manner  

 

Our PPI analyses suggested that intranasal oxytocin modulates the encoding of PE in the midbrain-

sgACC pathway during prosocial learning by impacting on the functional coupling strength 

between these two regions. However, PPI does not provide any information about the direction of 

this effect25. Therefore we conducted dynamic causal modelling (DCM)26 to address two questions. 

First, does intranasal oxytocin modulate the transmission of PE information from the midbrain to 

the sgACC, vice-versa, or both? Second, does the high dose of intranasal oxytocin decrease the 

functional coupling between the midbrain and the sgACC by impacting on the intrinsic activity of 
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the midbrain or sgACC, as a result of auto-regulatory mechanisms?  For this analysis we used the 

BOLD signal time series from the midbrain and sgACC regions during the prosocial learning 

blocks, the two regions where we found significant effects of intranasal oxytocin. We did not 

include the nucleus accumbens as a node in our models because intranasal oxytocin did not 

modulate the encoding of PE in this region during prosocial learning. 

 We started by defining a fully connected one-state DCM. This full model included forward 

and backward connections between the midbrain and the sgACC, as well as intrinsic auto-

regulatory connections in each node. We used our parametric prosocial PE regressor as input to 

both nodes. At the first level, we inverted this model for all participants in the four treatment 

conditions. Commonalities and treatment effects at the group-level were examined within the 

Parametrical Empirical Bayes (PEB) framework27, exploring across all possible reduced PEB 

models where each parameter or combinations of parameters were switched off one at a time using 

Bayesian model reduction. To summarize the parameters across all models, we computed the 

Bayesian model average, which corresponds to the average of the parameters from the top 256 

different models, weighted by the model’s posterior probability.  

 Across all participants and treatment levels, all of our four connections had strong evidence 

in favour of being different from 0 (posterior probability (Pp) > 0.95). Our winning second-level 

model included effects for both the high and low, but not medium dose (Pp = 0.89) (Figure 5). We 

found strong evidence for decreased intrinsic connectivity in the midbrain after the high dose, as 

compared to placebo (expected value -0.034, Pp = 0.901). Furthermore, we also found strong 

evidence for increased excitatory transmission from the midbrain to the sgACC after the low dose, 

as compared to placebo (expected value 0.152, Pp = 0.932). Our findings suggest that intranasal 

oxytocin targets mainly the excitatory connection from the midbrain to the sgACC, whose strength 
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increased after the low dose, compared to placebo, and the intrinsic connectivity of the midbrain, 

where the high dose produced decreases, as compared to placebo. 

Finally, we investigated whether the strength of the DCM model connections that were 

modulated by intranasal oxytocin were predictive of inter-individual differences in prosocial 

learning. We hypothesised that the excitatory forward connection from the midbrain to the sgACC, 

where we found dose-dependent modulation by intranasal oxytocin, might be particularly 

important in explaining inter-individual differences in prosocial learning. We tested this hypothesis 

by using the PEB modelling procedure described above, but this time testing for correlations 

between each of our connectivity parameters and learning rates in the self-oriented and prosocial 

conditions, using the data from the placebo session. We found strong evidence of a positive 

correlation between the strength of the excitatory forward midbrain-sgACC connection and 

learning rates in the prosocial condition, but not in the self-oriented condition (expected value 

0.120, Pp = 0.995; Supplementary Figure S16). We did not find evidence for positive or negative 

correlations between the strength of any of the other three connections in our model and learning 

rates, either in the prosocial or the self-oriented learning conditions. 

 

Discussion 

We reveal a new role for oxytocin in prosocial learning and its neural mechanisms. First, we 

demonstrate that a low dose, but not medium or high doses, compared to placebo, can reverse a 

decrease in performance over time that is specifically observed during prosocial learning 

(compared to self-oriented learning) during placebo. Second, we demonstrate a dose-dependent 

modulation in the encoding of PEs in the sgACC, the midbrain, and in the functional coupling 

between these two regions during prosocial learning, where a low dose strengthens the encoding 

but a high dose weakens it, compared to placebo. Finally, we demonstrate that the effects of 
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intranasal oxytocin on the encoding of PEs during prosocial learning are likely to emerge from the 

dose-dependent modulation of both the direct excitatory connections from the midbrain to the 

sgACC and intrinsic connectivity in the midbrain.  

Intranasal oxytocin modulated both performance during learning to benefit others and the 

neural mechanisms that support prosocial learning but produced no effects on self-oriented 

learning. Only the low dose of intranasal oxytocin prevented a decrease in learning performance 

over time that was exhibited in the prosocial (but not the self-oriented) learning conditions under 

placebo and the two other higher doses. While the exact cognitive mechanisms driving this effect 

remain elusive, ultimately this effect could result from an amplification of the salience of other-

targeted versus self-oriented benefit in response to the administration of a low dose of intranasal 

oxytocin. This interpretation is supported by previous evidence suggesting that: i)  a single dose of 

intranasal oxytocin increased the willingness to exert effort to get rewards for others in individuals 

with social anxiety disorder28; ii) the effects of intranasal oxytocin on behaviour are likely driven 

by facilitatory effects on salience processing of social cues29.  

The lack of an effect on intranasal oxytocin on performance in the self-oriented learning 

condition contrasts with the findings of a recent behavioural study reporting an overall decrease in 

self-oriented learning after a single dose of 24 IU of intranasal oxytocin administered with a nasal 

spray in male and female Chinese students30. However, despite the similarity in task design, our 

studies differ in important methodological aspects, which makes any direct comparison of findings 

challenging. In addition to differences in the method used for oxytocin administration, there were 

also marked differences between participant characteristics in the two studies in terms of gender 

composition and cultural background (our study used only male participants of predominantly 

white Caucasian ethnicity). Previous evidence has demonstrated that the effects of intranasal 

oxytocin differ between genders31 and cultural backgrounds32. To better understand the role that 
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method of administration and participants characteristics may play on the effect of intranasal 

oxytocin on self-oriented learning behaviour, it is important that future studies systematically 

investigate these factors. 

In addition to uncovering a novel and selective role of oxytocin in prosocial learning, our 

study provides new insights into differences between learning to benefit the self and learning to 

benefit others. We showed that performance declined over time in the prosocial learning condition, 

compared to the self-oriented learning condition. Additionally, we corroborated previous evidence 

that the same reinforcement learning algorithms provide a foundation both for how humans learn 

to benefit the self and others3. Critically, our findings confirmed that the extent to which these 

learning mechanisms are invoked is different in self-oriented and prosocial learning, with 

participants having a higher learning rate for self-oriented reward outcomes compared to reward 

outcomes benefitting other people3. One alternative explanation for our findings is that participants 

performed better in the self-oriented condition as they were more able to construct a model of the 

self compared to other. However, this explanation is unlikely for two reasons. First formal model 

comparison showed that decision noise between the two conditions was equal, as the model that 

best explained behaviour contained separate learning rates for self and other but not separate noise 

parameters. Second, participants completed an impression formation scale on their first encounter 

and there were no significant correlations between the impression measure and task performance. 

 

We provide a detailed map of the brain mechanisms through which intranasal oxytocin 

modulates prosocial learning by identifying a new and selective role of intranasal oxytocin in the 

modulation of the encoding of PEs during prosocial learning. Intranasal oxytocin exerted a dose-

dependent modulation of the encoding of PEs in the sgACC, the midbrain, and in the functional 

coupling between these two regions. The selectivity of the effects of intranasal oxytocin in the 
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prosocial condition is congruent with some theories advocating that oxytocin might predominantly 

affect brain processes related to social functions29 (though this idea has been challenged by 

evidence that intranasal oxytocin also modulates brain functioning during non-social 

processes33,34). In the context of our task, the selectivity of the effects of intranasal oxytocin in the 

prosocial condition is intriguing given that both self-oriented and prosocial learning share 

algorithmic features (both comply with the basic principles of reinforcement learning algorithms 

and rely on PEs)5. Our findings dovetail with a previous study3 demonstrating that the way the 

brain implements reinforcement learning is associated with considerable differences between 

conditions. For instance, while PEs represent differences between expected and actual outcomes in 

both self-oriented and prosocial learning, the encoding of PEs during prosocial learning specifically 

engages the sgACC. Hence, it is plausible that oxytocin might selectively modulate the machinery 

responsible for the implementation of PE computations during prosocial learning, even if PEs 

represent the same statistical quantity in both conditions. This idea is further supported by a 

previous study in rodents showing that the release of oxytocin in the ventral tegmental area 

increases the excitability of a small subpopulation of neurons engaged during social preference, 

but not preference for non-social novel objects13.  

 Of particular note is that oxytocin exerted effects on prosocial learning in a manner that 

was dose-dependent35. We found divergent effects for the low and high doses, where a low dose 

strengthened the encoding of PE (compared to placebo), while a high dose decreased the encoding 

of PE (compared to placebo). These dose dependent effects of oxytocin are consistent with the 

effects of intranasal oxytocin on resting regional perfusion in the amygdala in the same cohort of 

participants36. How could different doses of intranasal oxytocin exert opposing effects on the 

encoding of PEs during prosocial learning in the brain? Oxytocinergic neurons in the hypothalamus 

project to the midbrain37,38 and facilitate the release of dopamine in the basal ganglia during the 
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encoding of social reward (interacting with a conspecific vs a toy)13. Hence, the increase in 

encoding of PEs during prosocial learning both in the midbrain and sgACC we observed after the 

low dose could reflect the fact that oxytocin hijacks a population of dopaminergic neurons in the 

midbrain that project to the sgACC, enhancing the phasic release of dopamine to facilitate the 

encoding of PEs during prosocial learning38. This hypothesis was supported by our DCM analysis, 

where we found that a low dose of intranasal oxytocin increased the excitatory forward connection 

from the midbrain to the sgACC - the only connection of our DCM model which explained inter-

individual differences in prosocial learning under placebo. At the same time, a high dose of 

oxytocin might enhance dopamine release to an extent that could result in sustained increases in 

synaptic dopamine, which in turn might inhibit the release of phasic dopamine through auto-

regulatory feedback mechanisms39. By inhibiting the release of phasic dopamine, then a high dose 

of intranasal oxytocin would weaken the encoding of PEs in the prosocial learning condition. In 

line with this hypothesis our DCM analysis showed reduced intrinsic connectivity in the midbrain 

after the high dose, as compared to placebo. We note that a similar dose-response model on phasic 

dopamine release and PE encoding has been shown for amphetamine during self-oriented learning; 

amphetamine, like oxytocin, also enhances synaptic dopamine40.  

 While the working model presented above assumes that when administered intranasally 

oxytocin can reach the brain, we must acknowledge that for now our data cannot illuminate the 

precise pathways through which such a transport might occur. Plausible mechanisms include direct 

nose-to-brain transport, blood-to-brain transport through the blood-brain barrier or a combination 

of both. Supportive evidence has recently been provided by a study in primates showing that when 

administered intranasally oxytocin can reach the brain41. However, it is also possible that 

absorption of oxytocin to the blood might impact on the brain indirectly. For instance, a recent 

study in rats have shown that peripherally administered oxytocin requires vagal signalling to reduce 
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methamphetamine self-administration and reinstatement of methamphetamine-seeking behaviours 

42. Therefore, we cannot exclude that our findings of dose-response effects of intranasal oxytocin 

on prosocial performance and underlying neurocomputational mechanisms might reflect indirect 

dose-dependent peripheral effects or a possible interaction between peripheral and central actions. 

Future studies with concomitant administration of non-brain penetrant antagonists will help to 

dissect these effects further. 

 

Our findings also expand our understanding of the neuroanatomical pathways underlying 

the encoding of PEs during self-oriented and prosocial learning in important ways. First, our results 

confirm previous evidence suggesting that the sgACC specifically encodes PEs during prosocial 

learning, while PEs during both self-oriented and prosocial learning are encoded in the nucleus 

accumbens3. However, we expand these findings in two specific ways. We show that PEs during 

both self-oriented and prosocial learning are similarly encoded in the midbrain. Furthermore, we 

show that PEs are also encoded in the functional coupling between the midbrain and the sgACC 

and the nucleus accumbens, in a manner that depends on the recipient of the reward. Prediction 

errors during prosocial (but not self-oriented) learning are encoded specifically in the functional 

coupling between the midbrain and sgACC, while PEs during both self-oriented and prosocial 

learning are encoded in the functional coupling between the midbrain and the nucleus accumbens. 

Interestingly, we found that the functional coupling between the midbrain and the nucleus 

accumbens during self-oriented learning is stronger compared to the encoding of PEs during 

prosocial learning. Hence, the encoding of PEs in the nucleus accumbens exhibited the same self-

bias that we observed when we examined performance based on behavioural data and might 

provide a parsimonious mechanism through which this self-bias emerges.  
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Our study has some limitations that should be acknowledged. First, given the known sexual 

dimorphism in the oxytocin system, our findings should not be readily extrapolated to women43-45. 

Second, while our findings suggest that oxytocin might interact with the dopamine system to 

modulate the encoding of PEs, we did not pharmacologically manipulate the dopamine system in 

this study. This hypothesis is well informed by the known involvement of the midbrain 

dopaminergic neurons in encoding social PEs46 and the engagement of midbrain dopaminergic 

neurons by oxytocin to encode social reward13, but will require further validation in human studies 

manipulating both systems at the same time. Indeed, while the evidence for an oxytocin x dopamine 

interaction is well established in rodents, the evidence in humans is scarce and less clear. For 

instance, one previous study failed to find significant effects of a single acute dose of intranasal 

oxytocin on binding of raclopride to dopamine receptors in brain areas linked to reward processing 

when men viewed faces of attractive women47. Third, while our dose-response model of the effects 

of intranasal oxytocin on the encoding of PEs in the prosocial condition suggests that the effects of 

intranasal oxytocin on the phasic and tonic dopamine release from midbrain neurons to the sgACC 

may vary by dose, BOLD fMRI does not allow to test this hypothesis directly. This hypothesis 

could be examined in studies measuring how different doses of oxytocin affect the phasic and tonic 

dopamine release in the brain during social instrumental learning using voltammetry48. Fourth, in 

this study we administered intranasal oxytocin using the PARIS SINUS nebulizer, which increases 

deposition in the regions of the upper nose putatively involved in the nose-to-brain transport of 

oxytocin49,50. While this does not detract from the dose-response profile we present here, it may 

make direct comparisons with nominal doses delivered with other devices for nasal delivery, 

including standard sprays which may be less efficient in oxytocin delivery51, challenging. Finally, 

to avoid provoking reciprocity and reputation as motivations for helping others, we intentionally 

designed the task to not include a component of interaction between the participant and the 
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confederate. Although the participant met the confederate at the beginning of the first experimental 

session, participants were carefully instructed that any decisions they made would be anonymous 

and the person outside of the scanner would not be aware that the person inside the scanner was 

performing a task with potential benefit for them. This design allowed us to separate motivations 

to benefit others from motivations due reciprocity or reputation, which could also be affected by 

oxytocin. However, in everyday life some of our prosocial acts do involve face-to-face interaction. 

Therefore, while this task allowed us to control different motivations for prosociality, future studies 

could expand our work to investigate prosocial learning in more complex social scenarios, such as 

during face-to-face interactions or during situations when people are observed, as opposed to 

making private prosocial decisions52. 

 

In summary, we demonstrate a new and selective role of intranasal oxytocin in prosocial 

learning through the modulation of the encoding of PEs in the midbrain-sgACC pathway. Our 

findings expand our understanding of the neurobiological mechanisms underlying prosocial 

learning and suggest that dysfunctions in the oxytocin system might play a key role in pathological 

social behaviour, such as antisocial behaviour, by impeding associative learning of prosocial 

actions that benefit other people. If that is the case, then oxytocin augmentation might provide an 

innovative treatment for antisocial behaviour, where we currently lack viable therapeutic options. 

 

Methods 

Participants 

We recruited 24 healthy male adult volunteers (mean age 23.8 years, SD = 3.94, range 20-34 years). 

We screened participants for psychiatric conditions using the MINI International Neuropsychiatric 
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interview53. Participants were not taking any prescribed drugs, did not have a history of drug abuse 

and tested negative on a urine panel screening test for a range of drugs, consumed <28 units of 

alcohol per week, and smoked <5 cigarettes per day. We instructed participants to abstain from 

alcohol and heavy exercise for 24 hours and from food or any beverage other than water for at least 

2 hours before scanning. Participants gave written informed consent. King’s College London 

Research Ethics Committee (HR-17/18-6908) approved the study. We determined sample size 

based on a priori statistical power calculations performed using G*Power (version 3.1). We 

estimated 24 participants to be the minimally required sample size to detect a within-factor medium 

effect size of f=0.25 with 80% statistical power (α=0.05) in a repeated measures analysis of 

variance, assuming a correlation between repeated measures of 0.5. 

Study design 

We employed a randomized, double-blind, placebo-controlled, crossover design. Participants 

visited our centre for one screening session and four experimental sessions spaced 4.3 days apart 

on average (SD = 5.5, range: 2-16 days). We have previously demonstrated that at around 2h after 

a single acute administration of intranasal oxytocin (40IU) with the PARI SINUS nebuliser the 

concentrations of oxytocin in the plasma are no longer different from those observed after an 

intranasal placebo54. Moreover, in vitro studies of receptor desensitization/re-sensitization have 

previously demonstrated that while upon OXTR activation by oxytocin receptors are quickly 

internalized leading to desensitization, almost 85% of the receptors return to the cell surface after 

4 h leading to complete restoration of cell responsiveness to oxytocin55. Therefore, a minimal 

interval of 2 days would be sufficient to allow for oxytocin washout from the body and minimize 

the risk of desensitization after exposure to a single acute dose of oxytocin. 
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During the screening visit, we confirmed participants’ eligibility, obtained informed 

consent, collected sociodemographic data, and measured weight and height. Participants also 

completed a short battery of self-report questionnaires (which were collected in relation to other 

tasks and are not reported here). Participants were trained in a mock-scanner during the screening 

visit to habituate to the scanner environment and minimize its potential distressing impact. 

Participants were also trained on the correct usage of the PARI SINUS nebulizer, the device that 

they would use to self-administer oxytocin or placebo in the experimental visits. Participants were 

randomly allocated to a treatment order using a Latin square design.  

 

Intranasal oxytocin administration 

Participants self-administered one of three nominal doses of oxytocin (Syntocinon; 40IU/ml; 

Novartis, Basel, Switzerland). We have previously shown that 40IU delivered with the PARI 

SINUS nebulizer induce robust regional cerebral blood flow (rCBF) changes in the human brain 

as early as 15-32 mins post-dosing using a within-subject design54. In this study, we decided to 

investigate dose-response using a range of doses smaller than the 40IU we have previously studied, 

including a low dose (9IU), a medium dose (18IU) and a high dose (36 IU). Placebo contained the 

same excipients as Syntocinon, except for oxytocin. Immediately before each experimental session 

started, a researcher not involved in data collection loaded the SINUS nebulizer with 2 ml of a 

solution (1 ml of which was self-administered) containing oxytocin in the following concentrations 

40 IU/ml, 20 IU/ml and 10 IU/ml or placebo (achieved by a simple 2x or 4x dilution with placebo).  

Participants self-administered each dose of intranasal oxytocin or placebo, by operating the 

SINUS nebulizer for three minutes in each nostril (6 min in total), based on a rate of administration 

of 0.15-0.17 ml per minute. In pilot work using nebulization on a filter, we estimated the actual 
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nominally delivered dose for our protocol to be 9.0IU (CI 95% 8.67 – 9.40) for the low dose, 18.1IU 

(CI 95% 17.34 – 18.79) for the medium dose and 36.1IU (CI 95% 34.69 – 37.58) for the high dose. 

The correct application of the device was validated by confirming gravimetrically the administered 

volume. Participants were instructed to breathe using only their mouth and to keep a constant 

breathing rate with their soft palate closed, to minimize delivery to the lungs. The PARI SINUS 

nebuliser (PARI GmbH, Starnberg, Germany) is designed to deliver aerosolised drugs to the sinus 

cavities by ventilating the sinuses via pressure fluctuations. The SINUS nebuliser produces an 

aerosol with 3 µm mass median diameter which is superimposed with a 44 Hz pulsation frequency. 

Hence, droplet diameter is roughly one tenth of a nasal spray and its mass is only a thousandth. 

The efficacy of this system was first shown in a scintigraphy study49. Since the entrance of the 

sinuses is located near the olfactory region, improved delivery to the olfactory region is expected 

compared to nasal sprays. One study has shown up to 9.0% (±1.9%) of the total administered dose 

with the SINUS nebuliser to be delivered to the olfactory region, 15.7% (±2.4%) to the upper nose; 

for standard nasal sprays, less than 4.6% reached the olfactory region50. Participants could not 

guess treatment allocation above chance (reported in our previous manuscript36) 

Procedure 

All participants were tested at approximately the same time in the afternoon (3-5 pm) for all 

oxytocin and placebo treatments, to minimise potential circadian variability in resting brain 

activity56 or oxytocin levels57. Each experimental session began with an assessment of vitals (blood 

pressure and heart rate) and the collection of two 4 ml blood samples for plasma isolation (data not 

reported here). In the first experimental session, participants were also introduced to a confederate 

as part of the setup of the prosocial learning task (see below for more details).  Then we proceeded 

with the treatment administration protocol that lasted about 6 minutes in total (Fig. 1). Immediately 
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before and after treatment administration, participants completed a set of visual analog scales 

(VAS) to assess subjective drug effects (alertness, mood and anxiety) (these data have been 

reported elsewhere36). After drug administration, participants were guided to an MRI scanner, 

where we acquired a BOLD-fMRI scan during a breath-hold task (lasting 5 minutes 16 seconds), 

followed by 3 pulsed continuous arterial spin labelling (ASL) scans (each lasting 5 minutes and 22 

seconds) (data reported elsewhere36), the BOLD-fMRI scan during a prosocial reinforcement 

learning task (21 minutes) reported here, and a resting-state BOLD-fMRI scan (data not reported 

yet). We decided to collect the data from the prosocial reinforcement learning task at about 34 – 

55 mins post-dosing because we have previously demonstrated robust modulation of rCBF in the 

basal ganglia (a set of regions engaged during reinforcement learning9) after a single dose of 40 IU 

of intranasal oxytocin administered with the PARI SINUS nebuliser during the same time-

interval54. When the participants left the MRI scanner, we assessed subjective drug effects using 

the same set of VAS. 

Prosocial reinforcement learning task 

The prosocial learning task is a probabilistic reinforcement learning task designed to separately 

assess self-oriented (rewards for self) and prosocial learning (rewards for another person)3,21. On 

each trial participants had to choose between one of two abstract symbols. One symbol was 

associated with a high probability (75%) and one was associated with a low probability (25%) of 

a reward. These contingencies were not instructed so had to be learned through trial and error. The 

two symbols were randomly assigned to the left or right side of the screen and choices were 

implemented by pressing one of two buttons that corresponded to the selected symbol. Participants 

selected a symbol and then received feedback on whether the response was correct, so they learned 

over time which symbol maximised rewards. Trials were presented in blocks, and each block 
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belonged to one of two conditions. In the self-oriented learning condition, earned points translated 

into increased payment for the participants themselves. These blocks started with “play for you” 

displayed and had the word “you” at the top of each screen. In the prosocial learning condition, 

points translated into increased payment for a second participant, who was a confederate that 

participants met at the start of the first session (see below). Participants were told that they would 

never meet the other person again, and that the person was not even aware that an additional 

financial compensation could arise from participants’ performance. The name of the confederate, 

gender-matched to the participant, was displayed on these blocks at the start and on each screen 

(Figure 1). Thus, participants were explicitly aware in each trial who their decisions affected.  

Participants received instructions for the prosocial reinforcement learning task and how the 

points they earned would be converted into money for themselves and for the other participant 

during the screening session. Instructions included that the two symbols differed in their probability 

of earning points for participants, but that the side on which they appeared on the screen was 

irrelevant. Participants then completed one block of practice trials before the main task and were 

informed that outcomes during the practice block would not affect payment for anyone. We briefly 

repeated these instructions in the beginning of each experimental visit to confirm that participants 

still remembered the instructions of the task. 

The success of the prosocial reinforcement learning task depends on convincing 

participants that their performance during the prosocial learning blocks will financially benefit 

someone else. Therefore, our study included an element of deception, whereby we made 

participants believe that this other person was a real participant enrolled in a secondary arm of the 

main study. Unbeknown to the participants, this person was a confederate who did not take part in 

the study but was part of the research team. We allowed for a short period of interaction between 
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participants and confederates right in the beginning of their first experimental visit to increase the 

plausibility of our deception. Participants only met the confederate once, in the first session. 

Interaction between participants and confederates was standardized to make sure all participants 

had similar experiences. Both participants and confederates were instructed they would be only 

allowed to greet each other and present their names.  

After this short period of interaction, the confederate was guided outside of the room. We 

then asked participants to fill in an impression scale20. This scale measured participants’ perception 

of the confederate using eight questions assessing similarity, perceived group membership, 

likeability and attractiveness (see Hein et al.20 for further details). For each question, participants 

were asked to select on a 9-point Likert-scale the number that best represented their thoughts about 

the confederate (i.e. “How similar to you do you think this person is?”; anchors: 1 - “Extremely”; 

9 - “Not at all”). Participants were informed that their responses in this scale would be kept 

anonymous and that the confederates would also fill the same scale to assess their own impression 

of the participant. 

 

The experiment was subdivided into eight blocks of 16 trials (4 blocks in each condition). 

Within each block, participants were presented with 16 pairings of the same two symbols. Each 

block began with an instruction screen that indicated who would receive the outcomes (self, or 

confederate) for 2,000 ms. This was followed by the presentation of two abstract symbols for 3,000 

ms during which participants were required to select one of these. These symbols were letters from 

the Agathodaimon font. If no response was indicated during this time, the word “missed” appeared 

in red on the screen. The selected option was shown for 300 ms, followed by a delay (2,500 ms), 

then by the outcome of their choice (win 100 points/win 0 points) (800 ms). A randomly jittered 
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fixation (2,000–4,000 ms) was shown after the outcome before the two symbols were presented 

again. Symbols were not repeated between blocks or sessions and participants. Participants were 

instructed they should learn about each new set of stimuli independently and that memory would 

not help them performing the task. This was implemented to minimize as much as possible practice 

effects from the outset. This was implemented to minimize as much as possible practice effects 

from the outset. The 4 blocks in each condition were pseudo-randomly ordered in two playlists, 

which were randomly allocated to participants in equal proportion. In one of the playlists, 

participants started by playing a self-oriented learning block, while in the other they started with a 

prosocial learning block. All participants played the same playlist of the task across the four 

treatment visits. Stimuli were presented using Presentation (Neurobehavioral Systems – 

https://www.neurobs.com/). 

 

Computational modelling 

We used a reinforcement learning algorithm to model learning in the task. The basis of the 

reinforcement learning algorithm is the expectation that each choice a on trial t is linked with an 

expected outcome. The value of the expected outcome on trial t+1, Qt+1(a) is quantified as a 

function of current expectations Qt(a) and the prediction error 𝛿t, which is scaled by the learning 

rate α: 

 

𝑄 (a)  =  𝑄 (a)  +  𝛼 ×  [𝑟  −  𝑄 (a)]
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Where 𝛿t, the prediction error, is the difference between the actual reward experienced on the 

current trial rt (1 for reward and 0 for no reward) minus the expected reward on the current trial 

Qt(a). 

The learning rate α therefore determines the influence of the prediction error. A low 

learning rate means that new information affects expected value to a lesser extent. The softmax link 

function quantifies the relationship between the expected value of the action Qt(a) and the 

probability of choosing that action on trial t: 

𝑝 a 𝑄 (a)  =  
𝑒( ( )∕ )

∑ 𝑒( ( )∕ )  

The temperature parameter β represents the noisiness of decisions – whether the participant 

explores available options or always chooses the option with the highest expected value. A high 

value for β means that available options are randomly explored as they are equally likely 

irrespective of their expected value. A low β means that the participant chooses the option with the 

greatest expected value on all trials. We generated multiple learning models that differed in whether 

there were separate learning rate and temperature parameters for each learning condition.  

 

Model fitting 

We used MATLAB 2019b (The MathWorks Inc) for all model fitting and comparison. To fit the 

variations of the learning model (see below) to (real and simulated) participant data we used an 

iterative maximum a posteriori (MAP) approach as previously described58,59. This method provides 

a better estimation than a single-step maximum likelihood estimation (MLE) alone by being less 

susceptible to the influence of outliers. It does this via implementing two levels: the lower level of 

the individual participants and the higher-level reflecting the full sample. For the real participant 
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data, we fit the model across treatment levels to provide the most conservative comparison, so this 

full sample combined our four treatment conditions. 

For the MAP procedure, we initialized group-level Gaussians as uninformative priors with 

means of 0.1 (plus some added noise) and variance of 100. During the expectation, we estimated 

the model parameters (α and β) for each participant using an MLE approach calculating the log-

likelihood of the subject’s series of choices given the model. We then computed the maximum 

posterior probability estimate, given the observed choices and given the priors computed from the 

group-level Gaussian, and recomputed the Gaussian distribution over parameters during the 

maximisation step. We repeated expectation and maximization steps iteratively until convergence 

of the posterior likelihood summed over the group, or a maximum of 800 steps. Convergence was 

defined as a change in posterior likelihood <0.001 from one iteration to the next. Bounded free 

parameters were transformed from the Gaussian space into the native model space via appropriate 

link functions (e.g. a sigmoid function in the case of the learning rates) to ensure accurate parameter 

estimation near the bounds.  

 

Model comparison 

We compared five models, which differed in whether the model parameters (α and β) for each 

participant had one value across conditions or varied by the learning condition (self-oriented, 

prosocial; Table 2). An additional, null model had a learning rate of 0 across both conditions. For 

model comparison, we calculated the Laplace approximation of the log model evidence (more 

positive values indicating better model fit) and submitted these to a random-effects analysis using 

the spm_BMS routine68 from SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). This 

generates the exceedance probability: the posterior probability that each model is the most likely 
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of the model set in the population (higher is better, over 0.95 indicates strong evidence in favour 

of a model). For the models of real participant data, we also calculated the integrated BIC58,59 

(lower is better) and R2 as additional measures of model fit. To calculate the model R2, we extracted 

the choice probabilities generated for each participant on each trial from the winning model. We 

then took the squared median choice probability across participants.  

 

Simulation experiments 

We simulated data from all five models to establish that our model comparison procedure (see 

above) could accurately identify the best model among the five competing models we included in 

our model space21. For this model identifiability analysis, we simulated 10 datasets including 100 

participants, drawing parameters from distributions commonly used in the reinforcement learning 

literature60,61. Learning rates (α) were drawn from a beta distribution (betapdf(parameter,1.1,1.1)) 

and softmax temperature parameters (β) from a gamma distribution (gampdf(parameter,1.2,5)). We 

fitted the models to this simulated dataset using the same MAP process as applied to the 

experimental data from our participants. We then calculated confusion matrices of average 

exceedance probability (across the 10 runs) and counted how many times each model won. 

Our winning model M3 contained three free parameters (αself, αprosocial, β). To assess the 

reliability of our parameter estimation, we also performed parameter recovery on simulated data as 

recommended for modelling analyses that use a ‘data first’ approach62. We used our winning model 

M3 to simulate data from 100 participants. Learning rates (α) were drawn from a beta distribution 

(betapdf(parameter,1.1,1.1)) and softmax temperature parameters (β) from a gamma distribution 

(gampdf(parameter,1.2,5)) to cover a wide range of parameters estimates. We then fitted M3 to the 

simulated data and recovered the correspondent maximum a posteriori (MAP) parameter estimates. 

To assess parameter recoverability, we calculated Pearson’s correlations (with bootstrap 1000 
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samples) between the true and recovered parameters. Large correlations indicate good parameter 

recoverability21. 

 

Statistical analyses of behavioural data 

We used one-sample t-tests to investigate: i) whether the mean of the total scores of the impression 

scale we used to evaluate the perception of the confederates was significantly different from the 

mid-point of the total score (42); ii) whether participants selected the option with higher probability 

of being rewarded above chance (0.50) in each condition and treatment level separately. We used 

a linear mixed-effects model (LMM) to investigate the effect of condition on the probability of 

selecting the option with higher probability of being rewarded (collapsing across blocks and 

treatment levels). In this model, we specified condition as a fixed effect and random intercepts for 

participants. For the trial-by-trial analysis, we used a generalised logistic mixed-effects model to 

predict binary outcome of choosing the option with the high vs. low probability of being rewarded. 

The final model did not include any interactions between trial and the remaining factors to obtain 

a more parsimonious model. As a final check, we also tested a model where we additionally 

specified session number (1, 2, 3 and 4) as a categorical factor to investigate whether repeated 

exposure to the task might have led to improvements in performance. We did not find any 

significant main or interaction effect of session; including session in the model had a detrimental 

impact on model fitting, suggesting that a more parsimonious model without session fitted our data 

better (BIC>23). This supports the idea that repeating the task within a relatively short period of 

time did not lead to considerable practice effects. For the analysis on learning rates, we used a 

LMM, where we specified condition, treatment and the interaction between these two factors as 

fixed effects and random intercepts for participants. For the analysis on the beta parameter, we used 
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a similar LMM, but this time we only specified treatment as a fixed effect. Treatment level was 

always modelled as a categorical predictor with four levels: placebo, low, medium and high dose. 

In all models, standard errors and statistical significance were assessed using bootstrapping (1000 

samples), as implemented in JASP (version 0.13.1). We also tested models with random intercepts 

and random slopes; however, an inspection of the respective BICs of each model suggested that a 

more parsimonious model fitted our data better (BIC>50). Significant interactions were followed-

up with post-hoc tests, correcting for multiple comparisons with the Holm-Bonferroni procedure.   

MRI data acquisition  

We acquired the MRI data in a MR750 3 Tesla GE Discovery Scanner (General Electric, 

Waukesha, WI, USA) using a 32-channel receive only head coil. We acquired a 3D high-spatial-

resolution, Magnetisation Prepared Rapid Acquisition (3D MPRAGE) T1-weighted scan using the 

following parameters: field of view 270 x 270 mm, matrix size = 256 x 256, TR/TE/IT = 

7312/3016/400 ms, flip angle 11. The final resolution of the T1-weighted image was 1.1 x 1.1 x 

1.2 mm. While participants were performing the prosocial learning task, we acquired functional 

scans using T2*-sensitive gradient echo planar imaging optimised for parallel imaging, using the 

following parameters: field of view = 211 x 211 mm, matrix = 64 x 64, 3 mm thick slices with a 

0.3 mm slice gap, 41 slices, TR/TE = 2000/30 ms, flip angle = 75. The final resolution of the 

functional images was 3.3 x 3.3 x 3.3 mm. The functional imaging sequence was acquired in a 

descending manner, at an oblique angle (∼20°) to the AC–PC line to decrease the effect of 

susceptibility artifact in the orbitofrontal cortex and midbrain63. We also collected field maps 

(phase-difference B0 estimation; echo time 1 (TE1) = 4.9 ms, echo time 2 (TE2) = 7.3 ms) to 

control for spatial distortions, which are particularly problematic in midbrain fMRI64. 
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MRI data preprocessing and first-level modelling 

Preprocessing: We carried out the preprocessing using FEAT, as part of the FMRIB Software 

Library (FSL) v6.0. Data preprocessing followed a standard pipeline, which included: i) standard 

head motion correction by volume-realignment to the middle volume using MCFLIRT; ii) 

distortion correction using phase-difference B0 estimation; iii) slice-time correction; iv) skull-

stripping of both functional and structural images using the Brain Extraction Tool (BET); v) high-

pass filter (0.01 Hz); vi) registration and spatial normalization to the Montreal Neurological 

Institute (MNI) 152—T1 2-mm template. Individual's functional images were first registered to 

their high-resolution MPRAGE scans via a 6-parameter linear registration (FLIRT), and the 

MPRAGE images were in turn registered to the MNI template via a 12-parameter nonlinear 

registration (FNIRT). These registrations were combined to align the functional images to the 

template. Functional images were resampled into the standard space with 2-mm isotropic voxels 

and were smoothed with a Gaussian kernel of 6-mm full-width at half-maximum. We excluded one 

participant because they moved excessively in two out of the four sessions (mean frame-wise 

displacement > 0.5 mm). 

 

First-level modelling: We used five event types to construct regressors in which event 

timings were convolved with a canonical hemodynamic response function. The two learning 

conditions at the time of the cues and at the time of the outcome were modelled as separate 

regressors using stick functions (cueself, cueprosocial, outcomeself, outcomeprosocial). Each of these four 

regressors was associated with a parametric modulator taken from our winning computational 

model (M3). At the time of the cue this was the expected value of the chosen action, and at the time 
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of the outcome, the PE. The PEs and expected values of chosen actions were estimated using mean 

estimates for alpha and beta across all participants and treatment conditions, calculated for each 

learning condition separately, as per previous studies65-67. This ensures more regularized 

predictions by minimizing the chance that some participants with smaller alphas will have 

parametric regressors with very low variance. For all analyses, we mean centred the parametric 

modulators beforehand and disabled the orthogonalization procedure. This means that all 

parametric modulators compete for variance, and we thus only report effects that are uniquely 

attributable to the given regressor. The fifth regressor was the time of the instruction cue at the 

beginning of each block, which was also modelled in a single regressor as a stick function 

(cueinstruction). In some participants, a sixth regressor modelled all missed trials, on which 

participants did not select one of the two symbols in the response window. We also included 24 

head motion parameters (6 head motion parameters, 6 head motion parameters one time point 

before, and the 12 corresponding squared items) to model the residual effects of head motion as 

covariates of no interest – this approach has been shown to more efficiently remove head motion 

effects from BOLD-fMRI data68,69. We applied pre-whitening to remove residual temporal 

autocorrelation. Subject-level contrast maps were generated using FSL’s FLAME in mixed-effects 

mode and then used for further second-level analyses, as described below. 

 

Statistical analyses of fMRI data (second-level) 

Regions-of-interest analyses: Our ROI analyses were focused on three regions: the 

sgACC, the nucleus accumbens and the midbrain. In all three regions, we used anatomically 

defined masks to extract the median parameter estimate of all voxels within each ROI. The sgACC 

mask included the regions s24 and s25 from the SPM Anatomy toolbox 70; the nucleus accumbens 
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and midbrain anatomical masks were derived from a high-resolution atlas of subcortical 

structures71. The midbrain mask included both VTA and SN. These masks were derived from 

probabilistic anatomical maps by thresholding each map to include voxels with 50% probability or 

higher of belonging to a certain ROI and then binarizing the thresholded maps. Since the sgACC 

and nucleus accumbens susceptible to drop out of the BOLD signal72, we only extracted data from 

the voxels of these ROIs that had less than 10% of BOLD signal loss in all participants and 

treatment conditions. This allowed us to sample within each ROI the same number of voxels in 

each participants/condition while discarding voxels where the BOLD signal could not be measured 

reliably. Hence, the final number of voxels in each ROI was: midbrain, 161 voxels; nucleus 

accumbens = 300 voxels; sgACC = 977 voxels.  

We investigated either the effect of learning condition or the effects of learning condition, 

treatment and learning condition x treatment, as applicable, using LMMs. In all models, we 

included random intercepts for participants. Significant interactions were followed-up with post-

hoc tests, correcting for multiple testing with the Holm-Bonferroni procedure. The correlations 

between PE parameter estimates in each ROI and learning rates were calculated using Pearson 

correlation with bootstrapping (1000 samples). Direct comparisons between correlations were 

performed using the Fisher r-to-Z transform. 

Whole-brain analyses: We also conducted exploratory analyses at the whole-brain level. 

For the placebo session where we investigated the effect of learning condition, we performed paired 

t-tests. For the effects of learning condition, treatment and learning condition x treatment using 

data from all sessions, we took a partitioned errors approach to account for the likely violation of 

sphericity present in data from full within-subjects designs73. Briefly, to calculate the main effect 

of learning condition, we averaged the first-level maps across treatment levels for each learning 
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condition and participant and then entered these averaged maps into a paired t-test. To calculate 

the main effect of treatment, we averaged the first level maps across learning conditions for each 

treatment level and subject and then entered these averaged maps into a repeated-measures one-

way ANOVA. To calculate the learning condition x treatment interaction, we subtracted the first-

level maps from learning condition levels and then entered this difference map into a repeated-

measures one-way ANOVA. For all whole-brain analyses, we used cluster-level inference at α = 

0.05 using family-wise error (FWE) correction for multiple comparisons and a cluster-forming 

threshold of p=0.001 (uncorrected). 

All statistical analyses (behavioural and fMRI data) were conducted with the researcher 

unblinded regarding treatment condition. Since we used a priori and commonly accepted statistical 

thresholds and report all observed results at these thresholds, the risk of bias in our analyses is 

minimal, if not null. 

 

Physiological noise in the midbrain 

Given the proximity of the midbrain to the ventricles (Supplementary Figure S17a), contamination 

of the BOLD signal by physiological noise might be a concern and should be assessed. For each 

subject/session, we extracted the time-course of the BOLD signal in our midbrain ROI and in the 

cerebrospinal fluid (CSF) from the unsmoothed pre-processed functional images. BOLD signal in 

the CSF is thought to be highly influenced by physiological/hardware noise74. Then, for each 

subject/session, we calculated Pearson correlations between the time-courses of the BOLD signal 

extracted from these two regions (midbrain and CSF). We applied Fisher’s r-to-z transformation to 

these correlations and averaged the resulting transformed scores across all subjects, for each 

treatment level separately. Finally, we back transformed the average scores to Pearson correlation 
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coefficients to maximize interpretability. Briefly, we found only weak correlations between the 

BOLD signal in the midbrain and the CSF (range 0.134-0.223). The results of these quality control 

analyses are summarized in Supplementary Figure S17b. 

 

Psychophysiological interactions (PPI) 

We performed psychophysiological interaction analysis25 with the midbrain as a seed region. Here, 

the entire time series over the experiment was extracted from each subject and treatment level from 

the midbrain anatomical ROI described above. To create the PPI regressors, we multiplied the 

midbrain time series by the PE parametric regressors. These PPI regressors were used as covariates 

in a separate PPI-GLM, which included all the regressors plus motion covariates described above 

for the main first-level GLM. The resulting parameter estimates of the two PPI regressors represent 

the extent to which activity in each voxel of the brain correlates with the activity in the midbrain 

that relates to the encoding of PEs during the self-oriented and prosocial learning conditions.  

From the individual PPI contrast maps, we extracted the median parameter estimates in all 

voxels of the sgACC and nucleus accumbens ROIs described above and used these for a number 

of analyses. First, using data from the placebo session, we tested the effect of learning condition 

on PE encoding in the functional coupling between the midbrain – sgACC and midbrain – nucleus 

accumbens. We used LMMs with learning condition as a fixed effect and participant-level random 

intercepts. Second, we used Pearson correlations with bootstrapping (1000 samples) to investigate 

correlations between these estimates and the self-oriented and prosocial learning rates. Finally, we 

investigated learning condition, treatment and learning condition x treatment effects using LMMs, 

including random intercepts for participants. Significant interactions were followed-up with post-

hoc tests, correcting for multiple testing with the Holm-Bonferroni procedure.   

 



 41 

Dynamic Causal Modelling (DCM) 

We used a one-state bidirectional DCM model for task fMRI26, as implemented in SPM12, to 

estimate the effective connectivity between the midbrain and sgACC and within each region during 

the prosocial learning blocks. DCM for fMRI couples a bilinear model of neural dynamics with a 

biophysical model of hemodynamics to infer effective connectivity between cortical regions26. 

Details regarding this method can be found elsewhere26. We extracted the principal eigenvariate of 

the time-series of the BOLD signal during the prosocial blocks from all voxels in the sgACC and 

midbrain ROIs, adjusted for the F-contrast of the effects of interest. We defined a fully connected 

vanilla DCM model, which included both forward and backward connections between the midbrain 

and sgACC and intrinsic connections within each node. We set PEs as a driving input to both nodes. 

This full model was inverted for all participants and treatment levels. 

The participant-specific DCMs were taken to a second level analysis where we used the 

Parametrical Empirical Bayes (PEB) approach27 as implemented in SPM12 for group level 

inference; these routines assess how individual (within-subject) connections relate to group means, 

taking into account both the expected strength of each connection and the associated uncertainty. 

This means that participants with more uncertain parameter estimates are downweighted, while 

participants with more precise estimates have greater influence. The PEB approach involves (i) 

estimating group level parameters using a general linear model (GLM) that divides inter-subject 

variability into regressor effects and unexplained random effects, followed by (ii) comparison of 

different combinations of these parameters to identify those that best explain commonalities and 

differences in connectivity (Bayesian model comparison). Our second level PEB model included 

four regressors: i) commonalities; ii) effect of low dose (low dose versus placebo); iii) effect of 

medium dose (medium dose versus placebo); effect of high dose (high dose versus placebo). Each 

treatment effect regressor specified the placebo condition as -1 and the treatment conditions as 1, 
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so that all regressors were mean centred and the first commonalities regressor estimated the mean 

group effect. Next, we used Bayesian model reduction (BMR) to test all nested models within each 

full PEB model (assuming that a different combination of connections could exist for each 

participant) and to “prune” connection parameters that did not contribute to the model evidence. 

The parameters of the best 256 pruned models were averaged and weighted by their evidence 

(Bayesian model averaging, BMA) to generate group estimates of connection parameters. Last, we 

compared models using free energy and calculated the posterior probability for each model as a 

softmax function of the log Bayes factor. We characterized the between-condition effects on each 

parameter by using the BMA expected values for the strength of each connection and their 

respective posterior probability (Pp) of being different from zero. The higher the Pp, the greater 

the confidence that a certain parameter is different from zero. Here, we interpreted Pp>0.90 as 

strong evidence and Pp>0.80 as moderate evidence in favour of a reliable difference from zero. 

In a secondary analysis, we used data from the placebo session only to investigate whether 

the strength of the connections in our DCM model could capture inter-individual differences in 

prosocial learning. We used the DCMs and PEB modelling procedure described above, but this 

time testing for correlations between each of our connectivity parameters and learning rates during 

self-oriented and prosocial learning. Hence, our second level PEB GLM model contained three 

regressors: i) commonalities; ii) mean centred regressor of the learning rates during self-oriented 

learning; iii) mean centred regressor of the learning rates during prosocial learning. 

 

Data availability: Data can be accessed from the corresponding author upon reasonable request. 

The code used for the computational modelling can be found in 

https://doi.org/10.17605/OSF.IO/XGW7H. A reporting summary for this article is available as a 

Supplementary Information file. 
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 Figures 
 
Figure 1. Protocol of the study (a) and prosocial reinforcement learning task (b). In panel (a), 

we provide an overview of the experimental procedures of our study. Pre-Scanning period: Each 

session started with a quick assessment of vitals (heart rate and blood pressure) and collection of 

two blood samples for plasma isolation. Then, participants self-administered one of three possible 

doses of intranasal oxytocin (~9, 18 or 36 IU) or placebo using the PARI SINUS nebulizer. The 

participants used the nebulizer for three mins in each nostril (total administration 6 mins). 

Immediately before and after drug administration, participants filled a battery of visual analog 

scales (VAS) to assess subjective drug effects (alertness, mood and anxiety). Scanning Period: 

Participants were then guided to a magnetic resonance imaging scanner, where acquired BOLD-

fMRI during a breath hold (BH) task, three consecutive arterial spin labelling (ASL) scans, the 

BOLD-fMRI prosocial learning task, followed by structural scans (T1 or T2 / FLAIR) and one 

resting-state fMRI (RS-fMRI) at the end. We present the time-interval post-dosing (mean time 

from drug administration offset) during which each scan took place. At the end of the scanning 

session, we repeated the same battery of VAS to subjective drug effects. In panel (b), we present 

an overview of the prosocial reinforcement learning task. Participants had to learn the probability 

that abstract symbols were rewarded to gain points over 16 trials in each block. At the beginning 

of each block, participants were told who they were playing for either themselves or for other 

participant (unbeknown to the participants, this other participant was a confederate). Points from 

the ‘self-oriented learning’ condition were converted into additional payment for the participant 

themselves, points from the ‘prosocial learning’ condition were converted into money for the other 

participant. Participants played four blocks in each condition.  
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Figure 2. Dose-response effects of intranasal oxytocin on the dynamics of self-oriented and 

prosocial reinforcement learning over blocks. Evolution across blocks of the probabilities of 

selecting the option with higher probability of being rewarded, for each treatment and learning 

condition separately (probabilities were averaged across trials within the same block). Lines result 

from locally weighted scatterplot smoothing and shades correspond to the respective 95% 

confidence intervals. 
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Figure 3. Dose-response effects of intranasal oxytocin on encoding of prediction errors in the 

subgenual anterior cingulate cortex, nucleus accumbens and midbrain. Learning condition, 

treatment and learning condition x treatment effects on encoding of prediction errors in the BOLD 

signal of the subgenual anterior cingulate (a), nucleus accumbens (b) and midbrain (c). Significant 

interactions were followed up with post hoc tests, applying the Holm-Bonferroni correction for 

multiple testing. * indicates padj<0.05; # indicates padj = 0.067 (trend-level). 
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Figure 4. Dose-response effects of intranasal oxytocin on the functional coupling between the 

midbrain and subgenual anterior cingulate cortex related to prediction errors encoding. 

Learning condition, treatment and learning condition x treatment effects on psychophysiological 

interaction parameter estimates reflecting the strength of functional coupling between the 

subgenual anterior cingulate cortex (a) or the nucleus accumbens (b) and the midbrain associated 

with encoding of prediction errors during self-oriented and prosocial learning. Significant 

interactions were followed up with post hoc tests, applying the Holm-Bonferroni correction for 

multiple testing. * indicates padj<0.05. 
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Figure 5. Dose-response effects of intranasal oxytocin on the excitatory midbrain-to-

subgenual anterior cingulate (sgACC) forward transmission and midbrain self-inhibition. 

We conducted dynamic causal modelling (DCM) on BOLD time series from the midbrain and 

subgenual anterior cingulate cortex (sgACC) during the prosocial blocks to investigate how 

different doses of intranasal oxytocin modulated effective connectivity between these two regions. 

We fitted a fully connected one-state vanilla DCM model to all participants and treatment levels at 

the first-level. We then used the estimates from this first-level models to examine commonalities 

and treatment effects at the group-level within the Parametric Empirical Bayes framework (second 

level analysis). Our design matrix for the second level analysis included 4 regressors: i) mean; ii) 

effects of the low dose as compared to placebo (low vs placebo); iii) medium vs placebo; iv) high 

vs placebo. Our second level PEB models (a – upper panel) included eight competing models with 

all possible combinations of treatment effects. M3 was the winning model with the highest posterior 

probability and the lowest free energy (a – lower panel). This model included effects only for the 

regressors “Low vs placebo” and “High vs placebo”. We investigated these effects further by 

looking at the expected estimates and posterior probabilities (Pp) of each parameter of the reduced 

PEB model. In panel B, we provide a schematic diagram of these effects. Grey/black lines present 
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the mean expected estimates. In green, we present the effects of the low dose; in red, we present 

the effects of the high dose. Bold lines indicate strong evidence in favour of an expected estimate 

reliably different from 0 (Pp>0.90). The dashed line indicates that the evidence was only moderate 

(Pp > 0.80). OT – oxytocin; sgACC – Subgenual anterior cingulate cortex; H – High dose; M – 

Medium dose; L – Low dose; PL – Placebo; Pp – Posterior probability; 1 – Midbrain intrinsic 

connection; 2 – sgACC – midbrain backwards connection; 3 – Midbrain – sgACC forward 

connection; 4 – sgAcc intrinsic connection. 
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Tables 
 
Table 1. Dose-response effects of intranasal oxytocin on self-oriented and prosocial 

reinforcement learning (generalized logistic mixed model). To investigate dose-response effects 

of intranasal oxytocin on self-oriented and prosocial reinforcement learning, we used a generalized 

logistic mixed model where we tried to predict trial-by-trial choices (0 – lower chance of reward 

option; 1 – higher chance of reward option) using trial number, block, learning condition, treatment 

and all possible interactions as fixed predictors and participants as random effects. We present a 

summary of the type III likelihood ratio tests for fixed effects. Significance was assessed with 

bootstrapping (1000 samples). 

 

Type III fixed effects 

Effect df 𝜒2 p (bootstrap) 

Trial 15 733.648 < 0.001 

Block 3 53.502 < 0.001 

Learning condition 1 138.240 < 0.001 

Treatment 3 6.331 0.097 
Block * Learning 

condition 
3 151.056 < 0.001 

Block * Treatment 9 21.695 0.010 
Learning condition* 

Treatment 
3 6.024 0.110 

Block * Learning 
condition* Treatment 

9 23.382 0.005 

 

 

Table 2. Computational modelling - Model space and selection: We used Rescorla-Wagner 

(RW) computational models of reinforcement learning to estimate learning rates () and 

temperature parameters (). Our model space included five competing models. In each model, we 

created variations of the classical RW through the number of parameters used to explain the 
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learning rate and temperature parameters in the task (M1-M5). We fitted all models pooling data 

across treatment levels. Our model selection procedure was based on three criteria. First, we used 

the integrated Bayesian Information Criteria (iBIC) to perform fixed effects model selection (lower 

is better). Second, we examined the predictive capability of each model in predicting choice 

probability (higher is better) (R2). Third, we performed Bayesian model selection and calculated 

the exceedance probability of each model (higher is better). M3 was the winning model according 

to the three criteria. 

 

 Alpha (𝛂) Beta (β) iBIC 
Choice 

probability (R2) 

Exceedance 

probability 

M1 0 β 16845.95 0.25 0.00 

M2 𝛂 β 11315.24 0.68 0.00 

M3 
𝛂self-oriented, 

𝛂prosocial 
β 11079.22 0.69 0.99 

M4 𝛂 
βself-oriented, 

βprosocial 
11179.32 0.66 0.00 

M5 
𝛂self-oriented, 

𝛂prosocial 

βself-oriented, 

βprosocial 
11109.93 0.67 5.46 x10-4 

 


