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Abstract

A procedure for model reduction of stochastic ordinary differential equations with additive
noise was recently introduced in [CDM22], based on the Invariant Manifold method and on
the Fluctuation-Dissipation relation. A general question thus arises as to whether one can
rigorously quantify the error entailed by the use of the reduced dynamics in place of the
original one. In this work we provide explicit formulae and estimates of the error in terms
of the Wasserstein distance, both in the presence or in the absence of a sharp time-scale
separation between the variables to be retained or eliminated from the description, as well as
in the long-time behaviour.

Keywords: Model reduction, Wasserstein distance, error estimates, coupled Brownian
oscillators, invariant manifold, Fluctuation-Dissipation relation.

1 Introduction

The notion of scale separation is largely invoked in multiscale modelling and homogeneization
methods (including model reduction and operator splitting techniques) [GKS04, PS08], and has
also found far-reaching applications in different areas of science and engineering, e.g. in climate
dynamics [GL20], biochemical systems [SS17], chemical reaction networks [KK13], smoldering
combustion [IOMF14], and so on. A neat illustration of this notion can be traced in the preface
of Haken’s seminal book on Synergetics [Hak04], where the author writes: “In large classes of
systems that are originally described by many variables, the behavior of a system is described and
determined by only few variables, the order parameters. They fix the behavior of the individual
parts via the slaving principle”. A physical rationale behind the slaving principle amounts to the
assumption of decomposition of motions: there exists a short time-scale during which the slow
variable does not change significantly, while the fast variable rapidly settles on a value deter-
mined by the slow one. The evolution of the latter, in turn, takes place on a much longer scale.
A specific form of such principle is realized through the method of adiabatic elimination of fast
variables, which underlies the derivation of the Smoluchowski equation from the underdamped
Langevin equation. A sharp distinction between slow and fast variables is also a prerequisite for
application of the Mori-Zwanzing method [Zwa01] in the derivation of reduced equations from

∗corresponding author : matteo.colangeli1@univaq.it
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higher dimensional stochastic dynamics, where the Markovian structure of the original process
is preserved in the reduced description by stipulating a perfect time-scale separation. The same
guiding principle underpins, in kinetic theory, the Grad moment method [Gra49, CKK07], and
has also been exploited in the derivation of linear hydrodynamics from the Boltzmann equation
using the framework of the Invariant Manifold [GK05, CKO09]. It is worth recalling that the
latter method paves the way to an exact summation of the Chapman-Enskog expansion, which
makes it possible to circumvent the onset of short wavelength instabilities that are known to hinder
the hydrodynamic description beyond the Navier-Stokes approximation, see e.g. Ref. [CKK07]
and references cited therein.1 The same approach has also been exploited in [CDM22] to char-
acterize the deterministic component of the contracted description in a system of two coupled
(underdamped) Brownian harmonic oscillators. The structure of the noise term of the Markovian
reduced dynamics, in turn, was determined via the Fluctuation-Dissipation relation. A general
question, then, concerns the derivation of a quantitative estimate of the error stemming from the
use of the reduced dynamics in place of the original one. A first attempt, in this direction, was
proposed in [CM22], and it was based on the study of the equilibrium correlation functions in the
reduced and in the original processes. A uniform-in-time type of convergence of the correlations
evaluated in the two processes was proven to hold in the so-called overdamped limit, where the
friction parameter diverges.

In this work we take a step further, and compute explicitly the Wasserstein distance between
the laws of the original and reduced processes. This paves the way to explicitly quantify the error
inherent to the contracted description. We focus on two classical models thoroughly studied in sta-
tistical physics and molecular dynamics, namely the underdamped Brownian harmonic oscillator
and a system of two coupled overdamped Brownian harmonic oscillators. In the more traditional
approach based on the slow-fast decomposition of motions, a reduced description can be achieved
by passing the parameter to a certain limit, thus establishing a perfect time-scale separation, see
e.g. [Zwa01, GLCG21]. In the present work, instead, we derive the reduced dynamics in a regime
characterized by a finite time-scale separation, which is controlled, in the two considered models,
by either the friction parameter or the coupling parameter. We show that the reduced and original
dynamics are exponentially close at any time, and they coincide if we pass the parameter to the
corresponding limit. We also prove that the two dynamics have the same equilibrium measure
and, furthermore, they exponentially converge to the equilibrium measure with the same rate.
This notable property is a direct consequence of the proposed reduction scheme, in particular of
the selection of solutions to the invariance equation obtained from the Invariant Manifold method.
As a consequence of this, the spectrum of the reduced drift matrix is a subset of the spectrum
of the original drift matrix. The models and precise statements of the results are presented in
Section 3 and Section 4.

The work is structured as follows. In Sec. 2 we review the definition of the Wasserstein
distance between two probability measures and introduce the basic notation used throughout the
manuscript. In Sec. 3 we compute our error estimate based on the Wasserstein distance for a
Brownian harmonic oscillator, for which the laws of the original and the contracted descriptions are
analytically known. In Sec. 4 we apply our method to a slightly more involved model, constituted
by a pair of coupled overdamped Brownian harmonic oscillators. Conclusions and a final outlook
are finally drawn in Sec. 5.

2 Preliminaries

In this Section we introduce the Wasserstein distance between two probability measures and also
fix the notation used throughout the manuscript.

1Further details (regarding e.g. the stability and the saturation of dissipation for short waves) on the contracted
description resulting from the exact summation of the Chapman-Enskog expansion are discussed in [GK13].
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2.1 Wasserstein distance

In this section we recall the definition of the Wasserstein distance between two probability mea-
sures and its explicit formula when the two probability measures are Gaussian distributions. The
Wasserstein metric plays an central role in many research fields such as optimal transport, partial
differential equations and data science. For a detailed account of the topics, we refer the reader
to Villani’s monograph [Vil03].

Let P2(Rd) be the space of probability measures µ on Rd with finite second moment, namely∫
Rd

|x|2µ(dx) <∞.

Let µ and ν be two probability measures belonging to P2(Rd). The L2-Wasserstein distance,
W2(µ, ν), between µ and ν is defined via

W 2
2 (µ, ν) := inf

γ∈Γ(µ,ν)

∫
Rd×Rd

|x− y|2 γ(dx, dy), (1)

where Γ(µ, ν) denotes the set of all couplings between µ and ν, i.e., the set of all probability
measures on Rd × Rd having µ and ν as the first and the second marginals respectively. More
precisely,

Γ(µ, ν) := {γ ∈ P (Rd × Rd) : γ(A× Rd) = µ(A) and γ(Rd ×A) = ν(A)},

for all Borel measurable sets A ⊂ Rd.
In particular, the Wasserstein distance between two Gaussian measures can be computed ex-

plicitly in terms of the means and covariance matrices [GS84], see also e.g., [Tak12]

W2(N (u, U),N (v, V ))2 = |u− v|2 + trU + trV − 2tr
√
V

1
2UV

1
2 , (2)

where u, v are the means and U, V are the covariance matrices. In a one dimensional space, the
above formula reduces to

W2(N (u1, σ
2
1),N (u2, σ

2
2)2 = (u1 − u2)2 + (σ1 − σ2)2. (3)

2.2 Linear drift-diffusion equations

We recall here a well-known result concerning the explicit solution of a general linear drift-diffusion
where the initial data is a Gaussian distribution. In the subsequent sections, we will apply this
result to our models of (coupled) Brownian oscillators.

To set the stage, we consider the following general linear drift-diffusion equation

∂tρ = −div(Cxρ) + div(D∇ρ), ρ(0) = ρ0. (4)

In the above equation, the unknown is a probability measure ρ = ρ(t, x) with (t, x) ∈ (0,∞)×Rd;
C and D are two constant matrices of order d representing the drift and diffusion matrices; the
initial data ρ0 is a probability measure on Rd.

The following lemma provides the explicit formula for the solution of (4) when the initial data
is a Gaussian distribution, see for instance [GP18].

Lemma 2.1. Suppose the initial data is a Gaussian, ρ0 ∼ N (µ(0),Σ(0)), then the solution to (4)
is given by

ρ(t, x) =
1√

(2π)d det Σ(t)
exp

[
− 1

2
(x− µ(t))TΣ−1(t)(x− µ(t))

]
(5)

where µ(t) and Σ(t) are given by

µ(t) := etCµ(0), Σ(t) := etCΣ(0)etC
T

+ 2

∫ t

0

esCDesC
T

ds. (6)

3
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Under suitable conditions on C and K, we have µ(t)→ 0 and Σ(t)→ Σ∞ where

Σ∞ := 2

∫ ∞
0

esCDesC
T

ds.

Note that Σ∞ satisfies the so-called Lyapunov equation

2D = CΣ∞ + Σ∞C
T .

2.3 Exponential of a 2× 2 matrix

Lemma 2.1 provides the explicit form of the unique solution to the linear drift-diffusion equation
(4) when the initial data is a Gaussian. However, in general the formula (6) is analytically hard
to compute since it involves exponential of matrices. The following lemma provides an explicit
formula for the exponential of a 2× 2 matrix, which will be used in the subsequent analysis.

Lemma 2.2. Let a, b, c, d ∈ R be taken arbitrarily with a2 + b2 + c2 + d2 > 0. The following
identity holds

exp

(
a b
c d

)
=

1

∆

(
m11 m12

m21 m22

)
, (7)

where ∆ :=
√

(a− d)2 + 4bc and

m11 := e(a+d)/2
[
∆ cosh

1

2
∆ + (a− d) sinh

1

2
∆
]
,

m12 := 2be(a+d)/2 sinh
1

2
∆,

m21 := 2ce(a+d)/2 sinh
1

2
∆,

m22 := e(a+d)/2
[
∆ cosh

1

2
∆ + (d− a) sinh

1

2
∆
]
.

Proof. We refer the reader to [BS93] for a justification of the formula (7).

3 Model reduction of a Brownian oscillator

To start off the discussion, we begin with the investigation of a simple model of an underdamped
Brownian oscillator considered in [CM22], which is amenable to an explicit analytical solution.
The original dynamics reads as follows:

dx(t) = v(t) dt

dv(t) = −ω2x(t) dt− γv(t) dt+
√

2γβ−1 dW (t),

(x(0), v(0)) = (x0, v0)

Exploiting the Invariant Manifold method and the Fluctuation-Dissipation relation (for a short
summary of the method, see Section 4 below, where the same reduction procedure is applied to a
system of coupled overdamped Brownian harmonic oscillators), the reduced dynamics attains the
form:

dx̄(t) = −αx̄(t) dt+
√

2Dr dW (t), x̄(0) = x0,

where

α =
γ −

√
γ2 − 4ω2

2
, Dr =

α

ω2β
.

The reader is referred to [CM22] to see the details of the calculations. The main result of this
section is the following theorem.
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Theorem 3.1.

(i) (exact solutions of the original and the reduced dynamics) µt and µ̄t are Gaussian measures

µt = N (m(t), σ(t)), µ̄t = N (m̄t, σ̄(t)), (8)

where

m(t) =
λ1e
−λ2t − λ2e

−λ1t

λ1 − λ2
x0 +

e−λ2t − e−λ1t

λ1 − λ2
v0,

σ(t) =
γβ−1

(λ1 − λ2)2

[λ1 + λ2

λ1λ2
+

4

λ1 + λ2
(e−(λ1+λ2)t − 1)− 1

λ1
e−2λ1t − 1

λ2
e−2λ2t

]
,

m̄(t) = e−λ2tx̄0,

σ̄(t) =
1

ω2β
(1− e−2λ2t)

where

λ1 =
γ +

√
γ2 − 4ω2

2
, λ2 =

γ −
√
γ2 − 4ω2

2
=

2ω2

γ +
√
γ2 − 4ω2

. (9)

(ii) (Exact Wasserstein distance between the laws of the original and reduced dynamics) The
Wasserstein distance between µt and µ̄t can be computed explicitly via

W 2
2 (µt, µ̄t) = (m(t)− m̄(t))2 +

(√
σxx(t)−

√
σ̄(t)

)2

. (10)

(iii) (explicit rate of convergence in the high-friction limit) It holds that

W 2
2 (µt, µ̄t) ≤

4

γ2 − 4ω2

[
(ω|x0|+ |v0|)2 +

4

β

]
∀t > 0. (11)

As a consequence,
lim

γ→+∞
W 2

2 (µt, µ̄t) = 0.

Note that (11) is a much stronger statement providing an explicit rate of convergence.

(iv) (Common rates of convergence to equilibrium) There exists a constant C > 0, which can be
found explicitly, such that

W2(µt, µ∞), W2(µ̄t, µ̄∞) ≤ Ce−λ2t,

where

µ∞ = µ̄∞ = N
(

0,
1

βω2

)
.

This result shows that the original dynamics and the reduced one not only share the same
equilibrium, they have the same rates of convergence to equilibrium in the Wasserstein dis-
tance.

(v) (long-time behaviour) It holds that

W 2
2 (µt, µ̄t) ≤

[ω|x0|+ |v0|√
γ2 − 4ω2

+
10

β(γ2 − 4ω2)

]
e−λ2t. (12)

As a consequence of this, we also have

lim
t→+∞

W2(µt, µ̄t) = 0,

which is already obtained in the previous part. Estimate (12) is a stronger statement, showing
that the two dynamics are exponentially close at any time t > 0.
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(vi) Suppose that the initial data x0 is randomly distributed according to an even probability
measure ρ0 ∈ L1(R) then the estimates in parts (iii) and (iv) still hold true.

Proof. (i). The law ρt of z(t) =

(
x(t)
v(t)

)
satisfies the kinetic Fokker Planck equation

∂tρt = L ∗ρt, ρ|t=0 = δ(x0,v0),

where L ∗ρ := −v∂xρ+ ω2x∂vρ+ γ
[
∂v(vρ) + β−1∂2

vvρ
]
.

According to [Risken, Section 10.2] µt is a bivariate Gaussian measure with mean M(t) ∈ R2

and covariane matrix Σ(t) ∈ R2×2. They are t dependent objects given by

M(t) =

(
mx(x)
mv(t)

)
, Σ−1(t) =

(
[σxx(t)]−1 [σxv(t)]

−1

[σvx(t)]−1 [σvv(t)]
−1

)
,

where

mx(t) =
λ1e
−λ2t − λ2e

−λ1t

λ1 − λ2
x0 +

e−λ2t − e−λ1t

λ1 − λ2
v0,

mv(t) = ω2 e
−λ1t − e−λ2t

λ1 − λ2
x0 +

λ1e
−λ1t − λ2e

−λ2t

λ1 − λ2
v0,

σxx(t) =
γβ−1

(λ1 − λ2)2

[λ1 + λ2

λ1λ2
+

4

λ1 + λ2
(e−(λ1+λ2)t − 1)− 1

λ1
e−2λ1t − 1

λ2
e−2λ2t

]
,

σxv(t) =
γβ−1

(λ1 − λ2)2
(e−λ1t − e−λ2t)2,

σvv(t) =
γβ−1

(λ1 − λ2)2

[
λ1 + λ2 +

4λ1λ2

λ1 + λ2
(e−(λ1+λ2)t − 1)− λ1e

−2λ1t − λ2e
−2λ2t

]
,

where

λ1 =
γ +

√
γ2 − 4ω2

2
, λ2 =

γ −
√
γ2 − 4ω2

2
, thus λ1+λ2 = γ, λ1λ2 = ω2, λ1−λ2 =

√
γ2 − 4ω2.

(13)
Note that, since in the overdamped regime γ ≥ 2ω, we have

λ2 =
γ −

√
γ2 − 4ω2

2
=

4ω2

2(γ +
√
γ2 − 4ω2)

≤ 4ω2

4ω
= ω.

Since z(t) is a bivariate Gaussian, it follows that the law of x(t), which is the first marginal of
z(t), is a univariate Gaussian measure, µt = N (m(t), σ(t)), with mean m(t) = mx(t) and variance
σ(t) = σxx(t), where mx(t) and σxx(t) are defined above. Using (13) we can re-write m(t) and
σ(t) as follows

m(t) = e−λ2tx0 +
e−λ2t − e−λ1t

λ1 − λ2
(λ2x0 + v0), (14)

σ(t) =
γβ−1

(γ2 − 4ω2)

[ γ
ω2

+
4

γ
(e−γt − 1)− 1

λ1
e−2λ1t − 1

λ2
e−2λ2t

]
(15)

=
1

βω2 [1− 4(ω/γ)2]

(
1− e−2λ2t

)
+

γβ−1

(γ2 − 4ω2)

[ 4

γ
(e−γt − 1)− e−2λ1t − e−2λ2t

λ1

]
, (16)

where in the last equality we have used the following equality

1

λ1
e−2λ1t +

1

λ2
e−2λ2t =

(λ1 + λ2)e−2λ2t

λ1λ2
+

(e−2λ1t − e−2λ2t)

λ1

=
γe−2λ2t

ω2
+

(e−2λ1t − e−2λ2t)

λ1

6
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The reduced dynamics is an Ornstein-Uhlenbeck process, therefore its law is a Gaussian measure,
µ̄t = N (m̄(t), σ̄2(t)), with mean

m̄(t) = e−αtx0 = e−λ2tx0, (17)

and variance

σ̄(t) =
Dr

α
(1− e−2αt) =

1

ω2β
(1− e−2λ2t). (18)

(ii) Using the general explicit formula for the Wasserstein distance between two univariate Gaus-
sian measures, we obtain the Wasserstein distance between the original dynamics and the reduced
dynamics, W 2

2 (µt, µ̄t), as follows

W 2
2 (µt, µ̄t)

2 =
(
mx(t)− m̄(t)

)2

+
(√

σxx(t)−
√
σ̄(t)

)2

, (19)

(iii) We now provide estimate for W 2
2 (µt, µ̄t) in the high-friction regime, which corresponds to a

large time-scale separation, since the difference λ1 − λ2 =
√
γ2 − 4ω2 grows with γ for fixed ω.

We have

m(t)− m̄(t) =
e−λ2t − e−λ1t

λ1 − λ2
(λ2x0 + v0). (20)

Therefore, since |e−λ2t − e−λ1t ≤ |e−λ2t|+ |e−λ1t| ≤ 2,

|m(t)− m̄(t)| ≤ 2√
γ2 − 4ω2

(
λ2|x0|+ |v0|

)
≤ 2√

γ2 − 4ω2

(
ω|x0|+ |v0|

)
Next we estimate |σ(t)− σ̄t|. Since

|e−γt − 1| ≤ e−γt + 1 ≤ 2, |e−2λ1t − e−2λ2t| ≤ e−2λ1t + e−2λ2t ≤ 2, γ1 ≥
γ

2

we have ∣∣∣ 4
γ

(e−γt − 1)− e−2λ1t − e−2λ2t

λ1

∣∣∣ ≤ 4

γ
|e−γt − 1|+ |e

−2λ1t − e−2λ2t|
λ1

≤ 12

γ
.

Therefore,

|σ(t)− σ̄(t)| =
∣∣∣∣1− e−2λ2t

βω2

[ 1

1− 4(ω/γ)2
− 1
]

+
γβ−1

(γ2 − 4ω2)

[ 4

γ
(e−γt − 1)− e−2λ1t − e−2λ2t

λ1

]∣∣∣∣
(21)

=

∣∣∣∣1− e−2λ2t

β

4(1/γ)2

1− 4(ω/γ)2
+

γβ−1

(γ2 − 4ω2)

[ 4

γ
(e−γt − 1)− e−2λ1t − e−2λ2t

λ1

]∣∣∣∣
≤ 4

β(γ2 − 4ω2)
+

12

β(γ2 − 4ω2)
=

16

β(γ2 − 4ω2)
.

It follows that

W 2
2 (µ, µ̄) =

(
m(t)− m̄(t)

)2
+
(√

σ(t)−
√
σ̄(t)

)2

≤
(
mx(t)− m̄(t)

)2
+ |σxx(t)− σ̄(t)|

≤ 4

γ2 − 4ω2
(ω|x0|+ |v0|)2 +

16

β(γ2 − 4ω2)
=

4

γ2 − 4ω2

[
(ω|x0|+ |v0|)2 +

4

β

]
,

where to obtain the second line from the first line, we have used the inequality (a− b)2 ≤ |a2− b2|
for a, b ≥ 0.
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(iv) We have

lim
t→∞

m(t) = lim
t→∞

m̄(t) = 0 ∀x0, v0; lim
t→∞

σ(t) =
1

βω2
=: σ∞; lim

t→∞
σ̄(t) =

1

βω2
=: σ̄∞ = σ∞.

Thus the original dynamics and the reduced one share the same equilibrium measure

µ∞ = µ̄∞ = N (0, σ∞).

Furthermore, we compute the rates of convergence explicitly

W2(µt, µ∞)2 = (m(t)−m∞)2 + (
√
σ(t)−

√
σ∞)2

≤ m(t)2 + |σ(t)− σ∞|

=
(
e−λ2tx0 +

e−λ2t − e−λ1t

λ1 − λ2
(λ2x0 + v0)

)2

+
γβ−1

(γ2 − 4ω2)

∣∣∣ 4
γ
e−γt − 1

λ1
e−2λ1t − 1

λ2
e−2λ2

∣∣∣
= e−2λ2t

(
x0 +

1− e−(λ1−λ2)t

λ1 − λ2
(λ2x0 + v0)

)2

+
γβ−1

(γ2 − 4ω2)
e−2λ2t

∣∣∣ 4
γ
e−2λ1t − 1

λ1
e−2(λ1−λ2)t − 1

λ2

∣∣∣
≤ Ce−2λ2t,

for some constant C, which can be computed explicitly (but it is not the focus of this part), where
we have used the fact that λ1 > λ2 > 0. Thus

W2(µt, µ∞) ≤ Ce−λ2t.

Similarly

W2(µ̄t, µ̄∞)2 = (m̄(t)− m̄∞)2 + (
√
σ̄(t)−

√
σ̄∞)2

≤ m̄(t)2 + |σ(t)− σ∞|

= e−2λ2t
[
x2

0 +
1

βω2

]
.

Thus we also obtain

W2(µ̄t, µ̄∞) ≤ Ce−λ2t.

(v) Now we estimate W 2
2 (µt, µ̄t) in the large time regime. We only need to estimate the

difference between the variances |σ(t)− σ̄(t)|. According to (21), we have

σ(t)− σ̄(t) =
1− e−2λ2t

βω2

[ 1

1− 4(ω/γ)2
− 1
]

+
γβ−1

(γ2 − 4ω2)

[ 4

γ
(e−γt − 1)− e−2λ1t − e−2λ2t

λ1

]
= −e

−2λ2t

βω2

[ 1

1− 4(ω/γ)2
− 1
]

+
γβ−1

(γ2 − 4ω2)

[ 4

γ
e−γt − e−2λ1t − e−2λ2t

λ1

]
where, to obtain the second line, we have used the following cancellation

1

βω2

[ 1

1− 4(ω/γ)2
− 1
]
− γβ−1

(γ2 − 4ω2)

4

γ
= 0.

Therefore, it holds

|σ(t)− σ̄(t)| ≤ e−2λ2t

βω2

[ 1

1− 4(ω/γ)2
− 1
]

+
γβ−1

(γ2 − 4ω2)

[ 4

γ
e−γt +

e−2λ2t − e−2λ1t

λ1

]
.
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(vi) Now, we can estimate the Wasserstein distance W 2
2 (µt, µ̄t) to explore the long time

behaviour, viz.

W 2
2 (µt, µ̄t) =

(
m(t)− m̄(t)

)2
+
(√

σ(t)−
√
σ̄(t)

)2

≤
(
mx(t)− m̄(t)

)2
+ |σxx(t)− σ̄(t)|

≤ e−λ2t − e−λ1t

λ1 − λ2
(ω|x0|+ |v0|) +

e−2λ2t

βω2

[ 1

1− 4(ω/γ)2
− 1
]

+
γβ−1

(γ2 − 4ω2)

[ 4

γ
e−γt +

e−2λ2t − e−2λ1t

λ1

]
=

4

β(γ2 − 4ω2)
e−γt +

[ω|x0|+ |v0|√
γ2 − 4ω2

+
4

β(γ2 − 4ω2)
+

γ

βλ1(γ2 − 4ω2)

]
e−λ2t

−
[ω|x0|+ |v0|√

γ2 − 4ω2
+

γ

βλ1(γ2 − 4ω2)

]
e−λ1t

≤
[ω|x0|+ |v0|√

γ2 − 4ω2
+

8

β(γ2 − 4ω2)
+

γ

βλ1(γ2 − 4ω2)

]
e−λ2t

≤
[ω|x0|+ |v0|√

γ2 − 4ω2
+

10

β(γ2 − 4ω2)

]
e−λ2t.

Here we have used the fact that γ ≥ λ2 and γ
λ1

= 2γ

γ+
√
γ2−4ω2

≤ 2.

(vi). Suppose that x0 is randomly distributed following an even distribution ρ0. Then the laws
of x(t) and x̄(t) are given by

µt = N (m(t), σ(t)) ∗ ρ0, µt = N (m̄(t), σ̄(t)) ∗ ρ0.

Since N (m(t), σ(t)),N (m̄(t), σ̄(t)) ∈ P2(R), according to [San15, Lemma 5.2] we have

W 2
2 (µt, µ̄t) = W 2

2 (N (m(t), σ(t)) ∗ ρ0,N (m̄(t), σ̄(t)) ∗ ρ0) ≤W 2(N (m(t), σ(t)),N (m̄(t), σ̄(t)),

thus the upper bound estimates in the two previous parts are still true.

4 Model reduction of two coupled underdamped Brownian
oscillators

We now proceed with the computation of the Wasserstein distance for a slightly more elaborate
model, corresponding to a system of two coupled overdamped Brownian harmonic oscillators. The
dynamics of the model can conveniently be written as follows:

ẋ1 = ax1 + k(x2 − x1) + σ1Ẇ1 (22a)

ẋ2 = −k(x2 − x1) + dx2 + σ2Ẇ2, (22b)

where Ẇ denotes the formal derivative of a Wiener process, corresponding to a white noise, a, d < 0
are parameters characteristic of the individual oscillator (without loss of generality we also assume
a ≥ d), σ1, σ2 > 0 denote the noise strenghts, and finally, k > 0 is the coupling parameter.

The system (22) represents the overdamped version of the coupled underdamped Langevin
dynamics of the two oscillators. A contracted description for the deterministic case (i.e., with σ1 =
σ2 = 0) under a suitable assumption of scale separation is studied, with applications to relaxation
dynamics in proteins, in [SMR11]. We can derive a reduced system by eliminating the variable x2,
in (22), using the procedure introduced in [CM22, CDM22]. This consists of two distinct steps:
(i) the deterministic component of the dynamics is obtained using the Invariant Manifold method,
then (ii) the diffusion terms are determined via fulfilling the Fluctuation-Dissipation relation.

9
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4.1 Deterministic evolution

Let 〈O〉 denote the average over noise of the variable O. The original dynamics can be written as

ż = Q z , (23)

where z = (〈x1〉, 〈x2〉) and

Q = Q(k) =

(
a− k k
k −k + d

)
(24)

The characteristic polynomial of Q is

λ2 − (a+ d− 2k)λ+ (ad− ak − dk) = 0.

Thus Q has two real negative eigenvalues:

λ± = λ±(k) :=
(a+ d− 2k)±

√
(a− d)2 + 4k2

2
, (25)

In this model, the time-scale separation is encoded in the difference λ+−λ− =
√

(a− d)2 + 4k2,
which grows with increasing k, for fixed parameters a, d. We seek a closure of the form 〈x2〉 =
α〈x1〉, hence, following [CDM22], we define a macroscopic time derivative of 〈x2〉 via the chain
rule:

∂macrot 〈x2〉 :=
∂〈x2〉
∂〈x1〉

〈ẋ1〉

= (α(a− k) + α2k)〈x1〉 ,

which expresses the slaving principle mentioned in Sec. 1. Furthermore, we also define the
microscopic time derivative of 〈x2〉 in terms of the vector field given in Eq. (23), where 〈x2〉 is
expressed through the aforementioned closure. We thus set:

∂microt 〈x2〉 := k〈x1〉+ (d− k)〈x2〉
= (k + α(d− k))〈x1〉 .

The Invariant Manifold method requires that microscopic and macroscopic time derivatives of
〈x2〉 coincide, independently of the values of the observable 〈x1〉. Thus, we obtain the following
invariance equation

α(a− k) + α2k = k + α(d− k) ⇐⇒ kα2 + (a− d)α+ k = 0 , (26)

which has two solutions

α± = α±(k) :=
−(a− d)±

√
(a− d)2 + 4k2

2k
.

The reduced dynamics for the deterministic part is

〈ẋ1〉 = (a− k + kα̂)〈x1〉 , (27)

where α̂ ∈ {α+, α−} which will be specified later. It is noticeable that

a− k + kα± =
(a+ d− 2k)±

√
(a− d)2 + 4k2

2
≡ λ± .

Looking at (27), we notice that the coefficient multiplying 〈x1〉 coincides with one of the eigen-
values of the matrix Q. To pick up the right eigenvalue, we use the following criterion. We select
α̂ from solutions α± to the invariance equation (26) that satisfies a − k + kα̂ → a < 0 as k → 0,
that is kα̂→ 0 as k → 0. Since we assume that a ≥ d, we take

α̂ = α+ =
−(a− d) +

√
(a− d)2 − 4k2

2k
.
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4.2 Incorporating the noise

To characterize the noise term, we employ the methodology proposed in [CDM22]. Therefore, we
first define the diffusion matrix D as

D =

(
σ1 0
0 σ2

)
, (28)

and we also denote

Ẇ = (Ẇ1, Ẇ2) .

The solution of Eqs. (22) reads:

z(t) = eQtz0 +

∫ t

0

eQ(t−s)D Ẇds . (29)

We thus find

lim
t→∞

E[z1(t)2] ≡ Σ11 = −1

2

( 1

a− 2k
+

1

a

)
.

The full reduced system takes hence the form

dx̂(t) = λ+x̂(t) dt+ D̂dWt , (30)

where the drift coefficient λ+ is defined in (25) and the diffusion coefficient D̂ is given by

D̂ = −λ+Σ11 . (31)

4.3 Quantification of errors and the long-time behaviour

In this section we will compute explicitly the Wasserstein distance between the laws of the original
dynamics of x1 and of the reduced dynamics (30) and study their long-time behaviour. The Fokker
Planck equation associated to the full original dynamics (22) is given by the following linear-drift
diffusion equation

∂tρ = −div(Qρ) + div(D∇ρ), (32)

where ρ = ρ(t, x1, x2) is the joint probability density of (x1, x2), the drift matrix Q and the
diffusion matrix D are given in (24) and (28) respectively. Note that the above system is a special
case of the general drift-diffusion equation introduced in Section 2.2.

Since we are focusing on the role of the coupling parameter, for simplicity of presentation, we
consider identical oscillator, that is a = d < 0 and normalising σ1 = σ2 = 1, so that

Q =

(
a− k k
k a− k

)
, and D = I.

The main result of this section is the following theorem.

Theorem 4.1. Let ρ1(t) be the distribution of x1(t) of the original coupled dynamics (30) starting
at a deterministic initial data (x1, x2)(0) = (x1, x2), and ρ̂1(t) be the distribution of the reduced
dynamics (30) starting from x1. Then there exists a constant C > 0 such that the following
statements hold

(i) W2(ρ1(t), ρ̂1(t))2 ≤ Ck.

(ii) max{W2(ρ1(t), ρ∞),W2(ρ̂1(t), ρ∞)} ≤ Ceat, where ρ∞ = N (0,Σ11)

(iii) W2(ρ1(t), ρ̂1(t) ≤ Ceat.
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Proof. According to Lemma 2.1, the solution to (32) is given by ρ(t, x1, x2) = N (µ(t),Σ(t)), where

µ(t) = etQ
(
x1

x2

)
, Σ(t) = 2

∫ t

0

esQesQ
T

ds.

Since QQT = QTQ and Q = QT , we have

esQesQ
T

= es(Q+QT ) = e2sQ.

Thus, we can simplify Σ(t) as

Σ(t) = 2

∫ t

0

e2sQ ds.

Applying lemma 2.2, we compute

etQ =
1

∆

(
m11 m12

m21 m22

)
, ∆ = 2kt,

m11 = m22 = e(a−k)t∆ cosh
1

2
∆ =

1

2
e(a−k)t∆(ekt + e−kt) =

1

2
∆(e(a−2k)t + eat)

m12 = m21 = 2kte(a−k)t sinh
1

2
∆ =

1

2
∆e(a−k)t(ekt − e−kt). =

1

2
∆(eat − e(a−2k)t).

Thus

etQ =
1

2

(
e(a−2k)t + eat eat − e(a−2k)t

eat − e(a−2k)t e(a−2k)t + eat

)
.

Similarly

e2tQ =
1

2

(
e2(a−2k)t + e2at e2at − e2(a−2k)t

e2at − e2(a−2k)t e2(a−2k)t + e2at

)
.

Therefore,

Σ(t) = 2

∫ t

0

e2sQ ds =
1

2

(
e2(a−2k)t−1

a−2k + e2at−1
a

e2at−1
a − e2(a−2k)t−1

a−2k
e2at−1
a − e2(a−2k)t−1

a−2k
e2(a−2k)t−1

a−2k + e2at−1
a

)
.

It follows that

ρ1(t) = N (µ1(t),Σ11(t)) = N

(
1

2

(
(e(a−2k)t+eat)x1+(eat−e(a−2k)t)x2

)
,

1

2

(e2(a−2k)t − 1

a− 2k
+
e2at − 1

a

))
,

Since x̂ is an OU process, we obtain

ρ̂1(t) = N (µ̂1(t), Σ̂1(t)) = N
(
eλ+tx1,−

D̂

λ+
(1− e2λ+t)

)
= N

(
eλ+tx1,Σ11(1− e2λ+t)

)
,

recalling that, with a = d

λ+ =
(a+ d− 2k) +

√
(a− d)2 + 4k2

2
= a, Σ11 = −1

2

( 1

a− 2k
+

1

a

)
.

The Wasserstein distance between ρ1 and ρ̂1 is given by

W2(ρ1(t), ρ̂1(t))2 = (µ1(t)− µ̂1(t))2 +
(√

Σ11(t)−
√

Σ̂1(t)
)2

(33)

12

Page 12 of 16AUTHOR SUBMITTED MANUSCRIPT - JPhysA-119072.R1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60 A

cc
ep

te
d 

M
an

us
cr

ip
t



(i) We compute

|µ1(t)− µ̂1(t)| = 1

2

∣∣∣(e(a−2k)t + eat)x1 + (eat − e(a−2k)t)x2

)
− eatx1

∣∣∣
=

1

2
|(eat − e(a−2k)t)(x2 − x1)|

=
1

2
eat|x2 − x1|(1− e−2kt) (34)

≤ |x2 − x1|keatt

≤ k |x2 − x1|
1

|a|e
,

where in the first inequality we have used the elementary inequality 1− e−x ≤ x for all x > 0, and
in the last inequality we have used (noting that a < 0)

max
t>0

teat =
1

|a|e
. (35)

We also estimate

Σ11(t)− Σ̂1(t) =
1

2

[
1

a− 2k

(
e2(a−2k)t − e2λ+t

)
+

1

a

(
e2at − e2λ+t

)]

=
1

2

1

a− 2k

(
e2(a−2k)t − e2at

)
=

1

2

1

2k − a
e2at

(
1− e−4kt

)
(36)

≤ 2k

2k − a
e2att

≤ k

a2e
,

where to go from (36) to the next line, we have used 1 − e−4kt ≤ 4kt and (35) again (with a
replaced by 2a). Therefore, we have

W2(ρ1(t), ρ̂1(t))2 ≤ (µ1(t)− µ̂1(t))2 +
∣∣∣Σ11(t)− Σ1(t)

∣∣∣
≤ k2 |x2 − x1|2

1

|a|2e2
+

k

a2e
≤ Ck,

for any bounded k.
(iii) Since a < 0,

lim
t→∞

µ1(t) = lim
t→∞

µ̂1(t) = 0, lim
t→∞

Σ11(t) = −1

2

( 1

a− 2k
+

1

a

)
= Σ11.

it implies that
lim
t→∞

ρ1(t) = lim
t→∞

ρ̂1(t) = ρ∞ = N (0,Σ11).

We can also compute explicitly the rates of convergence of these limits in the Wasserstein distance.
We have

W2(ρ1(t), ρ∞)2 = µ1(t)2 +
(√

Σ11(t)−
√

Σ
)2

≤ µ1(t)2 +
∣∣∣Σ11(t)− Σ11

∣∣∣. (37)

We estimate each term on the right hand side of (37). For the first term, we get

µ1(t) =
1

2

(
(e(a−2k)t + eat)x1 + (eat − e(a−2k)t)x2

)
=

1

2
eat
(

(1 + e−2kt)x1 + (1− e−2kt)x2

)
≤ Ceat. (38)
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For the second term, we have

|Σ11(t)− Σ11| =
1

2

∣∣∣e2(a−2k)t

a− 2k
+
e2at

a

∣∣∣ =
1

2
e2at

∣∣∣1
a

+
e−4kt

a− 2k

∣∣∣ ≤ Ce2at. (39)

Substituting (38) and (39) to (37), we obtain

W2(ρ1(t), ρ∞) ≤ Ceat,

thus ρ1 exponentially converges, with a rate a, to ρ∞. Similarly,

W2(ρ̂1(t), ρ∞)2 = ρ̂1(t)2 +
(√

Σ̂1(t)−
√

Σ11

)2

≤ ρ̂1(t)2 +
∣∣∣Σ̂1(t)− Σ11

∣∣∣
= (x2

1 + Σ11)e2at.

Hence ρ̂1 exponentially converges with the same rate a to ρ∞.
(iv) According to (34) and (36) we have

|µ1(t)− µ̂1(t)| = 1

2
eat|x2 − x1|(1− e−2kt) ≤ Ceat,

|Σ11(t)− Σ̂1(t)| = 1

2

1

|2k − a|
e2at

(
1− e−4kt

)
≤ Ce2at.

Thus

W2(ρ1(t), ρ̂1(t))2 ≤ (µ1(t)− µ̂1(t))2 + |Σ11(t)− Σ̂1(t)| ≤ Ce2at,

that is

W2(ρ1(t), ρ̂1(t)) ≤ Ceat.

This completes the proof of this theorem. We remark that we have assumed deterministic initial
data, but the theorem can also be extended to the case where the initial data follow symmetric
distributions as in Section 3.

5 Summary and outlook

In this work we have employed the reduction scheme recently introduced in [CM22, CDM22],
which suitably combines the Invariant Manifold method with the Fluctuation-Dissipation rela-
tion, to derive a contracted description for two classical models of statistical physics, namely the
underdamped Brownian harmonic oscillator and a system of two coupled overdamped Brownian
harmonic oscillators. The present work significantly extends the previous results: we succeeded
here to quantify explicitly the error between the original and the reduced dynamics, as well as
their rates of convergence to equilibrium. The technical tool we used is the Wasserstein distance,
which is widely employed in the theory of optimal transport. We have thus shown that the two
dynamics are exponentially close at any time, share the same equilibrium measure, and expo-
nentially converge to the same equilibrium measure with the same rate. Furthermore, the two
dynamics are also found to coincide if the relevant parameter controlling the time-scale separation
of the original model is sent to infinity. The linearity of the considered models has clearly played
an important role in the analysis of this work, enabling the explicit computations of their solutions
and of the involved Wasserstein distances. A key challenge for future developments is to generalize
our analysis in order to deal with non-linear models, where explicit solutions and computations
are not accessible. Another direction of research points toward the investigations of systems with
a large numbers of degrees of freedom, e.g. models relevant to climate dynamics [HAK23], or small
systems of interest in modern nanotechnologies, such as biomolecular motors [WKST16].
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