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Abstract

A common way to investigate epilepsy and the effect of antiepileptic pharmaceuticals is to

analyze the movement patterns of zebrafish larvae treated with different convulsants like

pentylenetetrazol (PTZ), pilocarpine, etc. Many articles have been written on this topic, but

the research methods and exact settings are not sufficiently defined in most. Here we

designed and executed a series of experiments to optimize and standardize the zebrafish

epilepsy model. We found that during the light and the dark trials, the zebrafish larvae

moved significantly more in the light, independent of the treatment, both in PTZ and pilocar-

pine-treated and the control groups. As expected, zebrafish larvae treated with convulsants

moved significantly more than the ones in the control group, although this difference was

higher between the individuals treated with PTZ than pilocarpine. When examining the opti-

mal observation time, we divided the half-hour period into 5-minute time intervals, and

between these, the first 5 minutes were found to be the most different from the others. There

were fewer significant differences in the total movement of larvae between the other time

intervals. We also performed a linear regression analysis with the cumulative values of the

distance moved during the time intervals that fit the straight line. In conclusion, we recom-

mend 30 minutes of drug pretreatment followed by a 10-minute test in light conditions with a

5-minute accommodation time. Our result paves the way toward improved experimental

designs using zebrafish to develop novel pharmaceutical approaches to treat epilepsy.

Introduction

Zebrafish (Danio rerio) has widely emerged as a model organism in studies related to neurosci-

ence [1, 2]. Despite their relatively simple nervous system, they show similarities in the devel-

opment, genetic structure, and function with the mammalian nervous system [3]. The
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homology between zebrafish genes and human genes is higher than 70% [4, 5] with many simi-

lar functions which makes it an ideal model for drug research and central nervous system

(CNS) disorders studies [4, 5]. In addition, a pair of adult fish can produce around 200 eggs a

day, which can develop in a matter of hours [4], and larvae can absorb drugs directly from

water [6]. The small size of zebrafish larvae makes it perfect for large-scale analysis by fitting

one larva per well in a single 96-well plate [7]. In the first week of growth, they show behaviors

like escaping, hunting, and negative thigmotaxis by swimming [8]. Also, they can react to

visual and acoustic stimuli [9]. As zebrafish larva starts to feed at 5 days post fertilization (dpf)

[10] and according to regulations the nonfeeding larva is not considered an animal, thus ethi-

cal permit is not required for performing experiments on� 5dpf zebrafish larvae. Hence zeb-

rafish larvae can be considered as a non-animal in vivo vertebrate model.

To examine the behavior of zebrafish, automated imaging techniques are frequently used.

For instance, Noldus‘Ethovision XT software became popular for large-scale imaging and

behavioral screening. Such an approach provides precise and effective video monitoring mak-

ing it easy to track motions, swimming speed, total distance traveled, and other aspects of

behaviors [2, 7, 9].

Epilepsy is a CNS disorder where a large number of excitatory neurons fire in synchrony

causing behavioral, neurological, and molecular changes [11]. This neurological disorder is

due to an imbalance in excitation-inhibition in the CNS [2, 3]. The global prevalence of epi-

lepsy in humans is ca. 1% [12] making this disorder one of the most common. The develop-

ment of new anti-epileptic drugs (AED) is sought because one-third of patients suffering from

epilepsy do not respond to existing AEDs [13].

Pentylenetetrazol (PTZ) is widely used to induce epileptiform activity in zebrafish. It is an

antagonist of gamma-aminobutyric acid (GABA) inhibitory neurotransmitter with other mul-

tifarious mechanisms of action [3, 14]. The zebrafish larvae are commonly used as an epilepsy

model, as they display spontaneous seizures when introduced to PTZ [4]. Different PTZ con-

centrations trigger locomotor activities in zebrafish larvae in various manners suggesting a

non-linear PTZ-dependent fluctuation of anxiety level [15, 16]. Lower concentrations of PTZ

can increase locomotion activity and high concentrations of PTZ (15 mM) cause a clonus-like

convulsion that can only be reversed by some anti-epileptic drugs [2]. PTZ in 10 mM concen-

tration is ideal for pharmacological tests and the behavioral effects of this concentration can

last for approximately 16 hours [10]. The PTZ treatment under different illuminations also

alters the anxiety level of zebrafish larvae differently, and the pattern of triggered movement

abnormalities has not yet been investigated [3, 16]. On the other hand, pilocarpine, a musca-

rinic acetylcholine receptor agonist, in 30 mM concentration is another widely used drug in

epilepsy research because it induces epileptiform activity that mimics closely the human tem-

poral lobe epilepsy (TLE) [13, 14, 17–20]. The effect of the pilocarpine decreases only slightly

in the first 48 hours and persists up to 10 days [21], and spontaneous recurrent seizures can be

seen several weeks later [11].

Details of the research methods of epilepsy model of zebrafish are often not sufficiently

described [10]. Tracking time of movements and duration time of recording vary in different

publications [10]. Only a few studies focused on the methodology have been published, which

correlate to specific locomotion detection techniques and drug concentration [3, 10, 16]. For

the zebrafish epilepsy model refinement and standardization further experiments are needed

[22].

Our research aim was to test the effect of PTZ and pilocarpine on the locomotion of zebra-

fish larvae in light and dark environments for various recording periods to determine the opti-

mal recording conditions. The purpose of such an optimized method is to support AED tests

in the future to develop novel pharmaceutical therapeutic approaches.
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Materials and methods

Adult zebrafish were kept in Tecniplast Zeb Tec System. The temperature of their water was

set to 26˚C, the pH to 7.5, and the conductivity to 500 μS. The conductivity level is adjusted by

instant sea salt. The system automatically provided a 14-hour-long light period and a 10-hour-

long dark period. The fish were fed two times a day. To produce embryos, we used wild-strain

zebrafish pairs in breeding tanks. Until the experiment, the larvae were kept in egg water that

was changed daily (60μg Red Sea—Coral pro sea salt in 1 ml distilled water) and was incubated

at 28˚C [23]. We used a total number of 270 zebrafish larvae (5 dpf), and 90 were used for each

experiment. Each experiment was repeated three times. We placed the fish in 6-well plates,

filled up with 5 ml of egg water, and divided them equally into three groups (30 in each): con-

trol, PTZ and pilocarpine treated. The concentrations we used for the treatment were 10 mM

of PTZ [10], and 30 mM of pilocarpine [14, 18] each diluted in distilled water and egg water

media for the controls. We left the fish in the solution for 30 minutes for accommodation

before starting the recording [10]. We used the Noldus’ DanioVision observation chamber

(Noldus Information Technology, The Netherlands), and heated the system to 28˚C using the

temperature control unit. After the 30-minute accommodation time, 90 fish were moved into

a 96-well plate, where each well included one fish and placed the plate into the observation

chamber. For recording and data collecting we used Noldus’ EthoVisionXT software (Noldus

Information Technology, The Netherlands).

We performed three different experiments, and each of them contained three trials: 1) a

10-minute-long dark trial with a tapping stimulus (internal part of the Noldus system, pur-

chased as an option) in the fifth minute, 2) the same length trial with a tapping stimulus, but

performed in the light environment, 3) and a 30-minute-long trial in the light without any tap-

ping. Between each trial, there was a 1-minute-long accommodation time, and each trial was

repeated three times with each plate (Fig 1).

Fig 1. Flowchart of the research design.

https://doi.org/10.1371/journal.pone.0288904.g001
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After the trials to filter out the fish which have not been found by the software (“subjects

not found” performance variable), we set up a 0.2% threshold and excluded the remaining

data above this limit. After the filtering process for each experiment, we exported the total

moved distance data. In the case of the whole period of the dark and the light trials, we sum-

marized the total moved distances of each fish and used these data for further analysis. In the

case of the time trials, we cumulated the distances every 5 minutes within the 30-minute-long

intervals. These 5-minute periods were compared to each other individually and cumulatively.

Before the statistical tests, we used outlier detection with the interquartile range method and

filtered out the data as needed. Since our data distributions were not normal according to the

Shapiro-Wilk normality test, for statistical analysis we performed Mann-Whitney U tests for

the comparison between the groups. The significance level was set to 0.05. We also performed

linear regression analysis with the cumulative values of the total moved distance data, to assess

the relationship between the variables. For data analysis, we used Microsoft 365 Access, Excel,

and Past 4.03 software [23].

Results

To test the effect of the light and the dark environment, we performed two 10-minute-long tri-

als. We observed that the mean of the total distance moved by the zebrafish larvae was signifi-

cantly higher (z = 3.8224; p = 0.0003) in the light trials than in the dark environment (Fig 2).

Groups of larvae treated with either PTZ or pilocarpine also showed differences between the

dark and light trials, thus the difference was independent of the treatment. There was a signifi-

cant difference between the treatments in every combination (Table 1, Fig 3). As expected,

zebrafish larvae treated with PTZ or pilocarpine moved significantly more than the ones in the

control group (zcontrol-PTZ = 5380; pcontrol-PTZ = 8.65E-22; zcontrol-pilocarpine = 10473; pcontrol-pilo-

carpine = 6.89E-09;), although this difference was significantly higher between the individuals

treated with PTZ than the ones treated with pilocarpine (Fig 4). This difference also turned

out to be significant (zPTZ-pilocarpine = 6574; pPTZ-pilocarpine = 5.65E-15). We also found that the

Fig 2. The difference between the means of moved distances during light and dark trials (Mann-Whitney U test).

https://doi.org/10.1371/journal.pone.0288904.g002
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standard errors of the PTZ-treated zebrafish larvae were higher than in the case of the other

two groups. Significant differences between the treatments in every combination are found.

For significance values see Table 1.

We examined the optimal observation time with a 30-minute-long trial under light condi-

tions. During the data analysis, we divided this period into 5-minute time intervals. Between

the groups, the mean of the total distance moved by the PTZ-treated zebrafish larvae differed

every time from every other group. However, between the control group, almost every result

of the time intervals differed from the pilocarpine-treated zebrafish, except 5 times in the first

5-minutes-long interval. Within the control group, we found that the first 5-minute-long

interval differed from every other significantly. On the other hand, except for the first 5 min-

utes, there were only three significant differences between the 5-to-10-minute interval and the

last three intervals. In the case of the PTZ-treated groups‘time intervals, there were only three

significant differences between the first 5 minutes and the last three 5-minute-long intervals.

Within the pilocarpine-treated zebrafish larvae group, the first and the second 5-minute-long

interval differed significantly from every other interval and the last 5-minute-long interval,

except one time. In conclusion, the first 5 minutes significantly differed from the other time

intervals within the groups in all cases except two trials (Fig 5). The statistical values of the

Mann-Whitney U test can be seen as supporting information (S1 Fig). Furthermore, we found

significant differences in fewer numbers of cases within each treated group than between the

groups (S1 Fig). When we analyzed the 5-minute-long intervals by trials, we found that there

Table 1. Differences between the treated groups during the light and dark trials (Mann-Whitney U test).

Light—Control Light—PTZ Light—Pilocarpine Dark—Control Dark—PTZ Dark—Pilocarpine

Light—Control - 6984 13763 14475 9734 14834

Light—PTZ 1.18E-15 - 6424 4908 9060.5 5056

Light—Pilocarpine 3.35E-05 2.63E-18 - 10280 9784 14316

Dark—Control 0.006633 1.74E-23 5.91E-12 - 7070 11253

Dark—PTZ 4.64E-10 4.20E-05 2.98E-10 1.01E-17 - 7478

Dark—Pilocarpine 0.01137 4.00E-23 0.001486 5.79E-08 1.65E-16 -

https://doi.org/10.1371/journal.pone.0288904.t001

Fig 3. The means of moved distances between the treated groups during the light and dark trials.

https://doi.org/10.1371/journal.pone.0288904.g003
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were more 5 minutes intervals in PTZ-treated groups where the zebrafish showed either

hyper-activity or hypoactivity explaining the higher standard errors in this group. On the

other hand, more inactive periods were observed in the control group during the first 5 min-

utes of the recording (Fig 6). According to the Mann-Whitney U test the first 5 minutes signif-

icantly differed from the other time intervals within the groups in all cases except two trials

(also see S1 Fig)

Fig 4. The difference in the means of total distance moved between the PTZ, pilocarpine treated and control

groups (Mann-Whitney U test).

https://doi.org/10.1371/journal.pone.0288904.g004

Fig 5. Means of the total distance moved by the differently treated and control groups in 5-minute time intervals

(Ncontrol = 184, NPTZ = 154, Npilocarpine = 177).

https://doi.org/10.1371/journal.pone.0288904.g005
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We also performed a linear regression analysis with the cumulative values of the distance

moved during the time intervals to assess if longer observation time could impact the differ-

ence between the groups. As seen in Fig 7 by increasing the time, the distances changed pro-

portionally within the groups. This was supported by the linear regression analysis in most of

the cases according to the R2 values (S1 Table, Fig 8).

Discussion

We found that the zebrafish larvae move significantly more in the light than in the dark envi-

ronment independently of the treatment. Zebrafish have diurnal activity, meaning they are

Fig 6. Mean of total distance moved by the differently treated and control groups during the 9 different trials.

https://doi.org/10.1371/journal.pone.0288904.g006

Fig 7. Cumulative means of distance moved by PTZ, pilocarpine treated and control zebrafish groups. Ncontrol =

184, NPTZ = 154, Npilocarpine = 177.

https://doi.org/10.1371/journal.pone.0288904.g007
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more active during the day and less active at night [24], which might explain their activity

under given light conditions. Previous reports described different conditions to test variations

in the locomotion of zebrafish larvae [3, 15, 16, 25–27]. The locomotion of the zebrafish differs

under different light intensities, depending on the age of the larvae [25]. In contrast to our

results, one report showed that the zebrafish moved more in the dark [15]. The reason for the

difference in our finding, which is in line with other reports, PTZ increases the sensitivity to

changing light environment by activating neurons, which influences the anxiety level of larvae

[16]. Other results are in line with our finding: 5 days old zebrafish larvae treated with lower

concentrations of PTZ (4 and 8 mM) moved less under dark conditions than under constant

light. There was no difference in light and dark activity observed with the use of a higher con-

centration of PTZ (16 mM) [3], which can be explained by the fact that a high concentration

of PTZ, specifically above 10 mM PTZ decreases swimming activity [10]. Under constant light

conditions, 5 dpf zebrafish larvae treated with PTZ (8, 16 mM) showed a significant increase

in locomotor activity [16]. Pilocarpine enhanced locomotor activity in continuous light. This

chemical causes pupil constriction in humans [27] it may cause the same effect in zebrafish

[26]. Pilocarpine could make zebrafish larvae less sensitive to light, which is in line with our

results because the difference between the light and dark trials was less than the difference

between the control and the PTZ-treated group. In the alternating light and dark periods, the

zebrafish larvae’s movement was higher if the concentration of pilocarpine increased [28].

There was a significant difference between the dark and light trials in the control group, likely

due to normal daily activity [24].

The photodegradable active pharmaceutical agents require dark experimental conditions

during pharmaceutical tests [29]. The pilocarpine-induced epilepsy model performed in the

dark could fulfill this requirement to examine potential photolabile AEDs.

Zebrafish larvae treated with PTZ moved significantly more than the ones treated with pilo-

carpine, and all of them moved more than the control group. Other authors found that pilocar-

pine-induced epileptiform activity and seizures were more subtle in comparison to PTZ-

induced one [14, 18, 30]. Previous results show that in an acetylcholinesterase inhibitor chlor-

pyrifos-pretreated experimental model, 1 mM concentration of pilocarpine had a significant

startle response relative to control whereas the lower concentration (100 μM) did not [31].

Fig 8. The regression lines calculated for PTZ, pilocarpine treated and control groups.

https://doi.org/10.1371/journal.pone.0288904.g008
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However, there was no significant difference in the response levels between the 100 μM and 1

mM pilocarpine doses [31]. On the other hand, the non-toxic 30 mM concentration of pilocar-

pine alone is suitable for movement-based pharmacological tests [13, 20].

The PTZ and the pilocarpine mechanism of action are different. PTZ is an antagonist of the

GABA(A) receptor increasing the duration of the closed states of the chlorine-ion channels

without influencing the conductance or duration of the open state through binding to a spe-

cific site partly overlapping with the picrotoxin binding site [32]. On the other hand, pilocar-

pine activates muscarinic receptor 1 (M1) causing an imbalance of inhibitory and excitatory

signal transduction [33]. For example, pilocarpine elevates glutamate levels in the hippocam-

pus after seizures and activates NMDA receptors causing increased excitation in the network

[34, 35]. The differences in the mechanism of action can explain the variations we found

between PTZ and pilocarpine groups.

We demonstrated that the first 5 minutes of the recording period show the largest differ-

ence in the treated groups. According to several publications, zebrafish are supposed to be left

to habituate inside the tracking device for 5–10 minutes [4, 16, 30, 36–40]. The habituation is

an unlikely explanation for the difference in the first 5 minutes of each recording in our case

because after the fish had spent the first three or six trials (40, 80 minutes) in the observation

chamber, in the fourth or sixth trial we find that the first 5 minutes of the new recording is dif-

ferent from the other time segments. We suggest that the recording algorithm has some feature

that makes the first 5 minutes of recording unreliable, and thus needs to be disregarded.

Other studies used a similar method that we used here (a 30-minute-long trial with 5 min-

utes intervals), but they observed an increase in the movements of the zebrafish in the first 15

minutes. The likely explanation for this discrepancy is that, unlike other research groups, we

used a 30-minute-long accommodation time after the treatment and before starting the

recording session [41]. According to Shaw and co-workers [10], other authors used different

observation times from 2 minutes to 90 minutes. Vermoesen and colleagues [18] recorded zeb-

rafish locomotor activity for 1 minute only, while the behavior was recorded for 18 minutes by

Lopes and co-workers [30] and only 1 and 1.5 minutes were analyzed. Yang, et al. [3] used

10-minute-long trials with 5-minute-long light and dark conditions, while Peng et al. [16]

used a 40-minute long light trial and three transient light-dark trials (10-minute light and

5-minute dark) and analyzed only 2-minute-long periods. The measurement of Gawel and col-

leagues [14] lasted for 18 minutes. Jian et al. [28] observed treated zebrafish with pilocarpine

for 20 minutes, which contained a 10-minute-long light, 5-minute-long dark, and 5-minute-

long light phases. The effects of the pilocarpine were observed for 8 minutes in 1-minute-long

trials, then after a 24- and 96-minute intertrial interval, there were 1-minute-long trials [31].

Based on the linear regression analysis by increasing the observation period, we could see

changes in the scale only, not in the differences. Because zebrafish sometimes move erratically

to avoid overactive or inactive periods at least 10-minute-long intervals of observation are sug-

gested. The 30-minute-long observation time suggested by Shaw and colleagues [10] is unnec-

essary. Overall, short observation time can be affected by active and inactive periods of the

zebrafish larvae, while the long examination time is unnecessary unless the drug compounds

tested at different time intervals provides more valuable insight [4, 39, 42].

Conclusions

We recommend a 10 minutes observation time instead of 5 minutes, as it filters out the inter-

mittently overactive or inactive periods. If there are no special conditions, we recommend a

30-minute-long drug pretreatment followed by a 15 minutes recording of locomotion in a

light environment and discard the first 5 minutes from the subsequent analysis. However, for
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the testing of photolabile AED compound candidates, the pilocarpine test in the dark is pre-

ferred. Our result paves the way toward improved experimental designs using zebrafish to

develop novel pharmaceutical approaches to treat epilepsy. This method is a high-throughput

technique, therefore it can be used to test several different combinations of AEDs within a

short period.
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