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RAMSEY EQUIVALENCE FOR ASYMMETRIC PAIRS OF GRAPHS∗

SIMONA BOYADZHIYSKA† , DENNIS CLEMENS‡ , PRANSHU GUPTA§ , AND JONATHAN

ROLLIN¶

Abstract. A graph F is Ramsey for a pair of graphs (G,H) if any red/blue-coloring of the
edges of F yields a copy of G with all edges colored red or a copy of H with all edges colored
blue. Two pairs of graphs are called Ramsey equivalent if they have the same collection of Ramsey
graphs. The symmetric setting, that is, the case G = H, received considerable attention. This led
to the open question whether there are connected graphs G and G′ such that (G,G) and (G′, G′)
are Ramsey equivalent. We make progress on the asymmetric version of this question and identify
several non-trivial families of Ramsey equivalent pairs of connected graphs.

Certain pairs of stars provide a first, albeit trivial, example of Ramsey equivalent pairs of con-
nected graphs. Our first result characterizes all Ramsey equivalent pairs of stars. The rest of the
paper focuses on pairs of the form (T,Kt), where T is a tree and Kt is a complete graph. We show
that, if T belongs to a certain family of trees, including all non-trivial stars, then (T,Kt) is Ramsey
equivalent to a family of pairs of the form (T,H), where H is obtained from Kt by attaching dis-
joint smaller cliques to some of its vertices. In addition, we establish that for (T,H) to be Ramsey
equivalent to (T,Kt), H must have roughly this form. On the other hand, we prove that for many
other trees T , including all odd-diameter trees, (T,Kt) is not equivalent to any such pair, not even
to the pair (T,Kt ·K2), where Kt ·K2 is a complete graph Kt with a single edge attached.

Key words. Graph Ramsey Theory, Ramsey Equivalence

MSC codes. 05D10

1. Introduction.

1.1. Ramsey equivalence. We say that a graph F is Ramsey for another graph
H, if any red/blue-coloring of the edges of F yields a copy of H all of whose edges
have the same color, that is, a monochromatic copy of H; we write R(H) for the
set of all Ramsey graphs for H. The seminal result of Ramsey [24] establishes that
R(H) 6= ∅ for any graph H. Characterizing the graphs in R(H) exactly is a hard
task accomplished for only few small graphs so far (see for example [4, 8]). A natural
next problem then is to investigate the properties of the graphs belonging to R(H)
for a given H.

The most prominently studied property is the smallest number of vertices among
all graphs in R(H) for a given H. This quantity is called the Ramsey number of
H. Ramsey numbers have proven to be notoriously hard to compute in many cases
and have attracted a lot of attention over the years; see e.g. the survey [11] and
the references therein. In the 1970s researchers initiated the study of other graph
parameters in the context of Ramsey graphs, like the number of edges, the clique
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number, and the minimum degree (see for example [8, 13, 14]). A natural question
to ask when studying problems of this type is: how do these values change when
we modify the target graph H slightly? More generally, how does the collection of
Ramsey graphs change? This question motivated Szabó, Zumstein, and Zürcher [28]
to define the notion of Ramsey equivalence.

Definition 1.1. Two graphs H and H ′ are Ramsey equivalent, denoted H ∼ H ′,
if R(H) = R(H ′).

It is not difficult to show that Ramsey equivalent pairs of graphs exist: for in-
stance, the graph obtained by adding an isolated vertex to the clique Kt for t ≥ 3 is
Ramsey equivalent to Kt. Szabó, Zumstein, and Zürcher [28] found further examples
of disconnected graphs that are Ramsey equivalent to the clique Kt (see also [3, 15]
for further results in this direction) and asked whether there exist any connected such
graphs. Perhaps surprisingly, several years later Fox, Grinshpun, Liebenau, Person,
and Szabó [15] settled this question in the negative: they showed that no connected
graph is Ramsey equivalent to Kt. In light of this result, they raised the following
question:

Question 1.2 ([15]). Is there a pair of non-isomorphic connected graphs that
are Ramsey equivalent?

The above question is wide open. Not much is known even in the special case
where the two graphs differ only by a pendent edge. It was shown by Clemens, Liebe-
nau, and Reding [10] that no pair of 3-connected graphs can be Ramsey equivalent.
A result from Grinsphpun’s PhD thesis [16, Lemma 2.6.3.] allows us to show non-
equivalence for further pairs consisting of a graph H and the graph H with a pendent
edge. Further evidence that the answer to Question 1.2 might be negative is provided
for example in [1, 27].

In this paper, we study Ramsey equivalence in the asymmetric setting and explore
a variant of Question 1.2. We begin by defining the necessary notions. We say that
a graph F is Ramsey for a pair of graphs (G,H), and write F → (G,H), if, for every
red/blue-coloring of the edges of F there exists a red copy of G, that is, a copy of
G with all edges colored red, or a blue copy of H, defined similarly. We denote the
collection of all Ramsey graphs for (G,H) by R(G,H). We call a graph F ∈ R(G,H)
Ramsey-minimal for (G,H) if no proper subgraph of F is Ramsey for (G,H), and we
denote the corresponding collection by M(G,H).

Definition 1.3. We call two pairs of graphs (G,H) and (G′, H ′) Ramsey equiv-
alent, denoted (G,H) ∼ (G′, H ′), if R(G,H) = R(G′, H ′).

Note that the collection of Ramsey graphs for (G,H) is uniquely determined by
those graphs that are Ramsey-minimal for (G,H), and hence two pairs of graphs
(G,H) and (G′, H ′) are Ramsey equivalent if and only if M(G,H) = M(G′, H ′).
For any two pairs of graphs that are not Ramsey equivalent there is a graph that is
Ramsey for one pair but not for the other. We say that such a graph distinguishes
the two pairs.

Our goal is to explore the notion of Ramsey equivalence for asymmetric pairs of
connected graphs and in particular the asymmetric version of Question 1.2. Previ-
ously known results allow us to exclude some potential candidates. Let ω(G) denote
the clique number of a graph G, defined as the largest integer n such that Kn is a
subgraph of G. A famous result of Nešetřil and Rödl [21] establishes that, for ev-
ery graph G, there is a Ramsey graph for G that has the same clique number as G.
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Hence, the disjoint union of G and H has a Ramsey graph F with clique number
max{ω(G), ω(H)} and this graph F is also a Ramsey graph for (G,H). This gives
the following statement which we shall use several times in our proofs.

Theorem 1.4 ([21]). Each pair (G,H) of graphs has a Ramsey graph with clique
number equal to max{ω(G), ω(H)}.

This result implies (G,H) 6∼ (G′, H ′) if max{ω(G), ω(H)} 6= max{ω(G′), ω(H ′)}.
As a second example, Savery [27, Section 3.1] proved that (G,H) 6∼ (G′, H ′) for all
graphs G, H, G′, and H ′ with χ(G) + χ(H) 6= χ(G′) + χ(H ′), where χ(G) denotes
the chromatic number of G.

It turns out, however, that the asymmetric version of Question 1.2 has an affir-
mative answer. Let K1,s denote a star with s edges. Through a simple application
of Petersen’s Theorem [23], Burr, Erdős, Faudree, Rousseau, and Schelp [6] showed
that, for any odd integers r, s ≥ 1, the only Ramsey-minimal graph for the pair of
stars (K1,r,K1,s) is the star K1,r+s−1. Thus, any odd integers r, s, r′, s′ ≥ 1 with
r + s = r′ + s′ satisfy (K1,r,K1,s) ∼ (K1,r′ ,K1,s′). This example is perhaps not very
satisfying, as pairs of odd stars have only a single Ramsey-minimal graph. It is then
interesting to ask whether there are any Ramsey equivalent pairs of connected graphs
with a larger, maybe even an infinite number of Ramsey-minimal graphs. Our main
result shows that the answer is yes, exhibiting an infinite family of Ramsey equivalent
pairs of connected graphs of the form (T,Kt) ∼ (T,Kt ·K2), where T is a certain kind
of tree.

1.2. Results. In light of the discussion in the previous paragraph, one might
ask whether there exist any other pairs of stars that are Ramsey equivalent. In our
first result, we answer this question negatively. Note that M(K1,r,K1,s) is infinite
whenever rs is even [6].

Theorem 1.5. Let a, b, x, y be positive integers with {a, b} 6= {x, y}. Then
(K1,a,K1,b) ∼ (K1,x,K1,y) if and only if a+ b = x+ y and a, b, x, and y are odd.

Note that each pair of stars has a Ramsey graph that is a star. This star distin-
guishes the pair of stars from any pair of connected graphs that involves a graph that
is not a star.

We next study Ramsey equivalence for pairs of the form (T,Kt), where T is a
tree and t ≥ 3. Note that in the case where T is a single vertex or edge the collection
of Ramsey graphs is trivial, as M(K1,Kt) = {K1} and M(K2,Kt) = {Kt}. From
now on, unless otherwise specified, we will assume that T has at least two edges. It
was shown by  Luczak [19] that in this caseM(T,Kt) is infinite. Perhaps surprisingly,
we find non-trivial Ramsey equivalent pairs in this setting. To describe some of those
pairs, we need the following definitions. For integers a ≥ 1, b ≥ 2, and t ≥ 3 with a ≤ t,
let Kt ·aKb denote the graph consisting of a copy of Kt and a pairwise vertex-disjoint
copies of Kb, each sharing exactly one vertex with the copy of Kt (see Figure 1.1 left
for an example). We call a tree T an (s-)suitable caterpillar, if T consists of a path P
on three vertices and up to 3s− 1 further vertices of degree 1 such that the endpoints
of P are of degree exactly s+ 1 in T and the middle vertex of P is of degree at most
s+ 1 in T (see Figure 1.1 right).

Theorem 1.6.
(a) For all integers s ≥ 2 and t ≥ 3, we have (K1,s,Kt) ∼ (K1,s,Kt ·K2).
(b) Let a ≥ 1 and b ≥ 2 be integers, and let T be a star with at least two edges or a

suitable caterpillar. For any large enough t, we have (T,Kt) ∼ (T,Kt · aKb).
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Fig. 1.1. The graph K6 · 2K3 (left) and the largest 3-suitable caterpillar (right).

Observe that the first part of the above theorem holds for each t ≥ 3, while we
need a sufficiently large t to prove the second part. We do not know whether the
statement is true for small values of t.

We complement the equivalence result above by proving Ramsey non-equivalence
for several other families of pairs of trees and cliques. Theorem 1.4 shows that we
may restrict our attention to pairs (G,H) with max{ω(G), ω(H)} = t, since otherwise
(T,Kt) 6∼ (G,H). Before we state the result, we again need some definitions. The
length of a path is its number of edges. The diameter diam(T ) of a tree T is the
length of its longest path. Trees of even diameter contain a unique central vertex,
that is, a vertex that is the middle vertex in each longest path. Let T denote the
class of all trees T of diameter at least three such that:

• if diam(T ) is even, the neighbors of the central vertex of T are of degree at
most two, and

• if diam(T ) = 4, the central vertex is of degree at least 3.
Note in particular that this class contains all trees of odd diameter.

Theorem 1.6 above shows that for some trees T and large t the Ramsey graphs for
(T,Kt) do not change when we attach certain disjoint pendent graphs at the vertices
of Kt. The first part of the following theorem states that this behavior does not
generalize to trees from the family T defined above in a strong sense: for each tree
T ∈ T and each t ≥ 3, we have (T,Kt) 6∼ (T,Kt ·K2). The second part shows that,
if (T,Kt) ∼ (T,H) for some connected graph H 6= Kt, the graph H must consist of a
copy ofKt with some disjoint pendent graphs, each attached to a different vertex of the
clique. Note that this is precisely the form that the graph H takes in Theorem 1.6(b);
therefore, part (b) of the next theorem demonstrates that this equivalence result is
best possible in a certain sense. Finally, the third part of the theorem below considers
modifications to the first component of the pair, namely T , and shows that T cannot
be replaced by any other connected graph G if the second component of the pair
stays unchanged. We emphasize that certain pairs (T,Kt) and (G,Kt) cannot be
distinguished by, for instance, their Ramsey numbers alone: for example, Keevash,

Long, and Skokan [18] showed that when ` = Ω
(

log t
log log t

)
the Ramsey numbers of

(C`,Kt) and (T`,Kt) are the same, where C` and T` denote a cycle and a tree on `
vertices, respectively.

Theorem 1.7. Let t ≥ 3 be an integer.
(a) For any T ∈ T and any connected graph H 6= Kt, we have (T,Kt) 6∼ (T,H).
(b) For any tree T and any graph H that contains a copy K of Kt and a cycle

with vertices from both V (K) and V (H) \ V (K), we have (T,Kt) 6∼ (T,H).
(c) For any tree T and any connected graph G 6= T , we have (T,Kt) 6∼ (G,Kt).

As we will see in Section 4, our construction actually allows us to prove the
statement from the first part of the theorem above for a larger class of trees. Since
our results do not lead to a complete characterization of those trees T for which
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(T,Kt) ∼ (T,Kt ·K2), we choose to state the simpler, albeit somewhat weaker, result
here. As a specific example, note that our results imply that for a path P and for
sufficiently large t we have (P,Kt) ∼ (P,Kt · K2) if and only if P has two or four
edges.

In this paper, we study what pairs of connected graphs (G,H) can be Ramsey
equivalent to pairs of the form (T,Kt). We focus on the two cases G = T and H = Kt.
It would be interesting to know whether there are any pairs (G,H) of connected graphs
with G ( T and Kt ( H that are Ramsey equivalent to (T,Kt).

1.3. Notation. Given a graph G, we denote its vertex set and its edge set by
V (G) and E(G), respectively. For a set X ⊆ V (G) we write G − X for the graph
obtained from G by removing the vertices in X and all their incident edges; for a
single vertex x ∈ V (G), we write G − x = G − {x}; similarly for a subgraph F of
G we let G − F = G − V (F ). For a set Y ⊆ E(G), we write G − Y for the graph
obtained from G by removing the edges in Y ; for a single edge e ∈ E(G), we write
G−e = G−{e}. Throughout the paper unless otherwise specified a coloring is meant
to be an edge-coloring of the given graph G. As we always call the two colors red and
blue, we use red/blue-coloring and 2-coloring as synonyms of each other. Given any
two graphs H1 and H2, we say that a 2-coloring is (H1, H2)-free, if there is no red
copy of H1 and no blue copy of H2.

1.4. Organization of the paper. In Section 2, we prove Theorem 1.5. Sec-
tion 3 contains the proof of our main equivalence result, namely Theorem 1.6, and in
Section 4 we prove Theorem 1.7 on Ramsey non-equivalent pairs.

2. Pairs of Stars. In this section, we prove Theorem 1.5. We note that this
theorem can be deduced from Theorem 1 in [22]. However, the calculations are tedious
and for completeness we present explicit constructions here when we want to show
that there exist graphs that are Ramsey for certain pairs of stars and not Ramsey for
other pairs of stars.

Observe that, given positive integers a and b, an (a+ b− 2)-regular graph F is a
Ramsey graph for a pair (K1,a,K1,b) if and only if E(F ) cannot be decomposed into
an (a − 1)-regular subgraph and a (b − 1)-regular subgraph. A k-regular spanning
subgraph is also called a k-factor. Our results rely on the rich theory on factors.
Specifically we need the following fact.

Lemma 2.1. Let p, q and r be integers, with p and q being odd. Further, assume
that p < q ≤ r if r is odd, and that p < q ≤ r/2 if r is even. There is an r-regular
graph that has a q-factor and no p-factor.

In order to prove the above lemma, we apply a theorem due to Belck [2] (a special
case of the well-known f -factor theorem of Tutte [29]), which provides a necessary
and sufficient condition for the existence of k-factors in regular graphs. For a graph G
and a set D ⊆ V (G), we call a component C of G−D an odd component with respect
to D if |V (C)| is odd, and we let qG(D) denote the number of such components. We
use the following corollary of Theorem IV from [2].

Theorem 2.2 ([2]). Let G be a graph and let p > 0 be an odd integer. If there
exists a set D ⊆ V (G) such that p|D| < qG(D), then G has no p-factor.

Proof of Lemma 2.1. Given p, q and r as described in the statement, we aim to
construct an r-regular graph F that has a q-factor and no p-factor. The graph F will
be constructed in three steps.
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D = Kr−q+1

d1
H

HuH
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D = Kr−2q+1
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H

}

q
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H } qu

Fig. 2.1. A construction of an r-regular graph with a q-factor and no p-factor for odd r (left)
and even r (right).

In the first step, we find an r-regular graph G with an even number of vertices
that has a q-factor Gq and a matching MG with b(r − 1)/2c edges which contains
exactly (q − 1)/2 edges of Gq. To this end, define G to be the graph obtained by
taking 2r(r− q+ 1) copies Qi,j of Kq+1, with i ∈ [r− q+ 1] and j ∈ [2r], and adding
a perfect matching between any two copies Qi1,j and Qi2,j with i1 6= i2 and j ∈ [2r].
Then G has an even number of vertices and is r-regular. Moreover, the subgraph Gq

that consists of all Qi,j is a q-factor. The matching MG can be found by taking q−1
2

independent edges from Q1,1 and one edge from every matching between Q1,j and
Q2,j with 2 ≤ j ≤ b r−q+2

2 c. Set Mq := MG ∩ E(Gq).

For the second step, let H, respectively Hq, denote the graphs obtained from
G, respectively Gq, by adding a new vertex u and replacing every edge vw ∈ MG,
respectively vw ∈ Mq, by the edges uv and uw. Then H has an odd number of
vertices, u is of degree 2b(r − 1)/2c in H, and all other vertices are of degree r.
Moreover, Hq is a spanning subgraph of H in which u is of degree q− 1 and all other
vertices are of degree q.

For the third step, we consider two cases depending on the parity of r.
Case 1: r is odd. In this case u has degree r−1 in the graph H. Let t = r−q+1,

and let F = F (q, r) denote the graph obtained from a copy of Kt with vertex set
D = {dj : j ∈ [t]} and qt vertex disjoint copies H1, . . . ,Hqt of the graph H as follows:
For each i ∈ [qt], let ui denote the copy of u in Hi. We partition the set {ui : i ∈ [qt]}
into t sets U1, U2, . . . , Ut each of size q and, for each j ∈ [t], add an edge between dj
and each vertex in Uj . An illustration of the construction is given in Figure 2.1 (left).
Then F is r-regular. Moreover, F has a q-factor, given by the subgraph consisting of
all copies of Hq (coming from the Hi with i ∈ [qt]) and all edges between D and the
copies of u.

It thus remains to show that F does not admit a p-factor. This follows from
Theorem 2.2. Indeed, the odd components of F −D are exactly the q(r−q+1) copies
of H, and therefore

p|D| − qG(D) = p|D| − q(r − q + 1) = (p− q)(r − q + 1) < 0 ,

since p < q ≤ r by assumption.

Case 2: r is even. In this case u has degree r − 2 in the graph H. Moreover,
by assumption we have q ≤ r/2. Let t = r − 2q + 1, and let F = F (q, r) denote the
graph obtained from a copy of Kt with vertex set D = {d1, d2, . . . , dt} and qt vertex
disjoint copies H1, . . . ,Hqt of the graph H as follows: For each i ∈ [qt], let ui denote
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the copy of u in Hi. We partition the set {ui : i ∈ [qt]} into t sets U1, U2, . . . , Ut each
of size q and, for each j ∈ [t], add an edge between dj and each vertex in Uj ∪ Uj+1,
where Ut+1 := U1. This is illustrated in Figure 2.1 (right).

Then the graph F is r-regular. Moreover, it contains a q-factor consisting of all
copies of Hq (coming from the Hi with i ∈ [qt]) and all edges between dj and Uj for
every j ∈ [t]. Furthermore, by Theorem 2.2, F does not have a p-factor. Indeed, the
odd components of F −D are exactly the qt copies of H, and therefore

p|D| − qG(D) = p|D| − qt = (p− q)t < 0 ,

since p < q and q ≤ r/2 and hence t ≥ 1 by assumption.

Proof of Theorem 1.5. First observe that K1,a+b−1 is Ramsey for (K1,x,K1,y) if
and only if x+y ≤ a+b. This shows that (K1,a,K1,b) 6∼ (K1,x,K1,y) when a+b 6= x+y.
For the remainder of the proof assume that a+ b = x+ y.

As discussed in the introduction, if a and b are both odd, then K1,a+b−1 is the
unique minimal Ramsey graph for (K1,a,K1,b) [6]. So (K1,a,K1,b) ∼ (K1,x,K1,y) if
a, b, x, y are all odd. It remains to consider the case where at least one of a, b, x,
and y is even and find a distinguishing graph, that is, a graph that is Ramsey for one
of the pairs of stars and not Ramsey for the other pair. Without loss of generality,
assume that a is the largest even number in {a, b, x, y}. Let r = a+ b− 2 = x+ y− 2.
Recall that an r-regular graph is a Ramsey for (K1,a,K1,b) if and only if it has no
(a− 1)-factor. We consider several cases.

Case 1: xy is odd. Then each Ramsey graph for (K1,x,K1,y) contains K1,a+b−1,
as remarked above, and hence no graph of maximum degree at most r is a Ramsey
graph for (K1,x,K1,y). Consider an r-regular graph on an odd number of vertices,
which exists since r is even. Since (a− 1) is odd, this graph does not have an (a− 1)-
factor and is therefore Ramsey for (K1,a,K1,b) but not Ramsey for (K1,x,K1,y). Thus
(K1,a,K1,b) 6∼ (K1,x,K1,y).

Case 2: xy is even. We may assume that x is the larger even number in {x, y}.
Then a > x, since a+ b = x+ y, {a, b} 6= {x, y}, and a is the largest even number in
{a, b, x, y}. We again distinguish two cases.

Case 2.1: b is odd. Then r is odd. Setting q = a− 1 and p = x− 1, we know
that p and q are odd, and p < q ≤ r. Hence, using Lemma 2.1, we find an r-regular
graph F that has an (a− 1)-factor and no (x− 1)-factor. Thus F 6→ (K1,a,K1,b) and
F → (K1,x,K1,y). Hence (K1,a,K1,b) 6∼ (K1,x,K1,y).

Case 2.1: b is even. Then r and y are even. As we have a > x ≥ y and
a+ b− 2 = r = x+ y− 2, we obtain b < y ≤ r+2

2 . Setting q = y− 1 and p = b− 1, we
know that p and q are odd, and p < q ≤ r

2 . Hence, using Lemma 2.1, we find an r-
regular graph F that has a (y−1)-factor and no (b−1)-factor. Thus F 6→ (K1,x,K1,y)
and F → (K1,a,K1,b). Hence (K1,a,K1,b) 6∼ (K1,x,K1,y).

3. Equivalence results for trees and cliques.

Proof of Theorem 1.6(a). If F → (K1,s,Kt · K2), then also F → (K1,s,Kt). It
suffices to show that, if F 6→ (K1,s,Kt ·K2), then also F 6→ (K1,s,Kt).

Let F denote a graph that is not Ramsey for (K1,s,Kt · K2) and let c be a
(K1,s,Kt·K2)-free coloring of F that minimizes the number of blue copies of Kt among
all such colorings. We claim that c has no blue copies of Kt and hence F 6→ (K1,s,Kt).

For a contradiction, assume that there exists a blue copy of Kt under c. We will
show that we can recolor certain edges to obtain a (K1,s,Kt ·K2)-free coloring of F
with fewer blue copies of Kt than under c, which gives a contradiction. The high-level
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Fig. 3.1. Several examples of feasible walks (with solid lines representing red edges and dotted
lines representing blue edges).

idea of the recoloring procedure is to choose an arbitrary blue copy of Kt and switch
the color of one of its edges from blue to red. If this produces red copies of K1,s (there
could be one at each endpoint), we recolor one edge from each such star from red to
blue. We shall see that this does not create new blue copies of Kt, but it might create
blue copies of Kt ·K2. We proceed greedily, picking edges from blue copies of Kt and
red copies K1,s and switching their colors, until we reach a desired (K1,s,Kt ·K2)-free
coloring of F . Note that the edges picked during the procedure eventually can be
arranged into a walk with alternating colors.

We provide the detailed arguments next. First observe that the blue copies of Kt

must be pairwise disjoint and that there are no blue edges leaving any of these copies,
that is, the copies of Kt form isolated components in the blue subgraph of F under
c. A walk in F is a subgraph of F formed by a sequence u1, . . . , u` of (not necessarily
distinct) vertices of F with edges uiui+1 for all i ∈ [` − 1]. We call the vertices u1
and u` the endpoints of W , even if u1 = u`. If W is a walk in F and K is a blue
copy of Kt in F under c, we say that K is visited (by W ) if W contains an edge of
K; otherwise K is unvisited (by W ). A walk W is feasible if it satisfies the following
properties:

i) Each edge of F occurs at most once in W .
ii) W contains at least one blue edge.
iii) The edges of W are alternately colored red and blue, that is, c(uiui+1) 6=

c(ui+1ui+2) for i ∈ [`− 2].
iv) Each blue edge in W is contained in a blue copy of Kt, and each blue copy

of Kt has at most one edge in W .
v) No vertex of W is contained in an unvisited blue copy of Kt in F .
vi) An endpoint of W that is not incident to any red edge in W is not incident

to any red edge in F .
Refer to Figure 3.1 for an illustration.

We first observe that feasible walks exist and can be found with the following
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greedy procedure: Start with an arbitrary edge e belonging to a blue copy of Kt.
This satisfies the first five properties above but not necessarily the last. For each
endpoint of e that is incident to some red edge in F , the walk then follows one such
red edge. Now the first four properties are still satisfied, but property v) might
become invalid (for the current endpoints), while property vi) becomes valid. If (in
either direction) the walk has reached a so far unvisited blue copy of Kt, the walk
follows an arbitrary blue edge in this copy. In this way, the procedure continues in
both directions, extending W so that the first four properties are satisfied in each
step, until the latter two conditions are satisfied as well. Observe that the procedure
is guaranteed to terminate, since each edge of F occurs at most once in W .

We next make some observations about the structure of W . If W repeats a vertex,
this vertex must be u1 or u`. Indeed, if ui = uj for some 1 < i < j < `, then ui has
degree at least four in W by property i) and, since W is alternating by property iii),
ui is incident to at least two blue edges in W . But this is not possible since the blue
copies of Kt are disjoint and W traverses at most one edge from each such copy by
iv). In other words, W must be a red/blue-alternating path, except possibly the edges
u1u2 and u`−1u`. Therefore, each vertex of W that is not an endpoint is incident to
exactly one red and one blue edge in W ; each of the endpoints may be incident to at
most three red edges in W but again to at most one blue edge in W .

We now choose a feasible walk W with the smallest number of red edges. We
obtain a new coloring c̃ by switching the colors of the edges in W . We claim that the
coloring c̃ contains

1. no red copy of K1,s,
2. fewer blue copies of Kt than c, and
3. no blue copy of Kt ·K2.

By the definition of c, this leads to the desired contradiction.
To prove (1), first note that the switch does not change the number of red edges

incident to vertices not in W . Now consider a vertex u of W . By our earlier observa-
tion, u is incident to at most one blue edge in W . If u is also incident to a red edge
in W , then the switch does not increase the total number of red edges incident to u.
If there is no red edge incident to u in W , then by property vi), we know that there
are no red edges incident to u in F under c; hence u is only incident to one red edge
under c̃. Therefore, there is no red copy of K1,s under c̃ since s ≥ 2.

We prove (2) now. By properties ii) and iv), W contains at least one edge be-
longing to a copy of Kt which is blue under c. So after switching colors, this copy
of Kt contains a red edge. Therefore, the only way for (2) to fail is that we create a
new blue copy of Kt by switching the colors along W . So, consider any edge uv in W
whose color switched from red to blue and such that uv is contained in a copy K of
Kt. We aim to show that K is not monochromatic blue under c̃. To do so, we choose
an arbitrary vertex x ∈ V (K) \ {u, v}, which exists as t ≥ 3. What we will see is that
either ux or vx is red under c̃, which will prove the claim. Assume that the statement
is false. We distinguish three cases depending on the colors of ux and vx under c.
Case 1: Assume ux and vx are both red under c. Then, by assumption, both of
these edges and uv must have switched colors and hence belong to W . This however
contradicts the above observation that at most two vertices in W are incident to two
red edges of W under c.
Case 2: Assume ux and vx are both blue under c. Since W is alternating and
contains at least one blue edge, at least one of u and v, say u, must be contained in
a blue copy K ′ of Kt under c. But then K ′ together with the edge ux (if x /∈ V (K ′))
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or the edge vx (if x ∈ V (K ′)) forms a blue copy of Kt ·K2 under c, a contradiction
to the choice of c.
Case 3: Assume ux is red and vx is blue under c (the case where ux is blue and
vx is red is similar). Then vx did not switch colors, i.e., vx /∈ W , and both ux and
uv switched colors, i.e., ux, uv ∈ W . Therefore, u is incident to two red edges of W
under the coloring c, and hence must be an endpoint of W as observed above. So,
one of v and x, say x, is not an endpoint of W and is therefore contained in a blue
copy K ′ of Kt under c. Then v ∈ V (K ′), since vx is blue and c does not contain a
blue copy of Kt ·K2. Since W is alternating, since x is not an endpoint of W , and
since the blue copies of Kt are disjoint, the walk W contains an edge xy from K ′.
Since vx 6∈W , we have y 6= v. By property iv) of W and again since blue copies of Kt

under c are disjoint, it follows that v is not incident to any blue edge in W and must
therefore be an endpoint. Removing v from W , and hence the red edge uv, yields a
feasible walk W with fewer red edges, a contradiction to the choice of W .

It remains to check property (3). Assume that there is a blue copy of Kt · K2

under c̃, with blue copy K of Kt and pendent blue edge f . As we have already seen,
the switching of colors does not create new blue copies of Kt. Hence, K is blue under
c and all edges intersecting K in exactly one vertex are red under c, since c does not
contain a blue copy of Kt ·K2. This means that f is red under c and hence f ∈ W .
By property v) and K is disjoint from all other blue copies of Kt under c, the walk W
contains an edge from K. The color of this edge is then switched from blue to red, a
contradiction. Altogether we see that c̃ is (K1,s,Kt)-free and hence F 6→ (K1,s,Kt).

To prove Theorem 1.6(b) we first prove Proposition 3.2 below, which states that
for certain graphs G, which we call k-woven, we have (G,Kt) ∼ (G,Kt · aKb) for
any integers a ≥ 1 and b ≥ 2 and a sufficiently large integer t. We will then prove
Theorem 1.6(b) by showing that stars on at least two edges and suitable caterpillars
are k-woven for appropriately chosen k.

Definition 3.1. We call a graph G k-woven if, for each graph F that contains
an edge uv which is contained in all copies of G in F , there is a set Yuv ⊆ E(F )\{uv}
such that the following holds: Yuv consists of at most k edges incident to u and at
most k edges incident to v, and each copy of G in F contains an edge from Yuv. In
other words, Yuv is a set of edges from F of size at most 2k whose removal yields a
graph with no copies of G that still contains the edge uv.

As a simple example, it is not difficult to check that stars with at least two edges
are 1-woven. Indeed, if a graph F has an edge uv that is contained in each copy of
some star K1,s in F , then u and v are of degree at most s in F (and all other vertices
are of degree at most s− 1). So any set Yuv consisting of one edge incident to u and
one edge incident to v in G − uv satisfies the condition stated above, that is, each
copy of K1,s in F contains an edge from Yuv. We demonstrate the utility of k-woven
graphs in Proposition 3.2 below.

The motivation behind the definition of k-woven graphs is again a recoloring
procedure. Given a k-woven graph G and a (G,Kt · aKb)-free coloring, we want to
recolor some edges to obtain a (G,Kt)-free coloring. To get rid of the blue copies of
Kt, we pick a certain set M of edges from all these copies (forming a matching) and
switch their color to red. This “destroys” the blue copies of Kt, but might create
undesired red copies of G instead. We then want to get rid of these red copies of G
by switching the color of some of their edges to blue. Each red copy of G contains an
edge uv from M . Of course, we do not want to switch the color of uv back to blue, so
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Kt

UK

Kr+(a−1)(b−1)

B

< a vertices

Fig. 3.2. Left: The set UK (gray background) in a blue copy K of Kt under ϕ1. Right: A set
B of blue copies of Kt under ϕ1 with pairwise intersection of size less than a. The intersections are
contained in the respective sets UK by Claim 3.3.

we choose from the red edges incident to the endpoints of uv. Specifically, this will be
the set Yuv mentioned in the definition of k-woven graphs. The key property we need
is, that Yuv contains only a bounded number of edges (at most k at each endpoint)
and still “hits” all copies of G containing uv. By this, we “destroy” the red copies of
G while we avoid creating new blue copies of Kt, as t is large.

Proposition 3.2. Let G be a k-woven graph and let a ≥ 1 and b ≥ 2 be integers.
If t is sufficiently large, then (G,Kt) ∼ (G,Kt · aKb).

Proof. Clearly, each Ramsey graph for (G,Kt · aKb) is also a Ramsey graph for
(G,Kt). Let r = r(G,Kb−1), let t ≥ 4k+ 2(r+ (a− 1)(b− 1)) + (a− 1), and consider
a graph F with F 6→ (G,Kt · aKb). We shall show that F 6→ (G,Kt). Let ϕ1 denote
a (G,Kt · aKb)-free coloring of F . Our goal is to recolor several edges to obtain a
(G,Kt)-free coloring of F . For each blue copy K of Kt in F , let UK ⊆ V (K) denote
the set of vertices u in K such that there are at least r + (a − 1)(b − 1) blue edges
between u and F − K whose endpoints induce a complete graph in F − K. See
Figure 3.2 (left).

Let B denote a maximal set of blue copies of Kt in F such that any two copies
of Kt in B intersect in fewer than a vertices. See Figure 3.2 (right). We first make
several general observations.

Claim 3.3. For any two copies K, K ′ ∈ B, we have V (K) ∩ V (K ′) ⊆ UK ∩ UK′

and hence (V (K) \ UK) ∩ (V (K ′) \ UK′) = ∅.
Proof. For each vertex u ∈ V (K)∩V (K ′) the number of blue edges between u and

K−K ′, as well as between u and K ′−K, is at least t−(a−1) ≥ r+(a−1)(b−1). Since
these blue neighborhoods induce a complete graph, we have u ∈ UK and u ∈ UK′ .

Claim 3.4. For every K ∈ B, we have |UK | ≤ a− 1 and hence |V (K) \UK | ≥ 2.

Proof. Under ϕ1, each vertex in UK has a blue neighborhood of size at least
r+ (a− 1)(b− 1) in F −K that induces a complete graph. As there are no red copies
of G under ϕ1, by the definition of Ramsey number, we iteratively find min{a, |UK |}
vertex-disjoint blue copies of Kb−1 in the blue neighborhood of UK , one for up to
min{a, |UK |} vertices in UK . So |UK | ≤ a − 1, as there is no blue copy of Kt · aKb

under ϕ1. This shows that |V (K) \ UK | ≥ t− a+ 1 ≥ 2, as required.

We shall now recolor some edges contained in or incident to cliques in B to obtain
an (G,Kt)-free coloring of F . Choose a maximum matching in each clique K − UK

for K ∈ B (note that these cliques are vertex-disjoint by Claim 3.3; see Figure 3.3),
and let M be the union of these matchings. Let ϕ2 denote the coloring obtained
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Fig. 3.3. Left: A largest blue (dotted) matching M in ∪K∈B(V (K) \ UK) with some pendent
red (solid) edges under φ1. Right: The final coloring ϕ3 is obtained by switching colors in M (from
blue to red) and at most k further incident edges at each vertex in M (from red to blue).

from ϕ1 by switching the color of each edge in M from blue to red. Each red copy
of G under ϕ2 contains an edge from M . Let u1v1, . . . , u|M |v|M | denote the edges
of M in an arbitrary order. We shall use the fact that G is k-woven to find sets
Y1, . . . , Y|M | ⊆ E(F )\M such that each set Yi consists of at most k red edges incident
to ui and at most k red edges incident to vi and such that each red copy of G in F
under ϕ2 contains an edge from Yi for some i ∈ [|M |]. To do so consider the subgraph
F1 of F formed by all red copies of G under ϕ2 containing u1v1 and not containing
ujvj for j > 1. Then F1 − u1v1 contains no copy of G (as it contains no edge from
M), and hence, since G is k-woven, there is a desired set Y1 ⊆ E(F1) \ {u1v1}. For
i > 1 we proceed iteratively. Having chosen Y1, . . . , Yi−1, let Fi denote the subgraph
of F formed by all red copies of G under ϕ2 containing uivi, not containing any edge
from Yj for j < i, and not containing ujvj for j > i. We claim that Fi−uivi contains
no copy of G. For a copy G′ of G in F consider the largest j such that G′ contains
the edge ujvj . If j < i, then G′ contains an edge from Yj′ , for some j′ ≤ j, and hence
is not contained in Fi. If j ≥ i, then ujvj is not contained in Fi−uivi. In both cases,
G′ is not contained in Fi − uivi. Hence, since G is k-woven, there is a desired set
Yi ⊆ E(Fi) \ {uivi}.

Now let ϕ3 denote the coloring obtained from ϕ2 by switching the color of each
edge in ∪1≤i≤|M |Yi from red to blue (see Figure 3.3). Then there are no red copies
of G under ϕ3. Indeed, each red copy G′ of G under ϕ2 contains an edge from Yi for
some i. We shall prove that there are no blue copies of Kt under ϕ3. Let K ′ denote
a copy of Kt in F .

First suppose that K ′ ∈ B. By Claim 3.4, we have |V (K ′) \ UK′ | ≥ 2, and hence
K ′ contains a red edge under ϕ3 from E(K ′) ∩ E(M).

We may assume then thatK ′ 6∈ B. If for eachK ∈ B we have V (K)∩V (K ′) ⊆ UK ,
then |V (K)∩V (K ′)| < a by Claim 3.4. By the maximality of B, K ′ contains a red edge
under ϕ1. This edge is red under ϕ3, since only edges incident to M switched colors
from red to blue and the edges in K ′ are not incident to M (as V (K) ∩ V (K ′) ⊆ UK

for each K ∈ B here). So K ′ is not blue in this case.

If there is K ∈ B with |V (K) ∩ V (K ′)| > d t−|UK |
2 e + |UK |, then K ′ contains an

edge from M ∩K due to the maximality of M . This edge is red under ϕ3 and so K ′

is not blue.
If neither of the two previous cases holds, then let V = ∪K∈B(V (K ′) ∩ (V (K) \

UK)). By assumption |V | ≥ 1 (since we are not in the first case). Each vertex v ∈ V is
contained in exactly one K ∈ B and, since we are not in the second case, the number of
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edges between v and K ′−K is at least t−d t−|UK |
2 e−|UK | = b t−|UK |

2 c. Since v 6∈ UK ,
fewer than r+(a−1)(b−1) of those edges are colored blue under ϕ1 (as their endpoints
induce a complete subgraph of K ′). Together, this means that the number of red edges

under ϕ1 incident to v in K ′ is at least b t−|UK |
2 c−r−(a−1)(b−1)+1 ≥ 2k+1, using the

fact that |UK | ≤ a−1 by Claim 3.4. In total there are at least (2k+1)|V |/2 > k|V | red
edges in K ′ under ϕ1. To obtain ϕ3, at most k|V | edges in K ′ switched their color
from red to blue (as the union of Y1, . . . , Y|M | is a collection of stars with distinct
centers and at most k edges each). This shows that at least one edge in K ′ is red
under ϕ3.

Altogether there are no red copies of G and no blue copies of Kt under ϕ3 and
hence F 6→ (G,Kt).

Proof of Theorem 1.6(b). We shall prove that for any integers a ≥ 1 and b ≥ 2
and any tree T that is either a star with at least two edges or a suitable caterpillar,
there is a sufficiently large t such that (T,Kt) ∼ (T,Kt · aKb). By Proposition 3.2,
it suffices to show that stars and suitable caterpillars are k-woven for some k. As
mentioned above, it is not difficult to check that stars with at least two edges are
1-woven. We now focus on caterpillars, and claim that every s-suitable caterpillar is
2(s+ 1)2-woven.

Let T be an s-suitable caterpillar, that is, T consists of a path abc and s leaves
adjacent to a, s leaves adjacent to c, and s′ < s leaves adjacent to b. We shall prove
that T is k-woven for k = 2(s+1)2. Let F be a graph with an edge uv that is contained
in all copies of T in F , and let F ′ = F − uv. We need to find a set Yuv ⊆ E(F ′)
consisting of at most k edges incident to u and at most k edges incident to v such
that Yuv contains an edge from each copy of T in F .

First suppose that there is a copy T0 of T in F in which u is a leaf. The neighbor
of u in T0 is v, since T0 contains uv by assumption. Then v is of degree at most
|V (T )| − 2 = 1 + 2s+ s′ ≤ k in F ′, since otherwise uv can be replaced in T0 by some
edge vw in F ′ to form a copy of T entirely in F ′, which does not exist by assumption.
Let Yv consist of all edges in F ′ incident to v. If each copy of T in F contains an
edge from Yv, then we can choose Yuv = Yv as our desired edge set. Otherwise, there
is a copy of T in F containing no edges from Yv. In such a copy of T the vertex v is
a leaf, since uv is the only edge incident to v not in Yv. Similarly as above, u is of
degree at most k in F ′, and hence we can choose Yuv to consist of all edges incident
to u and all edges incident to v in F ′.

It remains to consider the case where neither u nor v is a leaf in any copy of
T in F . By the symmetry of T , we may assume that in each copy of T in F the
edge ab corresponds to uv, where a corresponds to either u or v. Let Nu and Nv

denote the set of neighbors of u and v in F ′, respectively, that are of degree at least
s + 1 in F ′ (see Figure 3.4 left). In each copy of T in F the edge bc corresponds
to an edge uw with w ∈ Nu or an edge vw with w ∈ Nv. In particular choosing
Yuv = {uw : w ∈ Nu}∪ {vw : w ∈ Nv} yields the desired edge set, provided that |Nu|,
|Nv| ≤ k. In the following, we prove |Nu| ≤ k. By symmetry the same bound holds
for |Nv|.

For a contradiction, assume that |Nu| ≥ k + 1, which in particular implies that
u is of degree at least k + 1 in F ′. We shall prove that there is a copy of T in F ′

under this assumption. For each w ∈ Nu, choose a star in F ′ with center vertex w
and exactly s leaves not containing u, and let S denote the set of all chosen stars. For
any two such stars S, S′ ∈ S there are at least k + 1 − 2(s + 1) ≥ s > s′ neighbors
of u in F ′ not contained in V (S) ∪ V (S′) (see Figure 3.4 middle). Since F ′ does not
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≥ s

s′
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u u

c1
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}

Fig. 3.4. Left: The vertex u and the set Nu of at least k + 1 neighbors of u of degree at least
s+ 1 each. Middle: If two vertices in Nu have only u as a common neighbor, then there is copy of
T (green/thick gray). Right: Otherwise, there is a vertex x that is a leaf in at least 2s + 1 copies
of K1,s centered in Nu and there is a copy of T (here a 3-suitable caterpillar) as well (green/thick
gray).

contain a copy of T , the stars S and S′ must intersect in some vertex, which could be
the center of one of the stars but not of both.

Now, consider some fixed star S ∈ S. By the pigeonhole principle, there is a
vertex x in V (S) that is contained in at least |S \ {S}|/|V (S)| = (|Nu| − 1)/(s+ 1) ≥
k

s+1 = 2(s+1) of the stars in S. It may happen that x is the center vertex of one such
star, but in any case there is a family of 2s + 1 stars in S that have x as a leaf. Let
X = {c1, c2, . . . , c2s+1} ⊆ Nu denote the set of their centers. Then we find a copy of T
in F ′ as follows: Let X1 denote a set of s′ neighbors of c1 distinct from u and x in F ′,
which exists since s′ < s and c1 ∈ X is of degree s+ 1 in F ′. Let X2 denote a set of s
neighbors of x in X disjoint from X1∪{c1}, which exists since |X| = 2s+1 ≥ s+s′+2.
Finally, let X3 denote a set of s neighbors of u in F ′ disjoint from X1 ∪X2 ∪ {x, c1},
which exists since the degree of u in F ′ is at least k+ 1 = 2(s+ 1)2 + 1 ≥ 2s+ s′ + 2.
Then the path uc1x together with the vertices in X1, X2, and X3 induces a copy of
T in F ′, a contradiction (see Figure 3.4 right). This shows that |Nu| ≤ k and, by
symmetry, |Nv| ≤ k. Hence, Yuv = {uw : w ∈ Nu}∪{vw : w ∈ Nv} is the desired edge
set.

4. Non-equivalence results for trees and cliques. In this section, we prove
each part of Theorem 1.7 in turn. When constructing appropriate distinguishing
graphs in our proofs, we will often combine several smaller graphs, which we call
building blocks, by identifying some of their vertices or edges. We will assume that,
except for the specified intersections, all of these building blocks are disjoint from one
another.

4.1. Proof of Theorem 1.7(a). Recall that the diameter of a tree T , denoted
diam(T ), is the length of its longest path. Our construction gives (T,Kt) 6∼ (T,H)
for each tree T from the following slightly larger class T ′ consisting of all trees T
that either have odd diameter, or have even diameter and additionally satisfy the
following:

• The central vertex of T has at most one neighbor of degree at least three that
is contained in a longest path in T .

• If T is of diameter four, the central vertex is of degree at least three.
See Figure 4.1 for an illustration.

Theorem 1.7(a) is clearly a direct consequence of Theorem 4.1 below.

Theorem 4.1. Let t ≥ 3, let H be a connected graph, and let T ∈ T ′. Then
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Fig. 4.1. An odd diameter tree (left) and an even diameter tree (right) from the class T ′.

(T,Kt) 6∼ (T,H).

Proof. Consider a tree T ∈ T ′. If ω(H) 6= t, then (T,Kt) 6∼ (T,H) by Theo-
rem 1.4. So we assume Kt ( H for the remainder of the proof. We will construct a
Ramsey graph for (T,Kt) that is not Ramsey for (T,Kt ·K2) and hence not Ramsey
for (T,H). The construction differs slightly depending on the parity of the diameter
of T . We begin by introducing a useful gadget graph.

Throughout the proof, we let Uk,i denote the rooted tree in which every leaf is
at distance i from the root and every vertex that is not a leaf has exactly k children.
Here, the distance between two vertices x and y is the length of a shortest path that
has x and y as its endpoints. Such a tree is sometimes called a perfect k-ary tree of
depth i, but in the literature this term is also used with other meanings. Note that
Uk,i contains every tree of diameter at most 2i and maximum degree at most k.

Let d denote the maximum degree of T . Let Γ be a Ramsey graph for (T,Kt−1)
that does not contain a copy of Kt, which exists by Theorem 1.4. Write k = d|V (Γ)|.
For a positive integer i, let Λi = Λi(T,Γ) denote the graph obtained from a copy
of Uk,i by adding edges so that, for each non-leaf vertex of Uk,i, its set of children
induces d vertex-disjoint copies of Γ. We refer to the root of Uk,i as the root of Λi.
Let Φi = Φi(Λi) be the red/blue-coloring that assigns red to all edges in Uk,i and
blue to all the other edges, see Figure 4.2 (left) for an illustration. Observe that, if
2i < diam(T ), then Φi is a (T,Kt)-free coloring of Λi. We have the following Ramsey
property of Λi.

Claim 4.2. Every red/blue-coloring of Λi yields a red copy of T , a blue copy of
Kt, or a red copy of Ud,i whose root is the root of Λi.

Proof. To see why this is true, consider an arbitrary 2-coloring of Λi with no red
copy of T . Then each copy of Γ contains a blue copy of Kt−1. If some non-leaf vertex
in Uk,i has only blue edges to one of the copies of Γ formed by its children, then there
is a blue copy of Kt. Otherwise, every such vertex has a red edge to each of the d
copies of Γ formed by its children, yielding a copy of Ud,i as required.

First consider the case where T is of diameter 2r + 1 for some integer r. We
construct a graph F as follows: Start with a copy K of Kt. For each vertex u of K,
add a copy of Λr rooted at u so that the copies of Λr are pairwise disjoint. We claim
that F → (T,Kt) and F 6→ (T,Kt ·K2).

To prove the first claim, we consider an arbitrary 2-coloring of F with no red copy
of T . By Claim 4.2, some copy of Λr contains a blue copy of Kt or each vertex of K
is the root of a red copy of Ud,r. If we find a blue copy of Kt, we are done, and hence
we may assume that the latter happens for every vertex of K. If there is a red edge
in K, then this edge and the red copies of Ud,r rooted at its endpoints form a graph
which contains a red copy of T . Otherwise, all edges of K are colored blue, yielding
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Kt
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...
...

...
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Λr-2 Λr-2

Λr-1

Λi {distancei

Γ′
C

r r′

Fig. 4.2. Left: Graphs Λi and C with the respective (T,Kt ·K2)-free colorings. Right: A graph
F with F → (T,Kt) and F 6→ (T,Kt ·K2) in case T is of even diameter.

a blue copy of Kt. This shows F → (T,Kt).
To see that F 6→ (T,Kt ·K2), color all edges of K blue and give all copies of Λr

the coloring Φr. Then K is the only blue copy of Kt and it cannot be extended to a
copy of Kt ·K2, as all edges leaving K are colored red and all the other blue edges
form vertex-disjoint copies of Γ, which was chosen such that Kt * Γ. The red edges
form vertex-disjoint trees of diameter 2r < diam(T ). Hence, there is no red copy of
T and no blue copy of Kt ·K2 and so F 6→ (T,Kt ·K2).

Now consider the case where T is of diameter 2r for some integer r. In this case
the assumptions on T ′ imply that at most one neighbor of the central vertex is of
degree at least three and is contained in a longest path. Further, if the diameter is
exactly four, the central vertex of T is of degree at least three. Let x denote the
central vertex of T , let y denote a neighbor of x in T that is of largest degree among
all neighbors of x contained in a longest path in T , and let a denote the number of
all other neighbors of x contained in a longest path in T (see Figure 4.1 (right) for an
illustration). By the assumption on the structure of T , all neighbors of x counted by
a are of degree exactly two in T . As in the previous case, we will use the graphs Λi

as building blocks. We now define the second type of building block that we will use
in the construction.

Let J denote a graph containing no copy of Kt such that, for any 2-coloring of
the vertices of J , there is a vertex-monochromatic copy of Kt−1. Such a graph exists
by [14]. Let Γ′ be a Ramsey graph for (T, J) not containing a copy of Kt, which exists
by Theorem 1.4, and let k′ = |V (Γ′)|. Let C denote the graph obtained from a copy
of Γ′ by adding two non-adjacent vertices r and r′ and a complete bipartite graph
between these two vertices and the vertices of the copy of Γ′. For convenience we call
r the root of C. See Figure 4.2 (left) for an illustration.

Claim 4.3. In every red/blue-coloring of C, there exists a red copy of T , a blue
copy of Kt, or a red path rvr′ for some v ∈ V (Γ′).

Proof. To see why this is true, consider a red/blue-coloring of C with no red copy
of T . Then the copy of Γ′ in C contains a blue copy J ′ of J . In particular, each copy
of Kt−1 in J ′ is blue. Moreover, either each copy of Kt−1 has a red edge going to
each of r and r′, or there is a blue copy of Kt. In the latter case, we are done, so
assume the former. Consider a vertex coloring of J ′ obtained by coloring each vertex
v in J ′ with the color of the edge rv. Since there cannot be a vertex-monochromatic
blue copy of Kt−1, there is a vertex-monochromatic red copy of Kt−1. We know that
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there is a red edge between this copy of Kt−1 and r′, and hence we find a red path
rvr′, where v ∈ V (J ′).

We now construct a graph F ′ as follows: Start with a copy K ′ of Kt. For each
vertex u of K ′, add a copies of C and a copy of Λr−1 all rooted at u. Further, for
each copy of C, add a copy of Λr−2 rooted at the copy of r′. See Figure 4.2 (right)
for an illustration. We claim that F ′ → (T,Kt) and F ′ 6→ (T,Kt ·K2).

To prove the first claim we consider an arbitrary 2-coloring of F ′ with no red
copy of T . By Claim 4.2, either there is a blue copy of Kt in some copy of Λr−1 or
Λr−2 or the root of each copy of Λr−1 or Λr−2 is the root of a red copy of Ud,r−1
or Ud,r−2, respectively. Assume the latter is true, since otherwise we are done. By
Claim 4.3, either there exists a blue copy of Kt in some copy of C or each copy of C
in F contains a red path of length two connecting the copies of r and r′. Again, we
may assume that we are in the latter case. For each copy of C, the copy of r′ is the
root of a copy of Λr−2. Now, every vertex of K ′ is the root of a copies of C and a
copy of Λr−1. If there is a red edge e in K, then there is a red copy of T formed by
e and subtrees of the red trees rooted at its endpoints, with e playing the role of the
edge xy in T . Otherwise all edges of K are colored blue, proving the claim.

To show that F ′ 6→ (T,Kt ·K2) we color the edges of F ′ as follows: All edges of
K ′ are colored blue and all mentioned copies of Λi (i ∈ {r − 1, r − 2}) are colored
according to the coloring Φi, as defined earlier. For each mentioned copy of C, all
edges in the copy of Γ′ are blue and all other edges red. Then K ′ is the only blue copy
of Kt, as all other blue edges form vertex-disjoint copies of Γ or Γ′ and these graphs
do not contain copies of Kt. Moreover, K ′ has only red incident edges. So there is no
blue copy of Kt ·K2. Now consider the red subgraph of F ′, and recall that the central
vertex of T has a + 1 neighbors contained in paths of length 2r. If r > 2, then each
longest red path in F ′ has 2r edges and the middle vertex of each such path is in K ′.
In particular, the central vertex of each red tree of diameter 2r is in K ′. But for each
vertex u ∈ V (K ′) there are at most a red paths of length 2r that meet at u and are
otherwise pairwise vertex-disjoint, so there is no red copy of T . If r = 2, then for the
same reason there is no red copy of T rooted in K ′. In this case there are also red
paths of length 2r = 4 whose central vertex is in the neighborhood of K ′. However,
these vertices are of degree at most two in the red subgraph and, by assumption, the
root of T is of degree at least three in this case. This shows that F 6→ (T,Kt ·K2).

4.2. Proof of Theorem 1.7(b). We first introduce some definitions. A cycle of
length s in a hypergraph H is a sequence e1, v1, e2, v2 . . . , es, vs of distinct hyperedges
and vertices such that vi ∈ ei ∩ ei+1 for all 1 ≤ i ≤ s where es+1 = e1. The girth
of a hypergraph H is the length of a shortest cycle in H (if no cycle exists, then we
say that the girth of H is infinity). The chromatic number of a hypergraph H is the
minimum number r for which there exists an r-coloring of the vertex set of H with no
monochromatic edges. A hypergraph is d-degenerate if every subhypergraph contains
a vertex of degree at most d, and we define its degeneracy to be the smallest d for
which this property holds.

Proof of Theorem 1.7(b). Suppose that H contains a copy K of Kt, and H con-
tains a cycle with vertices from both V (K) and V (H) \ V (K). Let g ≥ 3 denote the
length of a shortest such cycle in H and let k = |E(T )|.

We shall use a hypergraph of high girth and high minimum degree. The existence
of such a hypergraph follows from a well-known result of Erdős and Hajnal [12]; we
sketch the argument here for the sake of completeness. Erdős and Hajnal [12] showed
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that there exists a t-uniform hypergraph H′ with girth at least g + 1 and chromatic
number at least kt + 1. It is not difficult to show, using a greedy algorithm, that a
d-degenerate hypergraph has chromatic number at most d+1. Hence, the degeneracy
of H′ must be at least kt, and thus H′ must contain a t-uniform subhypergraph H
with girth at least g + 1 and minimum degree at least kt.

We construct a graph F with vertex set V (H) by embedding a copy of Kt into
each edge of H. First observe that F does not contain a copy of H, since H has girth
larger than g and hence each cycle of length at most g is fully contained in one of the
copies of Kt, that is, in one of the hyperedges, and no two copies of Kt in F share an
edge. In particular F 6→ (T,H). Next we shall prove that F → (G,Kt). Consider a
2-coloring of F without blue copies of Kt. Then each copy of Kt in F (each hyperedge
of H) contains a red edge. Since H has minimum degree kt and is t-uniform, there are
at least v(H)k red edges, that is, the average red degree of F is at least 2k. It follows
from a standard greedy argument that the red subgraph of F contains a subgraph of
minimum degree at least k. By greedily embedding the vertices of T in this subgraph,
we find a red copy of T . Hence F → (T,Kt) and (T,Kt) 6∼ (G,H).

4.3. Proof of Theorem 1.7(c). In order to prove part (c) of Theorem 1.7, we
will use a gadget graph known as a determiner. A graph D with a distinguished edge
β ∈ E(D) is called (G,H, β)-determiner, if D 6→ (G,H), and in every (G,H)-free
red/blue-coloring of D, the edge β is colored red. Moreover, we call such determiner
well-behaved if it has an (G,H)-free coloring in which all edges incident to β are blue.
Burr, Erdős, Faudree, Rousseau, and Schelp [7] showed that well-behaved determiners
exist for any pair (T,Kt) when both the tree and the clique have at least three vertices.
In fact, their construction satisfies some further properties which we will use in the
proof of Theorem 1.7(c). We summarize those in the following proposition.

Proposition 4.4 ([7, Proof of Theorem 8, Lemmas 9 & 10]). Let t ≥ 3 be
an integer and T be a tree with at least three vertices. There exists a well-behaved
(T,Kt, β)-determiner D. Moreover, the graph induced by the endpoints of β and the
union of their neighborhoods is isomorphic to Kt.

Proof of Theorem 1.7(c). We may assume that G 6⊆ T , since otherwise G is a
tree and we can switch the graphs G and T in the statement. Suppose that the pairs
(T,Kt) and (G,Kt) are Ramsey equivalent. In order to reach a contradiction, we will
construct a graph F which is Ramsey for (T,Kt) but not Ramsey for (G,Kt). To do
so, first fix a (T,Kt, β)-determiner D, as given by Proposition 4.4. To create F , we
start with a copy T0 of T , and for each edge e of T0 we take a copy De of D on a new
set of vertices and identify e with the copy of β in De.

We first observe that F is a Ramsey graph for (T,Kt). Indeed, if we assume that
F has a (T,Kt)-free coloring, then this induces a (T,Kt)-free coloring on each copy
of D, so each copy of β needs to be red by the definition of a determiner. But then
T0 becomes a red copy of T , a contradiction.

It remains to prove that F is not Ramsey for (G,Kt), i.e., to find a (G,Kt)-free
coloring of F . For this, fix any edge e0 ∈ E(T0). We first observe that the graph
F −e0 is not Ramsey for (T,Kt) by considering the following coloring: give each copy
of D a (T,Kt)-free coloring such that its copy of β is red (or not colored if β = e0) and
all edges incident to β in D are blue. The existence of such a coloring is guaranteed
by the fact that D is well-behaved.

By our assumption that (T,Kt) and (G,Kt) are Ramsey equivalent, we conclude
that F − e0 is not a Ramsey graph for (G,Kt). Therefore, we can find a (G,Kt)-free
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coloring c of F − e0. We now extend this coloring to F by assigning the color blue
to e0. If this does not create a blue copy of Kt, we have already found the required
coloring. So we may assume that this extension leads to a blue copy K of Kt. Notice
that every copy of Kt in F is fully contained in a copy of the determiner D. Then by
Proposition 4.4 this blue copy of Kt is the graph induced by the endpoints of e0 and
the union of their neighborhood in De0 , i.e., it must be contained in the copy De0 of
D and is unique (as the coloring c is (G,Kt)-free). We now use this information to
recolor all other copies of D− β in F using the coloring of De0 − e0; we further color
T0 fully red. In this new coloring of F , there cannot be a blue copy of Kt as there
were none in De0 − e0. Moreover, there cannot be a red copy of G, since every copy
of D − β has a (G,Kt)-free coloring, every edge incident to T0 is blue, and G 6⊆ T .
This is a contradiction to the assumption F → (G,Kt) and hence (T,Kt) 6∼ (G,Kt).

5. Concluding remarks and open problems. In this paper we identify a
non-trivial infinite family of Ramsey equivalent pairs of connected graphs of the form
(T,Kt) ∼ (T,Kt ·K2), where T is a non-trivial star or a so-called suitable caterpillar.
We also prove that (T,Kt) 6∼ (T,Kt ·K2) for a large class of other trees T including all
trees of odd diameter. It remains open whether for the remaining trees the respective
pairs are Ramsey equivalent or not. Our proof actually shows (G,Kt) ∼ (G,Kt ·K2)
for all so-called woven graphs G and sufficiently large t. This leads to the following
two questions: Are there any woven graphs other than the trees mentioned in Theo-
rem 1.6(b)? Are there non-woven graphs G and integers t with (G,Kt) ∼ (G,Kt ·K2)?

One of the questions that drove the study of Ramsey equivalence is: What graphs
H are Ramsey equivalent to the clique Kt? This question was addressed in [3, 15, 28].
In particular, it follows from the results of Folkman [14] and Nešetřil and Rödl [21] and
Fox, Grinshpun, Liebenau, Person, and Szabó [15] that there is no connected graph
H 6= Kt such that H ∼ Kt. It is then natural to ask: what about an asymmetric pair
of connected graphs?

Question 5.1. Are there connected graphs G and H and an integer t such that,
for (G,H) 6= (Kt,Kt) it holds (G,H) ∼ (Kt,Kt)?

Some known results allow us to easily exclude many possible pairs (G,H). For
example, the results of Folkman [14] and Nešetřil and Rödl [21], as stated in Theo-
rem 1.4 above, show that, if max{ω(G), ω(H)} 6= t, then (G,H) 6∼ (Kt,Kt), while
the work of Fox, Grinshpun, Liebenau, Person, and Szabó [15] shows that we cannot
have ω(G) = ω(H) = t. Thus, we can restrict our attention to pairs (G,H) with
ω(G) < t and ω(H) = t. Combining several results concerning Ramsey properties
of the random graph G(n, p) [5, 17, 20, 25, 26], we can restrict (G,H) even further:
namely, we can show that m2(G) = m2(H) = m2(Kt). Using the ideas developed by
Savery in [27], we can also prove that the chromatic numbers of the graphs G and H
must satisfy either χ(G) = t − 1 and χ(H) = t + 1, or χ(G) = t and H = Kt. In
addition, the theory of determiners developed in [9] for 3-connected graphs allows us
to conclude that G and H cannot both be 3-connected. It would be very interesting
to provide a complete answer to Question 5.1.

Our study focuses on pairs of connected graphs. Disconnected graphs have also
received some attention in the symmetric setting; the central question here asks which
graphs are Ramsey equivalent to a complete graph [3, 15, 28]. Similar questions arise
in the asymmetric setting, for instance for which graphs G and integers t we have
(G,Kt) ∼ (G,Kt +Kt−1), where Kt +Kt−1 is the disjoint union of Kt and Kt−1 (this
holds in case G = Kt by [3]).
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