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ABSTRACT: Metal−organic magnets (MOMs), modular mag-
netic materials where metal atoms are connected by organic linkers,
are promising candidates for next-generation quantum technolo-
gies. MOMs readily form low-dimensional structures and so are
ideal systems to realize physical examples of key quantum models,
including the Haldane phase, where a topological excitation gap
occurs in integer-spin antiferromagnetic (AFM) chains. Thus, far
the Haldane phase has only been identified for S = 1, with S ≥ 2
still unrealized because the larger spin imposes more stringent
requirements on the magnetic interactions. Here, we report the
structure and magnetic properties of CrCl2(pym) (pym =
pyrimidine), a new quasi-1D S = 2 AFM MOM. We show, using
X-ray and neutron diffraction, bulk property measurements,
density-functional theory calculations, and inelastic neutron spectroscopy (INS), that CrCl2(pym) consists of AFM CrCl2 spin
chains (J1 = −1.13(4) meV) which are weakly ferromagnetically coupled through bridging pym (J2 = 0.10(2) meV), with easy-axis
anisotropy (D = −0.15(3) meV). We find that, although small compared to J1, these additional interactions are sufficient to prevent
observation of the Haldane phase in this material. Nevertheless, the proximity to the Haldane phase together with the modularity of
MOMs suggests that layered Cr(II) MOMs are a promising family to search for the elusive S = 2 Haldane phase.

■ INTRODUCTION
Metal−organic magnets (MOMs) are assembled from metal
nodes bridged by organic molecular linkers into extended
networks.1 This gives them a number of advantages over
conventional inorganic magnets: there is a much wider
diversity of organic than atomic ligands;2 the modularity of
their construction allows for tuning of interactions while
retaining the topology;3 their longer lengths facilitate magnetic
low dimensionality4,5 and thus enhanced quantum fluctua-
tions.6 Perhaps most excitingly, it has recently been
demonstrated that redox-active radical ligands can introduce
into MOFs both high electronic conductivity (0.45 S cm−1)7

and strong magnetic interactions,8,9 despite the long distances
between metal centers. This suggests that MOMs could form
the basis for practical new quantum technology.10−14

MOM spin chains are now well-established as host materials
for distinctively quantum behavior, from spin fractionalization
in Cu(C6H5COO)2·3H2O15 to the quantum sine-Gordon
physics of Cu(pym)(NO3)(H2O)2

16 (pym = pyrimidine) and
[Cu(pym)(H2O)4]SiF6·H2O.17 One of the most striking
quantum discoveries in MOMs was the measurement of the
topological Haldane gap in the antiferromagnetic S = 1 spin
chain MOM Ni(C2H8N2)·2NO2(ClO4),18−20 and subsequent
efforts have uncovered a number of other high-quality model

systems.21−24 The Haldane phase is yet to be experimentally
realized for spins S > 1.
The difficulty of reaching the Haldane phase for S ≥ 2 is

largely because the size of the Haldane gap relative to the
intrachain exchange, Δ/J1, decreases significantly from Δ/J1 =
0.41 for S = 1 to Δ/J1 = 0.087 for S = 2, making the gap both
more sensitive to the presence of single-ion anisotropy and
non-Heisenberg exchange interactions and harder to detect
when present.25 These challenges have meant that although
antiferromagnetic (AFM) S = 2 spin chains which could be
candidates to host the Haldane phase have been identified, the
S = 2 gap has not yet been observed.26−30 The combination of
modularity and the low dimensionality of MOMs means they
are an ideal platform to search for the S = 2 Haldane phases.
However, the most synthetically accessible S = 2 transition
metal ion is Fe2+, which typically possesses large single-ion
anisotropy due to its partially quenched 5T2g ground state, and
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other S = 2 ions, Mn3+ and Cr2+, are usually sensitive to
reduction or oxidation in ambient conditions. As a result, the
chemistry of MOMs which could host S = 2 Haldane phases is
comparatively underexplored, and their quantum states are
thus unrealized.
Here we report CrCl2(pym), a new 2D layered magnetic

coordination polymer consisting of CrCl2 chains bridged by
pym ligands. CrCl2(pym) has a structure analogous to that of
the other transition metal monopyrimidine chlorides
(MCl2(pym), M = Mn, Fe, Co, Ni, Cu),31 the Mn, Co, and
Cu analogues of which are reported to possess antiferromag-
netic coupling without order down to 1.8 K.32 We first describe
its synthesis and structural characterization using X-ray
diffraction, where the presence of a pronounced Jahn−Teller
(JT) distortion confirms the presence of Cr2+. We then go on
to show using comprehensive magnetic characterization,
including bulk magnetization, heat capacity measurements,
and powder neutron diffraction (PND) and powder inelastic
neutron scattering (INS) measurements of fully protonated
samples, that CrCl2(pym) orders into a Neél ground state at
TN = 20.0(3) K, with AFM ordering along the CrCl2 chain,
FM coupling of the chains through pym, and interlayer FM
correlations. Through a detailed analysis of the neutron
scattering data, in combination with density-functional-theory
(DFT) calculations, we quantitatively determine the size of the
key magnetic interactions, which suggest that CrCl2(pym) is a
well-separated S = 2 AFM with near-isotropic single-ion
properties. We therefore suggest that through careful ligand
choice this family of MOMs offers a potential route to realize
the Haldane phase for S = 2.

■ RESULTS
Synthesis and Structure. We synthesized CrCl2(pym) by

reacting CrCl2 with pyrimidine. We found that the
monopyrimidine CrCl2(pym) forms in a wide variety of
solvents and stoichiometries, and even via neat combination
and with excess ligand, although bispyrimidine analogues are
known for other transition metals.33−35 Single crystals suitable
for X-ray diffraction measurements were grown through vapor
diffusion. We solved the structure from single-crystal X-ray
diffraction (SCXRD) data and found that CrCl2(pym)
crystallizes in the monoclinic space group P21/m with two
formula units in the unit cell (Table S1). The Cr2+ ions are
coordinated by four Cl− ligands and two N atoms from the
pyrimidine ligands, which form a distorted CrCl4N2 octahe-
dron (Figure 1c,d). The chromium octahedra edge share
through the Cl− ligands along the crystallographic a direction,
and these chains are connected by pyrimidine ligands along the
crystallographic b direction with an alternating orientation to
form corrugated layers (Figure 1a). These layers stack in the
crystallographic c direction through van der Waals interactions
(Figure 1b). The Cr2+ ion has a large JT distortion, with a long
Cr−Cl bond length of dCr−Cl = 2.761(5) Å, comparable to the
complex Cr2+Cl2(pyridine)4 dCr−Cl = 2.803(1) Å,

36 confirming
the Cr2+ oxidation state. Powder X-ray diffraction performed
after exposure to air for 1 month show the lattice distortion
resulting from this JT distortion is retained, demonstrating that
the bulk of the sample maintains the Cr2+ oxidation state after
exposure to air (Figure S4).
Magnetic Susceptibility. As we expected CrCl2(pym) to

be an S = 2 2D magnet, we measured its temperature
dependent magnetic susceptibility, χ(T). The sample was
measured under field cooled (FC) and zero field cooled (ZFC)

conditions in a 0.01 T dc field from 2 to 300 K. These data
show a broad peak at 20−25 K characteristic of short-range
ordering and low-dimensional magnetism (Figure 2a). The dχ/

dT(T) data show a discontinuity at 20 K, indicating a phase
transition from a disordered magnetic state to a long-range-
ordered AFM state (Figure 2d). Fitting χ−1(T) data to the
Curie−Weiss law gave a Curie constant, C = 3.08(1) emu K
mol−1, in good agreement with the presence of high-spin Cr2+
(C = 3 emu K mol−1) (Figure 2c,d). The Curie−Weiss
temperature is significant and negative, θ = −54.1(5) K,
indicating net antiferromagnetic interactions (Figure 2d), and
isothermal magnetization measurements carried out at 2 K

Figure 1. Crystal structure of CrCl2(pym) viewed along the (a) c, (b)
a, and (c) b axes. Cr−Cl bond lengths are labeled, and H atoms are
omitted for clarity. (d) ORTEP diagram showing the coordination
environment.

Figure 2. Magnetic susceptibility, χ, measurements of CrCl2(pym).
(a) χ(T) measured in zero field cooled (ZFC) and field cooled (FC)
conditions from 2 to 300 K. (b) χ(T) data highlighted for 2−30 K.
(c) χT(T) in ZFC and FC conditions for 2−300 K, with Curie−Weiss
fit carried out over 300 > T > 150 K. Dashed line shows the S = 2
spin-only limit. (d) ZFC dχ/dT(T) over 2−300 K. Inset: ZFC dχ/
dT(T) over 2−35 K.
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show that saturation is not reached at fields of 5 T (Figure S7).
While M(H) is linear in μ0H > 1 T, there is a small sigmoid
feature at μ0H < 1 T consistent with minor paramagnetic
impurities.
The rise in χ(T) below T = 10 K indicates the presence of

small quantities of paramagnetic spins, which we determined to
be 1.1(1) spin % from fitting of the Curie-like tail (Figure
S13).37 This Curie-like tail may be caused by free spins at
chain ends or Cr3+ formed due to surface oxidation (Figure
2b). Indeed, measurement of the magnetic susceptibility of
CrCl2(pym) after air exposure showed a large increase in the
paramagnetic contribution, 15.0(2) spin % (Figure S6), and X-
ray photoelectron spectroscopy (XPS) of this air-exposed
sample primarily detected oxidized Cr (Figure S8), with Cr3+,
Cr6+, and metallic Cr present, as well as O 1s peaks consistent
with the formation of Cr(OH)3.

38

Heat Capacity. The molar heat capacity, Cp(T), of
CrCl2(pym) was measured from 2 to 60 K. We found a
peak in Cp(T) occurred at 20.0(3) K (Figure 3a), consistent

with the magnetic phase transition observed in the magnetic
susceptibility data (Figure 2a). We obtained an estimate of the
entropy of magnetic ordering by integrating Cp/T(T) after
subtraction of a linear background (10−15 and 27−30 K)
(Figure 3b), to account for phononic contributions. We found
that the measured value of magnetic entropy (Sexp. = 12.7(4) J
mol−1 K−1) is slightly reduced from the expected value (Scalc. =
13.4 J mol−1 K−1). The small features present in the data
between 30 and 40 K are due to instrumental error.
Neutron Diffraction. Our bulk measurements thus

strongly suggested the presence of long-range magnetic
order. To determine the nature of this magnetic ground
state, we carried out PND using instrument D1B at the Institut
Laue-Langevin (ILL) on a 5 g nondeuterated sample of
CrCl2(pym). We measured the neutron diffraction pattern at
two temperatures: T = 1.5 K below TN and T = 30 K above.
We isolated the magnetic scattering from instrumental
background and nuclear scattering contributions by subtracting
the high temperature data set from the low temperature data
set (Figure 4c), which allowed us to identify the magnetic
Bragg peaks. We were able to index these reflections with a
propagation vector k = (1/2,0,0), and using symmetry-mode
analysis in the ISODISTORT software suite,39 we identified
there were two possible irreducible representations (irreps),
mY1− and mY2−, in Miller and Love’s notation.40 After
calibration of the nuclear scale factor through Rietveld
refinement of nuclear structure against the high temperature

data set, we carried out Rietveld refinement of the magnetic
structure using each irrep against the temperature subtracted
data set. We found for both nuclear and magnetic refinement
that an hkl-dependent peak broadening term was necessary to
account for the variation in measured peak widths. This
showed that only the mY1− irrep was consistent with
experimental data (Figure 4c). The mY1− irrep lowers the
symmetry of the structure to Pc21/c with the magnetic unit cell
relating to the nuclear cell as follows: amag. = cnuc., bmag. = bnuc.,
and cmag. = 2anuc. (Figure 4a,b).
The magnetic structure derived from this refinement is a

collinear structure consisting of antiferromagnetically corre-
lated CrCl2 spin chains ferromagnetically correlated through
the pym ligands, with interlayer ferromagnetic correlations
(Figure 4b). The refined magnetic moment for Cr was
determined to be M0 = 2.61(7) μB, significantly less than the
spin-only value of M = gS = 4 μB.
The magnetic moments in our model lie within the ac plane;

however, components along the b direction would be
permitted by symmetry. The presence of a component along
b would result in intensity at the 011mag. peak position (Q =
1.00 Å−1) which is not seen in our data, so any noncollinearity
must be small, θ < 8°. The background of this subtracted I1.5 K
− I30 K data set contains a broad negative feature characteristic
of magnetic diffuse scattering, which could be modeled by a
broad Lorentzian peak centered at the 101mag. peak position,
with an isotropic correlation length at 30 K of λ = 2.8(2) Å.

Figure 3. (a) Heat capacity as a function of temperature, Cp(T), with
the nonmagnetic background approximated by a linear fit over the
region 10−30 K (dashed line). (b) Cp/T(T), with nonmagnetic
background (dashed line). Inset: entropy near TN.

Figure 4. (a) The crystal structure of CrCl2(pym), with nuclear axes
shown. (b) The magnetic structure, highlighting the three most
important exchange interactions, Jn, with magnetic axes shown. (c)
Rietveld refinement of temperature subtracted neutron scattering
data. Data between Q = 1.9 and 2.1 Å−1 were excluded from the
refinement due to incomplete subtraction of nuclear Bragg peaks due
to thermal expansion.
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Inelastic Neutron Scattering. To measure the parameters
of the magnetic Hamiltonian and search for signatures of low-
dimensional magnetism, we collected INS spectra on the same
powder sample of CrCl2(pym) at 1.7 and 25 K using the LET
spectrometer at ISIS, using rep-rate multiplication to measure
at multiple Ei values simultaneously (Ei = 12.14, 3.70, 1.77
meV). The spectra collected at 1.7 K show a clear excitation
centered at ΔE = 4.1(2) meV with an energy gap of 2.2(1)
meV (Figure 5a) despite the presence of an elevated
background due to the incoherent 1H scattering. The intensity
of this feature rapidly falls with increasing Q, until it is masked
by phonons, indicating this excitation is magnetic in origin. We
were able to quantitatively fit these data using linear spin wave
theory (LSWT) (Figure 5b) as implemented by the SpinW
software package,41 using the following magnetic Hamiltonian:

J D SS S ( )
ij

ij i j
i

i
z 2= · +

(1)

comprising Heisenberg exchange, Jij, for the three nearest
neighbors (i.e., along the CrCl2 through the pym ligand and
between layers) and a single-ion anisotropy, D (Figure 4b). We
began by estimating the approximate values for each of J1, J2, J3,
and D using our bulk magnetic measurements and
extrapolating from analogous compounds.26 These initial
parameters were then optimized using least-squares require-
ments of the calculated spectrum, including a refined
multiplicative scale factor and a background linear in both Q
and ΔE, against the experiment data which gave J1 = −1.13(4)
meV, J2 = 0.10(2) meV, 0 < J3 < 0.01(1) meV, and D =
−0.15(3) meV. The value of D was corrected for kinematical
consistency,42 as by default SpinW uses the inconsistent D’ =
D[1−1/2S] = 3/4D. A grid search was undertaken to confirm
this as a unique solution. Our experimental spectra were
consistent with a negligible value for J3; however, the ground
state determined by PND indicates that J3 must be
ferromagnetic. The ratio of J1/J2 = 11(2) indicates that the
magnetic interactions in this materials are primarily one-
dimensional. We therefore decided to investigate the spectrum
of CrCl2(pym) in the short-range-ordered regime to search for
coherent excitations (Figure 5c). Energy cuts, integrated over
momentum transfer, 0.76 < Q < 1.84 Å−1, showed no clear
evidence of a gap in the paramagnetic regime, for both Ei =
12.14 meV and Ei = 3.70 meV, suggesting this material is not

within the Haldane phase (Figure S3b), although the
comparatively high temperature compared to the expected
gap size, T/Δ = 25, will make this challenging.
Density-Functional Theory. To understand the origin of

the observed low-dimensional interactions, we carried out
collinear spin-polarized plane-wave DFT calculations, by
exploring the electronic structure of the DFT ground-state
spin configuration and calculating the exchange energies using
the broken symmetry approach.43 We first optimized the
geometry of the experimental structure using the PBE
functional along with a many-body semiempirical dispersion
correction (MBD*)44 to describe the weak van der Waals
forces between the layers.45 We found that this structure was
both too dense, with a unit-cell volume of 297.68 Å3, 4.8%
smaller than the experimental value of 312.75 Å3, and lacked
the JT distortion characteristic of Cr(II). We therefore
included an effective Coulomb on-site energy, Ueff = U − J,
where U is the on-site repulsion and J the exchange energy, to
account for the overly delocalized Cr d-states. A range of
values for Ueff have been previously explored for Cr, from Ueff =
2.1 eV to Ueff = 3.5 eV.

46,47 We found that Ueff = 3 eV was able
to accurately capture the physics of this system and produced a
structure with both a JT distortion and, as a bonus, a volume
within +0.2% of experiment.
Exchange interactions were calculated using a 2 × 2 × 1

supercell of the optimized structure (i.e., containing eight
distinct Cr atoms) decorated with eight distinct magnetic
orderings. Single point energy calculations were then carried
out on each configuration, and these DFT+U total energies
were then fitted to the Hamiltonian described in eq 1 with D =
0, i.e., the Heisenberg limit. We carried out these calculations
using a series of values of Ueff to ensure consistency of behavior
(Figure S10). For our optimized value of Ueff = 3 eV, we
obtained a self-consistent set of superexchange interactions of
J1 = −2.53(5) meV, J2 = 0.30(5) meV, and J3 = −0.09(5) meV.
To test the robustness of our DFT+U calculations, we
performed hybrid calculations using a fraction of Fock
exchange as implemented in the HSE functional48−50 while
maintaining a Ueff = 3 eV. HSE calculations are computation-
ally expensive due to the calculation of Fock exchange and
require the use of norm-conserving pseudopotentials within
CASTEP, which limited the sampling of the Brillouin zone and
our ability to explore geometry optimizations. Nevertheless, we

Figure 5. Time-of-flight powder INS spectra of CrCl2(pym) with Ei = 12.14 meV measured at (a) 1.7 and (c) 25 K. (b) LSWT calculated
scattering intensity fitted to the 1.7 K data, with parameters J1 = −1.13(4) meV, J2 = 0.10(2) meV, J3 = 0.01(1) meV, and D = −0.15(3) meV.
Hamiltonian described in eq 1.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://doi.org/10.1021/jacs.2c10916
J. Am. Chem. Soc. 2023, 145, 1783−1792

1786

https://pubs.acs.org/doi/suppl/10.1021/jacs.2c10916/suppl_file/ja2c10916_si_001.pdf
https://pubs.acs.org/doi/suppl/10.1021/jacs.2c10916/suppl_file/ja2c10916_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.2c10916?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c10916?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c10916?fig=fig5&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.2c10916?fig=fig5&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://doi.org/10.1021/jacs.2c10916?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


found that using the HSE functional comparable exchange
interactions J1 = −2.39(1) meV, J2 = 0.46(1) meV, and J3 =
−0.15(1) meV. These energies are comparable in magnitude
to those found experimentally for CrCl2(pym) but are notably
larger, likely due to the unphysically large degree of
delocalization.
Our calculations allow us not only to predict the interaction

energies but also to explore the electronic structure of this
material (Figure 6). The predicted thermal band gap is

approximately 1.2 eV, and the projection of the DOS onto
local orbitals shows that the top of the valence band is broadly
Cr and Cl based, while the organic linker pym states are the
bottom of the conduction band. This can also be observed in
the frontier orbitals, where the HOMO resembles the Cr dz2

orbital antibonding with Cl p orbitals and the LUMO is an
antibonding π molecular orbital with a single additional node,
suggesting that the lowest lying excitations will be of MLCT
character. The spin density is predominantly around the Cr;
however, there is significant density on both Cl and pym
ligands (Figure 7). Notably, the spin density on pym appears
to be primarily of π character and alternates in sign around the
ring (Figure 7b).

■ DISCUSSION
Metal N-heterocycle dihalides are a diverse family of MOMs,
and our study of CrCl2(pym) provides one of the most in-
depth investigations of the magnetic properties of these
materials. There are two common compositions: MX2L2 and
MX2L. The monoligand analogues usually contain linear MX2
chains and therefore tend to show primarily 1D magnetic
behavior, e.g., NiCl2(pyrazine) consists of ferromagnetic NiCl2
chains antiferromagnetically coupled with TN = 10.2 K,3

CuCl2(pyrazine) is also a very good example of a 1D magnet
with no order reported down to 1.8 K, but the strongest
interaction in fact occurs through Cu−pyrazine−Cu bridges (J
= −28 K), due to the JT distortion suppressing exchange in the

CuCl2 chain.
52 Preliminary studies of the magnetism of

pyrimidine analogues, MCl2(pym) (M = Mn, Co, Cu), also
detected no magnetic order down to 1.8 K although there are
weak AFM interactions present.32 The strong interactions,
particularly occurring through the CrCl2 chain, and magnetic
order found in CrCl2(pym) are therefore in striking contrast.
Additionally, the ferromagnetic exchange we observe occurring
through the pym ligand is relatively uncommon for molecular
ligands; for example, antiferromagnetic interactions are the
norm for pyrazine-bridged MOMs.53−59 This ferromagnetic
exchange has been previously observed in pym-bridged
MOMs, e.g., M(NCS)2(pym)2 (M = Ni and Co),60−62 and
has been rationalized by a three-atom π-pathway. Our DFT
calculations give further credence to the importance of this
pathway.
The bispyrimidine metal chlorides, MCl2(pym)2 (M = Fe,

Co, Ni) and MBr2(pym)2 (M = Co), unlike most materials in
this family, adopt 3D chiral diamondoid structures.33−35

MCl2(pym)2 all magnetically order with canted AFM
structures, TN = 7.4, 4.7, and 16.3 K for M = Fe, Co, and
Ni respectively, likely arising from the interplay between the
superexchange interactions and the significant single-ion
anisotropy, the principal axes of which are noncollinear.33

Bulk susceptibility studies have shown enhancement of TN at
moderate pressure (ΔTN/TN = 15% at 0.7 GPa),35 which
suggests that high pressure investigations of Cr-based MOMs
may also uncover pressure-switchable magnetic functionality.63

The presence of a JT distortion is strong evidence of Cr2+,
which stands in contrast to the related CrCl2(pyrazine)2, in
which Cr2+ spontaneously reduces the ligated pyrazine to a
radical anion, thereby dramatically enhancing its conductivity
and magnetic superexchange.8 The sensitivity of this metal−
ligand redox to the coordination sphere is shown by
Cr(OSO2CH3)2(pyrazine)2, in which Cr remains as Cr2+
with a JT distortion.56 Studies of molecular complexes have
shown this noninnocent behavior is favored by a strong ligand-
field environment and a low energy ligand LUMO,64 and is
consistent with the observed innocence of CrCl2(pym), which
has both a weaker ligand field than CrCl2(pyz)2 and a higher
energy ligand LUMO (pyrazine, Ered = +1.10 V and pym Ered =
+0.84 V vs Li/Li+).65

Figure 6. Electronic band structure and projected density of states of
the 2 × 2 × 1 supercell using CASTEP and the PBE+U+MBD* (Ueff
= 3 eV) functional. The energy zero has been set at the Fermi energy
and is shown by the dashed line. The projected density of states has
been decomposed by element.

Figure 7. Spin density isosurfaces (0.015 e Å−3) highlighting the (a)
Cr−Cl chain and (b) Cr−pym chain, derived from our CASTEP PBE
+U+MBD* (Ueff = 3 eV) and c2x calculations.51
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Our data clearly show that CrCl2(pym) has a conventional
Neél AFM ground state, TN = 20.0(3) K, but also that there is
significant magnetic low dimensionality above TN.
The frustration parameter, f 2.7

T
CW

N
= =| | , derived from

bulk property measurements hints at suppression of magnetic
order. As the magnetic lattice does not show an obvious
mechanism for geometric frustration, this is likely due to a
combination of single-ion anisotropy and low dimensionality
arising from the large differences in strength of superexchange
in different crystallographic directions.
Additionally, the presence of magnetic diffuse scattering at

30 K not present at 1.5 K indicates the presence of short-range
magnetic correlations retained above TN. Finally, our analysis
of the INS spectra shows that the AFM superexchange through
the Cr−Cl−Cr bridge is an order of magnitude larger than all

other superexchange interactions, 11(2)
J

J
1

2
= .

The importance of low dimensionality can also been seen in
the reduction in the apparent size of the Cr2+ ordered moment
determined via neutron diffraction. The low dimensionality of
the structure can reduce the refined moment through disorder,
both static short-chain defects and stacking faults66,67 and
dynamic zero-point fluctuations.68 Additionally, as is common
in many metal−organic magnets,69 there is appreciable
delocalization of the spin density onto the ligands, which
Mulliken analysis of the DFT-derived electron density suggests
is approximately 10%. These factors in combination explain the
substantial reduction in the ordered moment (approximately
one-third) from that expected moment size, though it is
challenging to evaluate their relative contributions.
Despite this low dimensionality, our data indicate that, like

other S = 2 candidate AFM chains, CrCl2(pym) does not show
clear Haldane physics. The presence of long-range order at
TN/J1 = 1.5 hinders observations at low temperatures and the
non-negligible single-ion anisotropy (D = −0.15(3) meV, D/J1
= 0.13(2)) is sufficient to suppress the Haldane phase, for
which the critical value is predicted to be D/J1 = 0.04.

25

CrCl2(pym) is therefore comparable to the other identified
candidate S = 2 spin chains in both of these parameters,28−30

including CrCl2,
26 MnCl3(bipy),

27,70 and CsCrCl3,
71 but none

have shown clear evidence of a gapped inelastic neutron
spectrum in the disordered phase.
The compound CrCl2(pym) is most similar to, both

structurally and magnetically, is CrCl2,
26 which also has

quasi-1D antiferromagnetic CrCl2 chains formed from edge-
sharing octahedra (J1 = −1.13(13) meV, D = −0.15(3) meV).
However, closer examination reveals significant structural
differences that make these magnetic similarities quite
surprising. In CrCl2(pym) the JT distortion means every
superexchange pathway within the CrCl2 spin chain passes
through a significantly lengthened bond, whereas in CrCl2 the
equivalent JT distortion lies out of the spin-chain plane and so
all Cr−Cl bonds in the chain are short. Superexchange through
a JT-lengthened pathway is ordinarily weak, as is indeed found
for the direction perpendicular to the CrCl2 spin chain in
inorganic CrCl2, with an order of magntiude weaker exchange
J2 = −0.12(7) meV.
A second distinction between these two compounds is the

potential for tuning the interactions through substitution of the
ligands. Replacing pyrimidine by a larger bridging ligand may
reduce interchain exchange, suppressing long-range order and
allowing access to the paramagnetic S = 2 quasi-1D AFM at

lower temperatures. For example, in NiCl2L substituting
pyrazine for 1,2-bis(4-pyridyl)ethane reduces TN from 10.2
to 5.6 K.3 Equally, optimization of the octahedral coordination
environment can minimize D; for example, in a family of
closely related Ni2+ compounds, matching of the ligand field
strengths reduces the size of the easy-plane anisotropy by a
factor of 4.72 Our measurements of the INS data already
suggest that the interlayer interactions are not significant, but
delamination of these van der Waals sheets, as demonstrated
for other magnetic metal−organic nanosheets,73 may provide
an alternative route to better magnetic isolation. These results
suggest therefore that bridging CrCl2 spin chains with organic
ligands may provide promising future candidates for S = 2
Haldane chains.

■ CONCLUSION
We have reported the crystal structure, bulk magnetic
properties, magnetic ground state, and magnetic excitations
of a new coordination polymer, CrCl2(pym). We have shown
that the oxidation state of chromium in this compound is Cr2+,
remaining S = 2, unlike related CrCl2 derived MOMs which
undergo redox to form triplet Cr3+−radical ligand pairs.8,64
CrCl2(pym) is found to be a S = 2 quasi-one-dimensional
antiferromagnet, with an order of magnitude separation in

energy scales of superexchange, 11(2)
J

J
1

2
= . However, we did

not find clear evidence of the Haldane gap in the disordered
phase, suggesting the small J2 and D are sufficient in this
compound to either suppress the S = 2 Haldane phase or mask
it through the stabilization of long-range order. The proximity
of CrCl2(pym) to the Haldane region of the phase diagram and
the modularity inherent to MOMs suggest that optimizing the
magnetic properties of these systems, including both super-
exchange3 and single-ion anisotropy,72 is a new and promising
route to the S = 2 Haldane phase.

■ EXPERIMENTAL SECTION
Synthesis. Synthesis and handling of CrCl2(pym) were performed

in a dry Ar or N2 atmosphere using a MBraun LABstar glovebox or
Schlenk line. The reaction of CrCl2 (200 mg, 1.63 mmol; Fisher
Scientific, 99.9%) and pyrimidine (500 mg, 6.24 mmol; Sigma-
Aldrich, ≥98.0%) in 50 mL of methanol (MeOH) rapidly precipitates
an orange-brown microcrystalline powder. The CrCl2(pym) product
was then dried in vacuo giving a ca. 90% total yield. The measured
(calculated) elemental composition was C, 23.45% (23.67%); H,
1.99% (2.40%); and N, 12.94% (13.80%). This procedure, with
quantities scaled up (CrCl2, 3.0 g; pyrimidine, 4.0 g; MeOH, 300
mL), was used to synthesize the sample used for neutron-scattering
measurements. Crystals of sufficient size for X-ray diffraction studies
(127 × 46 × 26 μm) were grown by vapor diffusion of pyrimidine
(100 mg, 1.25 mmol) into a concentrated solution of CrCl2 in 1 mL
of MeOH (10 mg, 0.08 mmol).
Powder X-ray Diffraction. PXRD data were collected using a

PANalytical X’Pert Pro diffractometer equipped with monochromated
Cu Kα1 radiation (λ = 1.5406 Å). The tube voltage and current were
40 kV and 40 mA, respectively. Scans were performed from 2 to 60°
on a zero background silicon crystal plate. Peak fitting and Pawley and
Rietveld refinement were performed using Topas Academic v6.74

Single-Crystal X-ray Diffraction. A diffraction-quality single
crystal of CrCl2(pym) was mounted on a polymer-tipped MiTeGen
MicroMountTM using Fomblin (YR-1800 perfluoropolyether oil).
The sample was cooled rapidly to 120 K in a stream of cold N2 gas,
using a Oxford Cryosystems open flow cryostat. Diffraction data were
collected on an Oxford Diffraction GV1000 (AtlasS2 CCD area
detector, mirror-monochromated Cu Kα radiation source; λ =
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1.54184 Å, ω scans). Cell parameters were refined from the observed
positions of all strong reflections, and absorption corrections were
applied using a Gaussian numerical method with beam profile
correction (CrysAlisPro). The structure was solved and refined in
Olex275 using SHELXT76 and SHELXL,77 respectively.
Magnetic Susceptibility. Magnetic property measurements were

carried out on a Quantum Design MPMS superconducting quantum
interference device (SQUID). A polycrystalline sample of
CrCl2(pym) (26.6 mg) was immobilized in eicosane (44.5 mg) and
sealed in a low-paramagnetic-impurity borosilicate glass ampule under
vacuum. Magnetic susceptibility measurements were performed under
field cooled (FC) and zero field cooled (ZFC) conditions in a 0.01 T
dc field from 2 to 300 K. Isothermal magnetization measurements
were performed at 2 K from 0 T to 5 T to −5 T to 0 T. Data were
corrected for the diamagnetism of the sample using Pascal’s
constants.78

Heat Capacity. Heat capacity measurements were carried out on a
4.2 mg pellet of CrCl2(pym) and silver powder (50 wt %), using a
Quantum Design Dynacool physical property measurement system
(PPMS), between 2 and 60 K. Apiezon N grease was used to ensure
good thermal contact. Contributions to the heat capacity due to
Apiezon N were measured separately and subtracted; contributions
due to silver were subtracted using tabulated values.79

Powder Neutron Diffraction. PND measurements were carried
out on the D1B neutron diffractometer at Institut Laue-Langevin,
Grenoble, France. Measurements were collected at 1.5 and 30 K with
λ = 2.52 Å between 0.77 and 128.67° with steps of 0.1°. The nuclear
structure determined from single-crystal X-ray diffraction was Rietveld
refined against neutron diffraction data to evaluate phase purity. Due
to the low intensity of magnetic reflections, the magnetic structure
was determined by refinement against data from which background
and nuclear Bragg peaks were removed by subtraction of data
collected at 30 K from those collected at 1.5 K. The magnetic Bragg
peaks were indexed to determine the magnetic propagation vector,
and then the allowed magnetic irreducible representations were
determined using symmetry-mode analysis in the ISODISTORT
software.39 Using the scale factor determined from Rietveld
refinement of the nuclear structure against data at 30 K, and peak
parameters determined from Pawley refinement of the nuclear
structure against data at 30 K, the direction and magnitude of the
ordered moment for the subtracted data set were refined using
TOPAS-ACADEMIC 6.0.74

Inelastic Neutron Scattering. Inelastic neutron scattering (INS)
measurements were performed on the LET time-of-flight direct
geometry spectrometer at ISIS.80 The sample (4 g) was contained in a
thin aluminum can of diameter 15 mm and height 45 mm and cooled
in a helium cryostat. The data were collected at 1.7 and 25 K, for 10
and 7 h, respectively, with Ei = 12.14 meV using the rep-rate
multiplication method.81,82 The data were reduced using the Mantid-
Plot software package.83 The raw data were corrected for detector
efficiency and time independent background following standard
procedures.84

Density-Functional Theory. Plane-wave density-functional-
theory calculations were performed using version 19.1 of the
CASTEP code.85 The Brillouin zone was integrated using a
Monkhorst−Pack grid of k-points, finer than 2π × 0.05 Å−1 spacing.86

A Gaussian smearing scheme with a smearing width of 0.20 eV was
used during the electronic minimization process. Vanderbilt ultrasoft
pseudopotentials were used for computational efficiency (Table S3).87

The basis set included plane waves up to an associated kinetic energy
of 1100 eV. Geometry optimizations converged until resultant forces
were less than 0.05 eV/Å. The OptaDOS postprocessing code was
used to integrate individual Kohn−Sham eigenvalues into an
electronic density of states,88 and the Matador high-throughput
environment was used to obtain electronic band structure and density
of states plots.89
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