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Autistic adults exhibit highly 
precise representations of others’ 
emotions but a reduced influence 
of emotion representations 
on emotion recognition accuracy
Connor T. Keating 1*, Eri Ichijo 2 & Jennifer L. Cook 1

To date, studies have not yet established the mechanisms underpinning differences in autistic 
and non-autistic emotion recognition. The current study first investigated whether autistic and 
non-autistic adults differed in terms of the precision and/or differentiation of their visual emotion 
representations and their general matching abilities, and second, explored whether differences 
therein were related to challenges in accurately recognizing emotional expressions. To fulfil these 
aims, 45 autistic and 45 non-autistic individuals completed three tasks employing dynamic point light 
displays of emotional facial expressions. We identified that autistic individuals had more precise visual 
emotion representations than their non-autistic counterparts, however, this did not confer any benefit 
for their emotion recognition. Whilst for non-autistic people, non-verbal reasoning and the interaction 
between precision of emotion representations and matching ability predicted emotion recognition, 
no variables contributed to autistic emotion recognition. These findings raise the possibility that 
autistic individuals are less guided by their emotion representations, thus lending support to Bayesian 
accounts of autism.

Autism spectrum disorder (ASD) is a neurodevelopmental condition, characterized by restricted and repetitive 
interests and difficulties with social communication and  interaction1. While not considered a core diagnostic 
feature, emotion recognition has been a topic of interest in autism research for over 30 years because it is often 
thought that challenges in this area might be an underlying cause for social difficulties. However, findings in 
this literature are famously mixed (see Ref.2 for a review): some studies find differences in emotion recognition 
between autistic (identity-first terminology is used throughout this manuscript in line with the preferences of 
the majority of the autistic  community3,4) and non-autistic people, some studies find no differences and some 
find quite specific difficulties (e.g. with angry  expressions5–11). In this literature it is often the case that “emo-
tion recognition” is treated as a unitary or modular ability. However, recent work has begun to elucidate several 
component processes that contribute to individual differences in emotion recognition. Here we 1) compare 
autistic and non-autistic individuals on various abilities which we know to be involved in (non-autistic) emo-
tion recognition, and 2) test whether these processes also contribute to emotion recognition in autistic adults. 
Understanding the extent to which different tasks rely on these factors might help us to understand the variability 
in findings in this literature.

Recent work has highlighted that a person’s internal templates—that is the way one pictures emotional expres-
sions in the “minds’ eye” (also known as a visual representations of emotion; see Ref.12–16)—are important con-
tributors to emotion recognition  accuracy17. Signal detection theory (see Ref.18) tells us that at least two proper-
ties of visual representations should predict emotion recognition accuracy: precision and differentiation. That 
is, a ‘signal’ distribution and a ‘noise’ distribution that are both imprecise (wide) and indistinct (overlapping) 
provide low sensitivity to discriminate between ‘signal’ and ‘noise’. Thus, an individual with an imprecise visual 
representation of anger, which overlaps with the representation of sadness should find it difficult to discriminate 
between these two emotions. Our recent work tested this hypothesis by asking (non-autistic adult) participants to 
manipulate a dial to change the speed of a dynamic point light face (PLF) stimulus (depicting an actor speaking 
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in a happy, angry or sad fashion) until it moved at the speed they typically associated with an angry, happy or 
sad expression. Thus, providing us with an estimate of the speed of participants’ internal visual representations 
of emotional expressions. Participants also completed an emotion recognition task in which they rated the 
extent to which PLF stimuli depicted different emotional expressions. Although we did not confirm a role for 
differentiation in emotion recognition, we did find (across two samples with a total N = 281) that adults with less 
precise emotion representations typically exhibited lower emotion recognition accuracy  scores17,19. Thus, signal 
detection theory highlights two features of visual emotion representations that may be important in emotion 
recognition: (1) the precision, (2) the differentiation of these visual representations. Our empirical work to date 
has confirmed an important role for precision.

In addition to precision, our previous work showed that the general ability to match two images also plays an 
important role in emotion recognition. We theorized that to have superior emotion recognition, one may need 
to have (a) precise representations of facial expressions, and (b) the ability to match incoming expression stimuli 
to internal representations. To test matching, we asked participants to alter the speed of a PLF until it matched 
the speed of a second  PLF17. Across both a discovery and replication sample, we found an interaction between 
representational precision and matching ability. That is, for participants with a good ability to visually match two 
expressions, representational precision was less important for emotion recognition. In contrast, if participants 
had a poorer ability to match expressions, representational precision played an important role.

In a parallel literature, there is preliminary evidence that autistic individuals struggle to differentiate their 
own  emotions20. Since autistic individuals may struggle to differentiate emotional states they may also struggle to 
differentiate visual representations of emotion. That is, autistic individuals may picture emotional expressions in 
their mind’s eye as more similar and overlapping than their non-autistic peers (e.g., the angry and sad expressions 
they imagine look very similar and are easily confused for one another). This is particularly plausible given that 
(non-autistic) individuals with less differentiated experiences of emotion typically have less differentiated visual 
representations  too17. As mentioned previously, since overlapping ‘signal’ and ‘noise’ distributions may make it 
difficult to discriminate the ‘signal’ from the ‘noise’18, it may be that difficulties differentiating visual representa‑
tions are responsible for emotion recognition differences in autism. However, research has not yet tested this idea.

In sum, recent work has begun to elucidate a number of factors that could account for individual differences 
in emotion recognition, including the precision and differentiation of visual emotion representations and visual 
matching ability. It follows that emotion recognition difficulties in autism could be due to differences in one, 
or many, of these factors. For instance, autistic individuals may have more imprecise and/or overlapping visual 
representations of emotional expressions. Unpacking this may help to explain why not all studies find differences 
between autistic and non-autistic people with respect to emotion recognition: perhaps some emotion recogni-
tion tasks rely more on either the precision or differentiation of visual emotions representations, or more on 
these representations in general, than others. For example, affect matching paradigms, in which participants 
judge whether two expressions show the same or different emotions may place less emphasis on visual emotion 
representations (as participants compare expressions that are presented to them sequentially or simultaneously) 
than labelling paradigms, where participants may have to compare to their visual representations in order to 
produce the correct emotion label.

The current study therefore, first, investigated whether autistic and non-autistic adults differed with respect to 
the precision and/or differentiation of their visual representations of emotion and their general matching abilities 
(in the speed domain), and second explored whether differences therein were related to individual differences 
in accurately recognizing emotional expressions. In our study, we also controlled for alexithymia – a subclinical 
condition wherein individuals experience difficulties in identifying their own  emotions21 – to ensure that any 
differences between the groups relate to autism, and not to alexithymia, as has been found in previous  work22–25.

Recent Bayesian accounts of autism propose another possible source of differences in emotion recognition 
in autism. According to Bayesian accounts, prior expectations bias the perception of incoming sensory informa-
tion. With respect to emotion recognition, if one expects to observe a happy expression, one will attend more to 
features that generally signal happiness and less to features that tend to signal other  emotions26. Bayesian theories 
of autism argue that autistic people are less affected by prior expectations than neurotypical  people27,28 and place 
greater emphasis on incoming sensory information (see Ref.29). Therefore, for non-autistic people, expectations 
can bias the perception of expressions (i.e., incoming sensory stimuli) such that they better match visual repre-
sentations of expected emotions. For autistic people the perception of expressions may be less affected by prior 
expectations, and therefore their perception of the incoming expression may be less biased towards their visual 
emotion representation. If it is the case that autistic individuals are less affected by their visual representations 
of emotion (relative to non-autistic people), we would expect emotion recognition accuracy to be predicted by 
the precision and differentiation of these representations to a lesser extent than for non-autistic individuals. 
Consequently, in addition to investigating whether autistic and non-autistic adults differ in terms of matching 
abilities, and the precision and/or differentiation of visual emotion representations, we also assessed the extent 
to which a number of different abilities were implicated in autistic and non-autistic emotion recognition.

Results
To determine whether there are differences between autistic and non-autistic individuals in these abilities, the 
current study employed three tasks involving dynamic point light displays of angry, happy and sad facial expres-
sions. The first task was an adapted version of our “ExpressionMap”  task17,30,31 which uses a method of adjustment 
design. On each trial, participants were required to manipulate a dial to speed-up or slow-down PLF stimuli 
until they matched their visual representation of anger, happiness, or sadness. This task assesses how precise (by 
assessing variability, across trials, in attributed speed) and overlapping (via assessing the mean distance between 
emotions in terms of speed) participants’ visual emotion representations are. In the second task, known as the 
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“Visual Matching task”17, participants were required to match the speed of a PLF to another displayed PLF. 
Since participants are provided with a visual representation to match to, they do not need to imagine anything, 
and therefore this task indexes visual matching ability independent of imagination ability. Finally, we used our 
previously validated  task8,32 to index emotion recognition ability. On each trial, participants viewed an angry, 
happy, or sad PLF and rated the extent to which the expression looked angry, happy and sad on visual analogue 
scales. Emotion recognition accuracy was calculated as the correct emotion rating minus the mean of the two 
incorrect emotion ratings.

In the following section, we (1) compare autistic and non-autistic participants on the precision and differentia-
tion of visual emotion representations, matching abilities, and emotion recognition, and (2) determine whether 
the same processes are implicated in autistic and non-autistic emotion recognition.

Analyses comparing autistic and non-autistic participants. First, to compare the precision of visual 
emotion representations (as measured by the ExpressionMap task) across participant groups, we conducted a 
linear mixed effects model with representational precision as the dependent variable, emotion (angry, happy, 
sad), group (autistic vs non-autistic), the interaction between emotion and group [independent variables], age, 
sex, non-verbal reasoning ability and alexithymia [control variables] as predictors, and subject number as a 
random intercept. This revealed that there was a significant main effect of emotion [F(2,176) = 87.13, p < 0.001]: 
precision scores were highest for sad [mean(standard error of the mean; SEM) = − 0.52(0.03)], followed by happy 
[mean(SEM) = − 0.68(0.04)], followed by angry expressions [mean(SEM) = − 0.91(0.04)]. In addition, both age 
[F(1,83) = − 18.23, p < 0.001], and non-verbal reasoning [F(1,83) = 18.10, p < 0.001] predicted representational 
precision. Most importantly, however, we identified a main effect of group [F(1,83) = 6.25, p = 0.014]: in contrast 
to our hypothesis, the autistic participants [mean(SEM) = − 0.64(0.04)] exhibited significantly higher precision 
than the non-autistic [mean(SEM) = − 0.77(0.04)] participants, suggesting that autistic individuals have more 
precise visual representations of emotion. The emotion x group interaction [p = 0.594], sex [p = 0.207], and alex-
ithymia [p = 0.469] were not significant predictors of representational precision.

Next, to compare the distances between emotion representations across participant groups, we constructed a 
linear mixed effects model with distance as the dependent variable, emotion pair (angry-happy, angry-sad, happy-
sad), group (autistic, non-autistic), the interaction between emotion pair and group [independent variables], age, 
sex, non-verbal reasoning, and alexithymia [control variables] as predictors, and subject number as a random 
intercept. In line with the results from our previous  study30, this analysis found that there was a significant main 
effect of emotion [F(2,176) = 74.31 p < 0.001]: the distance between angry and sad emotion representations was 
largest [mean(SEM) = 2.25(0.11)], followed by the distances between angry and happy [mean(SEM) = 1.21(0.09)] 
and happy and sad [mean(SEM) = 1.14(0.07)] representations. There was no main effect of group [p = 0.117], nor 
an interaction between emotion pair and group [p = 0.317], suggesting that autistic and non-autistic individuals 
do not significantly differ in the differentiation of visual emotion representations. Finally, age [p = 0.080], sex 
[p = 0.174], non-verbal reasoning [p = 0.390] and alexithymia [p = 0.594] did not predict the distance between 
emotion representations.

Next, to compare the matching difficulty of the autistic and non-autistic participants, we ran a linear mixed 
effects model of matching difficulty as a function of emotion (angry, happy, sad), group (autistic, non-autistic), 
the emotion x group interaction [independent variables], age, sex, non-verbal reasoning, and alexithymia [control 
variables] with subject number as a random intercept. This analysis revealed that non-verbal reasoning ability 
was a significant negative predictor of matching difficulty [F(1,83) = − 15.75, p < 0.001]: those with higher non-
verbal reasoning had a greater ability to match two visually displayed expressions on speed. Importantly, there 
was no significant main effect of group [p = 0.255] or an emotion x group interaction [p = 0.795], indicating that 
the autistic and non-autistic individuals had similar matching ability across all emotions. There was also no 
significant main effect of emotion [p = 0.058]. Age [p = 0.188], sex [p = 0.388], and alexithymia [p = 0.149] were 
also not significant predictors of matching difficulty.

Finally, we constructed a linear mixed effects model of emotion recognition accuracy (as measured by the 
PLF emotion recognition task) as a function of emotion (angry, happy, sad), spatial level (50%, 100%, 150% 
spatial exaggeration), kinematic level (50%, 100%, 150% speed), group (autistic, non-autistic), the interaction 
between these variables [independent variables], age, sex, non-verbal reasoning, and alexithymia [control vari-
ables], with subject number as a random intercept. This revealed that there was no significant main effect of 
group or any significant interactions with group (all p > 0.05). Therefore, the autistic and non-autistic participants 
exhibited comparable levels of accuracy across different emotions, speeds, and levels of spatial exaggeration. The 
remaining results from this analysis are reported in Supplementary Information A as they are outside the scope 
of the current study.

Determining the contributors to autistic and non-autistic emotion recognition. To determine 
the relative importance of our variables of interest for autistic and non-autistic emotion recognition, we con-
ducted a random forests  analysis33 in each group using the Boruta34 wrapper algorithm (version 7.7.0; as  in17). 
Random forest regression is a supervised machine learning technique that constructs a large number of decision 
‘trees’, each predicting a continuous outcome variable with a collection of factors, and then aggregates these 
predictions into one final result (by taking a mean of the predictions from the individual tress). The Boruta wrap-
per algorithm starts by randomly shuffling each predictor variable and adding these shuffled variables (termed 
“shadow features”) to the dataset. Following this, across many iterations (here, 1500), the algorithm trains a 
random forest regression model on all the predictor variables, as well as their shuffled copies (i.e., “shadow 
features”), and classifies a variable as important (i.e., useful for predicting a target variable) when its importance 
score is higher than the highest importance of a shadow feature (termed “shadowMax” in the analysis; see Ref.35 
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for an accessible summary of the Boruta wrapper algorithm). In this analysis, our outcome variable was mean 
accuracy and our predictor variables were total AQ score, total TAS score, the AQ and TAS subscales (i.e., 
AQ Social Skills, AQ Attention Switching, AQ Attention to Detail, AQ Communication, AQ Imagination, TAS 
Difficulties Describing Feelings, TAS Difficulties Identifying Feelings, and TAS Externally Oriented Thinking), 
non-verbal reasoning ability, age, mean representational precision, mean distance, and the interaction between 
representational precision and matching (‘representation matching’)(thus following similar procedures  to17).

For the non-autistic participants, of the 15 variables tested, two were confirmed important, one was tentative, 
and 12 were confirmed unimportant. Figure 1 (left) illustrates that the representational precision x matching 
interaction and non-verbal reasoning ability were classed as important for non-autistic emotion recognition, 
with mean importance scores of 6.57 and 13.88 respectively. AQ Imagination score was classified as tentatively 
important with a mean importance score of 3.78. All other variables were deemed unimportant. In contrast, for 
the autistic participants all 15 of the tested variables were confirmed unimportant (see Fig. 1 right).

Following this, to verify the results from our random forests analysis for non-autistic individuals, we con-
structed a Bayesian linear regression model of accuracy as a function of non-verbal reasoning, the interaction 
between representational precision and matching (‘representation matching’), and AQ Imagination score. The 
strongest model that emerged from this analysis included just non-verbal reasoning ability and the represen-
tational precision x matching interaction as predictors of emotion recognition accuracy (and not AQ I score) 
 [BF10 = 149.64,  R2 = 33.5%]. According to the model, there was very strong evidence that both of these factors 
contribute to emotion recognition accuracy for non-autistic individuals. When this analysis was conducted 
with autistic participants, there was moderate evidence that these variables did not predict emotion recognition 
accuracy [i.e., the null hypothesis;  BF10 = 0.15,  R2 = 1.00%], thus confirming the results from our previous analysis.

Discussion
The current study compared autistic and non-autistic adults on features of visual representations thought to be 
implicated in emotion recognition (e.g., precision and differentiation of visual emotion representations, general 
matching ability), and investigated the contribution of these factors to emotion recognition in both groups. We 
found that the autistic participants had more precise visual emotion representations (in the speed domain) across 
all three emotions, thus contradicting our expectations. In addition, we identified that there were no significant 
differences between groups in emotion recognition accuracy. This was true across all levels of the spatial and 
kinematic manipulations. This finding contradicts previous studies identifying group differences in emotion 
recognition (e.g.,8,10,36,37) and instead supports literature suggesting emotion recognition performance is com-
parable between autistic and non-autistic people (e.g.,22,38–41). Furthermore, there were no significant differences 
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Figure 1.  Random forest variable importances for non-autistic (left) and autistic (right) participants. Variable 
importance of all 15 features entered into the Boruta random forest, displayed as boxplots. Box edges denote 
the interquartile range (IQR) between the first and third quartile; whiskers denote 1.5 * IQR distance from box 
edges; circles represent outliers outside of 1.5 * IQR above and below box edges. Box color denotes decision: 
Green – confirmed, yellow = tentative, red = rejected; grey = meta-attributes shadowMin, shadowMax and 
shadowMean (minimum, maximum and mean variable importance attained by shadow features).
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between groups in differentiation – as indexed by the distance between emotion representations—or matching 
ability. Hence, although autistic individuals may have less distinct emotional experiences (as  in20), they have 
comparably distinct visual representations (at least in the speed domain) to their non-autistic counterparts. In 
sum, these results show that the autistic participants had more precise visual emotion representations (in terms 
of speed), but that this did not confer any benefit in terms of accuracy on our task which indexed emotion rec-
ognition from dynamic stimuli (although it is possible that having more precise visual emotion representations 
benefits autistic individuals on other types of tasks).

To determine the relative importance of various abilities (e.g., precision of representations, distance between 
representations, general matching ability) and clinically relevant individual differences (e.g., non-verbal reason-
ing, AQ, TAS) to autistic and non-autistic emotion recognition, we conducted random forest analyses employ-
ing the Boruta wrapper algorithm. Whilst for non-autistic individuals, non-verbal reasoning ability and the 
interaction between representational precision and matching were classified as important, and AQ Imagination 
score was classified as tentatively important for emotion recognition, no variables were deemed important for 
autistic emotion recognition. Of particular note, none of the variables corresponding to features of emotion 
representations contributed to autistic emotion recognition (i.e., precision of representations, distance between 
representations, the representational precision x matching interaction). That is, these factors were no better 
than randomly shuffled data at predicting emotion recognition accuracy. Thus, aside from precision there were 
minimal differences between the groups (matching, distinctness and accuracy did not significantly differ); nev-
ertheless, there were differences in the way these variables were related such that the autistic participants did not 
exhibit the predictive relationship between features of representations and emotion recognition accuracy that is 
exhibited by non-autistic people. These results suggest differences in the psychological mechanisms underpin-
ning emotion recognition from dynamic stimuli in autism.

One possible mechanistic difference is that autistic individuals may not be ‘using’ their (precise) emotion 
representation (or ‘using’ them to a lesser extent) to help them recognize emotional expressions. This idea aligns 
well with Bayesian accounts of autism which posit that autistic individuals are less influenced by priors than non-
autistic people (see Ref.29). To date, there is mixed evidence in relation to these Bayesian accounts, with some 
studies suggesting weaker prior influences, others suggesting no differences, and a handful suggesting larger prior 
influences in autism (see Ref.42). Furthermore, there is variance across domains: for ‘social priors’, the evidence is 
almost evenly split between suggesting weaker prior influences and no differences, while for simpler perceptual 
priors there are usually no differences between autistic and non-autistic people (see Ref.42). One issue that is unre-
solved in this field is the question of whether autistic individuals possess weaker priors and/or whether autistic 
individuals are less influenced by priors. The two are orthogonal to each other so that, in theory one could have 
strong priors but nevertheless be weakly influenced by them. Our results raise the hypothesis that—at least in the 
domain of emotion recognition – autistic individuals have strong priors (i.e., precise emotion representations in 
the speed domain) but are, nevertheless weakly influenced by them (i.e., the relationship between the priors and 
emotion recognition accuracy is minimal). Future research is required to test this hypothesis.

If it is true that autistic individuals are less guided by their visual emotion representations, we might expect 
these individuals to perform better on tasks that do not require a comparison between incoming facial expres-
sions and internal templates. For example, they may perform better on affect matching paradigms, wherein par-
ticipants have to judge whether two expressions show the same or different emotions (i.e., differentiate emotional 
expressions that are presented to participants sequentially or simultaneously), rather than labelling paradigms, 
where participants may have to compare to their visual representations in order to produce the correct emotion 
label. In line with this, whilst numerous studies employing matching paradigms show comparable emotion rec-
ognition performance between autistic and non-autistic people (e.g.,38,43–45), those employing labelling paradigms 
often document differences between these groups (e.g.,46–53). As such, our findings may help disentangle mixed 
findings regarding emotion recognition in autism by suggesting that autistic individuals may have particular 
difficulties on tasks that mandate comparison to their internal templates.

If autistic individuals are less guided by their visual representations of emotion, how are they able to achieve 
high levels of accuracy on our emotion recognition task? One plausible explanation is that autistic individu-
als have developed compensatory strategies that allow them to achieve comparable accuracy to non-autistic 
participants on certain tasks (e.g., in the current study; see Ref.54). The nature of these compensatory strategies 
may vary from person to person, but one possibility is that autistic people use explicit cognitive or verbally 
mediated strategies to help them recognize emotions (in contrast to more automatic processing in non-autistic 
 individuals54,55). Here, rather than automatically comparing their visual emotion representations to incoming 
facial expressions, the autistic participants may instead follow a “rule-based strategy” where they assess the degree 
to which the expression matches a list of features they have learnt to be associated with anger (e.g., “furrowed 
eye-brow”, “fast-moving”, etc.), happiness (“lip raising”, “teeth showing”, etc.), and sadness (“downturned mouth”, 
“slow-moving”, etc.), along with other  emotions55.

If autistic participants are using an alternative, cognitive or verbal, strategy we might expect emotion recogni-
tion performance to be more related to general cognitive or verbal ability for autistic people than for non-autistic 
people. Supporting this idea, studies have found that mental  age56, and receptive and expressive  language57 predict 
emotion recognition ability in autistic, but not non-autistic, children. Concurrently, if autistic individuals are less 
reliant on visuo-spatial cues (such as visual emotion representations), we might also expect non-verbal reasoning 
ability to be less associated with emotion recognition performance in the autistic than non-autistic group. In 
line with this, here we found that non-verbal reasoning ability was a significantly stronger predictor of emotion 
recognition accuracy [z = − 2.25, p < 0.05] for the non-autistic [t = 3.88, p < 0.001,  BF10 = 74.16,  R2 = 25.9%], than 
autistic [t = − 0.46, p = 0.650,  BF10 = 0.321,  R2 = 0.5%], participants. Third, if it is true that autistic individuals 
employ more effortful cognitive/verbally mediated mechanisms to recognize emotions (rather than a more auto-
matic processing style), this could explain why autistic individuals typically exhibit longer emotion recognition 
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response latencies than non-autistic individuals (e.g.,46,58–65; though note there could be other explanations for 
longer response latencies). Here, the PLF stimuli were presented for relatively long durations (approximately 
6 s on average), thus potentially providing the autistic participants sufficient time to employ their compensa-
tory strategies (and hence they were able to reach comparable accuracy scores). Further research is necessary to 
confirm whether autistic individuals adopt a rule-based strategy to read emotional facial expressions.

Limitations. The results of the current study are informative with respect to understanding the emotion 
representations and emotion recognition of autistic and non-autistic individuals from facial motion cues alone. 
However, since many features of expressions are involved in emotion processing, such as shading/depth66 and 
pigmentation/colouring67, one should be cautious to assume that our findings generalize to full dynamic emo-
tional expressions (e.g., full video recordings of facial expressions). It could be, for instance, that the precision 
of emotion representations and matching ability are important for autistic emotion recognition for full dynamic 
expressions, but not point-light displays. However, since our study was motivated by the observation of group 
differences in emotion  recognition8, and links discovered between emotion representations and emotion rec-
ognition from facial motion cues alone (as in Ref.17,19), it was crucial to our overall research question that we 
used PLF stimuli in the current study. Although this was an active design choice, motivated by previous research 
demonstrating a causal role of speed cues in emotion  recognition32 and other a priori hypotheses (see Ref.30), in 
future work we will develop our paradigms to encompass other spatiotemporal emotion cues. Thus, facilitating 
comparisons of visual emotion representations between autistic and non-autistic individuals with respect to 
other cues such as the degree of spatial exaggeration, movement onset/offset, texture and colour.

It is also important to address the limitations of our study with respect to generalizability. Notably, the par-
ticipants in our sample were predominantly white (86.67%; see Supplementary Information B), highly educated 
(see Supplementary Information C), English-speaking individuals from highly developed countries. As such, 
our sample may not be representative of those with lower levels of education or intellectual disabilities, or those 
from different racial, ethnic, cultural, or socioeconomic backgrounds. With respect to the former, whilst autistic 
individuals with average to high IQs often have comparable emotion recognition performance (e.g.,22,39–41), those 
with co-occurring intellectual disabilities appear to struggle with emotion recognition (e.g.,56,68,69), relative to IQ 
or mental age-matched comparison groups (though see Ref.70). Hence, we may not have found emotion recogni-
tion difficulties here due to our autistic participants possessing high levels of intelligence (as demonstrated by 
their high level of education). With respect to the latter, since the participants in our sample are predominantly 
from developed countries, where emotion recognition interventions are increasingly being offered to autistic 
individuals (e.g.,37,71,72), it may be that some of our autistic participants have undergone training in the past, thus 
improving their emotion recognition scores. Hence, our findings may not represent the emotion recognition 
performance of autistic individuals from less developed countries. Future studies should aim to dismantle bar-
riers to inclusion to boost the representativeness of their samples, thus allowing us to identify whether specific 
subgroups of autistic individuals (e.g., those with intellectual disabilities) have difficulties with emotion recogni-
tion (and other emotion processes).

Conclusion
The current study aimed to compare autistic and non-autistic participants on features of their emotion represen-
tations, and determine whether the same processes are implicated in autistic and non-autistic emotion recogni-
tion. Using a method of adjustment design, we found that autistic individuals had more precise visual emotion 
representations than their non-autistic counterparts (in the speed domain). That is, the autistic participants were 
more precise (i.e., consistent) in the speeds they attributed to angry, happy and sad facial expressions across rep-
etitions. Nevertheless, this enhanced precision did not confer any benefit for their emotion recognition. Whilst 
for non-autistic people, non-verbal reasoning and the interaction between precision of emotion representations 
and matching ability predicted emotion recognition, no variables contributed to autistic emotion recognition. 
These findings highlight the possibility that autistic individuals are less guided by their emotion representations 
(a form of prior). Future research is necessary to identify what traits, processes, and strategies are implicated in 
autistic emotion recognition.

Method
This study was approved by the Science, Technology, Engineering and Mathematics (STEM) ethics committee 
at the University of Birmingham (ERN_16-0281AP9D) and was conducted in accordance with the principles of 
the revised Helsinki Declaration. Informed consent was obtained from all participants.

Participants. A total of 45 autistic and 45 non-autistic participants were recruited from the Birmingham 
Psychology Autism Research Team (B-PART) database, the Centre for Autism Research Oxford database, and 
Prolific. All participants in the autistic group had previously received a clinical diagnosis of ASD from an inde-
pendent clinician. As expected, the autistic participants had significantly higher AQ scores than the non-autistic 
participants (see Table 1.).

The sample size was based on an a priori power analysis conducted using G*Power73, which focuses on 
replicating the group-difference8 in recognition accuracy (between autistic and non-autistic individuals) for 
angry videos at the normal spatial and speed level. Using data from Keating et al.,8, 25 participants are required 
in each group in order to have 80% power to detect an effect size of 0.719 (Cohen’s d) at alpha level 0.05 for this 
group-difference in accuracy. Since Button and  colleagues74 argue that sample size calculations are likely to be 
highly optimistic, we recruited 45 participants in each group in order to ensure we obtained adequate power.
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Procedures. Following participatory research  guidelines75,76, prior to conducting both studies, a group of 
individuals from the autism community (from the Birmingham Psychology Autism Research Team Consultancy 
Committee) provided feedback on our research (e.g., about task design and instructions, frequency of breaks, 
and suggested routes for dissemination, etc.). Following this consultation, we made a number of changes (e.g., 
added instruction videos for the ExpressionMap and Visual Matching task to promote understanding and acces-
sibility) before starting to recruit participants.

Participants completed demographics questions, followed by the 50-item Autism  Quotient77, and the 20-item 
Toronto Alexithymia  Scale78. Following this, participants completed three tasks that employed dynamic point 
light displays (a series of dots that convey biological motion) of angry, happy and sad facial expressions (PLFs). 
Participants completed the ExpressionMap paradigm, followed by the Visual Matching task, followed by the 
PLF Emotion Recognition task. Finally, participants completed the Matrix Reasoning Item Bank (MaRs-IB;79). 
Within each task, participants were encouraged to take regular breaks in between blocks. All parts of the study 
were completed online in one sitting. Together, these questionnaires and tasks took approximately two hours 
and 30 min to complete.

Materials and stimuli. The Autism Quotient. The level of autistic traits of participants was assessed via 
the self-report Autism  Quotient77. This 50-item questionnaire is scored on a range from 0 to 50, with higher 
scores representing higher levels of autistic characteristics. The AQ assesses five different domains relevant for 
autistic traits: attention switching, attention to detail, communication, social skill and imagination. The AQ has 
been widely used to assess autistic traits in both the autistic and non-autistic people (e.g.,80–82), and has high 
internal consistency (α ≥ 0.7083, current study α = 0.92) and test–retest reliability (r ≥ 0.8;83).

The Toronto Alexithymia Scale. The level of alexithymic traits of participants was measured via the 20-item 
Toronto Alexithymia  Scale78. This self-report tool comprises 20 items rated on a five-point Likert scale, ranging 
from 1, strongly disagree, to 5, strongly agree. Total scores on the scale range from 20 to 100, with higher scores 
indicating higher levels of alexithymic traits. The TAS-20 is the most popular tool for assessing alexithymia and 
has high internal consistency (α ≥ 0.7078,84, current study α = 0.84) and test–retest reliability (r ≥ 0.7;78,84).

ExpressionMap. Before completing the ExpressionMap task, participants watched an instruction video guiding 
them through one trial. During the task, on each trial, participants were presented with a PLF stimulus video 
(on average, approximately 6  s in length) which  looped such that it played continuously. On each trial, this 
stimulus video started at a random speed. Participants were instructed to “move the dial to change the speed 
of this video until it matches the speed of a typical ANGRY/HAPPY/SAD expression” (note that participants 
were only asked to change the speed of the expression to match the emotion that was displayed in the stimulus 
video, i.e., on a trial where an angry facial expression was presented, participants were only asked to manipulate 
the speed of the video so that it matched the speed of a typical angry expression; see Fig. 2 for trial structure). 
Consequently, participants were matching the speed of the displayed PLF to their visual representation of that 
expression. Participants could change the speed of the video by moving a dial clockwise to increase the speed of 
the animation or anticlockwise to decrease the speed of the animation. The minimum and maximum point on 
the dial corresponded with 25% and 300% of the recorded speed respectively (though note that participants were 
not informed about this). Once participants were satisfied that the speed of the video matched that of a typical 
angry/happy/sad expression, they could press the spacebar to continue. There was no time limit for participants 
to respond on each trial. Participants were shown four repetitions of each PLF stimulus video across four actors. 
This resulted in 16 videos per emotion (4 actors × 4 repetitions × 3 emotions = 48 trial in total). Participants 
completed three practice trials (one for each emotion at 100% starting speed) and then the 48 randomly ordered 
experimental trials across three blocks. Participants were encouraged to take breaks between blocks.

The ExpressionMap task provides an index of the percentage speed attributed to each of the stimulus videos 
by participants (e.g., 130% speed). Following the procedures outlined in Keating, Sowden &  Cook30, we calculated 
the true speed attributed to each of the PLFs (in pixels per frame) by multiplying the percentage speed attributed, 
divided by 100, with the speed of the actor’s facial movement in the original video. For example, for a trial in 
which a participant attributed 200% speed to a face moving at 2.5 pixels/frame, the true speed attributed to the 
expression would be 5 pixels/frame [i.e., (200÷ 100)× 2.5 ] (see Ref.30 for more information).

The ExpressionMap task operates on the premise that those with less precise representations of emotion will 
attribute more variable speeds to the expressions (than those with more precise representations; see Ref.31 for 

Table 1.  Means, standard deviations, and group differences of participant characteristics. In the central 
columns, means are followed by standard deviation in parentheses. Note that age is in years.

Variable Autistic (n = 45) Non-autistic (n = 45) Significance

Sex 30 Female, 14 Male, 1 Prefer not to say 26 Female, 19 Male p = 0.360

Age 35.51 (14.06) 34.87 (9.01) p = 0.398

NVR 65.83%(15.31%) 63.70% (15.20%) p = 0.255

AQ-50 37.31(7.64) 21.44 (7.34) p < 0.001

TAS-20 64.60(12.46) 57.49 (11.99) p = 0.004
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an accessible summary). Therefore, to index the precision of visual emotion representations, we took the stand-
ard deviation of the speeds attributed to one emotion for one actor (i.e., actor 1, angry expression) across the 4 
video repetitions. Following this, we multiplied these variability scores by -1 so that our variable would represent 
precision. We then calculated mean representational precision for each of the emotions (angry, happy and sad) 
by taking a mean of the precision scores for each actor within an emotion (e.g., taking a mean of the precision 
scores for angry expressions across actors 1, 2, 3 and 4; see Supplementary Information D for justification of 
calculating representational precision in this way). Overall mean representational precision was calculated by 
taking a mean of the precision scores for the angry, happy and sad PLFs.

Finally, the ExpressionMap task also provides an index of the ‘distance’ between emotions, thus informing 
us how well differentiated participants’ visual representations of angry, happy and sad facial expressions are in 
the speed domain. To calculate distance scores, we subtracted the speed attributed to one emotion from the 
speed attributed to another and then took the absolute value of this number. For example, to calculate distance 
between happy and angry, we subtracted the speed attributed to happy from the speed attributed angry, and 
then took the absolute value. Mean distance was calculating by taking a mean of the scores for the angry-happy, 
angry-sad, and happy-sad distances.

Visual Matching task. The Visual Matching task assesses how well participants can visually match the speed of 
one expression to another displayed expression. Before completing the task, participants watched an instruction 
video guiding them through one trial. Each trial began with a PLF stimulus video on the left-hand side of the 
screen. After this video had played once, the same PLF stimulus video also appeared on the right-hand side of 
screen, playing repeatedly at a fixed random speed. Participants were instructed to “move the dial to change the 
speed of the video on the right until it matches the speed of the video on the left” (see Fig. 3 for trial structure). 
Consequently, participants were visually matching the speed of one PLF to another. Participants could turn the 
dial clockwise to increase, and anticlockwise to decrease, the speed of the animation on the right. The minimum 
and maximum points on the dial corresponded with 25% speed and 300% of the recorded speed respectively 
(participants were not informed about this). Once the participant was satisfied that the speed of the animation 
on the right matched the speed of the animation on the left, they pressed spacebar to continue. Participants were 
shown four repetitions of each PLF stimulus video for each of the four actors. Each repetition had a different 
starting speed. In each full set of 16 (4 actors × 4 repetitions) stimulus videos for an emotion, the starting speed 
ranged from 50% to 200% of the recorded speed, in 10% increments. We selected these starting speeds to ensure 
that participants were able to visually match the two displayed expressions across a variety of speeds. Participants 
completed three practice trials (one for each emotion at 100% starting speed) and then the 48 randomly ordered 
experimental trials across three blocks. Participants were given the opportunity to take breaks between blocks.

500ms

100ms

Move the dial to change the speed of this video until it
matches the speed of a typical ANGRY expression.

Press SPACEBAR to continue

Decrease
speed

Increase
speed

Figure 2.  Example of one trial in the ExpressionMap paradigm. The fixation cross was presented for 500 ms at 
the start of each trial, followed by a blank screen for 100 ms. The instructions, PLF expression and dial remained 
on screen until participants pressed the spacebar to continue.
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The Visual Matching task provides an index of how well participants can visually match the speed of one 
expression to another. To calculate deviation scores, we subtracted the percentage speed attributed to the expres-
sion on the right from the percentage speed of the video on the left, and then took the absolute value of this 
deviation score as a measure of how far away the speeds of the two animations were (irrespective of whether 
they attributed too high or too low speed). Finally, we calculated mean deviation scores by taking a mean of all 
of the absolute deviation scores.

PLF Emotion Recognition task. The PLF Emotion Recognition task was identical to that reported in Sowden 
et al.,32 and Keating et al.,8. Participants viewed dynamic PLFs, created from videos of four actors verbalizing 
sentences whilst posing three target emotions (angry, happy and sad). These PLFs have been adapted (see Ref.32 
for further detail) to achieve three spatial movement levels, ranging from decreased to increased spatial move-
ment (50%, 100% and 150% spatial movement), and three kinematic levels, ranging from reduced to increased 
speed (50%, 100% and 150% original stimulus speed). Each trial in this task began with the presentation of a 
(silent) PLF video displaying one of the 3 emotions, at one of the 3 spatial and 3 kinematic levels. After watching 
the video, participants were required to rate how angry, happy and sad the person was feeling on three visual 
analogue scales (presented in a random order) ranging from ‘Not at all angry/happy/sad’ to ‘Very angry/happy/
sad’ (see Fig. 4 for trial structure). Each trial lasted approximately 25 s. Participants completed three practice tri-
als and then 108 randomly ordered experimental trials (12 per condition) across three blocks. Participants were 
encouraged to take a break between blocks.

The three emotion rating responses for each trial were transformed into magnitude scores from 0 to 10 (with 
0 representing a response of ‘Not at all’ and 10 representing ‘Very’) to three decimal places. Emotion recognition 
accuracy scores were calculated by subtracting the mean of the two incorrect emotion ratings from the correct 
emotion rating. For example, for a trial in which a happy PLF was displayed, the mean rating of the two incor-
rect emotions (angry and sad) was subtracted from the rating for the correct emotion (happy). Mean emotion 

500ms

100ms

Move the dial to change the speed of the video on the
right until it matches the speed of the video on the left

Press SPACEBAR to continue

Decrease
speed

Increase
speed

Move the dial to change the speed of the video on the
right until it matches the speed of the video on the left

Press SPACEBAR to continue

Decrease
speed

Increase
speed

Figure 3.  Example of one trial in the Visual Matching task. The fixation cross was presented for 500 ms at the 
start of each trial, followed by a blank screen for 100 ms. Next the instructions, the dial, and the PLF expression 
on the left-hand side appeared on screen. After the PLF expression on the left-hand side had played once, the 
PLF expression on the right-hand side appeared on screen. These expressions, along with the instructions and 
dial, remained on screen until participants pressed the spacebar to continue.
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recognition accuracy was calculated by taking a mean of accuracy scores across all emotions and levels of the 
spatial and kinematic manipulations.

The Matrix Reasoning Item Bank (MaRs‑IB). In this experiment, non-verbal reasoning ability was assessed 
via the Matrix Reasoning Item bank (see MaRs-IB;79). Each item in the MaRs-IB consists of a 3 × 3 matrix. In 
this matrix, eight of the nine available cells are filled with abstract shapes, and one cell in the bottom right-hand 
corner is left empty. Participants are required to complete the matrix by selecting the missing shape from four 
possible options. To correctly identify the answer, participants have to deduce relationships between the shapes 
in the matrix (which vary in shape, colour, size and position). When participants select an answer, they proceed 
to the next trial. If participants do not provide a response within 30 s, they proceed to the next trial without a 
response. The MaRs-IB assessment lasts eight minutes regardless of how many trials are completed. The MaRs-
IB has acceptable internal consistency (Kuder-Richardson 20 ≥ 0.7) and test–retest reliability (r ≥ 0.7;79).

Statistical analyses. All frequentist analyses were conducted using R Studio (version 2021.09.2) and all 
Bayesian analyses were conducted using JASP (version 0.16). For all frequentist analyses, we used a significance 
threshold of p = 0.05 to determine whether to accept or reject the null hypothesis. The frequentist approach 
was supplemented with the calculation of Bayes Factors, which quantify the relative evidence for one theory or 
model over another. For all Bayesian analyses, we followed the classification scheme used in  JASP85, in which 
 BF10 values between one and three reflect weak evidence, between 3 and 10 as moderate evidence and greater 
than 10 as strong evidence for the experimental hypothesis. In addition,  BF10 values between 1 and 1/3 reflect 
weak evidence, between 1/3 and 1/10 as moderate evidence, and smaller than 1/10 as strong evidence for the 
null hypothesis  respectively85.

Data availability
The data files corresponding to this study are available online at https:// doi. org/ 10. 17605/ OSF. IO/ UQY3K. The 
tasks used in the current study are openly available online at https:// app. goril la. sc/ openm ateri als/ 447800.
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