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• We use GeoSTMUM here to estimate vehi-
cle dynamics with high spatiotemporal
resolution.

• Telematics data were collected from the
West Midlands in the UK for 2016
and 2018.

• Real-urban FC and EFs are estimated by ve-
hicle dynamics and real-world measure-
ments.

• Fleet renovation reduces real-urban NOx
EFs by over 14 % for the studied period.

• Road slope has an increasing impact of
2–5 % on the estimated real-urban FC
and EFs.
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In this study, we use the approach of geospatial and temporal (GeoST) mapping of urban mobility to evaluate the speed-
time-acceleration profile (dynamic status) of passenger cars. We then use a pre-developed model, fleet composition and
real-world emission factor (EF) datasets to translate vehicles dynamics status into real-urban fuel consumption (FC) and
exhaustive (CO2 and NOx) emissions with high spatial (15 m) and temporal (2 h) resolutions. Road transport in the
West Midlands, UK, for 2016 and 2018 is the spatial and temporal scope of this study. Our approach enables the analysis
of the influence of factors such as road slope, non-rush/rush hour and weed days/weekends effects on the characteristics
of the transport environment. The results show that real-urbanNOx EFs reduced bymore than 14% for 2016–18. This can
be attributed to the increasing contribution of Euro 6 vehicles by 63 %, and the increasing contribution of diesel vehicles
by 13 %. However, the variations in the real-urban FC and CO2 EFs are less significant (±2%). We found that the FC es-
timated for driving under the NEDC (National EuropeanDriving Cycle) is a qualified benchmark for evaluating real-urban
FCs. Considering the role of road slope increases the estimated real-urban FC, andNOx, andCO2EFs by aweighted average
of 4.8 %, 3.9 %, and 3.0 %, respectively. Time of travel (non-rush/rush hour or weed days/weekends) has a profound ef-
fect on vehicle fuel consumption and related emissions, with EFs increasing in more free-flowing conditions.
1. Introduction

The transportation of individuals, services and goods, is a key pillar of
social welfare, economic growth, and development (Pradhan, 2019). For
25 May 2023; Accepted 14 June
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example, within the European Union (EU), the transportation sector pro-
vides 5 % of employment and contributes over 9 % of the gross value
added (EU, 2019). The internal combustion engine is currently still the
dominant form of propulsion systemused by road vehicles, with road trans-
portation being one of the largest consumers of petrochemical fuel world-
wide, responsible for around 29 % of global energy use in 2018 (Chen
et al., 2016). The combustion of this fuel is responsible for around a quarter
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of global carbon dioxide (CO2) emissions (Zhang et al., 2018), and hence
transport is a key cause of climate change (Wang et al., 2019). Gaseous
and particulate matter pollutants are also produced through the combus-
tion process, hence road transport contributes significantly to air pollution,
especially with respect to nitrogen oxides (NOx), see for example
Ghaffarpasand et al. (2020b) and Coelho et al. (2022).

A deep understanding of vehicular emissions and fuel consumption is a
vital prerequisite for any emission mitigation strategy. Vehicular emission
factors (EFs) and emission rates (ERs) provide the emitted mass of pollutants
per distance travelled and per travel time, respectively. The emission perfor-
mance of different vehicle subsets, under real-world or controlled/laboratory
conditions, can be assessed by different methods. Portable emissionmeasure-
ment systems (PEMS) and vehicle emission remote sensing systems (VERSS)
are used to analyse real-world EFs (Ghaffarpasand et al., 2020a;
Ghaffarpasand et al., 2020d), and dynamometers are frequently applied to as-
sess EFs under controlled conditions (Liu et al., 2017). Fuel consumption (FC)
of moving vehicles is usually estimated by the real-world measurement of in-
stantaneous CO2 ER. The FC can then be calculated through the method of
carbon balance (Ghaffarpasand et al., 2021; Hu et al., 2012; Zhang et al.,
2014b). An alternative methodology is to link FC to vehicle dynamic status,
i.e., engine power, over a range of driving conditions (Borken-Kleefeld
et al., 2018; Davison et al., 2020; Hausberger, 2003). The relationships be-
tween the vehicle dynamic status and the instantaneous EFs, ERs and FCs
have been detailed by Davison et al. (2020) and Grange et al. (2019).

Driving cycles (DCs)were one of thefirst attempts to understand vehicle
dynamics status, through the provision of speed-time-acceleration informa-
tion (Hu et al., 2022; Hung et al., 2007; Soto et al., 2023). A wide body of
research details the methods and techniques of developing DCs and their
wide applications in transportation and freight logistics, see for example
Bhatti et al. (2021) and Marabete et al. (2022). DCs are usually developed
using a small volume of data collected from a few GPS-connected vehicles
that are monitored over certain routes and times. Hence, the spatial and
temporal resolutions of DCs are typically limited. Data collection over
large road networks is difficult with DCs due to time and budget con-
straints. DCs do not include detailed information on spatial and temporal
factors such as road type, road slope, time of travel effects, and hence
these important factors cannot be included in the analysis of vehicle dy-
namic status (Kancharla and Ramadurai, 2018). Previously, the effect of
road slope upon the emission performance and FC of on-road vehicles has
been shown to be significant (Jia et al., 2021; Molina Campoverde et al.,
2022.

Vehicle telematics data provide information on the timestamped posi-
tions of vehicles and are a promising data source with which to address
the shortage of road data (Ghaffarpasand et al., 2022). Typically, telematics
data are collected from GPS-connected vehicles whose drivers achieve
fairer pricing in their car insurance premia in exchange for sharing their
data. Telematics data are also used for freight logistics support, driving
2

behaviour assessment, and traffic flow analysis in the transportation indus-
tries (Huang and Meng, 2019; Walker and Manson, 2014).

Vehicle telematics data are used within Satellite Navigation (satnav) ser-
vices such as Google Maps or Waze to improve best route calculations.
These services calculate the average speeds along connected links between
pairs of destinations as well as using traffic forecasts, incident reports and
other cognate information. Recently, Google in cooperation with US National
Renewable Energy Laboratory (NREL) developed an eco-friendly routing algo-
rithm to estimate the fuel consumption of a vehicle for any given route across
road segments and driving conditions (GoogleMaps, 2023). The algorithm re-
ceives the vehicle engine type, i.e. petrol, diesel, hybrid or electric, and esti-
mates the fuel consumption using factors such as the average fuel or energy
consumption for vehicles in the studied region, steepness of hills in the
route, stop-and-go traffic patterns, and road types. Currently, these services
do not deliver any information on the vehicle's dynamic status, i.e., speed-
acceleration-variationprofiles. Also, theydonot allow interrogation of historic
data, which precludes their use in transport planning and policy-making.

Previously, vehicle GPS data has been used in transport planning studies
or vehicle emission estimations. For example, Chen et al. (2016) estimated
traffic volume from vehicle GPS and then estimated the corresponding NOx

concentration using a non-linear optimisation model. Gately et al. (2017)
estimate the road EFs using detailed hourly vehicle speeds to develop the
vehicular emission inventory of Eastern Massachusetts, Boston, US.
Ghaffarpasand et al. (2020c) used GPS data of test vehicles to develop a
local DC, with corresponding road EFs, and then developed a vehicular
emission inventory for the city of Isfahan, Iran. A similar approach by
Ibarra-Espinosa et al. (2020) developed a vehicular emission inventory
for southeast Brazil. Mjøsund and Hovi (2022) used vehicle GPS data to
study the freight vehicle activities in seven Norwegian cities.

Recently, Ghaffarpasand and Pope, 2023) propose a new approach of
‘geospatial and temporal (GeoST) mapping of urban mobility’ to translate
vehicle telematics data into urban mobility characteristics at high geo-
spatiotemporal resolutions (15 m and 2 h spatial and temporal scales, re-
spectively). This approach provides a detailed understanding of the
speed-acceleration profiles from which the vehicle-specific power (VSP)
can be estimated. When calculated as a function of speed and acceleration,
VSP is found to be a highly informativemetric to estimate vehicle emissions
and fuel consumption (Jiménez, 1998).

In this study, we provide a new approach for converting vehicle
telematics data into estimates of vehicular emissions and fuel consumption
over different spatial and temporal scales. We combine GeoST mapping of
urban mobility with comprehensive datasets of fleet composition and
real-world vehicle emissions to define new geospatial attributes of fuel con-
sumption and vehicle emissions. In this new paradigm, fuel consumption
and vehicular emissions are parameterized as urban features and can be
analysed within geospatial frameworks, along with other urban features
that can affect driving behaviour.
2. Material and methods

2.1. Vehicle telematics data, data description

Weuse vehicle telematics data provided by aUK-based telematics company, the Floow (www.thefloow.com). The data, whichwere instantaneous speed-
time data, were collected from passenger cars, vehicles 3.885 tons or less (EU_Commission, 1999), for their journeys on the roads. Data is first QC/QA
checked by the company, anonymised, and then aggregated by road sections and time bins in compliance with the EU and UKGeneral Data Protection Reg-
ulation (GDPR). The aggregated data are subdivided into segments with specific geospatial and temporal characteristics (hereafter called GeoST-segments),
and then the speed-acceleration-frequency-distribution (SAFD) matrix is calculated for each GeoST-segment. Essentially, GeoST-segments are geospatial
polyline features with time-specific assignments aligned along the direction of traffic flow. SAFD is a normalised matrix that shows the speed and acceler-
ation distribution of cars in each GeoST-segment. The average speed and acceleration are estimated using the SAFD matrix. This approach is called
GeoSpatial and Temporal (GeoST) Mapping of Urban Mobility and is discussed in detail by Ghaffarpasand and Pope (2023).

2.2. Spatial and temporal scope of the study; real-urban parameters

Vehicle telematics data used in this study were collected from the roads of West Midlands in the UK for the years 2016 and 2018. They were collected from
approximately 3–7% of passenger car fleets that moved over the roads of theWest Midlands in the study years. It is worth noting that, the passenger car makes

http://www.thefloow.com
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up more than 85 % of the total fleet in the West Midlands (Osei et al., 2021). Hence, this percentage contribution (3–7 %) provides a reliable representation of
road transport across the studied area. For context, in 2017, over three million different vehicles travelled over the roads of the West Midlands (STATISTA,
2017). The study years of 2016 and 2018 provide a detailed understanding of road transport prior to themajor interruptions caused by the COVID-19 pandemic,
which was first reported in the UK in early 2020.

The method of GeoST mapping of urban mobility is used here to convert vehicle telematics data into SFAD matrices of passenger cars on GeoST-segments,
see Ghaffarpasand and Pope (2023) for more details. GeoST-segments lengths vary from 15 to 150 m to cover all road features such as roundabouts, junctions,
service roads, etc. Road classification follows the scheme of OpenStreetMap (OSM,www.openstreetmap.org). We present here the results for the following road
designations: primary, secondary, motorways, and trunk roads, which accounted for 24.5%, 36.8%, 5.2%, and 33.5%, of the total roads studied, respectively.

The GeoST-segments are subset into 35 distinct time slots averaged over the year (2016 or 2018) comprised of the following diurnal time slots
(00:00–06:59, 07:00–08:59, 09:00–11:59, 12:00–13:59, 14:00–15:59, 16:00–18:59, and 19:00–23:59) for five days a week (Mondays, Tuesdays, Fridays,
Saturdays, and Sundays). It is noted that the time zone adoption was implemented, whereby Greenwich Mean Time (GMT) and British Summer Time
(BST) were used as appropriate. With this adoption, the morning rush hours are, for example, between 07:00–09:00 throughout the year. The study, there-
fore, covers the entire temporal dimensions of passenger car transportation on urban roads, such as driving during rush or non-rush hours, weekdays, or
weekends. An example figure of the GeoST-segments is shown in Fig. 1, which provides the average speed over a small area of the city of Birmingham.

Vehicle emissions and fuel consumptions are typicallymeasured under real-world or controlled laboratory conditions using PEMS or dynamometers, respec-
tively. Amajor caveat in their use is that these measurements often miss important spatial and temporal aspects of urban transport such as non-rush/rush hour,
weekday/weekend effects or driving on motorways or primary roads. Their estimation in GeoST segments provides a new opportunity to consider their spatial
and temporal dimensions in greater detail. Traffic activity in terms of the number of vehiclesmoving on the respective roads should be considered to arrive at net
statistics for certain time intervals.

2.3. Vehicle specific power (VSP)

The estimated average speed and acceleration for each GeoST-segments were used to calculate matrices of vehicle fuel consumption and vehicle emis-
sions based upon vehicle specific power (VSP). VSP was introduced by Jiménez-Palacios (1999) as the vehicle power demand at a certain point to conquer
the external forces including inertial forces to maintain constant acceleration, road friction resistance force, air resistance traction, and road slope force, im-
posed on amoving vehicle. VSP as the instantaneous total power demand (sum of power loads resulting from aerodynamic drag forces, acceleration, rolling
resistance, and hill-climbing) per vehicle mass is given by Jiménez-Palacios (1999) and Zhai et al. (2008):

VSP ¼ Power demand
vehicle mass

¼ Paccl þ Prolling þ Paerodynamic þ Pgrad þ Pinternal

m

¼

m� a� 1:04
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Paccl

þ R0 þ R1 � v
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Prolling

þ 0:5� Cd � A� ρ� v2
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{Paerodynamic

þ m� g� Grad
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{Pgrad

þ 1:08� vþ 2500
zfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{Pinternal

2
64

3
75� 1:08� vþ 2500

m

(1)
Fig. 1. GeoST mapping of urban mobility over streets in the Ladywood area of the city of Birmingham within the West Midlands in the UK; the average speed (km/h) for
07:00–09:00 Mondays 2018.
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wherem is the vehicle mass and Paccl, Prolling , Paerodynamic, Pdrag , and Pinternal are the power to accelerate the vehicle, power to overcome rolling resistance from
the road, power to overcome air drag force, power to climb the road gradient, and the sum of the power required to operate auxiliary devices and losses in
the transmissions, respectively. v m=sð Þ, a m=s2

� �
, and Grad are the average speed, average acceleration, and road slope, respectively; R0 Nð Þ, R1 Ns=mð Þ are

road load coefficients; Cd, A m2
� �

are the aerodynamic drag coefficient and frontal surface area of the studied vehicle, respectively.
For light-duty vehicles (LDVs) 3.885 t or less, Borken-Kleefeld et al. (2018), Davison et al. (2020), and Hausberger (2003) advised some assumptions in

the calculation of VSP by Eq. (1). It is assumed that the power to accelerate rotational accelerated mass is equivalent to 4 % of the power at the power for
translational acceleratedmass; the power losses in the transmission are equal to 8% of the power at the drivenwheels; and the power demand of auxiliaries
is taken to be a fixed value of 2.5 kW. The gravity and the air density at 20 °C and 1 atm are taken to be 9.81 m=s2, and 1.2 kg=m3, respectively. The VSP of
the LDVs (passenger cars) is then given as:

VSP
kW
t

� �
¼ 2500þ R0 � vþ R1 � v2 þ Cd � A� 0:5� ρ� v3ð Þ � 1:08

m� 1000
þ 1:12� v� aþ 1:08� v� g� Grad

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{slope part

(2)

Borken-Kleefeld et al. (2018), Davison et al. (2020), and Hausberger (2003) proposed a set of generic coefficients of R0, R1, and CdA for LDVs classified
using EU_Commission (1999). Accordingly, the average generic coefficients of R0, R1, and CdA for passenger cars are taken to be (157, 127), (0.95, 0.78),
and (0.666, 0.598) for the (diesel cars, petrol cars), respectively.

Eq. (2) is used to calculate the spatio-temporal distribution of VSP by using the average speed and acceleration estimated for each GeoST-segment, see
Section 2.2. The variation of VSP over the GeoST-segments is studied in detail by Ghaffarpasand and Pope (2023). The potential effects of road slope in
Eq. (2) have previously been ignored in many emission studies which used the VSP in their calculations. In this study, road slope is estimated for every
GeoST-segment using the method proposed by Ghaffarpasand and Pope (2023), and then two VSP values, which either include or not the slope part of
Eq. (2), are calculated for every GeoST-segment.

2.4. Real-urban fuel consumption

According to the carbon mass balance method, fuel consumption factor (FCF) is usually estimated by the exhaustive emission factors (EFs) of CO2, CO
and total hydrocarbons (THC) through the following equation (He et al., 2022; Zhang et al., 2014a):

FCF
L

100km

� �
¼ 100

ρfuel g
L

� ��Wc
0:273EFCO2

g
km

� � 
þ 0:429EFCO

g
km

� �
þ 0:866EFTHC

g
km

� �!
(3)

where Wc is the ratio of carbon mass to total fuel mass. In the passenger car and heavy-duty emission model (PHEM), the normalised fuel consump-
tion rate (in g/h × t) is estimated based on engine maps and vehicle longitudinal dynamics simulations (Borken-Kleefeld et al., 2018; Davison et al.,
2020; Hausberger, 2003). PHEMmodels normalised fuel consumption over a range of driving conditions through the linear relationship between fuel
consumption and engine power. Accordingly, VSP can be converted to fuel consumption rate (FCR) by a linear relationship given by Davison et al.
(2020):

FCR
g
h

� �
¼ M � VSP

kW
t

� �
þ C

� �
� m (4)

wherem is the vehicle weight, andM and C are dimensionless parameters calculated from fuel flow curves for different engines. The average value of
M,Cð Þ for petrol and diesel passenger cars are (229, 552) and (204, 221), respectively. The fuel consumption rate in Eq. (4) is converted to the fuel
consumption factor (FCF) using the instantaneous speed in Eq. (5):

FCF
g
km

� �
¼ FCR g

h

� �
v m

s

� �� 3:6
(5)

The fuel consumption factor is called fuel consumption (FC) hereinafter for the sake of brevity. A consequence of using a linear equation such as Eq. (4) to
estimate fuel consumption is the potential for negative modelled FC values, which are physically impossible. Hence negative FC values are set to zero fol-
lowing Davison et al. (2020).

Eqs. (2) and (4) are used to convert spatiotemporal maps of VSP into the corresponding fuel consumption. To study the impact of road slope upon fuel
consumption, FCs are estimated using VSPs which either consider or ignore the road slope (see Eq. (2)).

A few assumptions are required for the estimations. First, the average weight of LDVs (m in Eq. (5)) is estimated according to the published
statistics of the UK vehicle market (ICCT, 2021) and fleet composition of the studied area (Fig. 2(c)). ICCT (2021) reports the average weight
of brand-new cars sold in the UK (and EU) market for the past decade. Accordingly, the average cars weight (m in Eq. (5)) in the West Midlands
is estimated here to be 1.878 t or 1.890 t for 2016 or 2018, respectively. The estimated fuel consumptions here are converted into the ‘L=100 km’

unit using the assumed densities of petrol and diesel (ρpetrol ¼ 755 kg
m3 , ρdiesel ¼ 838 kg

m3) to compare with the published EU road statistics. The im-
pacts of seasonality and/or regional distributions of fuel density, etc., are ignored and unified fuel densities are used here like many previous in-
vestigators such as Zhang et al. (2014a). The relative contributions of petrol and diesel cars to the fleet are estimated using the ANPR data, see
next section and Fig. 2(c).

In this study, we report the relative difference between the median of the probability distribution function (PDF) of real-urban fuel consumption and
official fuel consumptions. New cars in the UK are characterized by three official fuel consumptions entitled urban, extra-urban, and New European Driving
Cycle (NEDC). Urban and extra-urban fuel consumptions are designed to represent fuel consumption within urban areas and non-urban areas (country
roads/motorways driving), respectively. The NEDC covers almost all modes of driving. All official fuel consumptions are measured in the laboratory and
under controlled conditions. On the other hand, official fuel consumption is reported according to the composition of the cars sold, for example, 48 %
and 32 % of new cars sold in the UK in 2016 and 2018 were diesel, respectively. To have a reliable assessment against the official fuel consumption, we
4



(a)

(b)

(c)

Fig. 2. The variation of exhaustive (a) NOx and (b) CO2 ER as a function of VSP for different vehicle subsets; (c) fleet composition of passenger cars moving over the West
Midlands street network in the UK for the years 2016 and 2018.
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updated those values using the relevant fleet composition considered here for 2016 and 2018. The fleet composition used here is discussed in the next sec-
tion. The updated fuel consumption of brand-newvehicles in the UKmarket driving in under urban, extra-urban andNEDC conditions are labelled FC1, FC2,
and FC3, respectively, and are shown in Fig. 3(a). The relative difference values between the median of the real-urban FCs PDF and official fuel consump-
tions (FC1–3 in Fig. 3(a)) are estimated using the following equation:

Relative Difference %ð Þ ¼ MedFCAnn � FCi
FCi

� 100 (6)

whereMedFCAnn is themedian value of the PDF of the real-urban fuel consumption for thewhole year. The relative difference values between themedian of
the real-urban FCs PDF and FC1, FC2, and FC3 are shown in Fig. 3(b), (c), and (d), respectively.
5



Fig. 3. (a) The average fuel consumption (FC) of brand-new vehicles in the UK vehicle market driving under extra-urban, NEDC, and urban conditions, labelled here by FC1,
FC2, and FC3, respectively (ICCT, 2021); Relative difference (%) of median values for the PDF profile comparing (b) FC1, (c) FC2, and (d) FC3.
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2.5. Real-urban EFs estimation; real-world EFs and fleet composition datasets

Several methods have been developed for analysing real-world EFs. Vehicle emission remote sensing systems (VERSS) assess the instantaneous ERs of
moving vehicles, see for example Ghaffarpasand et al. (2020a) and Grange et al. (2019). Most VERSSs report the ratio of the concentration of pollutants in-
cluding NO, NO2, and PM to CO2 (an indicator of fuel consumption) in the exhaust plume. The concentration ratios are then converted to fuel-based EFs (in
g/kg) using recorded instantaneous CO2 EFs, themolecular weight ratio of the studied pollutant (i.e., NO, NO2, and PM) to CO2 (Ghaffarpasand et al., 2023).
NOx ER is considered the sum of NO2 and NO ERs (NOx = NO2 + NO) in most VERSS studies. Davison et al. (2020) proposed the following equations to
convert fuel-based EFs into ERs and EFs.

ER
g
s

� �
¼ Fuel � based EF

g
kg

� �
� FCR g

h

� �
3, 600, 000

(7)

EF
g
km

� �
¼ Fuel � based EF

g
kg

� �
� FCF g

km

� �
1000

(8)

where FCR and FCF are estimated by Eqs. (4) and (5), respectively. They evaluated the method with 55 independent comprehensive PEMS measurements
over a wide range of driving conditions and found a good agreement between the method and PEMS data. Davison et al. (2021) then used the method of
Davison et al. (2020) to study the relationship between the instantaneous ERs and VSPs of different petrol and diesel passenger cars under different driving
conditions. They studied the results of a number of UK-based VERRS and PEMS campaigns. Meanwhile, they used the fitting generalized additive models
(GAMs), which are flexible enough to account for non-linear relationships between variables, to estimate the instantaneous ER-VSP for passenger cars
with fuel type, engine size, Euro standards, and pollutant species. Their results show linear relationships between the NOx and CO2 ERs and instantaneous
VSP of the studied vehicles. We use the (Davison et al., 2021) VSP parametrization of ER, with the VSP data from the GeoST mapping, to estimate the air
pollutant (NOx) and climate-forcing (CO2) exhaustive emissions of vehicles under real-urban conditions.

The relationship between instantaneous VSP and real-world NOx and CO2 exhaustive ERs for different vehicle subsets (EURO Class and fuel type) are
shown in Figs. 2(a) and 2(b), respectively, as provided by Davison et al. (2020) and Davison et al. (2021). The bias observed here on zero VSP values (pre-
viously observed by Davison et al., 2020 and Davison et al., 2021) may be attributed to the assumption made earlier in removing negative FCs in Eq. (4) as
6
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well as the fitting GAMs used to predict the instantaneous ER-VSP of different car subsets. However, older vehicles, with smaller Euro numbers, have larger
ERs compared to newer vehicles, and diesel cars have higher NOx ERs compared to petrol cars. The impact of the EURO Class upon CO2 ERs is much less
when compared to the impact upon NOx ERs.

To understand the total fleet ERs, information about fleet composition is required. To achieve a real-world picture of fleet composition across the West
Midlands roads, we use automatic number plate recognition (ANPR) data provided by the local authorities that represent the wider West Midlands region
(BCC, 2017; JACOBS, 2018). ANPR cameras, which are typically high-resolution infra-red (IR) cameraswith ultra-bright IR LED illuminators for 24/7 covert
operation, are capable of single- and double-lane imaging (with 2.9 m and 6.5 m horizontal field of view, respectively) and identification of vehicle number
plates in two lanes at the same time (double-lane version) for both one-way and two-way carriageways. The data used in this studywas collected fromANPR
cameras installed at 36 different locations in and around Birmingham city centre. ANPR cameras are installed on the major roads and operate 24/7, the lo-
cation of the cameras is reported by BCC (2017) and JACOBS (2018). The collected data are then interrogated using existing vehicle datasets, such as that
provided by the UK's Driver and Vehicle Licensing Agency (DVLA) (Ropkins et al. 2017; Liu et al., 2017). From the number plate, vehicle specifications such
as vehicle class, engine size, fuel type, Euro number, etc. are then obtained. The results were then anonymised and accumulated before publishing in com-
pliance with the General Data Protection Regulation (GDPR). ANPR statistics, which are estimated by the data of tens of thousands of different vehicles,
provide a reliable estimate of fleet composition.

The fleet composition of cars moving over the roads of West Midlands, subset by fuel and EURO class, for the years 2016 and 2018 is presented in Fig. 2
(c). 2018 has a greater proportion of EURO 6 and petrol vehicles in the total fleet when compared to the 2016 fleet. The ratio of diesel to petrol cars de-
creased from 1.41 in 2016 to 1.03 in 2018, which is a 13 % decrease in the contribution of diesel vehicles. Meanwhile, the contribution of Euro 6 vehicles
is enhanced by around 63 % in 2018 when compared to 2016. This indicates fleet renewal for the period under study.

The linear relationships between VSP and ERs, together with the estimated fleet composition, are used to convert the spatiotemporal distribution of VSP
into corresponding real-urban exhaustive ERs g=sð Þ. The corresponding spatiotemporal distribution ofVSP, see Ghaffarpasand and Pope (2023), is then used
to estimate the exhaustive emission factors (EFs) under the real-urban conditions, for each GeoST-segment, through the following equation:

EF
g
km

� �
¼ ER g

s

� �
v m

s

� � � 1000 (9)

The role of road slope is evaluated by comparing the calculated EF with and without the effect of road slope being considered, see Eq. (2), for each
GeoST-segment.
3. Results and discussions

3.1. Real-rban segment-based fuel consumption

The probability distribution function (PDF) of real-urban fuel consump-
tion for the studied time slots as well as the whole year, for both 2016 and
2018, are presented in Fig. 4(a) and (b), respectively. In Figs. 4 and 5, the
official fuel consumptions are highlighted by vertical red lines and labelled
FC1–3 (FC1, FC2, and FC3), see Fig. 3(a) for their values. In all the PDFs
shown in Fig. 4, near unimodal distributions are observed. On secondary
and primary roads, FC2 values (fuel consumption for driving under the
NEDC) are very close to the median of the PDFs of real-urban FCs. For
motorways, the estimated median FC values all exceed FC1–3. In Fig. 3
(b)-(d) we report the relative difference between the median of the real-
urban FCs PDF and FC1–3. It can be seen that the median FC values are
larger than FC3, which represents driving under urban conditions. Mean-
while, the smallest difference is observed between the median value of
the PDF and FC2 values.

Except for motorways, the median values of the FC PDFs are smaller
than FC2 and FC1. A significant discrepancy is observed between the real-
urban FC for motorway driving and the FC1–3. This is simply attributed
to higher speeds and thus higher fuel consumption on motorways. The dif-
ferences between the median values of the FC PDFs and FC1–3 in 2018 are
higher than that in 2016. This is attributed to the difference between real-
world fleet composition in the two years (Fig. 2(c)); FC1–3 values were es-
timated for the brand-new vehicles. The ICCT (2021) reports a 48%drop in
the number of new brand diesel vehicles sold in the UK for 2018–2016,
while Fig. 2(c) shows a 13 % drop in diesel's share of the West Midlands
fleet composition.

Fig. 4 presents the impact of road slope upon fuel consumption where
the solid and dashed lines correspond with FCs estimated by considering
and ignoring the role of road slope, respectively, see Sections 2.2 and 2.3.
The impact of road slope upon fuel consumption across the studied area
is reported in Table 1.

For each specific GeoST-segment, we evaluate the relative difference in
real-urban FCs estimated by ignoring and considering the role of road slope.
Table 1 presents the average and standard deviations of the estimated rela-
tive differences for the studied cases. We use the same approach to study
7

the impact of road slope on real-world NOx and CO2 EFs, see the next sec-
tions, and to evaluate the results estimated for the years 2016 and 2018.

Considering road slope increases fuel consumption in driving over sec-
ondary roads, primary roads, trunk roads, and motorways by (average
over the studied years of 2016 and 2018) 4.9 %, 4.9 %, 4.7 % and 3.0 %,
respectively. The consideration of road slope increases the estimated fuel
consumption over the studied roads by the weighted averages of 4.7 %
and 4.8 %, for 2016 and 2018, respectively.

The FC PDFs for secondary and primary roads are very similar. Both
road types show similar diurnal patterns, with non-rush hour periods show-
ing FC distributions shifted to higher values when compared to rush hour
periods. This is attributed to the higher vehicle speeds in non-rush hours,
which are translated into higher VSP and FC values. This shift to higher
FC values during non-rush hour periods is more pronounced in the motor-
way FC distributions.

The PDF of real-urban FCs for driving on different days of the week for
the years 2016 and 2018 is represented in Fig. 5(a)& (b), respectively. The
results are presented here for time slots of morning rush hour (Mo_RH),
non-rush hour (No_RH), and evening rush hours (Ev_RH) which correspond
with the following timings: 07:00–08:59, 19:00–23:59, and 16:00–18:59,
and are plotted by solid, dashed, and dotted lines, respectively. These pe-
riods did not change over the weekends and weekdays. Secondary and pri-
mary roads show similar trends for FC on different days of the week. In
either road type, the weekend day profiles are distinct from the weekday
profiles. There are considerable variations in the motorway FC PDFs for dif-
ferent days of the week. On weekdays, the peak is located towards higher
FC values in non-rush hours due to higher average speeds. The morning
rush hours peak moves towards higher FC values on weekends, which is
likely attributed to less congestion and higher average speeds. The observed
variations in the 2016 and 2018 profiles look fairly similar.

The average relative differences between the annually averaged FC over
each GeoST-segment for the years 2016 and 2018 are reported in Table 2.
The real-urban FC in 2018 was slightly higher than in 2016, with a
weighted average of 1.4 %. This is directly attributable to the distribution
of petrol and diesel vehicles for the years under study (2016 and 2018),
see Fig. 2 (c). Petrol cars have usually higher fuel consumption than diesel
cars. In the UK, the average fuel consumption ratio of brand-new diesel cars
to petrol cars was 0.85 and 0.89 in 2016 and 2018, respectively (DFT,



Fig. 4. The probability distribution function (PDF) of real-urban fuel consumption (FC) of cars moving over secondary roads, primary roads, and motorways within the West
Midlands region of the UK, for different time slots in (a) 2016 and (b) 2018. Vertical red solid lines represent the reported FC values for the UK vehicle market and are defined
in Table 1. Black and dashed solid lines stand for real-urban FCs, in which road slope is considered and ignored in their estimations, respectively.

Fig. 5.The probability distribution function (PDF) of real-urban fuel consumption (FC) of carsmoving over secondary roads, primary roads, andmotorways ofWestMidlands
in the UK for different days in (a) 2016 and (b) 2018. Vertical red solid lines are corresponding with the reported FC values for the UK vehicle market and are defined in
Table 1. Solid, dashed, and dotted lines correspond with morning rush hours (Mo_RH, 07:00–08:59), evening rush hours (Ev_RH, 16:00–18:59), and non-rush hours
(No_RH, 19:00–23:59), respectively. These periods did not change over the days of the week.
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Table 1
Relative difference (%) of the fuel consumption (FC) values estimated by considering or ignoring the role of road slope, see Section 2.2. The contributions of primary, sec-
ondary, trunk, and motorways roads to the total roads studied here are used to estimate the weighted average values, see Section 2.1.

Year Primary roads Secondary roads Motorways Trunk roads Weighted average

Real-urban FC 2016 4.6 ± 0.4 5.4 ± 0.5 2.8 ± 0.5 4.6 ± 0.4 4.8 ± 0.4
2018 5.2 ± 0.5 4.4 ± 0.3 3.2 ± 0.5 4.8 ± 0.4 4.7 ± 0.4

Real-urban NOx EF 2016 4.6 ± 0.4 3.5 ± 0.3 2.2 ± 0.5 3.7 ± 0.3 3.8 ± 0.3
2018 4.6 ± 0.4 3.7 ± 0.3 2.6 ± 0.5 3.7 ± 0.3 3.9 ± 0.3

Real-urban CO2 EF 2016 3.6 ± 0.3 2.9 ± 0.3 1.8 ± 0.4 2.6 ± 0.2 2.9 ± 0.3
2018 3.6 ± 0.4 3.3 ± 0.3 2.1 ± 0.4 2.6 ± 0.2 3.1 ± 0.3

Table 2
Relative differences (%) between 2018 and 2016 in fuel consumption (FC) and emission factors (EF) for NOx and CO2. The contributions of primary, secondary, trunk, and
motorways roads to the total roads studied are used here to estimate the weighted average values, see Section 2.1.

Primary Roads Secondary Roads Motorways Trunk Roads Weighted Average

Real-urban FC 1.8 ± 0.2 1.2 ± 0.2 −1.0 ± 0.2 1.8 ± 0.1 1.4 ± 0.2
Real-urban NOx EF −13.6 ± 0.1 −13.5 ± 0.1 −15.8 ± 0.1 −14.4 ± 0.1 −13.9 ± 0.1
Real-urban CO2 EF −0.8 ± 0.1 −0.7 ± 0.1 −2.2 ± 0.1 −2.0 ± 0.1 −1.2 ± 0.1
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2023). Fig. 2(c) shows that the contribution of diesel cars decreased by
13 % and was already replaced by petrol cars for the period under study.
Among the reported statistics, motorways have the least variation in FC
for the studied years of 2016 and 2018. Ghaffarpasand and Pope (2023)
shows that the vehicles travelled an average of 6.4 % faster on motorways
in 2016 than in 2018, while they drove just 1.5 % (by average) faster on
other road types. The variation in the real-urban FCs of the motorways is
Fig. 6. The probability distribution function (PDF) of real-urban NOx emission factor (EF
West Midlands in the UK for different time slots in (a) 2016 and (b) 2018. Solid and dash
see Eq. (2).
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attributed to the contradictory effects of the average speed and fleet
(petrol:diesel) composition.

3.2. Real-urban exhaustive NOx emission

The PDFs of NOx EFs for different time periods, for 2016 and 2018, are
shown in Fig. 6(a) and (b), respectively. Fig. 6 also considers the role of
) of passenger cars moving over secondary roads, primary roads, and motorways of
ed lines are for EFs which road slope is considered and ignored in their calculations,



Table 3
The median value (g/km) of the PDF profile of real-urban emission factors (EF) for
NOx and CO2.

Year Primary
Roads

Secondary
Roads

Motorways Trunk
Roads

Real-urban NOx

EF
2016 0.50 0.51 0.48 0.41
2018 0.44 0.45 0.41 0.35

Real-urban CO2

EF
2016 157.2 160.12 205.55 192.66
2018 154.57 157.18 202.77 190.9
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road slopewith the solid and dashed lines representing the PDFs of NOx EFs
estimated with and without the consideration of road slope, respectively.
The role of road slope upon the estimated NOx EFs is reported in Table 1.
Considering the influence of road slope increases the estimated real-urban
NOx EFs of passenger cars moving over secondary roads, primary roads,
trunk roads, and motorways by an average of 3.6 %, 4.6 %, 3.7 % and
2.4 %, respectively. The inclusion of the road slope into calculations has a
weighted average impact of 3.9% upon the estimated real-urbanNOx emis-
sion for the studied roads.

Fig. 6 shows near unimodal PDFs for NOx EFs, which move towards
higher values in non-rush hour periods. The effect is most pronounced for
motorways, but also present in different road types. Higher NOx EFs are at-
tributed to higher speeds and accelerations, and hence higher VSPs, which
are more likely to occur in non-rush hour periods. The median values are
reported in Table 3, which are similar to the VERRS real-world measure-
ments of Ghaffarpasand et al. (2020a). Ghaffarpasand et al. (2020a)
analysed the real-world exhaustive EFs of around 100,000 UK-based vehi-
cles, including vehicles in the West Midlands, measured in 2016–2017.

The impact of the day of the week upon NOx EFs is illustrated in Fig. 7.
The PDF profiles for 2018 are slightly shifted towards smaller EFs when
compared with 2016. This may be attributed to two facts previously ob-
served in Fig. 2(c) of the fleet composition of the study area. The
Fig. 7. The probability distribution function (PDF) of NOx emission factor (EF) of pas
Midlands in the UK for different days in (a) 2016 and (b) 2018. Solid, dashed, and dott
hours (Ev_RH, 16:00–18:59), and non-rush hours (No_RH, 19:00–23:59), respectively. T
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contribution of diesel cars to the fleet in 2018 decreased by 13% compared
to 2016. The higher NOx EFs of diesel vehicles compared to petrol vehicles
have beenwidely discussed in the literature, see for example Ghaffarpasand
et al. (2023). Meanwhile, Fig. 2(c) shows a 63 % increase in the contribu-
tion of Euro 6 vehicles in 2018 compared to 2016. This fleet renewal results
in cleaner vehicles on average.

Whilst the impact of the day of travel upon theNOx EFs seems to bemar-
ginal for primary and secondary roads, motorways show much larger vari-
ations. Fig. 7 shows the NOx EF PDFs shift to higher EFs in non-rush hours
during weekdays, while the opposite is observed on weekends. The 2018
NOx EFs profiles are slightly damped and move to smaller EFs compared
to the 2016 profiles, which are directly attributed to fleet renovation and
especially the reduction of the contribution of diesel cars, see Fig. 2
(a) & (b).

The relative difference between the estimated NOx EFs for the studied
years of 2016 and 2018 is reported in Table 2. Fleet renovation reduced
the estimated NOx EFs by around 14%. Thefleet renovation has the highest
impact on the NOx EFs for motorways.

3.3. Real-urban exhaustive CO2 emission

The PDFs of CO2 EFs are shown in Fig. 8(a)& (b), respectively. A similar
analysis to that performed on NOx EFs is conducted with respect to: the day
of the week, the hour of the day and consideration of road slope. Consider-
ation of the road slope increased CO2 EFs by an average of 3.1 %, 3.6 %,
2.6 % and 2 % for secondary roads, primary roads, trunk roads and motor-
ways, respectively. Road slope has a weighted average impact of 3% on the
CO2 EFs for driving over the studied roads.

Unsurprisingly, considering the FC PDFs, the CO2 EF PDFs for motor-
ways have the highest EFs and the sharpest peaks. The PDFs for secondary
roads have the lowest values. The peaks of the studied profiles for second-
ary roads, primary roads, and motorways are located in the EF range of
senger cars moving over secondary roads, primary roads, and motorways of West
ed lines correspond with morning rush hours (Mo_RH, 07:00–08:59), evening rush
hese periods did not change over the days of the week.



Fig. 8. The probability distribution function (PDF) of CO2 emission factor (EF) of passenger cars moving over secondary roads, primary roads, and motorways of West
Midlands in the UK for different time slots in (a) 2016 and (b) 2018. Solid and dashed lines are for EFs which road slope is considered and ignored in their calculations,
see Eq. (2).
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100–200 g/km, 120–170 g/km, and 180–225 g/km, respectively. The me-
dian values of the PDF profiles of real-urban CO2 EFs, which are reported in
Table 3, are in the range of 154–193 g/km. Ghaffarpasand et al. (2020a)
shows that the real-world CO2 EFs for petrol and diesel passenger cars are
in the range of 150–230 g/km. The pattern of hourly variations observed
in the CO2 EFs is quite similar to the NOx EF variations, whereby the
PDFs move to higher values in non-rush hours during working days.

The impact of the day of the week upon CO2 EFs is shown in Fig. 9. On
secondary and primary roads, the impact of the day of the week is not very
strong. For motorways, the day of travel has two clear impacts on CO2 EFs.
Firstly, the peak of the PDF is shifted towards higher CO2 EFs during non-
rush hours during the weekdays and rush-hours during the weekends.
The CO2 EFs for 2016 and 2018 are similar, regardless of the day of the
week or time of day.

The relative differences between the annually averaged CO2 EFs for the
years 2016 and 2018 are provided in Table 2. The vehicle fleet in 2018 had
slightly lower CO2 EFs than that in 2016, which is likely due to fleet reno-
vation and the changing ratios of different EURO classes and fuel types
within the overall fleets. There were less diesels and more EURO 6 vehicles
in 2018. These changes in fleet characteristics have more impact upon NOx

than CO2 emissions.

4. Future research direction; new area in the transport environment

Vehicular fuel consumption and emissions are scalar transport environ-
ment parameters which are usually estimated over certain spatial and tem-
poral resolutions. The proposed method here, however, determines new
11
geospatial attributions to those scalar parameters and, in essence, intro-
duces them as the new urban features. These new features can be viewed
as ‘fuel geo-consumption’ and ‘geo-emissions’. An example of the results of
the proposed method over a very small area of the city of Birmingham,
UK, is represented in Fig. 10. Fig. 10 shows an example primary school,
with associated information, and the GeoST segments surrounding it. In
this new paradigm, fuel geo-consumption and geo-emission are considered
urban geographic features and the spatial relationships between them and
the other features such as hospitals, schools, trees, traffic lights, buildings,
etc., could be conceptualized/parametrized using the existing geospatial
tools and platforms. Parametrizing and understanding the spatial relation-
ships between the transport environment characteristics and other urban
features will provide the future research direction of this study.

5. Conclusions

In this study, we used a new approach to convert vehicle telematics
(location) data into the vehicle dynamics status (speed-time-accelera-
tion profile) across the West Midlands road network in the UK, at (pre-
viously unattainable) spatial and temporal resolutions of 15 m and
2 h, respectively. We then used a pre-developed model, and fleet compo-
sition and real-world emission measurement datasets to evaluate trans-
port environment characteristics of vehicular fuel consumption and
emissions over highly detailed spatiotemporal contexts. We investi-
gated the influence of factors such as road slope and time of travel on
the studied characteristics of transport environment. The main results
of this study are as follows:



Fig. 9. The probability distribution function (PDF) of real-urban CO2 emission factor (EF) of passenger cars moving over secondary roads, primary roads, and motorways of
WestMidlands in theUK for different days in (a) 2016 and (b) 2018. Solid, dashed, anddotted lines correspondwithmorning rush hours (Mo_RH, 07:00–08:59), evening rush
hours (Ev_RH, 16:00–18:59), and non-rush hours (No_RH, 19:00–23:59), respectively. These periods did not change over the days of the week.
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1. The real-urban NOx and CO2 EFs of on-road vehicles were reduced by a
weighted average of 13.9% and 1.2%, respectively. This is attributed to
the fleet composition development between the years 2016 to 2018,
which led to a 63 % and 13 % increase and decrease in the contribution
of Euro 6 and diesel vehicles to the total vehicle fleet, respectively.
Fig. 10.A small area of the city of Birmingham,WestMidlands, UK,with corresponding g
are reported here for the year 2016.
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2. The on-road vehicles in 2018 have 1.4 % higher real-urban fuel con-
sumption compared to 2016, which is explained by the increasing con-
tribution of petrol cars.

3. An average of 2–5 % increase is observed in the estimated FC, and
CO2 and NOx EFs by considering the role of road slope in the
eo-emissions and fuel geo consumption forMondays, 9–11, 2016. All attributed data
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calculations. The least impacts are observed for motorway driving.
4. The PDFs of the FC and NOx and CO2 EFs are typically near-

unimodal. The exact PDF profile is dependent upon time of the
day, and day of week, in addition to the type of road under investi-
gation.

The new GeoST approach to the estimation of FC and EFs allows for a
deeper understanding of how urban design affects air pollution and climate
change. Going forward, the approach detailed in this paper allows urban
planners to consider how to optimize roads with other urban features,
such as schools, hospitals, shops, malls, etc.
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