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ABSTRACT
Real-world optimisation problems often involve dynamics, where
objective functions may change over time. Previous studies have
shown that evolutionary algorithms (EAs) can solve dynamic opti-
misation problems. Additionally, the use of diversity mechanisms,
populations, and parallelisation can enhance the performance of
EAs in dynamic environments if appropriate parameter settings are
utilised. Self-adaptation, which encodes parameters in genotypes of
individuals and allows them to evolve together with solutions, can
help con�gure parameters of EAs. This parameter control mecha-
nism has been proved to e�ectively handle a static problem with
unknown structure. However, the bene�t of self-adaptation on dy-
namic optimisation problems remains unknown. We consider a
tracking dynamic optima problem, the so-called Dynamic Substring
Matching (DSM) problem, which requires algorithms to succes-
sively track a sequence of structure-changing optima. Our analyses
show that mutation-based EAs with a �xed mutation rate have a
negligible chance of tracking these dynamic optima, while the self-
adaptive EA tracks them with an overwhelmingly high probability.
Furthermore, we provide a level-based theorem with tail bounds,
which bounds the chance of the algorithm �nding the current op-
tima within a given evaluation budget. Overall, self-adaptation is
promising for tracking dynamic optima.

CCS CONCEPTS
•Theory of computation→Evolutionary algorithms; •Com-
puting methodologies→ Discrete space search.
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1 INTRODUCTION
Evolutionary algorithms (EAs) can solve a wide variety of dynamic
optimisation problems, where the objective function changes over
time [22]. In this context, algorithms need to adapt and update
solutions quickly since previously best solutions might no longer
be good. Many rigorous analyses on EAs and other randomised
search heuristics in dynamic environments have been published in
the previous two decades. Table 1 summarises existing theoretical
works on dynamic problems in evolutionary computation (EC).
These studies can be categorised into three types.

The �rst type of research aims to evaluate the performances of
algorithms on optimising a dynamic function with randomly chang-
ing optima. The criteria can be the number of evaluations when
the algorithm �rst hits the current optima. For example, Droste
[15], Droste et al. [16] proposed the dynamic O��M��, which com-
putes the Hamming distance to the changed bitstring (the dynamic
optimum). In this function, each generation generates a new opti-
mum by bit-wisely �ipping the last optimal bitstring with proba-
bility q. They demonstrated that the (1+1) EA could catch an op-
timal solution of this function in polynomial time if and only if
p = O

�
log(n)/n2

�
. Kötzing et al. [23] extended the analysis from

bitstring to larger alphabets, and showed that the number of values
per dimension does not a�ect the performance of the (1+1) EA.
Jansen and Wegener [21], for the �rst time, analysed a population-
based algorithm but on a simple O��M��-variant problem in a
two-dimensional lattice.

The second type of research is to analyse the runtime of algo-
rithms on a dynamic function with the global and unique optimum.
For example, the weights of bit positions in the noisy linear function
[33] and the dynamic B��V�� (DBV) function [30, 31] are randomly
sampled from certain distributions before each generation, but
the optimum is always 1n . From the literature, the (1+1) EA can
�nd 1n in O(n log(n)) on the noisy linear function [33], and the
2-tournament EAs which is a non-elitist population-based algo-
rithm can optimise DBV in O(n2) runtimes [26]. Another exam-
ples are M�������� [42] and B������ [42], where the magnitude
and frequency of changes of functions can be set for theoretical
analysis. Rohlfshagen et al. [42] found that the B������ function
with the high frequency of change might be easier than that with
low frequency for the (1+1) EA. Additionally, on B������, Oliveto
and Zarges [39] rigorously proved that the original (µ+1) EA fails,
i.e., exponential runtime, if the frequency of change is su�ciently
low; whereas the (µ+1) EA using a �tness-diversity mechanism can
achieve a polynomial runtime regardless of the frequency.

The third type of study examines the ability to track dynamic op-
tima. This type of problem has a sequence (path) of optima and the
optimum is changed over time. The algorithms need to follow the
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Table 1: Summary of theoretical studies of randomised search heuristics on dynamic optimisation

Type of Dynamics Problem Algorithm Study

Optimising dynamic function Dynamic O��M�� [15, 16] (1+1) EA [15, 16]
with randomly changed optima Generalised Dynamic O��M�� [23] (1+1) EA [23]

O��M��-variant in 2D lattice [20, 44] (1+�) EA [20]
M�������� [42] (1+1) EA [42]

(1+1) EA [42]
B������ [42] (µ+1) EA [39]

Optimising dynamic function (µ+1) EAs with diversities [39]
with a global optimum (2+1) RLS with diversity [39]

Noisy linear function [33] (1+1) EA [33]
Dynamic B��V�� (DBV) [30, 31] (µ+1) EA [32]

2-tournament EA [26]
(1+1) EA [24]
MMAS [24]

M��� [24] (2+1) EA [34]
(1+�) EA [36]
Parallel (1+1) EA [36]

Tracking dynamic optima Finite-alphabet M��� [34] (µ+1) EA with diversity [34]
MMAS* [34]

Dynamic shortest path [35] �-MMAS [35]
(�, �)-stable dynamic function, e.g., (1+1) EA [6]

Moving Hamming Ball (MHB) [6] Non-elitist EAs [6]
Dynamic matching substring Static mutation-based EAs (Thm. 5.1)

(DSM) (Def. 2.1) (µ, �) self-adaptive EA (Thm. 4.1)

path and �nd and hold the current optimal solutions before the next
change; otherwise, they will get lost soon. For example, Kötzing and
Molter [24] constructed the M��� function, in which the optimum
is changed from 1n to 0n and the optimal bitstring oscillates be-
tween two bitstrings that have only one speci�c bit di�erence. For
some constant k > 0, the optimal solution of the function changes
every (kn3 log(n))-generations. Their analyses showed that a sim-
ple version of the M���M�� Ant System (MMAS), an ant colony
optimisation (ACO) algorithm, could track and reach the �nal opti-
mums, while the (1+1) EA loses track of optima. Additionally, using
diversity mechanisms, population and parallelisation can help EAs
in tracking the M��� function [34, 36]. A �nite-alphabet variant of
the M��� problem and the dynamic shortest path problem were
proposed to illustrate the e�ciency of the diversity mechanism
and the MMAS [34, 35]. More recently, Dang et al. [6] introduced a
class of dynamic optimisation problems to explain that the popu-
lation is essential in dynamic environments. They proved that the
(1+1) EA and the RLS lose the optimal solution region with constant
probability at any generation, whereas the non-elitist population-
based EAs remain within the optimal region for a long time with
an overwhelmingly high probability [6].

The parameter settings, e.g., population size, mutation rate, are
critical in EAs [10]. The above studies usually suggest parameter set-
tings on speci�c dynamic optimisation problems. Self-adaptation is
a strategy for parameter control, where the parameters are encoded
within the genomes of individuals and evolve concurrently with
the solutions . Self-adaptive EAs have been proven to be e�cient
on several optimisation problems. For a toy function, Doerr et al.
[14] proved that the (1, �) self-adaptive EA optimises O��M�� in
O(n log(n)) runtime. For an arti�cial two-peak function, Dang and
Lehre [7] showed that the 2-tournament EA using two self-adapting
mutation rates can escape the local optimum, while using neither a

�xed mutation rate nor a uniformly selected mutation rate leads to
failure. For an unknown structure function L������O���k , Case
and Lehre [1] proved that the (µ, �) self-adaptive EA can optimise
it in O(k2) runtime, which is asymptotically optimal among all
unary unbiased black-box algorithms. Note that the structure of the
problem here means the number of relevant bit-positions. Recently,
Lehre and Qin [27, 40] proposed the MOSA�EA which treats param-
eter control from the perspective of multi-objective optimisation.
The runtime analysis showed that the MOSA�EA could e�ciently
escape from a local optimum with unknown sparsity. In an empir-
ical study, the self-adaptation parameter control mechanism was
shown to respond to changes of the �tness function, i.e., from O���
M�� to Z���M�� [43]. However, the bene�t of self-adaptation on
dynamic optimisation problems remains unknown.

In this paper, we explore whether self-adaptation can be bene�-
cial in dynamic optimisation. We speci�cally examine a tracking
dynamic optima problem with changing structure that require ad-
justable parameter settings. The structure, as previously discussed,
refers to the number of relevant bits. This problem, the so-called
Dynamic Substring Matching (DSM) problem, requires algorithms to
successively �nd and hold the solutions that match a sequence of bit-
�ipping and length-varying target substrings (structure-changing
optima) within speci�ed evaluation budgets. We show that the EAs
with any �xedmutation rate get lost with constant probability some-
where during tracking the DSM problem (Lemma 5.1), resulting
in an exponentially small probability of achieving the �nal opti-
mum (Theorem 5.1). Therefore, the variable mutation rates may be
necessary for a successful track. The main contribution is the �rst
rigorous study of self-adaptive parameter control mechanisms on
dynamic optimisation. We demonstrate that the (µ, �) self-adaptive
EA can track every optimum in the DSM problem (Lemma 4.1) and
reach the �nal optimum with an overwhelmingly high probability
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Figure 1: A sequence of target substrings in an example of
DSM{,m,� ,k ({ = 110, n = 20,m = 4), s.t. `1 = 10 and `2 = 14.

(Theorem 4.1). Another contribution is the level-based theoremwith
tail bounds (Theorem 3.1). To assess the capacity of the self-adaptive
EA in tracking dynamic optima, it is necessary to determine a lower
bound of the probability of achieving the current optimum within
the speci�ed evaluation budget. To address our requirements, we
develop the level-based theorem with tail bounds.

2 PRELIMINARIES
In this section, we introduce the dynamic problem and the algo-
rithms. We �rst de�ne some notation for use later. The natural loga-
rithm is denoted by ln(·). For any n 2 N, we de�ne [n] := {1, · · · ,n}
and [0..n] := [n]\ {0}. For any a,b 2 N, where a  b � 1, we de�ne
[a..b] := [b] \ [a � 1]. Let |x | be the number of bits in a bit-string
x . For any ` 2 N, we de�ne x1:m := x1 · · · xm be a substring of
x 2 {0, 1}` consisting of the �rstm position bits, wherem 2 [`].
Let ⇧ donate bit-string concatenation. The Hamming distance is
denoted by H(·, ·). The Hamming-neighbours around a search point
x are denoted by N(x) := {� | H(x,�) = 1} where x,� 2 {0, 1}`
and ` 2 N. For any n 2 N, let X := {0, 1}n and let f : X ! R
be any pseudo-Boolean function. We de�ne the matching function

as M(x,{) :=
(
1 if H(x1: |{ |,{) = 0
0 otherwise

, where x 2 X is a bitstring

and { 2 {0, 1}` is a substring where ` 2 [n], then we say that a
bitstring x matches a substring { if M(x,{) = 1.

2.1 Dynamic Substring Matching Problem
In dynamic environments, the number of pertinent bits may �uc-
tuate (structure changing). This paper consider the DSM problem
where involves this situation. Let � 2 (0, 1), k > 0, { 2 {0, 1}`1
where `1 2 [n � 1], andm 2 [n � `1] be the parameters of the DSM
problem, then the DSM{,m,� ,k problem aims to match a sequence
of bit-�ipping and length-varying target substrings ({i )i 2[4m] in
a sequence of corresponding evaluation budgets (Ti )i 2[4m]. The
length of target substrings varies between `1 and `2 where `2 =
`1 +m resulting in structure changing. The dynamics of the DSM
problem is updated in four phases.
(1) for i 2 [m], the previous target substring {i�1 and the current

target substring {i are the same length but one bit di�erent:
{i generated by uniformly at random change one bit of {i�1;

(2) for i 2 [m + 1..2m], the target substrings are becoming longer:
{i generated by appending one random bit in the end of {i�1;

(3) for i 2 [2m + 1..3m], similar to stage (1): {i�1 and {i are the
same length but one-bit di�erent;

(4) for i 2 [3m+ 1..4m], the target substrings are becoming shorter:
{i�1 generated by removing the last bit of {i�1 and uniformly
at random �ip one of the rest of bits.

Figure 1 illustrates a sequence of target substrings in an exam-
ple DSM problem. The sequence of corresponding evaluation bud-
gets (Ti )i 2[4m] depends on the lengths of the target substrings, i.e.,
kn

� |{i |. The target substrings are changed after evaluation budgets
run out. We call a period between two times of the target change
a phase. We assume that the algorithms start from a starting sub-
string {0. The algorithms are required to �nd and hold solutions
matching the current target substring before the target changes.
The DSM problem is formally de�ned in De�nition 2.1.

De�nition 2.1. Let { be some starting target substring where |{ | =:
`1 2 [n � 1], andm be a positive integers where `1 +m =: `2  n. Let
({i )i�0 be a sequence of target substrings generated by

{i :=

8>>>>>>>><
>>>>>>>>:

{ if i = 0,
z, where z ⇠ Unif(N({i�1)) if 1  i  m,

{i�1 ⇧ a, where a ⇠ Unif({0, 1}) ifm + 1  i  2m,
z, where z ⇠ Unif(N({i�1)) if 2m + 1  i  3m,
z, where z ⇠ Unif

⇣
N

⇣
{i�1
1:( |{i�1 |�1)

⌘⌘
if 3m + 1  i  4m.

Let (Ti )i 2N be a sequence of the numbers of evaluationmoving from
{i�1 to {i (evaluation budget for {i ) generated by Ti := kn� |{i+1 |,
where � 2 (0, 1) and k > 0 are some constants. For t 2 N, the dynamic
substring matching (DSM) problem with the starting target substring
{ is de�ned as:

DSM{,m,� ,k
t (x) :=

8>>><
>>>:

2 if M({(t), x) = 1,
1 else if M({0(t), x) = 1,
0 otherwise,

(1)

where {(t) := {i , and {0(t) := {i�1,

for i =

(
1 if t  T1,
1 +max

n
j | Õj

i=1 Ti  t

o
otherwise.

Several methods to evaluate how well algorithms track dynamic
optima have been proposed [6, 24]. Regarding the DSM problem,
algorithms may fail to reach the �nal optimum if they lose track
during some phases. Therefore, we de�ne the criteria for tracking
in De�nition 2.2.

De�nition 2.2. A sequence of sets of solutions (Qt )t 2N, where Qt 2
X� and � 2 N, tracks the DSM{,m,� ,k if it begins with the initial
set Q0, where all solutions x satisfy M(x,{) = 1, and at least one
solution x 0 in Qt̄ satis�esM(x 0,{4m ) = 1, where t̄ = d(Õ4m

i=1 Ti )/�e
denotes the end of the �nal phase.

2.2 Algorithms
This subsection introduces the algorithms studied in this paper.
This paper investigates the essentiality of using an adjustable mu-
tation rate on a structure-changing dynamic optimisation problem.
Thus, we consider the elitist and non-elitist versions of the static
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Algorithm 1 (µ, �) self-adaptive EA [1]
Require: Fitness function f : X ! R.
Require: Population sizes µ, � 2 N, where 1  µ  �.
Require: Adaptation parameters A > 1, and b,pinc, � 2 (0, 1).
Require: Initial population P0 2 Y� .
1: for t = 0, 1, 2, · · · until termination condition met do
2: Sort Pt based on Pt (1) ⌫ · · · ⌫ Pt (�) †.
3: for i = 1, . . . , � do
4: Set (x, �/n) := Pt (It (i)), It (i) ⇠ Unif([µ]).

5: Set � 0 :=

(
min{A�,n/2} with probability pinc
max{b�, �n} otherwise.

6: Create x 0 by independently �ipping each bit of x with
probability �

0/n.
7: Set Pt+1(i) := (x 0, � 0/n).

mutation-based EAs (in Appendix A). There exist several compar-
ative theoretical studies between elitism and non-elitism in EAs
[3, 4, 8, 19]. Section 5 shows that mutation-only EAs with any �xed
mutation rate, are not able to track optima in the DSM problem.

Algorithm 1 describes the (µ, �) self-adaptive EA, which has
demonstrated e�cacy in solving unknown structure problems [1].
In the self-adaptive EA, each individual encodes its own mutation
rate, in addition to its solution, de�ning the self-adaptive popula-
tion Pt 2 Y� , where Y = {0, 1}n ⇥ (0, 1/2]. Given a self-adaptive
population Pt = (xi , �i/n)i 2[�], we de�ne the set of solutions of
Pt as Qt := (xi )i 2[�]. In generation t , the population Pt is sorted
�rst by �tness function f and then by individuals’ mutation rates,
preferring higher values for both (Line 2). Each individual is then
produced through (µ, �) selection (Line 4), mutation rate adapta-
tion (Line 5), and solution mutation (Line 6). In the mutation rate
adaptation, the selected individual inherits an increased mutation
parameterA� with probability pinc, and a reduced mutation param-
eter b� otherwise, where A > 1 and b,pinc 2 (0, 1) are algorithm
parameters. The solution of the individual is then mutated bitwisely
with the new mutation rate. Thus, the sorting and mutation rate
adaptation methods are crucial components of the algorithm, allow-
ing the mutation rate to vary from � to 1/2, where � > 0 represents
the minimum mutation rate.

3 LEVEL-BASED THEOREM (TAIL BOUNDS)
The level-based theorems [2, 4, 13] are general tools that provide an
upper bound of the runtime of non-elitist algorithms which follow
the scheme of Algorithm 2 with a population Pt 2 X� , where X�

is the space of all populations of size �. Assume that the search
space X is partitioned into ordered disjoint subsets (called levels)
A1, · · · ,Am . Let A�j := [mk=jAk be the search points in level j
and higher, and let D be some mapping from the set of all possible
populations X� into the space of probability distributions of X.
Given any subset A ✓ X, we de�ne |Pt \ A| := |{i | Pt (i) 2 A}|,
i.e., the number of individuals in Pt that belong to A. To estimate
an upper bound on the runtime using level-based theorems, three
conditions must typically be satis�ed: (G1) requires the probability
of level “upgrading”, i.e., creating an individual in higher levels; (G2)
requires the probability of the number of individuals in higher levels
“growing”; (G3) requires a su�cient population size. Speci�cally,
†(x , � ) ⌫ (x 0, � 0) , f (x ) > f (x 0) _ (f (x ) = f (x 0) ^ � � � 0),

in [4], a new level-based theorem has been proposed to address
the issue of “deceptive” regions B that contains individuals with
a higher selection probability but at a lower level. The theorem
includes an additional condition (G0) that requires the probability
of producing a “deceptive” individual to decrease if too many such
individuals in the population.

In the theory of EC, besides the expected runtime, tail bounds
can be other performance criteria of EAs, which indicate the proba-
bility of runtime within a given evaluation budget. Few theoretical
tools were developed about tail bounds for EAs [12, 28, 29, 38]. In
this paper, we are interested in the probability that an algorithm
�nds the current optimum in a speci�c evaluation budget. To ad-
dress our requirements, we derive the level-based theorem with tail
bounds (shown in Theorem 3.1). We assume that the search space
X partitions into B,A0,A1, · · · ,Am , then assume that the initial
population P0 contains su�cient individuals in levelA1 and the ter-
mination condition is to gain a population with enough individuals
in Am . Theorem 3.1 also consider a “deceptive region” B (condition
(C0)). The assumption that there are not too many individuals in
the region B holds for the initial population , i.e., |P0 \ B |  �0�.
Conditions (C1)-(C2) correspond to conditions (G1)-(G2) in the orig-
inal level-based theorems [2, 4, 13], and no condition corresponds
to condition (G3) since the tail bound is determined by the popula-
tion size �. Eventually, Theorem 3.1 gives the lower bound of the
probability of runtime within �� evaluation times by choosing �
and �. Compared to the original level-based theorems, the runtime
from Theorem 3.1 is mainly one more multiplicative factor ��17/�

3
,

where � is used to tune the upper bound for Pr(T  �� ). In order
to ful�l the requirements into our scenario in Section 4, we refrain
from employing the multiple restarts argument that was utilised in
the proofs of the original level-based theorems [12, 28, 29, 38].

Theorem 3.1. Let (B,A0,A1, · · · ,Am ) be a partition of X. Suppose
there exist z1, · · · , zm�1, � 2 (0, 1), and �0,�0 2 (0, 1), such that the
following conditions hold for any population P 2 X� in Algorithm 2,
(C0) for all � 2 [�0, 1], if |P \ B |  ��, then Pr

�⇠D(P )
(� 2 B) 

(1 � � )� ,
(C1) for all j 2 [m � 1], if |P \ B |  �0� and |P \A�j | � �0�, then

Pr
�⇠D(P )

�
� 2 A�j+1

�
� zj ,

(C2) for all j 2 [0..m�1], and � 2 [1/�,�0] if |P \B |  �0� and |P \
A�j | � �0� and |P\A�j+1 | � ��, then Pr

�⇠D(P )
�
� 2 A�j+1

�
�

(1 + � )� .
LetT := min{t� | |Pt \Am | � �0� and |Pt \B |  �0�}, and assume
the algorithm with population size � 2 N and an initial population
P0 satisfying |P0 \A1 | � �0� and |P0 \ B |  �0�, then

Pr (T  �� ) >
⇣
1 � 2��e��

2 min{�0,�0 }�/4
⌘  

1 �me
���� ln(�0)

ln(1+� /2) �2
!

for any � 2
⇣
0, e�

2 min{�0,�0 }�/4/�
⌘
, where � = e�

2/8

e� 2/8�1
and � :=

�
17/� 3

⇣Õm�1
j=1

1
zj +m�

⇣
ln(�0�)

ln(1+�/2) + 1
⌘⌘
.

To apply Theorem 3.1, we need to satisfy conditions (C0)-(C2),
which is the same as applying the original level-based theorems,
then we need to choose � and � to gain a desired upper bound for
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Algorithm 2 Population-based Algorithm
Require: Finite state space X and population size � 2 N; Map D

from X� to the space of probability distributions over X
Require: Initial population P0 2 X�

1: for t = 0, 1, 2, · · · until termination condition met do
2: for i = 1 to � do
3: Sample Pt+1(i) ⇠ D(Pt )

Pr(T  �� ). For example, if conditions (C0)-(C2) hold for some con-
stants � ,�0,�0 2 (0, 1), zj := �(1/n) andm 2 poly(n) by an instan-
tiated algorithm with population size �, then the upper bound for
Pr(T  �� ) is

⇣
1 � ��e

��(�)
⌘ ⇣

1 �me
��(�)

⌘
. If choosing � = � = n�

for a constant � 2 (0, 1), then Pr(T  �� ) = 1�e��(n� ). In Section 4,
we will use Theorem 3.1 to prove that the (µ, �) self-adaptive EA can
generate enough individuals matching the current target substring
in evaluation budgets from the previous target substring with an
overwhelmingly high probability. In comparison to the original
level-based theorems, Theorem 3.1 typically necessitates a larger
population size, e.g., cn� , in order to achieve a su�ciently large tail
probability, i.e., 1 � e

��(n� ), where constants c, � > 0.
Now we informally explain the proof idea. Pessimistically, the

algorithm gradually increases its level from A1 to Am . There arem
steps fromA1 toAm . In each step, the algorithm needs to generate a
higher-level individual, and then accumulate such individuals until
the population contains a su�cient number of such individuals. We
estimate the lower bound of the successful probability of each step
in certain evaluation times. Next, we consider the probability of
the “failure events”, i.e., the algorithm goes back to the previous
level, or produces too many “bad” (B region) individuals during the
algorithm running. Eventually, we compute the lower bound of the
probability that every step is completed without “failure events”.

P���� �� T������ 3.1. We �rst de�ne some notation for later
use. For any level j 2 [m] and t 2 N0, let the random variable
X
(j)
t := |Pt \A�j | denote the number of individuals in levels A�j

at time t . Let the random variable Yt := |Pt \B | denote the number
of individuals in the region B at time t . The level �t of population
Pt at time t is de�ned as �t := max{j 2 [m] : X j

t � �0�}. We say
the algorithm upgrades its level in h generations if �t+h � �t + 1.

We now estimate the probability that no “failure events” occur.
More precisely, “failure events” include less than �0� individuals
of population Pt in level A� �t�1 and more than�0� individuals of
population Pt in the region B. Given t � 1, let Et be the event
that �t � �t�1 and Yt  �0�, and de�ne Êt := E1 ^ · · · ^ Et . By
condition (C2), the random variable (X (�t�1)

t | Êt�1) stochastically
dominates Z ⇠ Bin(�, (1 + � )�0). By condition (C0), the random
variable (Yt | Êt�1) is stochastically dominated by Z 0 ⇠ Bin(�, (1�
� )�0). Therefore, using a union bound, we have

Pr
⇣
Êt | Êt�1

⌘
� 1 � Pr

⇣
�t < �t�1 | Êt�1

⌘
� Pr

⇣
Yt > �0� | Êt�1

⌘

= 1 � Pr
⇣
X
(�t�1)
t < �0� | Êt�1

⌘
� Pr

⇣
Yt > �0� | Êt�1

⌘
� 1 � Pr (Z < �0�) � Pr

�
Z
0 > �0�

�
.

We then use Cherno� bounds to estimate the upper bounds of
Pr (Z < �0�) and Pr (Z 0 > �0�):

Pr (Z < �0�) = Pr
✓
Z < �0�(1 + � )

✓
1 � �

1 + �

◆◆

= Pr
✓
Z < E[Z ]

✓
1 � �

1 + �

◆◆

< e
� � 2

(1+� )2 E[Z ]/2 = e
� � 2�0�

2(1+� ) < e
�� 2�0�/4, and

Pr
�
Z
0 > �0�

�
= Pr

✓
Z
0 > �0�(1 � � )

✓
1 +

�

1 � �

◆◆

= Pr
✓
Z
0 > E[Z 0]

✓
1 +

�

1 � �

◆◆
< e

� � 2
(1�� )2 E[Z

0]/
⇣
2+ �

1��

⌘

= e
� � 2�0�

1�� /
⇣
2+ �

1��

⌘
< e

� � 2�0�
2�� < e

�� 2�0�/2. Thus,

Pr
⇣
Êt | Êt�1

⌘
> 1 � e

�� 2�0�/4 � e
�� 2�0�/2

� 1 � 2e��
2 min{�0,�0 }�/4. (2)

Next, we consider the number of generations to increase the
level of the algorithm. We note that, by condition (C2), the random
variable (X (�t+1)

t+1 | X (�t+1)
t � ��, Êt ) stochastically dominatesZ 00 ⇠

Bin (�, (1 + � )min{� ,�0}) for any �� � 1. Therefore, if 1  �� 
�0�, we have

Pr
⇣
X
(�t+1)
t+1 � (1 + �/2)�� | X (�t+1)

t � ��, Êt
⌘

� Pr
�
Z
00 � (1 + �/2)��

�
= 1 � Pr

�
Z
00 < (1 + �/2)��

�
=1 � Pr

✓
Z
00 < (1 + � )��

✓
1 � �

2(1 + � )

◆◆

=1 � Pr
✓
Z
00 < E[Z 00]

✓
1 � �

2(1 + � )

◆◆
, then by a Cherno� bound,

>1 � e
� � 2

4(1+� )2 E[Z
00]
= 1 � e

� � 2� �
4(1+� )2 > 1 � e

�� 2� �/8 � 1 � e
�� 2/8.

Then we de�ne h := dlog1+�/2 (�0�)e  ln(�0�)/ln(1 + �/2) + 1.
Informally, h is the number of consecutive “growing” steps required
for the algorithm to upgrade its level. If there exists an individual
of the population Pt in level A� �t+1, then the probability of the
algorithm upgrading its level in h generations is at least

Pr
⇣
X
(�t+1)
t+h � �0� | X (�t+1)

t � 1, Êt+h�1
⌘

�
h÷
i=1

Pr
⇣
X
(�t+1)
t+i � (1 + �/2)i | X (�t+1)

t+i�1 � (1 + �/2)i�1, Êt+i�1
⌘

�
h÷
i=1

⇣
1 � e

�� 2/8
⌘
=

⇣
1 � e

�� 2/8
⌘h
= �

�h

where we de�ne � := e�
2/8

e� 2/8�1
> 1/(1 � 1/e) by � 2 (0, 1).

Then, we note that by condition (C1) and following by (1 +
x/n)n  e

x for n � 1, |x |  n, for any t ,

Pr
⇣
9sj  d1/(zj�)e : X (�t+1)

t+sj � 1 | Êt+sj�1
⌘

�1 �
�
1 � zj

�� d1/(zj�)e � 1 � 1/e > �
�1.
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Thus, if we de�ne � (j) := d1/(zj�)e + h, we obtain the following
lower bound for the probability of the algorithm upgrading its level
in � (j) generations,

Pr
⇣
�t+� (�t ) � �t + 1 | Êt+� (�t )�1

⌘

� Pr
⇣
9sj  d1/(zj�)e : X (�t+1)

t+sj � 1 | Êt+sj�1
⌘

· Pr
⇣
X
(�t+1)
t+� (�t ) � �0� | X �t+1

t � 1, Êt+� (�t )�1
⌘
� �

�h�1.

In particular, we have the following upper bound for the proba-
bility that the algorithm does not upgrade its level in ��

17/� 3
� (�t )

generations,

Pr
⇣
�t+��17/� 3� (�t )  �t | Êt+��17/� 3� (�t )

⌘


⇣
1 � �

�h�1
⌘��17/� 3

.

De�ne �̂ (j) := ��17/� 3 Õj
i=1 � (i), and note that � � �̂ (m � 1)�/�.

We then have

Pr
⇣
T  �� | Ê��

⌘
� Pr ©≠

´
m�1Ÿ
j=1

⇣
��̂ (j) � j + 1

⌘
| Ê�� ™Æ

¨
= 1 � Pr ©≠

´
m�1ÿ
j=1

⇣
��̂ (j) < j + 1

⌘
| Ê�� ™Æ

¨
, by a union bound,

� 1 �
m�1’
j=1

Pr
⇣
��̂ (j) < j + 1 | ��̂ (j�1) � j, Ê��

⌘

� 1 �
m�1’
j=1

Pr
⇣
��̂ (j) < j + 1 | ��̂ (j�1) = j, Ê��

⌘

= 1 �
m�1’
j=1

Pr
⇣
��̂ (j�1)+��17/� 3� (j)  j | ��̂ (j�1) = j, Ê��

⌘

� 1 �m

⇣
1 � �

�h�1
⌘��17/� 3

.

Recall Eq. (2), we know that, using the Bernoulli’s inequality (1 +
x)r � 1 + rx for �1 < x < 0 and r 2 N0,

Pr
⇣
Ê��

⌘
�

��÷
t=1

Pr
⇣
Êt | Êt�1

⌘
�

⇣
1 � 2e��

2 min{�0,�0 }�/4
⌘��

� 1 � 2��e��
2 min{�0,�0 }�/4. Hence,

Pr (T  �� ) � Pr
⇣
T  �� | Ê��

⌘
· Pr

⇣
Ê��

⌘

�
 
1 �m

⇣
1 � �

�h�1
⌘��17/� 3 !

·
⇣
1 � 2��e��

2 min{�0,�0 }�/4
⌘
.

Since

�
�h�1 � �

� ln(�0�)
ln(1+� /2)�2 � �

� ln(�0)
ln(1+� /2)�

ln(�)
ln(1+� /2)�2

= �
� ln(�0)

ln(1+� /2)�2�
� 1

log� (e ) ln(1+� /2) = �
� ln(�0)

ln(1+� /2)�2��
� 2/8�ln(e� 2/8�1)

ln(1+� /2)

� �
� ln(�0)

ln(1+� /2)�2�
� � 2/8+8/(2� 2)

� /2�� 2/4 � �
� ln(�0)

ln(1+� /2)�2��17/�
3
,

then by (1 + x/n)n  e
x for n � 1, |x |  n, Pr (T  �� ) � 

1 �me
���� ln(�0)

ln(1+� /2) �2
! ⇣

1 � 2��e��
2 min{�0,�0 }�/4

⌘
. ⇤
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1 2
Figure 2: Level partitions for three cases in the proof of
Lemma 4.1. Note that level A0 is omitted in the sub�gures.

4 SELF-ADAPTIVE EA TRACKS
We now show that the (µ, �) self-adaptive EA can track the DSM
problem. To prove this, we �rst derive Lemma 4.1 which shows
that the algorithm obtains a population with a su�cient number
of individuals matching the current target substring within the
evaluation budget with an overwhelming probability in a phase if
it successfully tracks in the previous phases. Then, Theorem 4.1
via Lemma 4.1 states the e�ciency of the (µ, �) self-adaptive EA on
solving the DSM problem.

Case and Lehre [1] proved that the runtime of the (µ, �) self-
adaptive EA on optimising L������O���k (x) :=

Õk
i=1

Œi
j=1 x j is

O(k2), where k is unknown for the algorithm. They divided the
search spaceY into a two-dimensional level partition, �tness levels
and mutation rate sub-levels. Informally, to estimate the runtime,
they counted the number of generations to increase the mutation
rate until it is su�ciently high, and then counted the number of
generations until the solution improved. It is well-known that too
high mutation rates might fail non-elitist EAs. More precisely, there
exist error thresholds for non-elitist EAs, which lead to exponential
runtime on any functionwith a unique optimum if themutation rate
exceeds the threshold [25]. Since the (µ, �) self-adaptive EA applies
a non-elitist selection mechanism, they also de�ned a “bad” region
B which contains individuals with too high mutation rates. They
assumed that the algorithms restart from the �rst level if there are
too many individuals in the B region. However, algorithms cannot
be allowed to restart, since algorithms should keep the previous
optimal solution in our scenario. Therefore, it is essential to limit
the number of individuals in the B region in every generation to
avoid losing track while tracking the dynamic function.

Lemma 4.1 provides the probability of obtaining su�cient in-
dividuals matching the current target substring {2 in a phase of
the DSM{,m,� ,k function within a given evaluation budget T2, by
assuming that enough individuals match the previous target sub-
string {1 at the beginning of the phase. Our proof idea is similar
to [1]. We �rst de�ne the level partition in a phase of the DSM
problem. We partition the search space Y into three �tness lev-
els: A2 =: {x | M(x,{2) = 1}, A1 =: {x | M(x,{1) = 1}\A2, and
A0 =: X\(A2 [ A1). We further divide A1 into mutation rate sub-
levels. Finally, we use the three threshold values �2,�, �1 based on
the lengths of {1,{2 to describe mutation rate sub-levels, which
will be de�ned later. Informally, a mutation rate between �1 and
�2 is suitable for increasing �tness level, i.e., from A1 to A2. Let
d1 := min

�
` 2 N | �A` � �1(|{1 |)

 
be the number of sub-levels of
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A1, and let A2 only contain one sub-level A(2,1) with the number
of sub-levels d2 := 1. We cannot allow too many individuals with
too high mutation rates, thus a “bad” region B is de�ned which
contains all search point above a threshold value �2. Additionally,
the important assumption in Lemma 4.1 is |P \ B |  �0� for the
population at beginning of the phase. In overall,

A(1,`) := A1 ⇥
h
A
`�1

�,min
⇣
A
`
�, �1(|{1 |)

⌘⌘
for ` 2 [d1 � 1]; (3)

if |{2 | = |{1 | + 1, we de�ne

A(1,d1) := A1 ⇥

�1(|{1 |),min

✓
1
2
, �2(|{1 |)

◆�
[

A2 ⇥
✓
min

✓
1
2
, �2(|{2 |)

◆
,min

✓
1
2
, �2(|{1 |)

◆�
, (4)

if |{2 | = |{1 | or |{2 | = |{1 | � 1, we de�ne

A(1,d1) := A1 ⇥

�1(|{1 |),min

✓
1
2
, �2(|{1 |)

◆�
, (5)

A(2,1) := A2 ⇥
h
�,min

⇣
A
`
�, �2(|{2 |)

i ⌘
; (6)

B := [2
i=1Ai ⇥

✓
�2(|{i |), 1

2

�
. (7)

Note that the sub-levels de�nition depends on the lengths of sub-
strings {1 and {2. Figure 2 illustrates the three cases of the de�-
nition of the level partitions: (a) |{2 | = |{1 | corresponding stages
(1) and (3), (b) |{2 | = |{1 | + 1 corresponding stages (2), and (c)
|{2 | = |{1 | � 1 corresponding stages (4).

We apply the same threshold values de�ned in [1]: for j � 1, let

�(j) := 1
2A

 
1 �

✓
1 + �
�0pinc

◆1/j !
, where �0 := �/µ, (8)

�1(j) := b�(j) (9)

�2(j) := 1 � q
1/j , where (10)

q :=
1 � �

�0
, r0 :=

1 + �
�0(1 � pinc)

, and � := 1 � �0(r0)1+
p
r0 . (11)

Lemma 4.1. Let �,a, � 2 (0, 1) and k > 0 be some constants satis-
fying 1/34  a < �  1. Let { 2 {0, 1}`1 be some starting target
substring where `1 2 �(na ), and m 2 �(n� ). Let {1 and {2 be
any two neighbouring substrings of the sequence of target substrings
({i )i�0 in the DSM{,m,� ,k . Let T2 be the evaluation budget for {2
in the DSM{,m,� ,k . Suppose that the initial population P0 in Algo-
rithm 1 satis�es |P0 \ A�(1,1) | � �0� and |P0 \ B |  �0�, where
�0 and �0 are constants in (0, 1). Then, there exist constants � and
� in (0, 1) such that the probability of Algorithm 1 with parameters
�, µ = �(n� ), �/µ = �0 � 4,A > 1, 0 < b < 1/(1+

p
1/�0(1 � pinc)),

(1 + � )/�0 < pinc < 2/5, � = b 0/n for any constant b 0 > 0, where A
and b are constants, obtaining a population Pt with |Pt \A�(2,1) | �
�0� and |Pt \ B |  �0�, where t  T2, is 1 � e

��(n� ).

We apply the level-based theoremwith tail bounds (Theorem 3.1)
to prove Lemma 4.1. We use serval lemmas to break down the
proof of Lemma 4.1. Lemma 4.2 implies the probability of selecting
individuals in a self-adaptive population. Lemmas 4.3-4.5 corre-
spond to conditions (C0), (C2) and (C1) in Theorem 3.1, respectively.

Lemma 4.4 looks similar to Lemma 4 in [1], but their proofs are
di�erent since the de�nitions of the level partitions are di�erent.
The proofs of Lemmas 4.2-4.5 are in Appendices C.1-C.4.

Lemma 4.2. (Selection probability) If at least �� individuals of a
population Pt of Algorithm 1 with �/µ = �0 are in A�(i ,`) and at
most�0� individuals in B satisfying�0 + �  1/�0 for�0,� 2 (0, 1],
then for all i 2 {1, 2} and ` 2 [di ], a parent (x, �/n) selected in step 4
satis�es, Pr

⇣
(x, �/n) 2 A�(i ,`)

⌘
 ��0.

Lemma 4.3. (Condition (C0)) Assume that the parameters A, b and
pinc satisfy the constraints in Lemma 4.1. Then there exists a con-
stant � 2 (0, 1) such that if Algorithm 1 in step 4 selects a parent
(x, �/n), then the o�spring (x 0, � 0/n) created in steps 5-6 satis�es,
Pr ((x 0, � 0/n) 2 B)  1��

�0
.

Lemma 4.4. (Condition (C2)) Assume that the parameters A, b and
pinc satisfy the constraints in Lemma 4.1. Then there exists a constant
� 2 (0, 1/10) such that for all j 2 {1, 2} and ` 2 [dj ], if Algorithm 1 in
step 4 selects a parent (x, �/n) 2 A�(i ,`), then the o�spring (x 0, � 0/n)
created in steps 5-6 satis�es, Pr

⇣
(x 0, � 0/n) 2 A�(i ,`)

⌘
� 1+�

�0
.

Lemma 4.5. (Condition (C1)) Assume that the parameters A, b and
pinc satisfy the constraints in Lemma 4.1. Then there exists a constant
� 2 (0, 1/10) such that if Algorithm 1 in step 4 selects a parent
(x, �/n) 2 A�(1,`) for ` 2 [dj � 1], then the o�spring (x 0, � 0/n)
created in step 5-6 satis�es, Pr

⇣
(x 0, � 0/n) 2 A�(1,`+1)

⌘
� 1+�

�0
, and

if the selected parent (x, �/n) 2 A(1,d1), then the o�spring (x 0, � 0/n)
satis�es, Pr

⇣
(x 0, � 0/n) 2 A�(2,1)

⌘
= �(1/|{2 |).

P���� �� L���� 4.1. With the assumptions on P0, we can apply
Theorem 3.1 to prove Lemma 4.1. We �rst list some values from
the DSM{,m,� ,k for later use: T2 := kn

� |{2 | for some constant
k > 0, | |{1 | � |{2 | |  1, |{1 |, |{2 | 2 �(na )\O(n� ). We also de�ne
some values �0 := (1 � � /2)/�0, �0 := � /2, � := �

3
�/34, � := n

�/2.
We then know � ,b,pinc,�0,�0, � , �,a, �, � 2 (0, 1) and �0 � 4 are
constants. We use the level partition de�ned in Eq. (3)-(7).

Condition (C0) implies not too many individuals in the B region,
i.e. at most�0� individuals, which is veri�ed by Lemma 4.3, such
that Pr ((x 0, � 0) 2 B) < 1��

�0
 (1 � � ) 1�� /2�0

 (1 � � )� for some

constant �  �
2�� .

To verify condition (C2), we must estimate the probability of pro-
ducing an o�spring in A�(i ,`) for i 2 {1, 2} and ` 2 [di ], assuming
at least �� individuals inA�(i ,`) for any � 2 (0,�0] and at most�0�
individuals in B. To produce such o�spring, it is necessary to �rst
select a parent (x, � ) in A�(i ,`), and to create an o�spring (x 0, � 0)
in A�(i ,`). The probability of selecting a parent (x, � ) 2 A�(i ,`) is
at least ��/µ = ��0 by Lemma 4.2. Then the probability to create
an o�spring (x 0, � 0) 2 A�(i ,`) is at least (1 + � )/�0 by Lemma 4.4.
Thus, condition (C2) is satis�ed by ��0(1 + � )/�0 = � (1 + � ).

To verify condition (C1), we need to estimate the probability of
producing an o�spring in a level higher than A�(1,`) for ` 2 [di ], if
at least �0� individuals in A�(1,`). We only consider the case that
the parent (x, � ) is selected from A�(1,`), in which its probability
is �0�0 from Lemma 4.2. Then by Lemma 4.5, the probability of
producing an o�spring in A(1,`+1) is (1 + � )�0 =: z(1,`) for all ` 2

1625



GECCO ’23, July 15–19, 2023, Lisbon, Portugal Lehre and Qin

[d1 � 1], and the probability of producing an o�spring in A(2,1) is
z(1,d1) = �(1/|{2 |) for ` = 1.

Now, we can compute the lower bound of probability of runtime
T  T2. By Theorem 3.1,

� = ��17/�
3
✓

1
z(1,d1)

+ ((1 + � )�0) (d1 � 1) + d1�
✓

ln(�0�)
ln(1 + �/2) + 1

◆◆

since � ,�0 2 (0, 1) are constants and d1 2 log(n),

= O
⇣
��

17/� 3 (|{2 | + � log(n) log(log(n)))
⌘

since � 2 �(n� ), |{2 | 2 �(na ) and � = �
3
�/34 < 1/34  a,

= O
⇣
��

17/� 3 |{2 |
⌘
= O

�
n
� |{2 |

�
if we let� = �

⇣
n
�/2

⌘
. Thus there exists � 2 O (n� |{2 |) and constant

c > 0 satisfying T2 = cn� |{2 | � �� , Such that,

Pr (T  T2) � Pr (T  �� )

>
⇣
1 � 2��e��

2 min{�0,�0 }�/8
⌘  

1 �me
���� ln(�0)

ln(1+� /2) �2
!

since � ,�0,�0 2 (0, 1) are constants, and � = �(n�/2), � 2 �(n� ),

=
⇣
1 � e

��(�)
⌘ ⇣

1 � e
��(�)

⌘
= 1 � e

��(n� ).

⇤

Theorem 4.1 then presents the e�ciency of the (µ, �) self-adaptive
EA in addressing the DSM problem. Apart from population size,
other parameters such asA,b, andpinc align with the previous study
about unknown-structure optimisation in [1]. This demonstrates
that there is no need to tune these parameters based on the speci�c
problem. Utilising a larger population size may be necessary for
tracking dynamic optima. In previous studies [5, 6], a similarly large
population size of �(n� ) was employed to track optima.

Theorem 4.1. Let �,a, � 2 (0, 1) and k > 0 be some constants sat-
isfying 1/34  a < �  1. Let � := b

0/n for any constant b 0 > 0.
Consider a starting target substring { 2 {0, 1}`1 with `1 2 �(na )
and m 2 �(n� ). Assume that all individuals in the initial popu-
lation P0 in Algorithm 1 match { and have a mutation rate of � .
Then, there exists a constant � 2 (0, 1) such that the probability of
Algorithm 1 with parameters �, µ = �(n� ), �/µ = �0 � 4, A > 1,
0 < b < 1/(1 +

p
1/�0(1 � pinc)), (1 + � )/�0 < pinc < 2/5, and � ,

where A and b are constants, tracking DSM{,m,� ,k is 1 � e
��(n� ).

5 STATIC MUTATION-BASED EAS GET LOST
This section shows that static mutation-based EAs (Algorithms 3-4
in Appendix A) get lost in tracking the DSM problem. We �rst de-
rive Lemma 5.1, which provides the upper bound of the probability
of the static mutation-based EAs moving from one optimum to the
next optimum in the evaluation budget of the DSM problem. This
upper bound is with respect to the length of the current target sub-
string and the mutation rate of the static mutation-based EAs. From
Lemma 5.1, too high or too low mutation rates lead the algorithms
to achieve the current optimum in the given evaluation budget with
an insu�cient probability, i.e., at most, a constant probability. More

precisely, too high mutation rates are �/n where � 2 �(n1+� /`)
and too low mutation rates are � 2 O(n1�� /`). Then Theorem 5.1
is proved via Lemma 5.1, which shows that there is no existing
mutation rate that tracks the DSM problems with a high probability
(the proof is in Appendix C.6).

Lemma 5.1. Let {1 and {2 be two substrings where {1,{2 2 {0, 1}`
and H({1,{2) = 1 for ` 2 [n]. Let � 2 (0, 1), �0 2 (0, 1] and k >
0 be arbitrary constants. Assume that all individuals of the initial
population P0 of the static mutation-based EA are matching {1. Then
the probability that the static mutation-based EAs using mutation
rate �/n where � 2 (0,n/2] �nd a solution matching {2 in kn

� `

evaluations is p < 1 � exp
⇣
��e�� `�1

n kn� `
n

⌘ ✓
1 � � 2e�2�

`�1
n

n

◆ kn� `
n
.

P����. By the assumption of H({1,{2) = 1, in any generation
t , if there is no individual in Pt matching {2, then any individual
in Pt has at least one mismatched bit to {2. We optimistically
assume that the selection operators (Line 3 of Algorithm 3 and
Line 3 of Algorithm 4) always return the closest neighbour of the
set of solutions matching {2, i.e., with one mismatched bit and
` � 1 matched bits. To obtain a solution matching {2, the mutation
operator must �ip the mismatched bit of x , and do not �ip any
mismatched bit in which the probability is (1� �/n)`�1(�/n). Then,
such an event happens at least once in kn

� ` evaluations with p =

1 �
✓
1 �

⇣
1 � �

n

⌘`�1 �

n

◆kn� `
= 1 �

✓
1 �

⇣
1 � �

n

⌘n · `�1n �

n

◆n · kn� `n

 1 �
⇣
1 � e

�� `�1
n

�

n

⌘n · kn� `n by (1 + x/n)n  e
x and Lemma B.1

 1 � exp
✓
��e�� `�1

n
kn

� `

n

◆  
1 � �

2
e
�2� `�1

n

n

! kn� `
n

.

⇤

Theorem 5.1. Let �,a, � 2 (0, 1) and k > 0 be some constants satis-
fying 1/2+ � < a + 2� < �  1� � . Let { 2 {0, 1}`1 be some starting
target substring where `1 2 �(na ), andm 2 �(n� ). Then the static
mutation-based EAs using any mutation rate �/n 2 (0, 1/2] and
population size � 2 N tracks DSM{,m,� ,k with probability e��(n

� ).

6 CONCLUSION
This paper demonstrates the bene�ts of self-adaptation in dynamic
optimisation. Our analyses show that static mutation-based EAs
have a negligible chance of tracking this dynamic optima with
changing structure, while the self-adaptive EA can track them. We
also provide a level-based theorem with tail bounds to evaluate the
performance of the self-adaptive EA on the DSM problem. Future
work involves investigating self-adaptive EAs in more general set-
tings of the DSM problem, as well as other existing dynamic optimi-
sation problems, and identifying the limitations of self-adaptation.
Additionally, future work also includes exploring other parameter
control mechanisms [9, 11, 17, 18, 41] under dynamics.
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