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Abstract
Coronavirus disease 2019 (COVID-19) has spread globally for over three years, and chest computed
tomography (CT)has been used to diagnose COVID-19 and identify lung damage inCOVID-19
patients. Given its widespread, CTwill remain a commondiagnostic tool in future pandemics, but its
effectiveness at the beginning of any pandemicwill depend strongly on the ability to classify CT scans
quickly and correctly when only limited resources are available, as it will happen inevitably again in
future pandemics. Here, we resort into the transfer learning procedure and limited hyperparameters
to use as few computing resources as possible for COVID-19CT images classification. Advanced
Normalisation Tools (ANTs) are used to synthesise images as augmented/independent data and
trained on EfficientNet to investigate the effect of synthetic images. On theCOVID-CTdataset,
classification accuracy increases from91.15% to 95.50%andAreaUnder the Receiver Operating
Characteristic (AUC) from 96.40% to 98.54%.We also customise a small dataset to simulate data
collected in the early stages of the outbreak and report an improvement in accuracy from85.95% to
94.32% andAUC from93.21% to 98.61%. This study provides a feasible Low-Threshold, Easy-To-
Deploy andReady-To-Use solutionwith a relatively low computational cost formedical image
classification at an early stage of an outbreak inwhich scarce data are available and traditional data
augmentationmay fail. Hence, it would bemost suitable for low-resource settings.

1. Introduction

Severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) and its variants cause the coronavirus
disease 2019 (COVID-19) pandemic. There have been
662 million confirmed cases of COVID-19 and
approximately 6.7 million deaths as of January 2023
[1]. Fever, cough, myalgia and fatigue are common
symptoms of patients infected byCOVID-19 [2].

Patients with COVID-19 are usually confirmed by
reverse transcription polymerase chain reaction (RT-
PCR) testing. However, RT-PCR tests for specific virus
need to be carefully designed, hence early prototype
cannot effectively detect COVID-19 at the early stage
of the outbreak due to its low sensitivity [3, 4]. Besides,
suspected patients often cannot be tested in time

because of the shortage/unavailability (especially in
undeveloped countries) of RT-PCR test kits during the
same period. Therefore, radiological imagingmethods
like x-rays and chest computer tomography (CT)
become complementary examinations to help clin-
icians diagnose COVID-19 correctly although it can-
not detect patients without any lung damage at the
earliest stages of infection [5–7]. In addition, imaging
methods especially CT can provide semi-quantitative
analysis of pulmonary damage severity [8] and moni-
tor the long-term lung damage of patients who have
recovered from COVID-19 [9]. CT scans provide
more detailed tissue and organ information than
x-rays, and CT is a useful tool to efficiently distinguish
‘probably positive’ and ‘probably negative’ patients
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[10]. Also, x-rays cannot detect any abnormalities of
early infection of COVID-19 [11].

Since CT image analysis is time-consuming,
researchers proposed an artificial intelligence (AI)
model and proved it has potential to identify COVID-
19 patients rapidly [12]. B Wang et al built an AI sys-
tem to carry out the task of COVID-19 CT image clas-
sification, which can save about 30%-40% detection
time [13]. S Wang et al modified the inception trans-
fer-learningmodel and obtained an accuracy of 79.3%
in a dataset that included 740 COVID-19 and 325
non-COVID-19 CT images [14]. Wu et al proposed a
multi-view deep learning fusion model based on
ResNet50, and achieved an accuracy of 76% [15].
Chen et al applied UNet++ on a CT dataset that con-
tained 35355 images, and achieved an accuracy of
98.85% [16]. Ardakani et al tested ten different con-
volutional neural network (CNN)models and got the
best performance with an accuracy of 99.51% and
Area Under the Receiver Operating Characteristic
(AUC) of 99.4% [17]. In addition, AI methods can not
only discriminate COVID and Non-COVID images
but also simultaneously classify other type of lung dis-
eases such as lung cancer, viral pneumonia, bacteria
pneumonia and so on [18].

Unfortunately, most COVID-19 CT datasets can-
not be shared with the public because they involve
patients’ privacy, which is a common problem inmed-
ical image analysis. Einstein et al summarised COVID-
19medical images datasets and such datasets with suf-
ficient high-quality data were not open source [19].
Meanwhile, research results based on these datasets
are difficult to reproduce. Although several datasets
are publicly available, they do not have sufficient data
for the training of deep learningmodels. To solve these
two problems, He et al proposed a self-supervised
transfer learning approach and obtained an accuracy
of 86% on a customised public COVID-19 CT dataset
they built [20].

Transfer learning and data augmentation are help-
ful for image classification when only limited data are
available [21, 22]. Zhao et al pre-trained the ResNet-v2
model on ImageNet-21k, then applied transfer learn-
ing and achieved an accuracy of 99.2%while detecting
the COVID-19 cases [23]. Loey et al explored a combi-
nation of traditional data augmentation methods and
Conditional Generative Adversarial Nets (CGAN); the
performances of COVID-19 CT classification on five
deep learning models (AlexNet, VGGNet16,
VGGNet19, GoogleNet, and ResNet50) were
improved [24]. However, these two approaches are
not always beneficial. Transfer learning may only
slightly improve image classification performance
because of the differences in data and tasks between
source and target domain [25, 26]. Furthermore, pre-
trained weights are usually obtained from general-
purpose datasets like ImageNet without COVID-19
CT scans. Data augmentation strategy significantly
affects discriminative performance, but little work

mentioned how to build a suitable strategy formedical
image classification [27].

This workmainly aims to provide a potential Low-
Threshold, Easy-To-Deploy and Ready-To-Use tool
that can quick response to similar outbreaks in the
future. At the early stage of such epidemics, rapid diag-
nosis with timely isolation is an effective method of
preventing the spread of outbreaks. Therefore, we
focus on using existing methodologies and interlock-
ing them effectively to build a rapid reaction tool
rather than developing a completely novel model. The
desired outcome can improve COVID-19 CT classifi-
cation performance based on a deep transfer learning
model in a realistic scenario that reflects the early stage
of the outbreak of the COVID-19 and any epidemic:
(i) Scarcity of labelled COVID-19 CT images for train-
ing; (ii) Data may come from multiple sources; (iii)
Only limited computing resourcesmay be accessed.

We improve the accuracy from 91.15% to 95.50%
in a typical early open-source COVID-19 CT dataset
by using synthetic CT images synthesised by Advanced
Normalisation Tools (ANTs) as augmented data in
EfficientNet-B2. A customised dataset is built to verify
the benefit of synthetic images. Notably, most layers
are frozen in the process of transfer learning, and we
adjust hyperparameters empirically, so that the classi-
fication task is done with relatively low computa-
tional cost.

Results imply that ANTs could be a potential alter-
native to Generative Adversarial Networks (GANs) to
synthesise images inmedical image classification tasks.
We hope that this study could provide a new possibi-
lity for rapid computer-aided diagnosis in the field of
medical imaging in the early stage of future epidemics.

The rest of the paper is organised as follows.
Section 2 introduces themethodology, including data-
sets, synthetic images, and the design of experiments.
Results and discussion are described in sections 3 and
4, respectively. Finally, section 5 presents the
conclusion.

2.Materials andmethodology

In this section, we introduce the datasets, synthesis of
images and configuration of the deep learning model.
Figure 1 illustrates a flowchart reflecting all datasets we
used and the experimental design.

2.1.Datasets introduction
2.1.1. COVID-CT dataset
Yang et al built the COVID-CT dataset, an open-
sourced dataset that includes 349 COVID-19 and 463
non-COVID-19 CT images, and obtained a classifica-
tion accuracy of 89% in a model based on multi-task
learning and self-supervised learning [28]. The dataset
was broadly adopted (see table 4) and the utility of it
has been confirmed by senior radiologist, although the
quality of paper-extracted CTs is worse than the
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original CTs [28]. CT images were extracted from
numerous papers from multiple sources such as
medRxiv2, bioRxiv3, MedPix, LUNA, Radiopaedia
andPubMedCentral. In this case, some data belonging
to one single source of this dataset were not contin-
uous (e.g., most of the images were missing from a
series of CTs of a patient). Besides, data from different

sources were generated by different CT scanners
worldwide. Compared with the use of data from a
single source, multisource data increase the difficulty
of the classification, especially when data are insuffi-
cient. However, the dataset represents typical easy-to-
obtain and publicly available data at the early stage of

Figure 1.Experimental design flowchart.

Figure 2.CT scans problems in theCOVID-CTdataset. (a)Non-normalisation contrast, (b)Embedded text, (c)White border. a), b)
and c) have different resolutions.
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the COVID-19 epidemic, which lowers the threshold
for researchers to explore related topics.

Figure 2 illustrates four problems found in Yang’s
COVID-CT dataset [28]: (i) non-normalisation con-
trast; (ii) embedded text; (iii)white border; (iv) resolu-
tion inconsistency. Since synthetic images are
generated based on images from this dataset and such
problems adversely affect the quality of the synthetic
images, only 246 COVID-19 and 377 non-COVID-19
CTs are retained in the dataset after selection.

Specifically, contrast intensity was re-mapped in
the range of [0, 1]. The embedded text was an irrele-
vant feature for this classification task and interfered
with model performance. Therefore, images with two
or more lines of embedded text were discarded, but
the rest were kept as noisy data to prevent possible
overfitting in the following classification task. We
removed the white border by cropping to avoid gen-
erating a large number of synthetic images with irre-
gular white borders. The solution for various
resolutions is described in the ‘resolution normal-
isation’ subsection.

2.1.2. Custom dataset
The custom dataset was derived from the COVID-CT
dataset [28] and the SARS-CoV-2 CT-scan dataset
[29]. To this end, we randomly selected 300 CT images
(150 COVID-19 and 150 non-COVID-19 images)
from each of these two datasets, and then built the
customdataset (600 images in total).

The COVID-CT dataset [28]was introduced in the
previous subsection. The SARS-CoV-2 CT scan data-
set contained 1252 COVID CTs and 1230 non-
COVID CT scans collected from hospitals in São
Paulo, Brazil [29]. Angelov et al built it and achieved an
accuracy of 97.38% in an eXplainable Deep Learning
approach (xDNN) [29]. As the previous subsection
mentioned, problems (i) and (iv)were observed in this
dataset. We only obtained 1252 COVID-19 and 1229
non-COVID-19 CT images when we accessed the
dataset [30]. We mainly used partial data from this
dataset to build a custom dataset, and the entire data-
set was treated as a test set in our cross-dataset (i.e.,
training and test set are from different datasets instead
of splitting one dataset into training, validation and
test sets) experiment.

2.2. Synthetic CT images
2.2.1. Selection of synthesis methods
Generative Adversarial Networks (GANs) [31] are
commonly used to expand datasets by synthesising
diverse and realistic images, particularly in the biome-
dical domain [32–34]. Methods based on GANs have
been applied to generate high-quality COVID-19 CT
images [35, 36]. However, GANs usually require
enormous data with high computational costs, espe-
cially when high-quality and high-resolution synthetic
images are needed [37, 38]. The time required to

customise and fine tune the model is ill-advised for
rapid response in a fast-spreading pandemic. Besides,
Yi et al pointed out that most works on synthesising
medical images through GANs adopt metrics like
Mean Absolute Error (MAE), Peak Signal-to-Noise
Ratio (PSNR), and Structural Similarity Index Mea-
sure (SSIM) that could not correspond to the visual
quality of images [39].

To reduce the dependence on the high-perfor-
mance hardware, we utilised the Advanced Normal-
isation Tools (ANTs), initially designed for
deformable image registration with small or large
deformations, to synthesise CT images [40]. More-
over, default configurations of functions provided by
ANTs are good enough so further careful fine-tuning
is not necessary.

ANTs provided a technique called ‘morphing’
based on Geodesic Image Interpolation (GII). Avants
et al used GII to simulate the missing volumetric brain
images from two in a series of images, and proved that
it offers 25%–30% better intensity accuracy than lin-
ear interpolation [41]. It is a feasible and potentially
efficient method to synthesise images, especially when
dealing with images from multiple data sources or
defective image sets with partialmissing data.

Suppose there are two ‘controlled’ images, one is a
‘fixed’ image and the other is a ‘moving’ image. Apply-
ing ‘morphing’will force the ‘moving’ image to be par-
tially deformed to the ‘fixed’ image. The ‘morphing’
function allows us to synthesise one or more images at
a specific position between two images. Figure 3 illus-
trates an example of the synthesis. Figure 4 shows
synthetic images obtained when the same set of ‘con-
trolled’ images is applied with different parameters
in ANTs.

Given that some of the images in the COVID-CT
dataset only presented a single slice per patient, and
both patients as well as CT scanners information was
erased, we could not use ANTs as we discussed above.
Besides, to the best of our knowledge, currently no
guidance for synthesising images throughANTs under
such conditions exists. This void is addressed here as
described next.

Previous works demonstrated that the larger the
feature gap between the ‘controlled’ images, the higher
the probability of generating a greatly distorted image.
Figure 5 shows examples of heavily distorted synthetic
images. Intuitively, visual similarity based on the sub-
jective visual perception of researchers can be used to
select image pairs. We also introduce Haar wavelet-
based perceptual similarity index (HaarPSI) [42] as a
measurable metric to do the same job for a compar-
ison. HaarPSI is a computationally inexpensive image
similarity and quality evaluation metric widely used in
themedical image domain [43–45].

2.2.2. Resolution normalisation
Images should be resized to a uniform resolution
before inputting into a convolutional neural network.
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In addition, the probability of synthesising images
with large degree distortion can be reduced by using
the same size images.

Usually, with image resolution between 256× 256
pixels and 448 × 448 pixels, AUC achieved the max-
imum value in binary classification tasks of the chest
radiograph undertaken by the convolutional neural
network (CNN) [46]. To reduce the computational
cost, we resized all CT images to 260 × 260 pixels
which is the input shape of EfficientNet-B2 archi-
tecture (table 1). Although it seems that scaling the
image to 256 × 256 pixels can minimise the use of

computational resources, we must re-code the deep
learning model that can be directly transferred, which
does not fit our original intention: a Ready-To-Use
method.

To balance the computational cost and quality of
synthetic images, we used bilinear interpolation (i.e.,
linear interpolation in two dimensions sequentially) to
scale images instead of nearest-neighbour or bicubic
interpolation [47]. Two main scaling methods were
considered: conventional bilinear interpolation with
orwithout zero padding.

Figure 3.The synthesis process throughANTs. (a)Original "fixed" image, (b)Original "moving" image, (c) Scaled "fixed" image, (d)
Scaled "moving" image, (e) Synthesised image throughANTs, (f) an example of synthetic imagewithout zero padding.

Figure 4. Synthetic images with different parameters inANTs (the input image pair is the same asfigure 3).
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Zero padding (i.e., adding zero-value pixels to the
borders of images) is proposed to enlarge small images
to a fixed size without loss and improve image classifi-
cation tasks’ accuracy as well as time performance in
CNNs. However, Hashemi pointed out that it did not
affect the accuracy but significantly reduced the conv-
ergence time because zero input values did not activate
convolutional units [48]. Hence, we attempted to
combine the bilinear interpolation and zero padding.
Furthermore, the aspect ratio was kept, and loss only
came from interpolation.

We scaled each image based on the scale factor of
width. For example, an image is WO × HO pixels and
the target size isWT × HT pixels. The scale factor Fs is
as follows:

= ( )F
W

W
1S

T

O

Then the new height HN is calculated as shown in
the equation below:

= ´ = ´ ( )H H F H
W

W
2N O S O

T

O

If the new height HN is smaller than the target
height HT, zero-value pixels are used to fill the blank
between them, as shown in figure 3(c) and figure 3(d).
On the contrary, if the new height HN is bigger than
the target height HT, the image will not participate in
the synthesis. Cropping is not accepted because it cau-
ses feature loss. Fortunately, the pre-processed
COVID-CT dataset does not contain such images. In

brief, the combined method only filled the top and
bottom borders of the image instead of around the
image comparedwith the original zero padding.

Another way to maintain the aspect ratio is to add
cropping to the interpolation process. However, we
believe that this impairs classification performance
because cropping results in a loss of information.

2.3. Implementation details
2.3.1. Deep learning architecture
Deep learning has various applications in radiology,
especially classification, segmentation and detection
[49]. Many deep learning models can undertake the
classification of COVID-19 CT scans, such as AlexNet,
ResNet-50, Inception-v3, and Xception [50–52].
However, they have a large number of trainable
parameters. For example, AlexNet has about 61
million parameters, which needs enormous comput-
ing resources and training time.

Tan and Le [53] developed the EfficientNet family
that outperforms all previousmodels wementioned in
accuracy and efficiency when applied to the ImageNet
dataset. Compared with traditional methods that scale
one dimension (width, depth or resolution) of the net-
work, the EfficientNet scales all these dimensions uni-
formly by a compound coefficient. Therefore,
EfficientNet allows people to arbitrarily choose width/
depth/resolution according to the compound scaling
formula:

a
b
g

a b g
a b g

=

=
=

»

f

f

f

· ·
( )

Depth d

Width w

Resolution r

Constrain
Constrain

:

:

:

1: 2
2: 1, 1, 1 3

2 2

  

Where ∅ is a user-specified coefficient that reflects
computing resources, and α = 1.2, β = 1.1 as well as
γ = 1.15 are calculated by a grid search based on the
EfficientNet-B0. However, the actual implementation
is restricted by many factors (e.g., the channel size
should be a multiple of 8 required by the building
block). Hence, Keras only provides 8 classic Efficient-
Net models (B0-B7) with specific width/depth/reso-
lution. Table 1 shows the input shape of thesemodels.

Figure 5. Synthetic images with significant distortion.

Table 1. Input shapes of efficientnet base
models.

EfficientNetmodel Input shape

EfficientNet-B0 224 pixels× 224 pixels

EfficientNet-B1 240 pixels× 240 pixels

EfficientNet-B2 260 pixels× 260 pixels

EfficientNet-B3 300 pixels× 300 pixels

EfficientNet-B4 380 pixels× 380 pixels

EfficientNet-B5 456 pixels× 456 pixels

EfficientNet-B6 528 pixels× 528 pixels

EfficientNet-B7 600 pixels× 600 pixels
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Finally, we chose the EfficientNet-B2 (Input shape
is 260× 260 pixels) due to the computational cost and
the effect of CT image size concern (see the subsection
‘resolution normalisation’).

2.3.2. Training configurations
The EfficientNet-B2 model based on transfer learning
with pre-trainedweights from ImageNet was deployed
in the experiment. Since we used a much smaller
dataset than ImageNet, we applied extremely small
learning rates to obtain incremental changes in
performance. Besides, a large learning rate may cause
themodel to fail to converge in our experiments.

To further reduce the computational cost, we
strictly limited some of the hyperparameters of the
model. Only the top 20 layers could be trained, except
for the built-in BatchNormalisation layers because
they had non-trainable weights. Therefore, only
1,636,185 out of 7,775,610 were trainable parameters
in Keras. Meanwhile, we empirically adjusted hyper-
parameters instead of grid or random search that cost
enormous resources.

We used Adam optimiser to update weights and
separately set the learning rate of the top layer and
other unfrozen layers. The dropout rate [54] of the top
layer was set to 0.2 to prevent overfitting. Datasets in
baseline tests were split into a proportion of 80% and
20% for training and testing, respectively. Batch size
and maximum epochs were set to 32 and 100
separately.

2.3.3. Data augmentation
Data augmentation expands training datasets and
enhances the data quality to solve the problems when
meagre data can be accessed, especially medical data
[55, 56]. It has been shown to improve the perfor-
mance of deep learning models and help to correct
overfitting [57]. Generally, it can be divided into two
methods in image classification tasks: transformations
of images and introducing new synthetic data.
Although this work focuses on the effect of synthetic
images, we still introduce the traditional data augmen-
tation to compare performances.

Data augmentation methods are not omnipotent,
and their specific drawbacks make them be unequally
popular [58]. A commonly used combination was
applied to our experiments: (i) rotation by a random
amount in the range [−10%× 2π, 10%× 2π]; (ii) ran-
dom translation vertically or horizontally in the range
[−10%, 10%]; (iii) flip each image vertically or hor-
izontally; (iv) randomly adjust the contrast of images.

However, combining augmentation brings a com-
plex impact and no guaranteed benefits. A study
reported that data augmentation harmed deep learn-
ing models in detecting COVID-19 x-ray images [59].
Therefore, we did not expect the typical augmentation
combination to be advantageous, particularly when
the capabilities of the deep learning model were
limited.

2.3.4. Evaluation criteria
Fourmetrics were applied to evaluate the classification
performance: Accuracy, Precision, Recall and Area
Under the Receiver Operating Characteristic (AUC)
score. For thesemetrics, the higher, the better.

2.3.5. Design of experiments
Experiments were carried on a laptop with Intel(R)
Core(TM) i7-10875H CPU @ 2.30 GHz, 32GB RAM,
NVIDIA GeForce RTX 2060 6 G and Windows 10.
Image normalisation was completed by Matlab, and
image synthesis was done by ANTs on Linux. Keras/
Tensorflow undertook the classification task in
Python.

The first experiment explored the effect of differ-
ent image resizingmethodswith orwithout traditional
data augmentation. Then synthetic images were intro-
duced and compared with the best model of the first
experiment. Specifically, all synthetic images were
firstly treated as an independent dataset, then trained
on it and tested on the source dataset (i.e., the dataset
provides ‘controlled’ image pairs). Next, synthetic
images were treated as augmented data tomix with the
training set and validated on the testing set.

The aim of using synthetic images as an indepen-
dent dataset is to evaluate the utility of synthetic data.
For example, if we achieve 100% accuracy when we
train on synthetic data and test on original data, it may
indicate such synthetic data perfectly replicates the
characteristics of real data but may exacerbate over-
fitting when testing on unseen data (i.e., test set).
Instead, we can say that the synthetic data includes
many wrong features if the experiment shows low
accuracy.

Silva et al [60] proposed a cross-dataset test to eval-
uate the generalisation power of deep learning models
and reported the best accuracy of 56.16% when train-
ing on the SARS-CoV-2 CT-scan dataset and testing
on the COVID-CT dataset. The opposite scenario pro-
duced worse results because the training set was much
smaller than the testing set [60]. Hence, wemerged the
COVID-CT dataset and synthetic images as a training
set and tested it on the SARS-CoV-2 CT-scan dataset
to explore whether synthetic images enhance
generalisation.

Finally, the custom dataset was built (see subsec-
tion ‘custom dataset’) and tested to verify latent con-
clusions derived fromprevious experiments.

3. Results

The baseline model applied bilinear interpolation as
resizing method without data augmentation and
achieved the best accuracy of 91.15% on the COVID-
CT dataset. The use of cropping or interpolation with
zero padding harmed the performance of the model
(accuracy of 88.32% and 86.06% separately), and
typical data augmentation methods had more severe
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adverse effects in this case. Table 2 reports the
performance difference among the three resizing ways
with orwithout traditional data augmentation.

The number of synthetic images is presented in
figure 1. Synthetic images were treated as independent
datasets and augmented data separately. Performances
were less well than the source dataset baseline model
when synthetic images were used as independent data-
sets. However, performance was improved when ima-
ges were synthesised by visual similarity and became
augmented data (table 3). Figure 6 illustrates the acc-
uracy curve and loss curve, which achieved an average
accuracy of 95.50% when synthetic images were con-
sidered as augmented data. Table 4 shows a compar-
ison of our best results with other studies using the
COVID-CT dataset [28]. From the perspective of AUC
metric, the improvementmay not significant compare
with others results (from 94.2% [61] to 98.54%), but
the model we used is much smaller (EfficientNet-B2
has 9.2 million parameters in total but ResNet-50 has
26million).

Unfortunately, synthetic images seemed no benefit
on generalisation capability because the model did not
converge in the cross-dataset test. Training on the
COVID-CT and testing in the SARS-CoV-2 CT-scan
dataset presented a poor accuracy of 49.31%. Adding
images based on visual similarity or HaarPSI and both
pre-resized by interpolation obtained the accuracy of
48.48%and 50.12%, respectively.

The baseline performance of the custom dataset
without synthetic images obtained 85.95%, 93.21%,
87.27% and 84.60% accuracy, AUC, precision and
recall, respectively. When traditional data augmenta-
tion was applied, they dropped to 78.29%, 84.80%,
81.07% and 75.16%, respectively. Table 5 shows the
performance when synthetic images were considered
and gives a similar performance trend to previous
experiments. The best scenario increased the accuracy
andAUC to 94.32%and 98.61% separately.

4.Discussion

The main goal of our experiments is to find a
convenient and efficient solution for classification
tasks based on deep learning when limited data and

computing resources are available. In such cases,
traditional data augmentationmethods based on basic
image operations may fail. In the experiments, we
selected a typical dataset, the COVID-CT dataset,
created on the early stage of the epidemic and can be
accessed by the public. To simulate a low computa-
tional power environment, we froze most of the
trainable layers of EfficientNet-B2 and synthesised
images through ANTs instead of GANs. Meanwhile,
grid search, random search or other expensive hyper-
parameter tuningmethodswere forbidden.

In this work, we first proposed an image scaling
method based on interpolation and zero padding and
compared it with two other ways: bilinear interpola-
tion or interpolation with cropping. As expected,
although cropping maintains the aspect ratio of ima-
ges, the loss of features impairs the model’s perfor-
mance. Unfortunately, the proposed resizing method
also adversely affects the deep learning model in this
case (table 2). It seems to be attributed to the same rea-
son that zero values cannot activate the convolutional
unit as [48] reported. Furthermore, the proposed
method scaled all images to a given resolution, but the
images were not filled with the same number of black
pixels. Intuitively, the area of the black pixels gener-
ated by zero padding was not the same between scaled
images, which directly led black pixels to blend into
the surroundings and produce irregular black borders
during synthesis, as shown infigure 5 (a).

Thenwe used interpolation and interpolation with
padding to further synthesise images through ANTs.
Visual similarity and HaarPSI were applied to select
image pairs. When resizing methods were analysed
independently, there was little difference in the impact
of pre-resizing the image by interpolation or inter-
polation with zero padding. Synthesis based on visual
similarity showed better performance improvements
than HaarPSI when the effects of resizing approaches
were ignored (table 3). In the best case, the accuracy
and AUC improved from 91.15% to 95.50% and
96.40% to 98.54% separately after the synthetic images
based on visual similarity and pre-resized by bilinear
interpolation were added to the training set as aug-
mented data.

Table 2.Comparison of different image pre-resizingmethodswith orwithout traditional data augmentation for the COVID-CTdataset.

Resizingmethod

Traditional data

augmentation

Learning rate

of top layer

Learning rate of

other layers Accuracy AUC Precision Recall

Bilinear interpolation No 1× 10−2 1× 10−4 91.15% 96.40% 89.22% 89.89%

Yes 5× 10−4 2× 10−5 74.81% 85.45% 89.38% 45.51%

Bilinear interpolation

with cropping

No 1× 10−2 1× 10−4 88.32% 96.26% 88.60% 83.07%

Yes 5× 10−4 2× 10−5 77.11% 86.10% 76.07% 66.30%

Bilinear interpolation

with zero padding

No 3× 10−4 3× 10−5 86.06% 94.55% 85.64% 80.68%

Yes 5× 10−4 2× 10−5 84.60% 91.18% 82.06% 81.23%
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Table 3.Comparison of the Impact of Synthetic Images onClassification Performance on theCOVID-CTDataset.

Resizingmethod Selection criteria for image pairs Usage of synthetic images Learning rate of top layer Learning rate of other layers Accuracy AUC Precision Recall

Bilinear interpolation Visual similarity Independent 7× 10−9 3× 10−5 89.67% 96.60% 92.21% 80.71%

Augmented 1× 10−9 1× 10−5 95.50% 98.54% 94.85% 93.81%

HaarPSI Independent 2× 10−4 2× 10−6 75.49% 82.87% 66.24% 77.39%

Augmented 2× 10−9 3× 10−5 89.91% 96.78% 81.89% 96.00%

Bilinear interpolationwith zero padding Visual similarity Independent 7× 10−9 3× 10−5 86.24% 97.25% 96.39% 67.81%

Augmented 1× 10−9 1× 10−5 94.07% 98.65% 90.79% 94.86%

HaarPSI Independent 2× 10−4 2× 10−6 77.87% 84.03% 71.86% 72.28%

Augmented 2× 10−8 1× 10−5 89.04% 94.70% 84.52% 88.67%
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Notably, synthesising images through ANTs is
more efficient than GANs or Deep Convolutional
Generative Adversarial Networks (DCGANs). We
have tried to build a traditional GAN to synthesise
images, but the training process hardly converges after

tuning. Then we built a DCGAN and applied many
approaches (e.g., batch normalization, gaussian
weight initialization, images re-scale to the range [−1,
1], etc) to stabilise it. The best DCGAN model in our
experiment had a three convolution layers

Figure 6.The training and validation accuracy (a) and loss curve (b)when synthetic images as augmented data on theCOVID-CT
dataset.

Table 4.Performance comparison between our proposedmethod and some existing works on the COVID-CTdataset.

Author(s) Model Note Accuracy AUC Precision Recall

MLoey et al [24] ResNet50 Traditional augmentation

withCGAN

81.41% — — 80.85%

PSilva et al [60] EfficientCovidNet Traditional augmentation 87.68% — 93.98% 79.59%

AShamsi et al [61] ResNet50 Linear SVM 87.9% 94.2% — 86.5%

XYang et al [28] DenseNet-169 Contrastive self-supervised learn-

ing; Traditional augmentation

89.10% 98.10% — —

ASaeedi et al [62] DenseNet-121 Nu-SVMclassifier 90.61% 95.05% 89.76% 90.80%

Ours EfficientNet-B2 ANTs 95.50% 98.54% 94.85% 93.81%

SChattopadhyay et al

[63]
Deep features of

ResNet18

Clustering-basedGoldenRatio

Optimizer (CGRO)
99.31% — 99% 100%

10

Biomed. Phys. Eng. Express 9 (2023) 055003 YHou andMNavarro-Cía



Table 5.Comparison of the impact of synthetic images on the classification performance of the customdatasets.

Resizingmethod Selection criteria for image pairs Usage of synthetic images Learning rate of top layer Learning rate of other layers Accuracy AUC Precision Recall

Bilinear interpolation Visual similarity Independent 5× 10−6 3× 10−5 82.32% 95.87% 95.77% 67.73%

Augmented 2× 10−3 2× 10−5 94.32% 98.61% 93.66% 95.24%

HaarPSI Independent 5× 10−6 1× 10−5 70.02% 83.29% 84.20% 49.43%

Augmented 5× 10−3 5× 10−5 90.08% 96.57% 89.46% 90.95%
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discriminator with 650,241 parameters and a three
transposed convolution layers generator with
18,771,073 parameters. The model was trained from
scratch and generated only an extremely obscure out-
line of CT scans (see figure 7) within half hour. How-
ever, ANTs could generate about 2600 usable synthetic
images at the same time in a virtual machine with half
computational resources compared with the DCGAN
model. Unlike GANs and their descendants, fine-tun-
ing is not necessary for ANTs to generate usable synth-
etic images, which significantly reduces the time and
resources required. In addition, the training on GANs
usually not stable and the trade-off between perfor-
mance and computational cost should be reflected.

When synthetic images were used as an indepen-
dent dataset and validated on the source dataset, the
performances were lower than the baseline model but
still acceptable. It indicated that the generated images
were diverse. A small number of images with sig-
nificant distortion were synthesised, and we did not
remove these data. We believe keeping these data can
prevent overfitting when they are considered as aug-
mented data. Additionally, cleaning this data may
require the supervision of a radiologist.

Since the above results (table 2 and table 3) and
discussions have proved that the proposed resizing
method (bilinear interpolation with zero padding) did
not show any benefits, we decided only to adopt bilin-
ear interpolation, the best in the previous experiments,
as the image resizing method for the following experi-
ments related to the custom dataset and cross-data-
set test.

To simulate the dilemma faced by researchers in
the early stage of any outbreak (i.e., the lack of data and
the wide range of data sources), we customised a data-
set based on two open-source datasets: COVID-CT
[28] and SARS-CoV-2 CT-scan [29]. When synthetic
data were added, the accuracy significantly improved
from 85.59% to 94.32%, which was a promising result
and proved that synthetic images by ANTs could
enhance the performance of the deep learning model.
A research combined four datasets that included
almost 2200 images, which is larger than our custom

dataset, and obtained an accuracy of 90.91% based on
machine learning [64].

The cross-dataset test showed current synthetic
images used in this experiment did not contribute to
the generalisation capability of the deep learning
model. We consider two major reasons here. Firstly,
our synthetic data are generated from low-quality data
and noise also be ‘amplified’ during data augmenta-
tion. Secondly, our cross-dataset test is based on two
datasets instead of splitting one dataset into train, vali-
dation and test sets. Well-constructed dataset usually
has a specific data distribution, and datasets with simi-
lar content theoretically also belong to the same dis-
tribution, but the small differences will be significantly
magnified by the gap in the amount of data. Hence, we
look forward to verifying our method on high-quality
and bigger dataset in the future. Furthermore, we
believe the latter one can be mitigated by federated
learning with multiple datasets because the aggrega-
tion averages the model parameters that trained on
different datasets.

We also found several limitations. Firstly, the data-
set we used is small and lower quality compare with
the private datasets that we did not have permission to
access. Although we have confidence on our method
with high quality data, it should be further verified in
the future. Secondly, we did not clean the synthetic
data, which means some synthetic images with sig-
nificant distortions were kept and adversely affected
themodel. However, data cleaning in the field of med-
ical imaging usually requires the assistance of radi-
ology experts. Thirdly, we only tested two similarity
metrics: visual similarity and HaarPSI. In this case, the
visual similarity is better, but we do not know how
othermetrics will behave in such scenarios. Since there
is no current guidance for synthesisingmedical images
based on similarity measurement through ANTs, we
provide a simple approach that could be scrutinised
further. In future works, we will evaluate more simi-
larity metrics and pay close attention to advanced
metrics that can better reflect visual similarity. Finally,
only one commonly used combination of data aug-
mentation was considered in our work. Although it

Figure 7.The synthetic COVIDCT images generated byDCGANs. (a) Sample collected at 15 epochs (b) Sample collected at 30 epochs
(about half hour in our hardware).
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performed poorly in this experiment, it may achieve a
better result with careful fine-tuning. Future work
should explore the efficient application of data aug-
mentation to small datasets with diverse data.

The experiment was based on transfer learning to
overcome the problem of data lack. However, some
researchers pointed out that transfer learning that
adopted pre-trained weights from general datasets like
ImageNet offered limited performance gains due to
the large discrepancy between the source and target
data [20, 25, 65]. They also pointed out that much
smaller deep learning architectures could perform
comparably to the standard ImageNet models, which
would further reduce the computational cost [25].

Using synthesised images by ANTs improved the
image classification performance on the restricted
EfficientNet-B2. Also, the improvement did not
require careful fine-tuning or any additional search
strategy of hyperparameters. Our results may hold
true in a high computational cost situation like more
complex deep learning models with larger datasets. A
greater understanding of our findings may make
synthetic medical images based on ANTs an alter-
native toGANs.

5. Conclusion

In this study, we maximised the classification perfor-
mance andminimised computational cost by combin-
ing existing efficient methods, and provided a feasible
solution for classifying COVID-19 CT images based
on deep learning with limited computing resources
and data. Although small dataset usually does not
satisfy the typical requirement of standard deep
learning, it can perform promising results with the
help of transfer learning and data augmentation.
Distributed learning frameworks such as federated
learning which benefits multiple clients by aggregating
model parameters instead of raw data to minimise the
privacy concern, but the applications on sensitive
medical data still have many ethics related problems.
Hence, designing a simple tool which works well on
small dataset can be applied by hospitals indepen-
dently under privacy restriction is necessary. Experi-
ments showed that synthetic images based on ANTs
could improve classification performance when tradi-
tional data augmentation failed or even backfired. We
highlight three features: Low-Threshold, Easy-To-
Deploy and Ready-To-Use. Publicly accessible data
does not usually contain high-quality images because
of their size (difficult to transfer, download, and
process), the lack of standards in medical imaging, the
large diversity of medical imaging devices, etc How-
ever, it avoids data privacy issues and is easy to be
obtained. To meet our motivation and serve for
practical low-resource settings, we assemble several
existing tools and technologies, such as transfer
learning and interpolation, and the method we

proposed does not require advancedmachine learning
skills or fine-tuning experiences on deep learning
models. High-performance hardware is not essential
for such tools, which indicates our method is easier to
be accepted and deployed in local hospitals, clinics and
other medical institutions, especially in developing
countries. Besides, ANTs use NIFTI (Neuroimaging
Informatics Technology Initiative) files [a common
format formedical images such as functionalmagnetic
resonance imaging (fMRI)] as input to synthesise
images which can be easily deployed in hospitals, and
distort patient information during synthesis to ensure
anonymity. The above characteristics lower the
research threshold, allowing scholars and healthcare
workers with few resources to have an opportunity to
explore more possibilities. Although ideal laboratory
condition with novel methods that lead advanced
breakthroughs, our simulations address brutal reality
where our methodmay be easily deployed in practical.
Hence, this work offers a new possibility for rapid
image classification to assist diagnosis in the early
stages of future epidemics.
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