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By studying the effects of quadratic anisotropy and quartic perturbations on two-dimensional harmonic
oscillators, one arrives at a simple model, termed here the Ince oscillator, whose analytic solutions are given
in terms of Ince polynomials. This one model unifies diverse physical systems, including aberrated optical
cavities that are shown to support Ince-Gauss beams as their modes, and the two-mode Bose-Hubbard dimer
describing two coupled superfluids. The Ince oscillator model describes a topological transition which can have
very different origins: in the optical case, which is fundamentally linear, it is driven by the ratio of astigmatic
to spherical mirror aberrations, whereas in the superfluid case it is driven by the ratio of particle tunneling to
interparticle interactions and corresponds to macroscopic quantum self-trapping.

DOI: 10.1103/PhysRevA.107.L031502

Introduction. Analogies between physical phenomena arise
when, in certain limits, their different fundamental equa-
tions reduce to similar models. A very basic model is the
harmonic oscillator (HO), which in both the classical and
quantum (or path and wave) forms describes a variety of
phenomena in mechanics and optics [1,2]. The isotropic two-
dimensional HO (2DHO) is more striking, since it possesses
a hidden SU(2) symmetry that endows it with three constants
of the motion (CoMs) involving its position and momentum.
For the classical case these constants take the form

Lj ≡ 1

4

(
q√
γ

− i
√

γ p
)

σ j

(
q√
γ

+ i
√

γ p
)

(1)

for j = 1, 2, 3, where q = (qx, qy) is the position, p =
(px, py) is the momentum, γ is a positive constant with the
appropriate units for the problem in question, and σ j are the
(permuted) Pauli matrices:

σ1 =
(

1 0
0 −1

)
, σ2 =

(
0 1
1 0

)
, σ3 =

(
0 −i
i 0

)
. (2)

Note that L2
1 + L2

2 + L2
3 = ( 1

4γ
q2 + γ

4 p2)2 is proportional to

the Hamiltonian squared, where q2 = q · q and p2 = p · p.
The Poisson brackets (or the commutators in the quantum
case) of the CoMs resemble angular momentum algebra. Of
these CoMs, L1 and L2 are quadratic in both p and q, but
L3 = (qx py − qy px )/2 [half the orbital angular momentum
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(OAM)] is linear in both p and q, the linearity in p playing
a central role in what follows.

Here, we present an analytically solvable, nonlinear model
we call the Ince oscillator based on the quantum 2DHO expe-
riencing a perturbation whose effect is described by the Ince
operator Î, defined as

Î = α

2
L̂1 + L̂2

3, (3)

where L̂ j are the Fradkin-Stokes operators corresponding to
the SU(2) CoMs, and α is a positive parameter. This system
can be visualized physically as a 2DHO subject to the two
simplest meaningful perturbations: quadratic asymmetry and
a quartic correction to the potential (determined by L̂1 and
L̂2

3, respectively). It can then be considered as the simplest
generalization of a 2DHO that not only presents topological
transitions, but can also be solved analytically in terms of
Ince polynomials [3,4]. This simplicity endows it with an
important level of universality so that it describes a range of
different physical systems. We emphasize two such systems
for which the connection is particularly surprising. The first
is a linear, optical resonant cavity like those used in lasers
and high-precision interferometers [5,6]. In the presence of
small amounts of simple aberrations, the cavity modes are
shown to correspond to Ince-Gauss (IG) beams, which have
received significant attention recently [3,4,7–14]. The second
system is the Bose-Hubbard (BH) dimer model [15–26], a
workhorse in condensed matter physics providing a minimal
model for coupled reservoirs of superfluid helium [27,28],
coupled atomic Bose-Einstein condensates (BECs) [29–35],
and coupled polariton BECs in semiconductor microcavities
[36,37], among others.
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2D harmonic oscillator. The 2DHO obeys the Schrödinger
equation iη ∂τ |ψ〉 = Ĥ0 |ψ〉, where η is a constant (e.g., the
reduced Planck constant for mechanics or the reduced wave-
length for optics), τ is the propagation or evolution parameter,
and Ĥ0 is the Hamiltonian,

Ĥ0 = κ

2

(
1

γ
q̂ 2 + γ p̂ 2

)
, (4)

where κ is also a constant with appropriate units for the prob-
lem in question. In the position representation, q̂ → (qx, qy)
and p̂ → −iη(∂qx , ∂qy ). The eigenvalues of the Hamiltonian
in Eq. (4) are κη(N + 1), where N is a non-negative integer
referred to as the total order. There are N + 1 degenerate
eigenstates of Ĥ0 for any N , so the choice of a set of eigen-
functions is not unique [1,38], and different eigenstates are
obtained through separation of variables in several ways [7,8].
For example, separation in Cartesian coordinates leads to
Hermite-Gauss (HG) modes, while separation in polar coor-
dinates gives Laguerre-Gauss (LG) modes [2].

Schwinger’s coupled oscillator model [1] provides an el-
egant description of the 2DHO, based on the Fradkin-Stokes
operators L̂ ≡ (L̂1, L̂2, L̂3), which satisfy the su(2) commu-
tation relations [L̂i, L̂ j] = iη

∑
k εi jk L̂k , with εi jk being the

Levi-Civita tensor. These operators commute with the unper-
turbed Hamiltonian [Ĥ0, L̂ j] = 0 since

L̂ · L̂ = L̂ 2
1 + L̂ 2

2 + L̂ 2
3 = 1

4κ2
Ĥ 2

0 − η2

4
. (5)

Thus the degenerate set of modes of Ĥ0 with equal N can
be mapped onto a collective spin with total angular momen-
tum N/2 [38–42]. Different spin axes correspond to different
modes [38–40]: the HG and LG modes are eigenstates of L̂1

and L̂3, respectively.
Perturbed 2DHO. The degeneracy of the 2DHO can be re-

moved by adding a small perturbation Ŵ to the Hamiltonian:

Ĥ = Ĥ0 + Ŵ (̂q, p̂). (6)

Propagation or evolution over an interval τ is described by the
operator exp(−iτ Ĥ/η) = exp[−iτ (Ĥ0 + Ŵ )/η]. Since Ŵ is
small, we can use the first Born approximation to arrive at

exp(−iτ Ĥ/η) = exp(−iτ Ĥ0/η)

(
1 − iτ

η
P̂

)
, (7)

where

P̂ = 1

τ

∫ τ

0
dτ ′ exp

(
iτ ′

η
Ĥ0

)
Ŵ (̂q, p̂) exp

(
− iτ ′

η
Ĥ0

)
. (8)

By assuming that τ is much larger than the oscillation period,
changing variables to κτ ′ = θ , and using the canonical com-
mutation relation, we can write this operator as

P̂ ≈ 1

2π

∫ 2π

0
dθŴ

(
q̂ cos θ + γ p̂ sin θ, p̂ cos θ − q̂

sin θ

γ

)
.

(9)

The operator P̂ is then simply the accumulation of the effect
of Ŵ over many cycles. This accumulation has the effect of
making P̂ symmetric in q̂ and p̂, so that it commutes with the
unperturbed Hamiltonian Ĥ0. Since we are in the perturbative
regime, the modes must then be eigenstates of both Ĥ0 and P̂ .

We consider simple forms for Ŵ , corresponding to low-
order polynomials in position and momentum. It is easy to
show that Eq. (9) vanishes for any odd-order monomial, so
it is sufficient to consider even powers. Since we consider
simple physical systems where the kinetic and potential parts
are separate, we focus on even-order monomials that include
either q̂ or p̂.

Ince oscillator. We define the Ince oscillator as a 2DHO
subject to the two simplest perturbations: an anisotropic
quadratic and a rotationally symmetric quartic terms. There-
fore we set

Ŵ = ε1

2γ

(
q̂ 2

y − q̂ 2
x

) + ε2q̂ 4

γ 2
, (10)

where the coefficients ε1 and ε2 are assumed to be small,
justifying the perturbative approach. This leads to

P̂ = 2ε2

(
3

4κ2
Ĥ 2

0 + η2

4
− Î

)
, (11)

where Î is the Ince operator defined in Eq. (3), with α/η =
ε1/ηε2 being a dimensionless parameter that can take any real
value. Note that if we had replaced the position operators in
Eq. (10) with the corresponding momentum operators (with
the appropriate factors of γ for dimensional reasons) the result
would have been the same. In particular, a quartic perturbation
in momentum would correspond to a relativistic correction
for quantum-mechanical particle evolution or a postparaxial
correction for monochromatic optical propagation.

The two terms in the perturbation each break the degen-
eracy in a different way, hence selecting a specific set of
modes: HG modes (separable in Cartesian coordinates) are
eigenstates of L̂1 so they are selected by quadratic asymmetry
(α/η → ∞), while LG modes (separable in polar coordinates)
are eigenstates of L̂3 and are hence selected by a rotation-
ally symmetric quartic perturbation (α/η = 0). Since P̂ is
quadratic in L̂3, some degeneracy remains in this case between
LG modes with the same amplitude profile but opposite OAM.

For an eigenstate of Ĥ0 to also be an eigenstate of P̂ , it is
sufficient that it be an eigenstate of Î:

Î
∣∣ψ (p)

N,μ(α)
〉 =η2a(p)

N,μ

4

∣∣ψ (p)
N,μ(α)

〉
, (12)

where each mode is identified by its total order N , parity p,
and index μ, ordered such that the corresponding eigenval-
ues satisfy a(p)

N,μ < a(p)
N,μ+2 and a(o)

N,μ < a(e)
N,μ. As discussed in

the Supplemental Material [43], these eigenstates are the IG
modes [3,4,7–10], which in the position representation are
separable in elliptical coordinates with focal separation equal
to 2(αγ )1/2. The dependence on each variable is a combina-
tion of an exponential and an Ince polynomial. The spatial
profile | 〈q|ψ (p)

N,μ(α)〉 | of some of these modes is shown in
Fig. 1. This profile depends on α: for α/η → ∞ the modes
reduce to HG modes, while for α/η → 0 they reduce to real
LG modes (the superposition in equal amounts of two LG
modes of equal radial profile and opposite vorticity). For
intermediate values of α, the modes resemble deformed ver-
sions of either HG or real LG modes; we refer to these as
the HG-like and LG-like regimes, respectively. We emphasize
that although our derivation of the equations defining the Ince
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FIG. 1. Various representations of the topological transition in
the classical limit for the same even IG mode with N = 22 and
μ = 18. The left and right columns correspond, respectively, to the
two topologically distinct regimes: HG-like (turquoise) and LG-like
(purple), and the middle column shows the boundary between them
(yellow). The first row depicts | 〈q|ψ (p)

N,μ(α)〉 | (corresponding, e.g.,
to the transverse profile of an IG beam), whose significant values
are contained within the caustics, indicated by the overlaid color
curves. The second row shows the generalized Viviani curves on
the Bloch-Poincaré sphere. The third row shows |〈q+, q−|ψ (p)

N,μ(α)〉|,
the amplitude over the real parts of the quadratures of two modes
in a BH dimer, as well as the corresponding caustics. Note that
〈q+, q−|ψ (p)

N,μ(α)〉 can be calculated from 〈q|ψ (p)
N,μ(α)〉 by Fourier

transforming the latter in qy and rotating the result by π/4.

oscillator involves perturbation theory, our treatment of the
Ince operator itself [Eq. (12)] is exact.

Classical limit. In order to better understand the two
regimes for the IG modes and the transition between them,
consider the “classical” limit (valid for large N) obtained by
replacing the operators with c-number quantities. The classi-
cal version of Eq. (5) can be written as t2

1 + t2
2 + t2

3 = 1, where
t j = 2Lj/[η(N + 1)]. This relation defines a unit Poincaré-
Bloch sphere in the space t = (t1, t2, t3). However, the modes
must also be eigenstates of the Ince operator. The classical
version of Eq. (12) can be written as

t2
3 + αt1/η(N + 1) = a/(N + 1)2, (13)

where a is the eigenvalue. This equation corresponds to a
parabolic cylinder in the space of t. The mode can then be
represented by the intersection of the unit sphere and this
parabolic cylinder. This intersection is equivalent [26] to that
of the sphere with the vertical cylinder (t1 − c)2 + t2

2 = R2,
aligned along the t3 axis, centered at c = α/2η(N + 1) and
of radius R = {1 + [(α/2η)2 − a]/(N + 1)2}1/2, as shown in
Fig. 1. These curves correspond to generalized Viviani curves,
also known as Euclid spherical ellipses.

FIG. 2. Semiclassical and exact eigenvalues for the IG modes
with (a) N = 5 and (b) N = 22, as functions of α.

The generalized Viviani curves present two topologically
distinct regimes, each linked to a type of IG mode. When
c + R > 1 (left-hand column of Fig. 1), the intersection of
the sphere and the cylinder is composed of a single loop. The
projection of this intersection onto the (t1, t2) plane is an open
circular segment that can be used to determine the caustics of
the mode [39,63], which tend to coincide with the inflection
points of the mode’s amplitude at the edges of the areas
occupied by the modes. In this case the caustics take the shape
of a curvilinear quadrangle composed of two sections of an
ellipse and a section of each of the two branches of a confocal
hyperbola. This shape mimics the profile of the HG-like mode.
On the other hand, when c + R < 1 (right-hand column of
Fig. 1) the intersection between the cylinder and the sphere
is composed of two loops, both of which project onto a closed
circle in the (t1, t2) plane, from which the caustics can be
found to be two complete confocal ellipses, so that the mode
resembles an elongated real LG mode. The boundary case
c + R = 1 (middle column of Fig. 1), where the topological
transition takes place, corresponds to a figure-eight-shaped
curve (the original Viviani curve being a special case).

The topological transition is not only manifested in the
shape of the eigenmodes, but also in the near degeneracy
of the corresponding eigenvalues as shown in Fig. 2. In
the semiclassical limit, the eigenvalues can be determined
through self-consistency conditions in the wave estimates
[21,23,25,41,63–68] in which the solid angle enclosed by each
loop of the generalized Viviani curves must be quantized as an
odd multiple of 2π/(N + 1) [63]. This quantization is related
to a geometric phase through the Pancharatnam-Berry con-

L031502-3
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FIG. 3. Physical realizations. Top row: IG modes of total order
N supported by an optical cavity with small amounts of astigmatism
and spherical aberration, where the round insets show the transverse
intensity profiles. Bottom row: representation of the BH dimer model
as a BEC with N particles in a double-well potential subject to on-
site interactions (represented by stars) and hopping (represented by
double arrows). For the BH dimer α represents the ratio between the
two types of interaction, while for the IG modes it is the ratio between
the two types of aberration in the cavity. Each system is depicted for
values of the parameters well into one of the two regimes: (turquoise)
the Rabi or HG-like regime where hopping or astigmatism dominate,
and (purple) Fock or LG-like regime where on-site interactions or
spherical aberration dominate. The figure depicts the case of N = 7,
even, μ = 3, (left) α/η = 5N , and (right) α/η = 1/5N .

nection [41,69–71]. In the HG-like regime, where the curve
consists of only one loop, the total subtended solid angle must
be an odd multiple of 2π/(N + 1), but in the LG-like regime,
where the curve is composed of two loops, each loop must
satisfy this condition so the total solid angle must be an even
multiple of 2π/(N + 1). This discrepancy creates a disconti-
nuity at the topological transition at which the semiclassical
estimate fails, as shown in Fig. 2. Away from the transition,
the semiclassical estimate for the eigenvalue in Eq. (12) is
nearly indistinguishable from the exact eigenvalue, even for
small N .

Optical cavities. The first physical realization of the Ince
oscillator discussed here is a linear (noninteracting) system
corresponding to an aberrated optical cavity. Optical cavities
are a central component of laser systems, and their shape
determines the transverse profile of the generated beam [2,72].
Cavities are also used in high-precision interferometric mea-
surements [5]. These applications have motivated studies of
the effect of optical aberrations [73] on the cavity modes.
For instance, particular structured modes have been shown
to be resilient to small amounts of aberrations in the cavities
used for interferometric gravitational wave detection [6], and
nonplanar cavities have been used to produce Laughlin light
states [74,75]. However, very few cases lead to solutions in
terms of simple closed-form expressions.

In the paraxial regime, a resonant cavity composed of two
identical unaberrated curved mirrors can be mapped onto a
2DHO [2,7,8,38,39,41]. The cavity is perturbed if the mirrors
present slight aberrations that deform the wavefront after each
reflection. Two of the simplest optical aberrations are (Fig. 3)
astigmatism, introduced by a deviation from rotational sym-
metry in the shape of the mirrors or by a slight misalignment

of the system, and spherical aberration, which is a quartic
deviation of the mirror’s ideal radial shape. (A small deviation
from paraxiality has a similar effect as spherical aberration.)
A slight difference between the 2DHO and the cavity is that
for the latter both the main quadratic potential and the aber-
rations act discretely each time the beam is reflected by the
mirrors. However, it is shown in the Supplemental Material
[43] that for a stable nonconfocal cavity with a high quality
factor, an averaging effect like that in Eq. (9) takes place
so that the resulting modes are eigenstates not only of Ĥ0

but also of Î, where now α quantifies the ratio between
astigmatism and spherical aberration. They are therefore IG
modes, which resemble HG modes when astigmatism domi-
nates (α/η → ∞) and LG modes when spherical aberration
dominates (α/η → 0). When propagating outside the cavity,
IG modes are referred to as IG beams, whose applications
have included micromanipulation [14], encoding of quantum
information [12,13], and studies of vortex breakup [76]. It
has been observed experimentally that IG beams result from
resonators with slightly tilted or shifted mirrors [11], and ear-
lier theoretical and experimental studies of imperfect optical
cavities (without the use of the paraxial approximation) [77]
found modes whose transverse profiles in retrospect resemble
those of IG modes. The analysis presented here provides a
rigorous foundation for this connection, where a clear relation
is given between the parameters for the shape of the IG mode
and those of the cavity.

BH dimer. Let us now consider the second-quantized
form of the Fradkin-Stokes operators in terms of the anni-
hilation operators â j = (q̂ j + i p̂ j )/21/2 with j = x, y (setting
η = γ = 1 for simplicity) and perform the canonical trans-
formation â± = (̂ax ∓ îay)/21/2. The Ince operator can then
be identified with the two-mode BH Hamiltonian, where
L̂1 = (̂a †

+â− + â+â †
−)/2 describes particle hopping and L̂3 =

(̂a †
+â+ − â †

−â−)/2 describes the particle number difference
between the two modes. The term with L̂2

3 accounts for on-site
particle-particle interactions. Here, α controls the behavior of
the system [19,20] by fixing the ratio between the hopping
and the interactions, and N corresponds to the total number
of particles in the system. When N � α/η (the Rabi regime)
particles can hop freely between sites, while in the opposite
limit α/η � 1/N (the Fock regime) the population difference
is locked by strong interactions, a phenomenon known as
macroscopic quantum self-trapping (MQST) [17], which is a
manifestation of the topological transition on the Bloch sphere
(see the Supplemental Material [43] for more information
about the BH dimer). Due to the canonical transformation, the
two modes of the BH dimer do not correspond to the modes of
the coordinates axes of the 2DHO but rather to the two modes
defining the sign of the OAM of the 2DHO. Additionally, the
particle number difference between the two modes of the BH
dimer corresponds to the net OAM in the Ince oscillator. It is
then possible to write the representation of the wave function
in terms of the real parts of the quadratures for each site
from the corresponding IG modes, namely, 〈q+, q−|ψ (p)

N,μ(α)〉,
by applying the operators exp(−iπ L̂3/2η) exp(iπ L̂1/2η) to
the spatial modes 〈q|ψ (p)

N,μ(α)〉. These two unitary operations
are rotations of the Bloch sphere, which in coordinate space
correspond to an antisymmetric fractional Fourier transform
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followed by a physical rotation [38]. Thus the eigenstates of
the BH dimer can be written as closed-form solutions of the
Ince oscillator. An example of one of these wave functions and
the corresponding caustics, calculated from the projection of
the curve onto the (t1, t3) plane [39,63], are shown in Fig. 1.
These naturally two-dimensional solutions form a complete
orthogonal basis that avoids the subtle issues associated with
other approaches to the BH dimer such as the Bargmann state
representation, which is overcomplete [18,78–81].

Conclusions and outlook. We have shown that the Ince
oscillator, namely, a 2DHO subject to anisotropic and quar-
tic perturbations, corresponds to several apparently unrelated
physical systems. Examples of such systems not treated
explicitly here include the modes of slightly anisotropic gra-
dient index waveguides, bundles of coupled waveguides [82],
and the evolution of polarization in a birefringent nonlinear
medium [83]. Here we focused on two systems: an aberrated
optical cavity and the BH dimer. We showed that the aberrated
optical cavity has eigenmodes that are separable in elliptical
coordinates, which correspond to the IG beams that have been
widely used in structured light applications [3,4,7–14]. The
classical analysis shows why there are two regimes for these
modes and explains the geometry of each. Furthermore, iden-
tifying the BH dimer as an Ince oscillator shows that the Ince
polynomials are analytic representations of its eigenstates,
a fact that has thus far been overlooked. It also shows that
any system describable by the Ince oscillator shows the same
rich nonlinear dynamics as the bosonic Josephson junction,
including analogs of plasma oscillations, π oscillations, and
macroscopic quantum self-trapping.

The Ince oscillator and its modes have connections yet to
be explored to several other physical systems, including the
planar quantum pendulum and the Razavy potential [84,85].
Moreover, the classical limit of this model leads to even more
connections not treated here, such as the nonrigid pendulum
[16], the simple pendulum [26], and the rotational dynamics
of celestial bodies [86,87].

A number of possible extensions can be considered. The
effect of other perturbations, such as quartic astigmatism,
can be studied with the expectation that it would lead to
other implementations of the BH dimer and its generaliza-
tions. In particular, a slow rotation of the 2DHO would
induce a perturbative term proportional to L̂3, which would al-
low modeling nonplanar ring cavities and unbalanced (tilted)
BH dimers. Another interesting generalization is the effect
of perturbations in the 3DHO, where there are even more
separable families of solutions, leading to a model for the
more complex dynamics of the three-site BH system [88–90].
These connections and extensions will be explored in future
work.
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