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Abstract
We classify Sarkisov links from index 1 Fano 3-folds anticanonically embedded
in codimension 4 that start from so-called Type I Tom centres. We apply this to
compute the Picard rank of many such Fano 3-folds.
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1 INTRODUCTION

The construction of sequences of birational maps linking algebraic varieties to one another is a crucial part in theMinimal
Model Program (MMP). In the framework of the MMP, the most fundamental such sequences go under the name of
Sarkisov links ([16, 21]). In this context, the notions of birational rigidity and pliability for Fano 3-folds, and for Mori
fibre spaces (Mfs) more generally, are important, and relate to the uniqueness or otherwise of outputs of the MMP. The
pliability (see [17, Definition 1.5(4)]) is the number of different Mori fibre spaces𝑊 that are birational to a given Mfs 𝑋.
If the pliability is 1, then 𝑋 is said to be birationally rigid; if it is 2 or more, then by [16] it is known that the birational
transformation between 𝑋 and any𝑊 can be factorised into a sequence of Sarkisov links. The literature often considers
Sarkisov links from𝑋 according to the codimension of𝑋 in its anticanonical embedding. Corti, Pukhlikov, Reid and others
([15, 18]) show that quasi-smooth members of the 95 index 1 terminal Fano 3-fold weighted hypersurfaces of [22, 29] are
birationally rigid. In codimension 2, 19 families of Fano 3-folds are birationally rigid, and 66 are non-rigid ([3, 23, 25]); in
codimension 3, Brown and Zucconi prove birational non-rigidity whenever there is a Type I centre [13]. Codimension 3 is
completed by Ahmadinezhad and Okada [2], where they prove that an index 1 terminal Fano 3-fold in codimension 3 is
birationally rigid if and only if it does not have any Type I or Type II1 centres (this happens for 3 of the 70 Hilbert series).
The expectation is that as the codimension increases, rigidity becomes more rare.
We follow ideas of [13, 17] and we focus on terminalℚ-factorial Fano 3-folds in codimension 4 having at least one Type I

centre that are listed in the Graded Ring Database [10]. In particular we examine those deformation families arising from
Type I unprojections of pfaffian Fano 3-folds in Tom format (see [11, Section 3]): we call these Fano 3-folds of Tom type.
In our Main Theorem 2.3 we give a description of birational links for Fano 3-folds of Tom type based on the weights of

their ambient space and their basket of singularities, in a similar flavour to the main theorems in [13, 15, 17].

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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Theorem 2.3 is is also related to other works in the literature, such as Takagi’s [30], and a comparison with that can be
found in Subsection 5.4. The explicit results are given in detail in [14]. Some important remarks regarding Theorem 2.3
are in Section 2.
In Section 6 we apply Theorem 2.3 to compute the Picard rank of some Fano 3-folds in codimension 4.

2 THEMAIN THEOREM

We work over the field of complex numbers ℂ. A Fano 3-fold is a normal projective 3-dimensional variety 𝑋 with ample
anticanonical divisor −𝐾𝑋 and at worst terminal singularities.

Definition 2.1. The Fano index of a Fano 3-fold X is defined to be

𝜄𝑋 ∶= max

{
𝑞 ∈ ℤ≥1 ∶ −𝐾𝑋 = 𝑞𝐴 for some 𝐴 ∈ Cl(𝑋)

}
.

Our focus will be on those having Fano index 𝜄𝑋 = 1 and codimension 4 in their total anticanonical embedding (cf [5,
11, Section 1]). A complete description of Type I unprojections is provided in [11], giving a tool to produce families of Fano
3-folds in codimension 4. These realise 115 of the possible Hilbert series, and present at least two distinct deformation
families of quasi-smooth Fano 3-folds for each, called Tom and Jerry. By construction, all such Fano varieties have at least
one Type I centre. The list of all possibilities for Hilbert series can be found on the Graded Ring Database [10]: each is
identified with an ID number preceded by #.

Definition 2.2. Let 𝑋 be a codimension 4 index 1 Fano 3-fold 𝑋 listed in the table [12]. We say 𝑋 is of Tom Type if it
is obtained as Type I unprojection of the codimension 3 pair 𝑍 ⊃ 𝐷 in a Tom family (see [11, 27] for background and
examples; see 3.2 for details). The image of 𝐷 ⊂ 𝑍 in 𝑋 is called Tom centre: it is a cyclic quotient singularity 𝑝 ∈ 𝑋. In the
unprojection setup𝐷 ⊂ 𝑍,𝐷 is a complete intersection of four linear forms of weight 𝑑1, … , 𝑑4: we refer to 𝑑1, … , 𝑑4 as the
ideal weights. Such 𝑋 of Tom type is said to be general if 𝑍 ⊃ 𝐷 is general in its Tom family.

We prove the following main theorem. Here 𝑋 is a ℚ-factorial Fano 3-fold. At this stage, we do not assume that 𝑋
is a Mori fibre space. However, the explicit construction that we carry out shows a posteriori that the endpoint of each
birational link described in Theorem 2.3 is a Mori fibre space.

Theorem 2.3. Let 𝑋 be a general codimension 4 Fano 3-fold of Tom type and let 𝑝 ∈ 𝑋 be a Tom centre. Then:

(A) 𝑋 admits a birational link to a Mori fibre space 𝑌 → 𝑆. The link is initiated by the Kawamata blow-up of 𝑝 ∈ 𝑋. Let
𝑑1 ≥ 𝑑2 ≥ 𝑑3 ≥ 𝑑4 be the four ideal weights for the Tom centre 𝑝 ∈ 𝑋. In each case the Kawamata blow-up is followed by
an algebraically irreducible flop of finitely many smooth rational curves, and proceeds as follows according to 𝑑1 ≥ 𝑑2 ≥

𝑑3 ≥ 𝑑4:
(i) 𝑑1 > 𝑑2 > 𝑑3 > 𝑑4: a composition of two flips, followed by a divisorial contractionΦ′ of (2,0)-type to another (non-

isomorphic) Fano 3-fold 𝑋′;
(ii) 𝑑1 > 𝑑2 = 𝑑3 > 𝑑4: a flip (missed in cases #1218 and #1413) followed by a divisorial contraction Φ′ of (2,1)-type to

another Fano 3-fold 𝑋′;
(iii) 𝑑1 = 𝑑2 > 𝑑3 > 𝑑4: two simultaneous flips, followed by a divisorial contraction Φ′ of (2,0)-type to another Fano

3-fold 𝑋′;
(iv) 𝑑1 > 𝑑2 > 𝑑3 = 𝑑4: a composition of two hypersurface flips, followed by a del Pezzo fibration: Φ′ is of (3,1)-type;
(v) 𝑑1 = 𝑑2 > 𝑑3 = 𝑑4: two simultaneous flips followed by a del Pezzo fibration: Φ′ of (3,1)-type;
(vi) 𝑑1 > 𝑑2 = 𝑑3 = 𝑑4: a toric flip (missed in case #6865) to a conic bundle: Φ′ is of (3,2)-type;
(vii) 𝑑1 = 𝑑2 = 𝑑3 > 𝑑4: a divisorial contraction Φ′ of (2,1)-type to another Fano 3-fold 𝑋′;
(viii) 𝑑1 = 𝑑2 = 𝑑3 = 𝑑4: a conic bundle over a quadric surface in ℙ3: Φ′ is of (3,2)-type.

(B) In every birational link in (A), the resulting Mfs 𝑌 → 𝑆 is not isomorphic to 𝑋.
(C) If in addition the Picard rank of𝑋 is 𝜌𝑋 = 1, then the link produced in (A) is a Sarkisov link, and so𝑋 is not birationally

rigid.
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The notation on fibrations and divisorial contractions in the above theorem is: (𝑚, 𝑛) where𝑚 is the dimension of the
exceptional locus of Φ′ in 𝑌 (where applicable) and 𝑛 is the dimension of its image. For instance, if Φ′ is of (2,0)-type it
contracts a 𝑤ℙ2 to a point in 𝑋′.
Note that the flip in case (iii) and (v) is algebraically irreducible: in this situation, we say that we have two simultaneous

flips. We expand this in Remark 4.1. Moreover, Theorem 2.3 does not apply to the Fano 3-folds considered in [9] (see
Remark 4.2).

3 THE INPUT DATA

3.1 Construction and notation

The Definition 3.1 of Sarkisov link stems from the notion of 2-ray game, especially in the context of toric varieties
(see [13] for a description in terms of graded rings). A birational link for a codimension 4 Fano 3-fold 𝑋 ∋ 𝑝 is par-
tially subject to the behaviour of the link for its ambient space 𝑤ℙ7 ⊃ 𝑋. Call 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝑦4, 𝑠 the coordinates
of 𝑤ℙ7 = ℙ7

(
𝑎, 𝑏, 𝑐, 𝑑1, 𝑑2, 𝑑3, 𝑑4, 𝑟

)
, and suppose to blow up the cyclic quotient singularity at 𝑝 = 𝑃𝑠 ∈ 𝑤ℙ7. Call this

blow-up 𝔽1: this is a rank 2 toric variety whose bi-grading defining the ℂ× × ℂ× action on 𝔽1 we will deduce below. In
toric geometry (cf. [20]), this corresponds to adding a new lattice vector 𝜌𝑡 to the 1-skeleton of 𝑤ℙ7 given by the lattice
vectors 𝜌𝑠, 𝜌𝑥𝑖 , 𝜌𝑦𝑗 that satisfy the relation

𝑟𝜌𝑠 + 𝑎𝜌𝑥1 + 𝑏𝜌𝑥2 + 𝑐𝜌𝑥3 +

4∑
𝑗=1

𝑑𝑗𝜌𝑦𝑗 = 0 .

The new vector 𝜌𝑡 must be inside the fan constituted by the convex cone 𝜎𝑠 ∶=
⟨
𝜌𝑥1 , 𝜌𝑥2 , 𝜌𝑥3 , 𝜌𝑦1 , 𝜌𝑦2 , 𝜌𝑦3 , 𝜌𝑦4

⟩
; that is, an

integer multiple of 𝜔𝜌𝑡 of 𝜌𝑡 is the integer positive sum of all rays other than 𝜌𝑠: there are many possible choices to choose
the coefficients for this positive sum, and we will identify a particular one. For𝜔, 𝜔𝑖 , 𝛿𝑗 > 0 and 𝑖 ∈ {1, 2, 3}, 𝑗 ∈ {1, 2, 3, 4},
the relation involving 𝜌𝑡 is

−𝜔𝜌𝑡 +

4∑
𝑖=1

𝜔𝑖𝜌𝑥𝑖 +

4∑
𝑗=1

𝛿𝑗𝜌𝑦𝑗 = 0 . (3.1)

In other words, 𝔽1 is the variety with Cox ring ℂ
[
𝑡, 𝑠, 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝑦4

]
having the grading and the irrelevant ideal

shown below. In the language of the graded Cox rings, the bottom weights of the bi-grading of 𝔽1 are the coefficient of the
rays in the definition of 𝜌𝑡. Since 𝜌𝑠 does not appear in the expression for 𝜌𝑡, its bottom weight is 0. Thus the bi-grading of
𝔽1 looks like

⎛⎜⎜⎜⎝
𝑡 𝑠 𝑥1 𝑥2 𝑥3 𝑦1 𝑦2 𝑦3 𝑦4

0 𝑟 𝑎 𝑏 𝑐 𝑑1 𝑑2 𝑑3 𝑑4

−𝜔 0 𝜔1 𝜔2 𝜔3 𝛿1 𝛿2 𝛿3 𝛿4

⎞⎟⎟⎟⎠ (3.2)

and its irrelevant ideal is (𝑡, 𝑠) ∩
(
𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝑦4

)
, as indicated by the vertical bar between 𝑠 and 𝑥1. We will deter-

mine the values of the bottom weights 𝜔,𝜔1, 𝜔2, 𝜔3, 𝛿1, … , 𝛿4 later in this section (also refer to the Appendix of [7] for
further details). Note that this is not well-formed: we come back to this later.
The 2-ray game for 𝑤ℙ7 is determined by the ray-chamber structure of the Mori cone of 𝔽1. Each bi-degree in (3.2)

represent a character of the ℂ∗ × ℂ∗ action on 𝔽1 which correspond to the rays 𝜌𝑠, 𝜌𝑥𝑖 , 𝜌𝑦𝑗 ; these in particular represent
the linear systems associated to each of the coordinates of 𝑤ℙ7. This induces the ray-chamber structure in Figure 1.
The variation of GIT on 𝔽1 corresponds to thewall-crossing in the picture above. This induces a 2-ray game for𝑤ℙ7 ∋ 𝑝.

Given 𝑋 ∋ 𝑝 of a Tom-type Fano 3-fold and of a Type I centre 𝑝 ∈ 𝑋 ⊂ 𝑤ℙ7, we want to embed the 2-ray game for 𝑋 ∋ 𝑝

into the 2-ray game for𝑤ℙ7, ∋ 𝑝: this is achieved by finding the appropriate weights𝜔,𝜔1, 𝜔2, 𝜔3, 𝛿1, … , 𝛿4 for the grading
of the toric variety 𝔽1.
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F IGURE 1 The Mori cone of 𝔽1

The objects of theMori category are projective,ℚ-factorial terminal 3-folds. The Fano 3-folds of Definition 2.2 are in the
Mori category.

Definition 3.1. A Sarkisov link for 𝑋 ∋ 𝑝 is a birational map between the Mori fibre spaces 𝑋 → 𝑆 and 𝑋′ → 𝑆′ that
factors as

(3.3)

The birational maps Ψ1,Ψ2, Ψ3 are isomorphisms in codimension 1, that is, antiflips, flops, flips in this order (cf. [6,
Remark 3.5]). The map Φ is a divisorial extraction, and Φ′ can be either a divisorial contraction or a fibration (del Pezzo
fibration or conic bundle, in which case the second Mori fibre space is 𝑌4 → 𝑤ℙ′). Call 𝔾𝑖 the image of 𝛼𝑖 (or 𝛽𝑖), and 𝑍𝑖

the image of 𝛼𝑖 restricted to 𝑌𝑖; this is the same as the image of the restriction of 𝛽𝑖 to 𝑌𝑖+1. A Sarkisov link takes place in
the Mori category if it satisfies the properties listed in Definition 2.2 of [13].

This sets our nomenclature. By a little abuse of notation, we call the coordinates of each 𝔽𝑖 in the same way. Following
[13], each ray of the ray-chamber structure is associated to the linear system defined by the bi-degree of the variable(s)
generating it and induces amap of toric varieties. Each ray corresponds to one of the toric varieties in the bottom row of the
2-ray game (the ambient spaces of the 𝑍𝑖) in (3.3), while each chamber corresponds to one of the 𝔽𝑖 at the top row of (3.3).
Transitioning from one chamber to another adjacent chamber performs the isomorphismΨ𝑖 ∶ 𝔽𝑖 → 𝔽𝑖+1 in codimension
1. Approaching the ray in between the two chambers from one side or another indicates the two maps 𝛼𝑖 ∶ 𝔽𝑖 → 𝔾𝑖 and
𝛽𝑖 ∶ 𝔽𝑖+1 → 𝔾𝑖 (defined by the same linear system). In the language of Geometric Invariant Theory, this is a variation of
GIT quotient on 𝔽1.

3.2 The unprojection setup: construction of 𝑿

The starting point to construct 𝑋 is the following type of data, coming from [10, 11].

∙ A fixed projective plane 𝐷 ∶= ℙ2(𝑎, 𝑏, 𝑐) ⊂ ℙ6
(
𝑎, 𝑏, 𝑐, 𝑑1, … , 𝑑4

)
with coordinates 𝑥1, 𝑥2, 𝑥3, 𝑦1, … , 𝑦4 respectively and

𝑑1 ≥ 𝑑2 ≥ 𝑑3 ≥ 𝑑4. So 𝐷 is defined by the ideal 𝐼𝐷 ∶= Span
[
𝑦1, 𝑦2, 𝑦3, 𝑦4

]
.

∙ A family 1 of codimension 3 Fano 3-folds 𝑍 ⊂ 𝑤ℙ6, each defined by maximal pfaffians of a skew-symmetric 5 × 5

syzygy matrix𝑀 whose entries
(
𝑎𝑖,𝑗
)
have weights

⎛⎜⎜⎜⎜⎜⎝

𝑚1,2 𝑚1,3 𝑚1,4 𝑚1,5

𝑚2,3 𝑚2,4 𝑚2,5

𝑚3,4 𝑚3,5

𝑚4,5

⎞⎟⎟⎟⎟⎟⎠
.
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Here we use the notation of [11] for skew-symmetric matrices: we omit the principal diagonal, whose entries are all zero,
and the lower-left triangle, which is the symmetric of the upper-right triangle with opposite signs. Thematrix𝑀 is graded,
i.e. each of its entries is occupied by a polynomial in the given degree. A list of the grading of𝑀 is in [12].
The plane is a divisor𝐷 ≅ ℙ2

𝑥1,𝑥2,𝑥3
(𝑎, 𝑏, 𝑐) of 𝑍1 ∈ 1 if the equations of the latter are the maximal pfaffians of a matrix

𝑀 in either Tom or Jerry format.

Definition 3.2 ([11], Definition 2.2). A 5 × 5 skew-symmetric matrix𝑀 is in Tom𝑘 format if and only if each entry 𝑎𝑖,𝑗 for
𝑖, 𝑗 ≠ 𝑘 is in the ideal 𝐼𝐷 .

Not all possible formats can be realised: [12] records exactly the data of 𝐷 ⊂ 𝑤ℙ6, the weights of the syzygy matrix,
and the successful formats (and why the others fail). Each of them corresponds to a distinct deformation family of 𝑍1 (cf.
[11]): there can be at most four different deformation families, with at most two realised as Tom formats, and at most two
realised as Jerry formats. In this paper we only focus on the Tom case: the aim is to construct 𝑀 in this general setting
by filling its entries with homogeneous polynomials in the 𝑥𝑖 and 𝑦𝑗 subject to the Tom constraints. It is often possible to
place some of the variables in a matrix position having the same degree. The following lemma highlights a key feature of
𝑀, that is, the presence of certain quasilinear monomials in the ideal variables. It is a direct observation on the weights
𝑚𝑘,𝑙 of𝑀. By generality of 𝑍1, 𝑦𝑗 and 𝑥𝑗 appear linearly in suitable entries. This is in a similar spirit to [13, Section 3].

Lemma 3.3. Let𝑍1 ⊃ 𝐷 be a general member of a Tom𝑖 family in [12] where 𝑖 ∈ {1, … , 5}. Then there are at least three entries
𝑎𝑘,𝑙 of𝑀 with 𝑘 ≠ 𝑖, 𝑙 ≠ 𝑖 such that 𝑑𝑗 = 𝑚𝑘,𝑙 , that is, 𝑦𝑗 appears linearly in 𝑎𝑘,𝑙 . Except for #12960 in [10], there is an entry
𝑎𝑘,𝑙 of𝑀 with 𝑘 = 𝑖 or 𝑙 = 𝑖 such that𝑚𝑘,𝑙 is equal to 𝑎, 𝑏, or 𝑐, i.e. linear in at least one of the orbinates 𝑥𝑗 .

Once this set-up in codimension 3 is done and the equations of 𝑍1 are found, the unprojection of 𝑍1 at the divisor 𝐷 is
a birational transformation that produces a new Fano 3-fold 𝑋 ⊂ 𝑤ℙ7 in codimension 4. In particular, 𝑋 inherits the five
pfaffian equations of 𝑍1 and gains four extra equations from the unprojection process, to which we will refer as unprojec-
tion equations in the rest of this paper. The unprojection equations are of the form 𝑠𝑦𝑖 = 𝑔𝑖

(
𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝑦4

)
where

𝑠 is the additional coordinate of 𝑤ℙ7 and the right-hand side is a homogeneous polynomial of the same degree as 𝑠𝑦𝑖 . In
the unprojection the divisor 𝐷 ⊂ 𝑍1 is contracted to the Type I centre 𝑃𝑠 ∈ 𝑋. In this paper we study birational links from
𝑋 ∋ 𝑃𝑠. In Appendix A we present a brief summary about the explicit construction of the unprojection equations based
on [26].

3.3 The bi-grading of 𝔽𝟏

Consider𝑋 ∋ 𝑃𝑠. To perform a blow-upΦ ∶ 𝔽1 → 𝑤ℙ7 at 𝑃𝑠 we choose a suitable grading 𝜔,𝜔1, 𝜔2, 𝜔3, 𝛿1, 𝛿2, 𝛿3, 𝛿4 for 𝔽1
in (3.2). We follow a similar method to [4]. Recall the following theorem.

Theorem 3.4 (Kawamata blow-up, [24]). Let𝑋 be a 3-fold, and let 𝑝 ∈ 𝑋 be a terminal cyclic quotient singularity 1

𝑟
(𝑎, 𝑏, 𝑐).

Suppose that 𝜙 ∶ (𝐸 ⊂ 𝑌) → (Γ ⊂ 𝑋) is a divisorial contraction with 𝑝 ∈ Γ and 𝑌 terminal. Then, Γ = {𝑝} and 𝜙 is the
weighted blow-up of 𝑝 with weights (𝑎, 𝑏, 𝑐) and therefore the exceptional divisor is 𝐸 ≅ ℙ(𝑎, 𝑏, 𝑐).

The blow-up map Φ is defined by the linear system ||(10)||. Explicitly,
Φ ∶ 𝔽1 ⟶ 𝑤ℙ7

(
𝑡, 𝑠, 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝑦4

)
⟼

(
𝑡

𝜔1

𝜔 𝑥1, 𝑡

𝜔2

𝜔 𝑥2, 𝑡

𝜔3

𝜔 𝑥3, 𝑡

𝛿1

𝜔 𝑦1, 𝑡

𝛿2

𝜔 𝑦2, 𝑡

𝛿3

𝜔 𝑦3, 𝑡

𝛿4

𝜔 𝑦4, 𝑠

)
.

The blown-up point is the cyclic quotient singularity of index 𝑟 at 𝑃𝑠, so 𝜔 = 𝑟. In [13] it is shown that the exceptional
locus 𝐸 of Φ is given by the vanishing of the coordinates 𝑦1, 𝑦2, 𝑦3, 𝑦4; thus, 𝐸 ≅ ℙ2

(
𝜔1, 𝜔2, 𝜔3

)
. In order for Φ to be a

Kawamata blow-up the weights 𝜔1, 𝜔2, 𝜔3 must be 𝑎, 𝑏, 𝑐 respectively.
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The equations of 𝑋 come into play to determine the value of the 𝛿𝑗 . The key point is the definition of the Fano 3-fold
𝑌1. In the pull-back Φ∗(𝑋), every monomial in each equation of 𝑋 picks up a suitable power of 𝑡. We aim at defining 𝑌1

as the saturation over 𝑡 of the total pull-back of 𝑋 (see Definition 3.9). On the other hand, we want to embed the link for(
𝑋, 𝑃𝑠

)
into the link for

(
𝑤ℙ7, 𝑃𝑠

)
in such a way that the birational transformations to which 𝔽1 is subject restrict to 𝑌1.

Thus, we want the leading terms of the unprojection equations to be 𝑠𝑦𝑗, as opposed to 𝑠𝑦𝑗𝑡𝜏 for an exponent 𝜏 > 1. We
give a constructive definition of the 𝛿𝑗 starting with 𝛿4: the analysis for 𝛿1, 𝛿2, and 𝛿3 is done analogously. The fourth
unprojection equation is of the form 𝑠𝑦4 = 𝑔4

(
𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝑦4

)
, where 𝑔4 is a homogeneous polynomial of degree

𝑟 + 𝑑4. Its pull-back via Φ is

𝑡

𝛿4

𝑟 𝑠𝑦4 = 𝑔4

(
𝑡

𝑎

𝑟 𝑥1, 𝑡

𝑏

𝑟 𝑥2, 𝑡

𝑐

𝑟 𝑥3, 𝑡

𝛿1

𝑟 𝑦1, 𝑡

𝛿2

𝑟 𝑦2, 𝑡

𝛿3

𝑟 𝑦3, 𝑡

𝛿4

𝑟 𝑦4

)
.

By construction, every monomial in 𝑔4 picks up a 𝑡 factor because there is no pure monomial in 𝑠 in 𝑔4. Define ℎ4 to be
the polynomial constituted by all the monomials of 𝑔4 containing 𝑦4, except for the term 𝑠𝑦4. For 𝑔′4 ∶= 𝑔4 − ℎ4 and 𝜅 the
minimum exponent that can be factorised from ℎ4, the equation above becomes

𝑡

𝛿4

𝑟

(
𝑠𝑦4 + 𝑡

𝜅−𝛿4

𝑟 ℎ4

)
= 𝑔′4

(
𝑡

𝑎

𝑟 𝑥1, 𝑡

𝑏

𝑟 𝑥2, 𝑡

𝑐

𝑟 𝑥3, 𝑡

𝛿1

𝑟 𝑦1, 𝑡

𝛿2

𝑟 𝑦2, 𝑡

𝛿3

𝑟 𝑦3

)
. (3.4)

Lemma 3.5. It holds that 𝛿4 ≥ 𝑑4.

Proof. By construction of 𝜌𝑡, each 𝛿𝑗 is a strictly positive integer. We divide this proof in different cases according to the
different types of monomials in 𝑔4. We indicate by 𝑥𝑙 the multiplication of pure powers of 𝑥1, 𝑥2 and 𝑥3, not necessar-
ily all together, with different multiplicities, summarised by the multi-index 𝑙 at the exponent, and similarly for 𝑦𝑙′ . In
the following, 𝑙 and 𝑙′ vary from case to case. Monomials 𝑥𝑙 with |𝑙| = deg

(
𝑔4
)
= 𝑟 + 𝑑4 pick up a 𝑡 factor with exponent

𝑘 = |𝑙| = 𝑟 + 𝑑4 in the pull-back. Monomials 𝑥𝑙𝑦𝑙
′ with |𝑙 + 𝑙′| = deg

(
𝑔4
)
= 𝑟 + 𝑑4 pick up a 𝑡 factor with exponent 𝑘 ≥|𝑙 + 𝑙′| = 𝑟 + 𝑑4 in the pull-back because 𝛿1, 𝛿2, 𝛿3 ≥ 1. Monomials 𝑥𝑙𝑦𝜆4 with 𝑙 + 𝜆 = deg

(
𝑔4
)
= 𝑟 + 𝑑4 pick up a 𝑡 fac-

tor with power 𝑘 ≥ 𝑙 + 𝜆𝛿4 ≥ 𝑟 + 𝑑4. Monomials 𝑦𝑙
′
𝑦𝜆4 with 𝑙′ + 𝜆 = deg

(
𝑔4
)
= 𝑟 + 𝑑4 pick up a 𝑡 factor with power 𝑘 ≥

𝑙′ + 𝜆𝛿4 ≥ 𝑟 + 𝑑4. Monomials 𝑥𝑙𝑦𝑙
′
𝑦𝜆4 with 𝑙 + 𝑙′ + 𝜆 = deg

(
𝑔4
)
= 𝑟 + 𝑑4 pick up a 𝑡 factor with power 𝑘 ≥ 𝑙 + 𝑙′ + 𝜆𝛿4 ≥

𝑟 + 𝑑4. In conclusion, every monomial in 𝑔4 picks up a 𝑡𝑘 factor with 𝑘 ≥
(
𝑟 + 𝑑4

)
∕𝑟: then, 𝛿4 ≥ 𝑑4. □

Then, for 𝜏𝑙 positive integers and𝑚𝑙 monomials of 𝑔′4, the pullback of the unprojection equation for 𝑦4 is

𝑡

𝛿4

𝑟

(
𝑠𝑦4 + 𝑡

𝜅

𝑟 ℎ4

)
= 𝑡

𝜏1

𝑟 𝑚1 +⋯+ 𝑡

𝜏𝑘4

𝑟 𝑚𝑘4 .

Definition 3.6. Define 𝛿4 as 𝛿4 ∶= min
{
𝜏𝑙 ∶ 1 ≤ 𝑙 ≤ 𝑘4

}
.

Since 𝑔′4 does not contain 𝑦4, 𝛿4 is well-defined. The definition of 𝛿1, 𝛿2, and 𝛿3 is analogous. The grading for 𝔽1 that
we just obtained might not be well-formed (cf [1]), but a manipulation on the rows of (3.2) makes it well-formed (3.5).

Proposition 3.7. Let 𝑋 be a codimension 4 index 1 Fano 3-fold of Tom type. Then the Kawamata blow-up of 𝑋 at the Tom
centre 𝑃𝑠 is contained in a rank 2 toric variety 𝔽1 with grading

⎛⎜⎜⎜⎝
𝑡 𝑠 𝑥1 𝑥2 𝑥3 𝑦1 𝑦2 𝑦3 𝑦4

0 𝑟 𝑎 𝑏 𝑐 𝑑1 𝑑2 𝑑3 𝑑4

1 1 0 0 0 −1 −1 −1 −1

⎞⎟⎟⎟⎠ . (3.5)

Note that 𝑥1, 𝑥2, 𝑥3 generate the same linear system and, therefore, the same ray in the ray-chamber structure of 𝔽1.
Since the Fano index of𝑋 is 1, then one of the 𝑥𝑖 has weight 1. To fix ideas, let the weight of 𝑥1 be 1. To prove Proposition 3.7
we need the following.
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Lemma 3.8. Let 𝑍 be a codimension 3 Fano 3-fold defined by pfaffians of a 5 × 5 skew-symmetric matrix𝑀 in Tom format.
Consider the Type I unprojection of 𝑍 at a divisor𝐷. Then each unprojection equation contains at least one monomial purely
in 𝑥1, 𝑥2, 𝑥3.

Proof. Since 𝑥1 has weight 1, using the notation in Appendix A, 𝑝𝑗 contains a monomial of the form 𝑥
deg(𝑝𝑗)

1 . There are
different possibilities to fill the ideal entries 𝑎𝑘,𝑙. If an ideal entry has the same weight as of one of the 𝑦𝑗 , then it contains
such ideal variable linearly, i.e. 𝛼𝑗

𝑘,𝑙
is constant. Otherwise, it contains multiplications of 𝑦𝑗 by the 𝑥𝑖 , that is 𝛼

𝑗

𝑘,𝑙
is a

polynomial containing a term in the 𝑥𝑖 . We assume this without loss of generality. Therefore, each 𝑁𝑗 has at least one
entry that is either a constant or a monomial in the 𝑥𝑖 .
Since the vector of the 𝑔𝑗 is independent on the choice of 𝑖 in (A.2), it is possible to consider only

𝐻1

𝑝1
. Therefore, we

exclude from the calculation of 𝑔𝑗 all Pf1
(
𝑁𝑗

)
, that is, all Pf 𝑖

(
𝑁𝑗

)
involving the top row of the matrices𝑁𝑗 , which are the

ones containing pure terms in 𝑥1, 𝑥2, 𝑥3. Thus, each entry of𝑄 in row 2, 3, and 4 contains a polynomial purely in 𝑥1, 𝑥2, 𝑥3.
The same holds for the other 𝑔𝑖 . □

Proof of Proposition 3.7. By Lemma 3.8, each unprojection equation contains at least one monomial in the orbinates of
𝑃𝑠. By the proof of Lemma 3.5, such monomial realises the minimum value of Definition 3.6. Thus, by Lemma 3.8, we
choose 𝛿4 = 𝑟 + 𝑑4: so, 𝛿4 is equal to the degree of 𝑔4. In turn, we can apply this same strategy to 𝛿1, 𝛿2, 𝛿3: the power
of 𝑡 gained by each 𝑦𝑗 factor is greater or equal to 𝑑𝑗∕𝑟, so 𝛿𝑗 ≥ 𝑑𝑗 . Since 𝛿𝑗 = 𝑟 + 𝑑𝑗 for each 𝑗 ∈ {1, 2, 3, 4}, the order in
which we determine the 𝛿𝑗 is unimportant. The weights in (3.5) follow by simple manipulation of the rows of (3.2) with
the grading we just defined: subtracting the second row to the third row of (3.2) and dividing the third row by−𝑟we obtain
an isomorphic rank 2 toric variety whose Cox ring is given by (3.5). □

3.4 The Kawamata blow-up of a Fano: equations of the blow-up 𝒀𝟏

As anticipated above, we define the blow-up 𝑌1 of 𝑋 at 𝑃𝑠 as the following.

Definition 3.9. The ideal of 𝑌1 ⊂ 𝔽1 is the saturation over 𝑡 of the ideal of Φ∗(𝑋).

This motivates the construction of the bottom weights of 𝔽1 made in Definition 3.6. In relation to the 1-skeleton in
(3.5), Φ and 𝛼1 are given by the linear systems ||(𝑟1)||, ||(10)|| respectively. The next statements make Definition 3.9 more
manoeuvrable and explicit.

Proposition 3.10. The pull-back of the pfaffian equations via Φ and via 𝛼1 are equal up to a 𝑡 factor.

More precisely, the evaluation of Pf 𝑖(𝑀) at the defining monomials of Φ is proportional by a 𝑡 factor to the evaluation
of Pf 𝑖(𝑀) at those of 𝛼1.

Proof. We prove that 𝑡−
1

𝑟 Φ = 𝛼1. The map 𝛼1 ∶ 𝔽1 → 𝑤ℙ6 is(
𝑡, 𝑠, 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝑦4

)
⟼

(
𝑥1, 𝑥2, 𝑥3, 𝑡𝑦1, 𝑡𝑦2, 𝑡𝑦3, 𝑡𝑦4

)
.

Consider a variable 𝑤 of 𝔽1 among 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝑦4 with bidegree
(
𝜈1
𝜈2

)
. Call 𝜁 the exponent of the 𝑡 factor that

𝑤 needs to pick up such that the bidegree of 𝑤𝑡𝜁 is proportional to
(
𝑟

1

)
. In other words, we need to find 𝜁 such that

deg𝑤𝑡𝜁 =

(
𝜈1

𝜈2 + 𝜁

)
= 𝜆

(
𝑟

1

)
for some 𝜆 > 0. Since 𝜆 = 𝜈2 + 𝜁, we have that 𝜁 =

𝜈1

𝑟
− 𝜈2. On the other hand, the exponent

𝜁′ of the 𝑡 factor needed such that the bidegree of 𝑤𝑡𝜁′ is proportional to
(
1

0

)
is deg𝑤𝑡𝜁′ =

(
𝜈1

𝜈2 + 𝜁′

)
= 𝜇

(
1

0

)
for some
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𝜇 > 0. Here 𝜁′ = −𝜈2. Thus, 𝜁 − 𝜁′ = 𝜈1∕𝑟 = 1∕𝑟 deg𝑤ℙ7 𝑤. This means that on every variable 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝑦4 of 𝔽1
the exponents 𝜁 and 𝜁′ differ only by 1∕𝑟. □

Remark 3.11. If𝑀 is in Tom format, it is possible to cancel out from 𝛼∗
1(Pf (𝑀)) a 𝑡 factor with power at least 1.

Let 𝐼𝑋 ∶= Span
[
𝑓1, … , 𝑓5, 𝑓6, … , 𝑓9

]
be the ideal of 𝑋, generated by polynomials 𝑓𝑖 ∶= Pf 𝑖(𝑀) for 𝑖 ∈ {1, … , 5} and

𝑓𝑖 ∶= 𝑠𝑦𝑖 − 𝑔𝑖 for 𝑖 ∈ {6, … , 9}. Recall that Φ is expressed with fractional exponents of 𝑡. For Φ∗(𝑋) to have equation in
a polynomial ring, we write an equivalent expression for Φ considering its multiplication by a 𝑡(𝑟−𝑎)∕𝑟 factor. Thus,

𝑡

𝑟−𝑎

𝑟 ⋅

(
𝑡

𝑎

𝑟 𝑥1, 𝑡

𝑏

𝑟 𝑥2, 𝑡

𝑐

𝑟 𝑥3, 𝑡

𝛿1

𝑟 𝑦1, 𝑡
𝛿2
𝑟 𝑦2, 𝑡

𝛿3

𝑟 𝑦3, 𝑡
𝛿4
𝑟 𝑦4, 𝑠

)

=

(
𝑡𝑥1, 𝑡

𝑏(𝑟−𝑎)

𝑟
+
𝑏

𝑟 𝑥2, 𝑡

𝑐(𝑟−𝑎)

𝑟
+
𝑐

𝑟 𝑥3, 𝑡

𝑑1(𝑟−𝑎)

𝑟
+
𝛿1

𝑟 𝑦1, 𝑡

𝑑2(𝑟−𝑎)

𝑟
+
𝛿2

𝑟 𝑦2, 𝑡

𝑑3(𝑟−𝑎)

𝑟
+
𝛿3

𝑟 𝑦3, 𝑡

𝑑4(𝑟−𝑎)

𝑟
+
𝛿4

𝑟 𝑦4, 𝑡
𝑟−𝑎𝑠

)
.

This expression has integer exponents. Call 𝐼Φ∗𝑋 ∶= Span
[
Φ∗𝑓1, … ,Φ∗𝑓5, Φ

∗𝑓6, … ,Φ∗𝑓9
]
. Remark 3.11 guarantees that,

up to a 𝑡 factor, Φ∗ and 𝛼∗
1 coincide on the pfaffian equations. Define the following polynomials

ℎ1 ∶=
𝛼∗
1 Pf 1(𝑀)

𝑡2
=

𝛼∗
1𝑓1

𝑡2
; (3.6)

ℎ𝑖 ∶=
𝛼∗
1 Pf 𝑖(𝑀)

𝑡
=

𝛼∗
1𝑓𝑖

𝑡
, for 𝑖 ∈ {2, … , 5}; (3.7)

ℎ𝑖 ∶=
Φ∗𝑓𝑖

𝑡𝛿𝑖−5+𝑟−𝑎
, for 𝑖 ∈ {6, … , 9}; (3.8)

and the ideal 𝐼𝑌1
∶=
(
𝐼Φ∗𝑋 ∶ 𝑡∞

)
as the saturation of 𝐼Φ∗𝑋 over 𝑡 as in Definition 3.9.

Lemma 3.12. We have that 𝐼𝑌1
= Span

[
ℎ1, … , ℎ5, ℎ6, … , ℎ9

]
.

Proof. For the saturation algorithm we refer to [19]: we introduce a temporary variable 𝑧 and define the ideal
𝐽 ∶= Span

[
𝐼Φ∗𝑋, 𝑡𝑧 − 1

]
⊂ 𝑆 ∶= 𝑅[𝑧], where 𝑅 ∶= ℂ [𝑡, 𝑠, 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝑦4]. We study explicitly the Gröbner basis of

𝐽 with respect to a complete monomial ordering ≻. Then,
(
𝐼Φ∗𝑋 ∶ 𝑡∞

)
= 𝐽 ∩ 𝑅 (see [19, Chapter 4, §4]). The monomial

ordering is such that 𝑧 is the largest, 𝑠 is the second largest, and the monomials containing the least number of 𝑦𝑗 follow.
In other words, ≻ is defined by

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝑧 𝑠 𝑥1 𝑥2 𝑥3 𝑦1 𝑦2 𝑦3 𝑦4 𝑡

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 𝑎 𝑏 𝑐 𝑑1 − 1 𝑑2 − 1 𝑑3 − 1 𝑑4 − 1 1

0 0 𝑎 𝑏 𝑐 𝑑1 − 1 𝑑2 − 1 𝑑3 − 1 𝑑4 − 1 0

0 0 𝑎 𝑏 𝑐 𝑑1 − 1 𝑑2 − 1 𝑑3 − 1 0 0

0 0 𝑎 𝑏 𝑐 𝑑1 − 1 𝑑2 − 1 0 0 0

0 0 𝑎 𝑏 𝑐 𝑑1 − 1 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3.9)

Consider a polynomial 𝑘 in which 𝑧 does not appear. Call 𝑘1 ∶= LT(𝑘) the leading term of 𝑘 according to≻, so 𝑘 = 𝑘1 + 𝑘2
is the sum of the monomial 𝑘1 and the polynomial 𝑘2 ∶= 𝑘 − 𝑘1. The least common multiple between the respective
leading terms of 𝑡𝑑𝑘 and 𝑡𝑧 − 1 is lcm

(
LT
(
𝑡𝑑𝑘
)
, LT(𝑡𝑧 − 1)

)
= 𝑡𝑑+1𝑘1𝑧. Then, following [19], the S-polynomials for 𝑡𝑑𝑘

for some 𝑑 ≥ 1 are 𝑆
(
𝑡𝑑𝑘, 𝑡𝑧 − 1

)
= 𝑡𝑑𝑘. The leading term of Φ∗𝑓1 is of the form LT

(
Φ∗𝑓1

)
= 𝑡2𝑦𝑗1𝑦𝑗2 for certain 𝑗1, 𝑗2 ∈

{1, 2, 3, 4}. Similarly for 𝑖 ∈ {2, … , 5}, the leading term is LT
(
Φ∗𝑓𝑖

)
= 𝑡𝑥𝑗𝑖𝑦𝑗𝑖 for certain 𝑗𝑖 ∈ {1, 2, 3} and 𝑗𝑖 ∈ {1, 2, 3, 4}. For
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CAMPO 965

𝑖 ∈ {6, … , 9} instead,LT
(
Φ∗𝑓𝑖

)
= 𝑠𝑦𝑖−5𝑡

𝛿𝑖−5+𝑟−𝑎. Themonomial ordering≻ is designed to identify as biggest themonomials
having the lowest exponent of 𝑡. Therefore, for each 𝑖 ∈ {1, … , 9} there is a suitable 𝑑 such that Φ∗𝑓𝑖 = 𝑡𝑑ℎ𝑖 . So we have
that 𝑆

(
Φ∗𝑓𝑖, 𝑡𝑧 − 1

)
+ 𝑆
(
𝑡𝑑ℎ𝑖, 𝑡𝑧 − 1

)
= 𝑡𝑑ℎ1. Therefore, the Gröbner basis of 𝐽 is

𝐺𝐵≻

(
Φ∗𝑓1, … ,Φ∗𝑓9, 𝑡𝑧 − 1

)
=
(
𝑡ℎ1 , 𝑡ℎ2, 𝑡ℎ3, 𝑡ℎ4, 𝑡ℎ5, 𝑡

𝛿1+𝑟−𝑎ℎ6, 𝑡
𝛿2+𝑟−𝑎ℎ7, 𝑡

𝛿+𝑟−𝑎ℎ8, 𝑡
𝛿4+𝑟−𝑎ℎ9

)
∪ {𝑡𝑧 − 1} .

For 𝑖 ∈ {1, … , 9}, we have that LT
(
ℎ𝑖
)
and 𝑡𝑧 are coprime since the highest common factor ℎ𝑐𝑓

(
LT
(
ℎ𝑖
)
, 𝑡𝑧
)
= 1. Thus,

𝐺𝐵≻

(
ℎ1, … , ℎ9, 𝑡𝑧 − 1

)
= 𝐺𝐵≻

(
ℎ1, … , ℎ9

)
∪ {𝑡𝑧 − 1}. In conclusion,(

Span
[
ℎ1, … , ℎ9

]
∶ 𝑡∞

)
= Span

[
𝐺𝐵≻

(
ℎ1, … , ℎ9, 𝑡𝑧 − 1

)
∩ 𝑅
]

= Span
[
𝐺𝐵≻

(
ℎ1, … , ℎ9

)]
= Span

[
ℎ1, … , ℎ9

]
. □

4 DESCRIPTION OF THE LINKS AND PROOF OF THEMAIN THEOREM

We break down every step of the birational links described in Theorem 2.3 and we give a proof of Theorem 2.3. We first
mention the following remarks about Theorem 2.3.

Remark 4.1. The flip in case (iii) and (v) is algebraically irreducible (that is, its base is irreducible as an algebraic set and its
exceptional locus consists of one connected component), but the intersection between its exceptional locus and𝑌2 consists
of two disjoint tubular neighbourhoods, that are either both toric or both hypersurface. In other words, the intersection
between 𝑌2 and the contracted locus of the flip is not irreducible, and it is formed of two distinct connected components.
In (vii) the exceptional divisor of Φ′ contracts to an irreducible conic Γ ⊂ ℙ2.

Remark 4.2. This theorem does not consider the Fano 3-folds in ℙ2 × ℙ2 format of [9] (often stemming from the second
Tom deformation families), as they have Picard rank 2. The Hilbert series #12960 is one of them, thus it is not described
in (viii) of Theorem 2.3.

Let 𝑋 ⊂ 𝑤ℙ7 be a general codimension 4 Fano 3-fold of Tom type and 𝑝 ∈ 𝑋 a Tom centre. We first prove part (B) of
Theorem 2.3. Part (C) is an immediate corollary of parts (A) and (B).

Proof of Theorem 2.3. (B). Consider a birational link for 𝑋 ∋ 𝑝 that terminates with a divisorial contraction. Suppose that
the endpointMori fibre space𝑌 → 𝑆 is a Fano 3-fold𝑋′ → 𝑆 = {𝑝𝑡}. Let𝑋 be the basket of singularities of𝑋. It is possible
to track𝑋 throughout the link to retrieve the basket𝑌4

of 𝑌4. The basket𝑋′ of 𝑋′ is a subset of𝑌4
; that is,𝑋′ is𝑌4

minus the cyclic quotient singularities sitting inside the exceptional locus 𝐸′ ∶= 𝔼′ ∩ 𝑌4. Moreover, if the determinant

det

(
𝑑3 𝑑4

−1 −1

)
= −1 (4.1)

then 𝐸′ is contracted to a Gorenstein point 𝑝′ ∈ 𝑋′, which does not contribute to the basket of𝑋′. We claim that ifΦ blows
up the cyclic quotient singularity of highest degree, neither the flops nor the flips create a new cyclic quotient singularity
of that degree. To prove this we refer to the notation used in the proof of Theorem 4.5 below. First of all, the flop Ψ1

leaves the basket of 𝑌1 unchanged, so 𝑌1
= 𝑌2

. Now for simplicity, suppose that 𝑃𝑦2 ∈ 𝑍2, that is Ψ2 restricted to 𝑌2

is not an isomorphism. We have that 𝑎, 𝑏, 𝑐 < 𝑟, and, since Φ blows up the cyclic quotient singularity of highest degree,
𝑟 ≥ 𝑑1. In Theorem 4.5 we prove that the map 𝛽2 extracts a weighted ℙ1 or ℙ2, whose weights are among the following(
𝑑2 − 𝑑1, 𝑑3 − 𝑑1, 𝑑4 − 𝑑1

)
, which are all strictly less than 𝑟 and 𝑑1. Thus, the flip Ψ2 never introduces singularities of

degree 𝑑1 or higher. A similar argument can be carried out when 𝑑1 = 𝑑2 > 𝑑3.
On the other hand, if Φ blows up a cyclic quotient singularity of a lower degree that is, 𝑟 < 𝑑1, then the flips get rid of

the one with higher degree, which will not be generated again for the same reason as above. Still referring to the notation
used in the proof of Theorem 4.5, 𝛼2 contracts a weighted ℙ1 or ℙ2 with weights among

(
𝑑1, 𝑎, 𝑏, 𝑐

)
. The coordinate 𝑦1
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966 CAMPO

appears linearly in one entry of the matrix𝑀 so locally analytically at 𝑃𝑦1 one of the orbinates is eliminated. In addition,
if 𝛼2 contracts a weighted ℙ2 the hypersurface thta is the intersection of ℙ2 and 𝑌2 always contains the coordinate point
associated to 𝑦1. Thus, the cyclic quotient singularities with higher degree are contracted by 𝛼2. Therefore, the baskets𝑋

and 𝑋′ are different, hence 𝑋 ≇ 𝑋′.
If the absolute value of the above determinant is greater or equal than 2, the divisorial contractionΦ′might create a new

orbifold singularity with order equal to the absolute value of the determinant. This is a phenomenon that occurred already
in [13, Proposition 3.11]: we refer to the latter for the proof of this fact. If 𝑆 is either a line or ℙ2, 𝑌 is 𝑌4. We conclude that
𝑋 cannot be isomorphic to 𝑌 because their Picard ranks are different. □

The rest of this section is dedicated to proving part (A) of Theorem 2.3. Following the notation in 3.1, we call 𝑌𝑖 the
push-forward Ψ𝑖∗

(
𝑌𝑖−1

)
⊂ 𝔽𝑖 of 𝑌𝑖−1 via Ψ𝑖 . The Cox rings of the 𝔽𝑖 can be naturally identified, as they are isomorphic in

codimension 1: similarly holds for the Cox rings of the 𝑌𝑖 , for which we may choose the same generators of the quotient
ideal. Throughout this paper we identify these rings and these coordinates, for all 𝔽𝑖 and 𝑌𝑖 .

Theorem 4.3. The first step 𝜓1 ∶ 𝑌1 ⤏ 𝑌2 of the birational link for 𝑋 consists of a number 𝑛 of simultaneous flops, that is
equal to the number of nodes on 𝐷 ⊂ 𝑍1.

To fix ideas and without loss of generality, assume 𝑋 is of Tom1 type throughout this proof: then,
Pf2(𝑀), Pf 3(𝑀), Pf 4(𝑀), Pf 5(𝑀) are linear in the generators of 𝐼𝐷 and Pf1(𝑀) is quadratic in those. The locus 𝔹1 ∈ 𝔽2
extracted by 𝛽1 is defined by {𝑡 = 𝑠 = 0} (cf. [13]), which is isomorphic to a weighted ℙ3. Therefore there is a weighted
ℙ3-bundle over ℙ2

𝑥1,𝑥2,𝑥3
≅ 𝐷. Thus, restricting to {𝑡 = 𝑠 = 0} we have that

(
Pf2, Pf 3, Pf 4, Pf 5

)𝑇
= 𝐴 ⋅

(
𝑦1, 𝑦2, 𝑦3, 𝑦4

)𝑇
where 𝐴 is a 4 × 4matrix defined as 𝐴 ∶=

(
𝛾𝑖
(
Pf 𝑗
))

𝑖=1…4,𝑗=2…5
and 𝛾𝑖

(
Pf 𝑗
)
∈ ℂ
[
𝑥1, 𝑥2, 𝑥3

]
is the coefficient of 𝑦𝑖 in Pf 𝑗 .

We need the following technical lemma.

Lemma 4.4. For each point 𝑝 ∈ 𝐷 the rank of 𝐴𝑝 ∶= 𝑒𝑣𝑝(𝐴) is either 2 or 3.

Proof. The rank is at least 1. There are six syzygies involving the five pfaffians of𝑀; in the notation set in (A.1) one of them
is 𝑝1Pf2 +𝑝2Pf3 +𝑝3Pf4 +𝑝4Pf5 = 0. Therefore, at any point 𝑝 ∈ 𝐷 it is possible to express one of the last four pfaffians
in terms of the other three. This means that there are three equations left that are linear on 𝐼𝐷 . Thus, rk

(
𝐴𝑝

)
≤ 3. The

restriction to 𝐷 kills all the monomials that come out from the non-linear (in 𝐼𝐷) terms of Pf2, Pf 3, Pf 4, Pf 5. Since each of
the Pf 𝑗 has at least one of the 𝑦𝑖 appearing at least once, then there are at least two linearly independent column vectors
in 𝐴. Therefore, the entries of 𝐴 are all polynomials in ℂ

[
𝑥1, 𝑥2, 𝑥3

]
, so rk

(
𝐴𝑝

)
≥ 2. □

Proof of Theorem 4.3. We first prove that 𝛼1 contracts 𝑛 smooth rational curves. The locus𝔸1 contracted by 𝛼1 is defined by{
𝑦1 = 𝑦2 = 𝑦3 = 𝑦4 = 0

}
by [13]. Since 𝑍1 is in Tom format, 𝑍1 ∩ Im

(
𝛼1
)
restricted to 𝔸1 depends only on 𝑥1, 𝑥2, 𝑥3, that

is, it lies on 𝐷. Hence, over every node on 𝐷 there is a ℙ1 having coordinates 𝑡, 𝑠. There are 𝑛 nodes on 𝐷 so 𝛼1 contracts
𝑛 lines.
Now we need to prove that 𝛽1 extracts 𝑛 lines. Since the locus 𝔹1 is fibred over 𝐷 with weighted ℙ3 fibres, then at any

point 𝑝 ∈ 𝐷, if rk
(
𝐴𝑝

)
= 2 the image of 𝐴 is a 2-dimensional space in ℙ3, which means that 𝛽1 contracts a ℙ1 ⊂ 𝔹1 ∩ 𝑌2

to 𝑝 ∈ 𝐷. Analogously, if rk
(
𝐴𝑝

)
= 3 themap 𝛽1 is an isomorphism in a neighbourhood of a point 𝑝′ ⊂ ℙ1 ⊂ 𝔹1 to 𝑝 ∈ 𝐷.

This argument uses only the pfaffian equations of 𝑋, which contain all the necessary information about the flop. In fact,
the unprojection equations do not play any role in the determination of the flop: note that 𝔾1 is a rank 1 toric variety
of dimension 10 containing 𝑤ℙ6 ⊃ 𝑍1. Its coordinates are 𝜉1 ∶= 𝑥1, 𝜉2 ∶= 𝑥2, 𝜉3 ∶= 𝑥3, 𝜐1 ∶= 𝑦1𝑡, 𝜐2 ∶= 𝑦2𝑡, 𝜐3 ∶= 𝑦3𝑡,
𝜐4 ∶= 𝑦4𝑡, 𝜎1 ∶= 𝑠𝑦1, 𝜎2 ∶= 𝑠𝑦2, 𝜎3 ∶= 𝑠𝑦3, 𝜎4 ∶= 𝑠𝑦4. The unprojection equations globally eliminate the variable 𝑠 on 𝐷.
In addition, on 𝐷, the Jacobian matrix of 𝑍1 is

𝐽
(
𝑍1

)|𝐷 =

(
0 0

0 𝐴

)
.

Therefore we deduce that for each point 𝑝 ∈ 𝐷 we have rk
(
𝐽
(
𝑍1

)|𝐷)𝑝 = rk
(
𝐴𝑝

)
.
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CAMPO 967

Lastly, we prove that 𝜓1 is a flop. We have just shown that 𝜓1 is an isomorphism in codimension 1, so we study the
intersections −𝐾𝑌1

∩ 𝔸1 and −𝐾𝑌2
∩ 𝔹1. For both 𝑖 equal to 1 or 2, −𝐾𝑌𝑖

is
{
𝑥1 = 0

}
. On the other hand, none of the

points in Sing
(
𝑍1

)
⊂ 𝐷 satisfies the condition 𝑥1 = 0. Hence, −𝐾𝑌𝑖

⋅ ℙ1
𝑡,𝑠 = 0 for 𝑖 = 1, 2. □

This proof is independent on the form of the right-hand side of the unprojection equations: the information about the
flop is all encoded in the geometry of 𝑍1, as expected.
We introduce the following configurations for the matrix 𝑀, which appear frequently in the rest of this paper. The

argument holds independently on the Tom format. For some suitable positive integers 𝜎 and 𝜏, define

(a) The entries 𝑎2,4, 𝑎2,5, 𝑎3,4, 𝑎3,5 all have weight 𝜋. Hence, in order to have homogeneous pfaffians and positive weights,
the other weights of𝑀 are

⎛⎜⎜⎜⎜⎜⎝

𝜎 𝜎 𝜋 + 𝜎 − 𝜏 𝜋 + 𝜎 − 𝜏

𝜏 𝜋 𝜋

𝜋 𝜋

2𝜋 − 𝜏

⎞⎟⎟⎟⎟⎟⎠
. (4.2)

(b) The entries 𝑎2,5, 𝑎3,4 both have weight 𝑑1 = 𝑑2, while 𝑎2,4, 𝑎3,5 are free. Hence, the other weights of𝑀 are

⎛⎜⎜⎜⎜⎜⎝

𝜎 𝜋 + 𝜎 − 𝜐 𝜋 + 𝜎 − 𝜏 2𝜋 + 𝜎 − 𝜏 − 𝜐

𝜏 𝜐 𝜋

𝜋 2𝜋 − 𝜐

2𝜋 − 𝜏

⎞⎟⎟⎟⎟⎟⎠
. (4.3)

4.1 Proof of (i)

The following theorem describes the flip that occurs when crossing the ray 𝜌𝑦1 . An identical argument applies when
crossing 𝜌𝑦2 if 𝑑1 > 𝑑2 > 𝑑3.

Theorem 4.5. Suppose 𝑑1 > 𝑑2 and that 𝑃𝑦1 ∈ 𝑍2. Then, 𝜓2 ∶ 𝑌2 ⤏ 𝑌3 is a flip.

Proof. Localise at the point 𝑃𝑦1 ∈ 𝑍2. So, after a row operation, the grading of 𝔽2 becomes

⎛⎜⎜⎜⎝
𝑡 𝑠 𝑥1 𝑥2 𝑥3 𝑦1 𝑦2 𝑦3 𝑦4

𝑑1 𝑟 + 𝑑1 𝑎 𝑏 𝑐 0 𝑑2 − 𝑑1 𝑑3 − 𝑑1 𝑑4 − 𝑑1

1 1 0 0 0 −1 −1 −1 −1

⎞⎟⎟⎟⎠ .
The exceptional locus of 𝛼2 is 𝔸2 =

{
𝑦2 = 𝑦3 = 𝑦4 = 0

}
, that is,

𝔸2 =

⎛⎜⎜⎜⎝
𝑡 𝑠 𝑥1 𝑥2 𝑥3 𝑦1

𝑑1 𝑟 + 𝑑1 𝑎 𝑏 𝑐 0

1 1 0 0 0 −1

⎞⎟⎟⎟⎠ ≅ ℙ4
(
𝑑1, 𝑟 + 𝑑1, 𝑎, 𝑏, 𝑐

)

and 𝛼2
(
𝔸2

)
= 𝑃𝑦1 . To prove that 𝜓2 is a flip for 𝑌2, we show that the codimension of the intersection 𝑌2 ∩ 𝔸2 is at least 3

in ℙ4
(
𝑑1, 𝑟 + 𝑑1, 𝑎, 𝑏, 𝑐

)
. The unprojection equation 𝑠𝑦1 = 𝑔1 allows one to eliminate 𝑠 locally above 𝑃𝑦1 ∈ 𝑍2. Thus, for a

hypersurface 𝐹 isomorphic to the weighted ℙ3
(
𝑑1, 𝑎, 𝑏, 𝑐

)
defined by the unprojection equation relative to 𝑦1 in which 𝑦1

has been set at 1, we have𝑌2 ∩ 𝔸2 ⊂ 𝐹 ⊂ ℙ4
(
𝑑1, 𝑟 + 𝑑1, 𝑎, 𝑏, 𝑐

)
. Hence,𝑌2 ∩ 𝔸2 has at least codimension 1. By Lemma 3.3,

in one of the pfaffian equations there is a monomial of the form 𝑥𝑖𝑦1, that is, locally at 𝑃𝑦1 , it is possible to eliminate 𝑥𝑖 , i.e.
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968 CAMPO

𝑥𝑖 can be expressed as a function of the other variables: suppose 𝑖 = 1. Thus, 𝑌2 ∩ 𝔸2 ⊂ ℙ4
(
𝑑1, 𝑟 + 𝑑1, 𝑎, 𝑏, 𝑐

)
has at least

codimension 2. From Lemma 3.8 we deduce that there is another unprojection equation that containsmonomials in the 𝑥𝑖
and 𝑡. Therefore, 𝑌2 ∩ 𝔸2 ⊂ 𝑆 ⊂ 𝐹 ⊂ ℙ4

(
𝑑1, 𝑟 + 𝑑1, 𝑎, 𝑏, 𝑐

)
where 𝑆 ≅ ℙ4

(
𝑑1, 𝑏, 𝑐

)
: so, 𝑌2 ∩ 𝔸2 has at least codimension 3

in ℙ4
(
𝑑1, 𝑟 + 𝑑1, 𝑎, 𝑏, 𝑐

)
. To prove that the codimension is exactly 3 we need to show that the remaining equations define

a curve in 𝑆, so we need to exclude the case in which they define a single point or the empty set. The vanishing locus of the
remaining equations cannot be empty because 𝑃𝑦1 ∈ 𝑍2, so there must be an intersection between𝑌2 and𝔸2. In addition,
𝑌2 ∩ 𝔸2 cannot be a single point either for the following reason. Since 𝑋 is quasi-smooth andℚ-factorial, the same holds
for 𝑌1. Also 𝑌2 is quasi-smooth, but it is not isomorphic to 𝑌1 because 𝛽2 ∶ 𝑌3 → 𝑍2 contracts the curve defined by the
quadratic pfaffian equation (which is Pf1 if𝑀 is in Tom1 format). Thus, byℚ-factoriality, 𝛽2 must also contract a curve.
The last thing to check is that the intersection of −𝐾𝑌2

with 𝔸2 is positive and that the intersection of −𝐾𝑌3
with 𝔹2

is negative. This is true because
{
𝑥1 = 0

}
∈ ||( − 𝑎𝐾𝑌2

)|| is relatively ample with respect to 𝛼2, so it meets every curve
positively. □

Theorem 4.6. If the point 𝑃𝑦1 ∉ 𝑍2, the restriction to 𝑌2 of the toric flip Ψ2 ∶ 𝔽2 ⤏ 𝔽3 is an isomorphism 𝑌2 ≅ 𝑌3.

Proof. The equations of 𝑍2 are the same as 𝑍1, albeit viewed in a different toric variety 𝔾2. If 𝑃𝑦1 ∉ 𝑍2 then there
exists at least one pfaffian equation that is non-zero when evaluated at 𝑃𝑦1 . Moreover, 𝛼2

(
𝔸2

)
= 𝑃𝑦1 ; on the other hand,

𝛼2
(
𝑌2

)
= 𝑍2. This means that the exceptional locus of the flip at the toric level does not intersect with 𝑌2, i.e.

𝔸2 ∩ 𝑌2 = ∅. □

The nature of the weights of𝑀 determine whether the hypotheses of either Theorem 4.5 or Theorem 4.6 are verified.

Proposition 4.7. Let𝑋 be of Tom type. If the weights of𝑀 fall in case (b), then either the flip with base at 𝑃𝑦1 ∈ 𝑍2 or the flip
with base at 𝑃𝑦2 ∈ 𝑍3 is an isomorphism.

Proof. In case (b) two ideal entries with the same weight are multiplied in Pf1(𝑀). Suppose that 𝜋 = 𝑑1. Thus, 𝑦1 occu-
pies both the entries 𝑎2,5 and 𝑎3,4. From Theorem 3.12 and since 𝑦1 appears linearly in those entries, we deduce that the
monomial 𝑦21 is in the equations of 𝑌1. Therefore, repeating the proof of Theorem 4.6, we have that Ψ2 restricted to 𝑌2 is
an isomorphism. Same happens for 𝜋 = 𝑑2. The weight 𝜋 is never equal to 𝑑3 or 𝑑4. □

In this argument it is crucial that there is only one ideal generator having weight 𝑑1. The concurrent presence of con-
figuration (a) and of two distinguished ideal generators having the same weight leads to different consequences in (iii)
and (v).
Although the majority of the Hilbert series of case (i) falls in configuration (b), it also happens that the weights of 𝑀

are in configuration neither (a) nor (b). In this situation, both 𝜓1 and 𝜓2 are flips. In particular, this means that the mobile
cone of 𝔽1 coincides with the mobile cone of 𝑌1. Theorem 4.5 and Proposition 4.7 can be also applied to the crossing of
the wall adjacent to 𝑑2 > 𝑑3.
Consider the rank 2 toric variety 𝔽4 in case (i), where 𝑑3 > 𝑑4. The link terminates with a divisorial contraction.

Lemma 4.8. Suppose that 𝜌𝑋 = 1. If 𝑑3 > 𝑑4, the map Φ′ ∶ 𝔽4 → 𝔾4 is a divisorial contraction of 𝑌4 to a Fano 3-fold
𝑋′ ⊂ ℙ′ ⊂ 𝔾4.

Proof. Since 𝜌𝑋 = 1, the exceptional divisor 𝔼′ of Φ′ is irreducible. Thus, 𝜌𝑋′ = 1 as well. Moreover, 𝑋′ is projective. In
addition, −𝐾𝑋′ is ample. Consider a curve Γ in 𝑋′ that is not in the image of 𝔼′ via Φ′ and that is not in the image of the
union of the right-hand side contracted loci 𝔹𝑖 of the flips. Such a curve can always be found because the set of curves of
𝑋′ lying in Φ′(𝔼′) and the union of the proper transform of the 𝔹𝑖 has codimension 2. The curve Γ can be tracked back
down to 𝑌1. Now, −𝐾𝑌1

= 𝛼∗
1

(
− 𝐾𝑍1

)
and every curve in 𝑌1 is either a flopping curve or strictly positive against −𝐾𝑌1

and contracted to 𝑍1. So, the divisor −𝐾𝑌1
is nef and big, that is 𝑌1 is a weak Fano. Thus we have −𝐾𝑋′Γ = −𝐾𝑌1

Γ̃ > 0,
where Γ̃ is the proper transform of Γ, and is isomorphic to Γ. □
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4.1.1 Identifying the end of the link

By Lemma 4.8, Φ′ is a divisorial contraction to another Fano. A crucial observation is the following.

Lemma 4.9. Let 𝑋 be a Fano 3-fold of Tom type and let 𝑝 ∈ 𝑋 be a Tom centre such that the link for 𝑋 ∋ 𝑝 terminates with
a divisorial contraction to another Fano 3-fold 𝑋′ ⊂ ℙ′. Then, codim(𝑋′) < codim(𝑋).

Proof. The map Φ′ ∶ 𝔽4 → 𝔾4 is induced by the linear system ||(𝑑3−1)||. The equations of 𝑌4 constitute relations among
the new coordinates of 𝔾4, that is, some of the equations of 𝑌4 eliminate (globally) some of the coordinates of 𝔾4. The
global elimination of the variable 𝑠′ = 𝑠𝑦

𝜍
4 of 𝔾4, for some exponent 𝜍, always happens due to the equation 𝑠𝑦4 = 𝑔4.

This phenomenon may occur for other coordinates too, depending on each specific case. This shows that ℙ′ is at most a
weighted ℙ6. □

It is also possible to track down the evolution of the basket of singularities of 𝑋 along the link, in order to deduce the
one for 𝑋′. We refer to the proof of Theorem 2.3, (B) for this. Its basket and its ambient space determine the Hilbert series
of 𝑋′ univocally. We give an example of how to find 𝑋′ in Section 5.1.
The equations of 𝑋′ can be found by rewriting the equations of 𝑌4 in terms of the new coordinates of 𝔾4, and by

excluding the ones used to perform the global elimination. Usually, 𝑋′ is a special member in the family associated to its
Hilbert series. We show this explicitly in the examples of Section 5.

4.2 Proof of (ii)

Suppose𝑀 has weights as in (b), only for the two Hilbert series #1218 and #1413. For both, the equations of 𝑌2 have a pure
monomial in 𝑦1 (similarly to the phenomenon described in Theorem 4.6). Thus, the following holds.

Theorem 4.10. Consider the Hilbert series #1218, #1413 and the Fano 3-fold defined by Tom1 for both. Then, their respective
birational links evolve as follows: 𝜓1 is a flop, Ψ2 restricts to an isomorphism 𝜓2 on 𝑌2, 𝜙′ is a divisorial contraction over
ℙ1
𝑦2,𝑦3

⊂ 𝑋′.

Proof. By Theorem 4.3 𝜓1 is a flop. The weights of 𝑀 of the two Hilbert series are as in (b). Therefore, Pf1(𝑀) contains
𝑦21 . Analogously to Theorem 4.6, 𝜓2 is an isomorphism. The last map is a divisorial contraction to 𝑋′ by Lemma 4.8. Note
that ℙ1

𝑦2,𝑦3
⊂ 𝑋′ in both cases, so there is one divisorial contraction to ℙ1

𝑦2,𝑦3
. □

None of the other Hilbert series in (ii) comes from𝑀 with (b) weights. In this instance, the flip 𝜓2 is performed by 𝑌2

too, and it is followed by a divisorial contraction to 𝑋′.

Theorem 4.11. Let 𝑍1 be defined by𝑀 in Tom format with weights not in (b). Then the birational link for 𝑋 is formed of: a
flop, a flip, and a divisorial contraction to ℙ1

𝑦2∶𝑦3
⊂ 𝑋′.

Proof. The point𝑃𝑦1 ∈ 𝑍2 because theweights of𝑀 are not as in (b).We connect this proof to the one of Theorem4.10. □

4.3 Proof of (iii) and (v)

Now we study the case where 𝑑1 = 𝑑2. Both (iii) and (v) share the same behaviour when crossing of the ray 𝜌𝑦1,𝑦2 .

Theorem 4.12. Suppose 𝑑1 = 𝑑2. Then, there are two analytic flips (simultaneous flips as in Remark 4.1) based at two
distinct points in 𝑍2.

To fix ideas,𝑀 is in Tom1 format throughout this proof. Here the specialisations to (iii) and (v) of (a), (b) still apply, but
this time there two different variables that fit the entries with weight 𝑑1 = 𝑑2 (which replace the weight 𝜋 in (a), (b)).
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Geometrically, 𝛼2 contracts the locus𝔸2 to a line ℙ1
𝑦1∶𝑦2

⊂ 𝔾2. So, the intersection𝔸2 ∩ 𝑌2 is mapped to ℙ1
𝑦1∶𝑦2

∩ 𝑍2. In
Lemma 4.14 and in Remark 4.15 we discuss the nature of the intersection ℙ1

𝑦1∶𝑦2
∩ 𝑍2 in cases (a) and (b) respectively. The

idea is that ℙ1
𝑦1∶𝑦2

cuts out a rank 2 quadratic form in 𝑦1, 𝑦2, which determines two points in 𝑍2. Therefore, the variety 𝑌2

is subjected to two simultaneous flips.

Proposition 4.13. There exists a rank 2 quadratic form in 𝑦1, 𝑦2 defined on 𝔾2 that determines two distinct points 𝑃1, 𝑃2
in 𝑍2.

Proof. Independently on (a) and (b), without loss of generality we assume that 𝑦1 occupies the 𝑎25 entry and that 𝑦2
occupies the 𝑎34 entry of𝑀. The equations of 𝑍2 are in terms of 𝑡 as well, being the image of 𝑌2 via 𝛼2. If any of 𝑦1 or 𝑦2 is
in one of the entries in the top row of the matrix, it picks up a 𝑡 factor in the blow up of𝑋, so it vanishes when restricted to
ℙ1
𝑦1∶𝑦2

. Moreover, if 𝑦1 and 𝑦2 appear in other entries of𝑀 they need to be multiplied by some other variable. Therefore,
the quadratic form is to be found in the first pfaffian of 𝑀, i.e. it is the restriction of Pf1(𝑀) to ℙ1

𝑦1∶𝑦2
. It is of the form

𝑦21 − 𝑦1𝑦2 + 𝑦22 in case (a), whereas it is 𝑦
2
1 − 𝑦1𝑦2 in case (b). No other monomials, also in other equations, survive the

restriction to ℙ1
𝑦1∶𝑦2

. For (a), (b) the two quadratic forms describe two distinct points on 𝑍2. □

Lemma 4.14. Let𝑍1 be defined by a gradedmatrix𝑀 in Tom format having weights as in (a). Then, the two flips have exactly
the same weights.

Proof of Lemma 4.14. Let𝑀 have weights as in (a). Place 𝑦1 and 𝑦2 in the entries 𝑎25 and 𝑎34 respectively. Locally at 𝑃𝑦1 we
can eliminate a potential linear term in the entries 𝑎12 and 𝑎15; likewise, locally at 𝑃𝑦2 for a linear term in 𝑎13 and 𝑎14. Since
𝑎12 and 𝑎13 have the same weights, 𝑦1 and 𝑦2 eliminate the same variable when localising at their respective coordinate
points; or otherwise they do not eliminate any variable in those entries at all (same for 𝑎14 and 𝑎15). The variables 𝑦3 and 𝑦4
cannot be eliminated, as they are alwaysmultiplied by a 𝑡 factor on the top row. Therefore, the birational transformations at
𝑃1 and 𝑃2 can only be flips. This proves that 𝛼2 contracts two loci of the same dimension: in fact, those loci are isomorphic.
In conclusion, the flip phenomenon is symmetrical over 𝑃1, 𝑃2 ∈ 𝑍2. □

Remark 4.15. The lemma above does not hold if𝑀 is as in (b). In fact, if one of the flips is toroidal/hypersurface, the other
one is not necessarily toroidal/hypersurface. This is because the weights in the top row of𝑀 are all different, so 𝑦1 and 𝑦2
cannot eliminate the same variables, and therefore the flips at 𝑃1 and 𝑃2 cannot have the sameweights. Moreover, suppose
that a certain linear variable 𝑤 occupies the entry 𝑎14: it can appear in the 𝑎15 entry only if multiplied by a polynomial
𝑓𝑑1−𝜐 of degree 𝑑1 − 𝜐. Thus, there is no hope for 𝑦2 to eliminate𝑤, and therefore the two flips can have different numbers
of weights.

Proof of Theorem 4.12. Similarly to Theorem 4.5, Ψ2 is an algebraically irreducible flip. Its restriction to 𝑌2 is consti-
tuted of two distinct components, each contracted to one of the points 𝑃1, 𝑃2 ∈ 𝑍2 (by Proposition 4.13). Lemma 4.14 and
Remark 4.15 clarify the nature of such components. □

Theorem 4.12 holds if 𝑑1 = 𝑑2 > 𝑑3 = 𝑑4 and 𝑑1 = 𝑑2 > 𝑑3 > 𝑑4, although the continuation of the link is different in
the two cases. For the latter, the statements made for item (i) still hold. For the former, we have that

Theorem 4.16. If 𝑑2 > 𝑑3 = 𝑑4, then Φ′ is a del Pezzo fibration over ℙ1
𝑦3,𝑦4

.

Proof. Consider Φ′ ∶ 𝔽3 → ℙ1
𝑦3,𝑦4

. The grading of 𝔽3 can be written as

⎛⎜⎜⎜⎝
𝑡 𝑠 𝑥1 𝑥2 𝑥3 𝑦1 𝑦2 𝑦3 𝑦4

𝑑3 𝑟 + 𝑑3 𝑎 𝑏 𝑐 𝑑2 − 𝑑3 𝑑2 − 𝑑3 0 0

−1 −1 0 0 0 1 1 1 1

⎞⎟⎟⎟⎠ .

 15222616, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202100116 by T
est, W

iley O
nline L

ibrary on [18/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



CAMPO 971

This is a weighted ℙ6-bundle over ℙ1. The intersection of 𝑌3 with its general fibre has dimension 2, for 𝑦3 and 𝑦4 now
act as parameters. The restriction of 𝐾𝑌3

to such intersection is still ample. Hence, Φ′ is a del Pezzo fibration of 𝑌3 over
ℙ1
𝑦3,𝑦4

. □

Lemma 4.17. The intersection of 𝑌3 with the general fibre of the bundle defined by Φ′ is smooth.

Proof. The generic fibre 𝑆 of Φ′ is a surface in 𝑌3. Suppose 𝑆 is singular. In particular, its closure inside the 3-fold 𝑌3 is a
line. Therefore, 𝑌3 would contain a whole singular line, which is a contradiction with 𝑌3 being terminal. □

In [14] we compute the degree of the general fibre of these del Pezzo fibrations.

4.4 Proof of (iv)

Similarly to the cases above, the weights of 𝑀 influence the behaviour of the link, and the distinction of (a), (b) plays a
crucial role. The majority of Hilbert series that fall into case (iv) are such that the weights of𝑀 are in configuration (b).

Proposition 4.18. Suppose𝑀 has weights in configuration (b). Then, either 𝑦1 appears as a square in the equations of 𝑌2,
or 𝑦2 appears as a square in the equations of 𝑌3.

Proof. If the weights of 𝑀 are in (b), Pf1(𝑀) involves the multiplication of the entries 𝑎25, 𝑎34 of same weight (either
𝑑1 or 𝑑2, depending on the specific Hilbert series considered). In contrast to the proof of Proposition 4.13, by hypothesis
here only one variable has weight 𝑑1, 𝑑2, i.e. 𝑦1 and 𝑦2 respectively. Therefore, the quadratic form defined on 𝔾2 (or 𝔾3

respectively) is 𝑦21 (or 𝑦
2
2 in turn). □

Lemma 4.19. If 𝑀 has weights in configuration (b), then either Ψ2 or Ψ3 is an isomorphism when restricted to 𝑌2 and
𝑌3 respectively.

Proof. Either 𝑦21 appears in the equations of 𝑌2, or 𝑦22 appears in the equations of 𝑌3. We conclude the proof using
Proposition 4.7. □

Remark 4.20. In case (iv), only the Hilbert series #20544 has a weight configuration of type (a). Since the only variable
with weight 𝑑2 is 𝑦2, it is possible to cancel out 𝑦2 from the entries 𝑎25 and 𝑎34 via row/column operations. Therefore
the equations of 𝑋 have the monomial 𝑦22 . Nonetheless, no flip is missed because, performing the blow-up of 𝑋 and then
saturating over 𝑡, the term 𝑦22 picks up a 𝑡 factor.
The weights of𝑀 relative to the Hilbert series #5516, #5867, #11437 are neither in configuration (a) nor (b). Thus,Ψ2,Ψ3

are flips for 𝑌2, 𝑌3 respectively.

The last map Φ′ of the link in (iv) is a del Pezzo fibration, as in Theorem 4.16.

4.5 Proof of (vi)

There are six Hilbert series falling in case 𝑑1 > 𝑑2 = 𝑑3 = 𝑑4.

Proposition 4.21. The birational link starting from the Hilbert series #6865 is such that the restriction to𝑌2 of the birational
map Ψ2 is an isomorphism.

Proof. The weights of𝑀 are as in (b), so 𝑦21 appears in the equations of 𝑌2. □

The other five Hilbert series falling in this case behave as expected.
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Proposition 4.22. Consider the birational link starting from 𝑋 as in one of the five Hilbert series left in case (vi). Then, the
restriction to the variety 𝑌2 of Ψ2 is a flip for 𝑌2.

Proof. The weights of𝑀 are neither in case (a) nor (b). Thus, none of the ideal variables appears as a pure power in the
equations of 𝑌2. □

The end of the link is a conic bundle over a plane ℙ2 with coordinates 𝑦2, 𝑦3, 𝑦4.

Proposition 4.23. The map Φ′ is a conic bundle over the projective plane ℙ2
𝑦2,𝑦3,𝑦4

.

Proof. Localise 𝔽3 at the plane ℙ2
(
𝑑2, 𝑑2, 𝑑2

)
𝑦2,𝑦3,𝑦4

. Eliminate 𝑠 globally and discard the unprojection equations. We
exclude 𝑠 from the grading of 𝔽3. ⎛⎜⎜⎜⎝

𝑡 𝑥1 𝑥2 𝑥3 𝑦1 𝑦2 𝑦3 𝑦4

𝑑2 𝑎 𝑏 𝑐 𝑑1 − 𝑑2 0 0 0

−1 0 0 0 1 1 1 1

⎞⎟⎟⎟⎠ ,
so 𝔽3 is a weighted ℙ4-bundle over ℙ2. Above each point of ℙ2

(
𝑑2, 𝑑2, 𝑑2

)
𝑦2,𝑦3,𝑦4

we can locally eliminate two variables
among 𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑦1 via two of the pfaffian equations. The remaining three equations lie in the same principal ideal
generated by one of them, which is a conic in the three surviving variables of the fibre with coefficients in the base
ℙ2
𝑦2,𝑦3,𝑦4

. □

4.6 Proof of (vii)

In this case there are no flips occurring, and the links evolve as follows:𝜓1 is𝑛 simultaneous flops by Theorem4.3, followed
by a divisorial contraction Φ′ to a Fano 3-fold 𝑋′ (by Lemma 4.8 and because 𝑑4 − 𝑑1 < 0).

4.7 Proof of (viii)

Here the first 𝑛 flops are followed by a conic bundle over the base ℙ3
(
𝑑1, 𝑑1, 𝑑1, 𝑑1

)
𝑦1,𝑦2,𝑦3,𝑦4

, and a similar statement to
Proposition 4.23 holds.

5 EXAMPLES

In this section we present some explicit examples, highlighting the main phenomena described in Theorem 2.3. Recall
that all the Fano 3-folds 𝑋 in this paper, and in particular in the examples of this section, can be explicitly constructed by
means of Type I unprojections and are ℚ-factorial following [11].

5.1 Example for (i): #10985, Tom𝟏

Consider 𝑋 ∋ 𝑝 where 𝑋 is the Tom type Fano 3-fold associated to the Hilbert series #10985 and 𝑝 ∈ 𝑋 is the Tom cen-
tre 1

2
(1, 1, 1) in the basket of singularities 𝑋 =

{
1

2
(1, 1, 1),

1

6
(1, 1, 5)

}
. The ambient space of 𝑋 is ℙ7

(
13, 2, 3, 4, 5, 6

)
,

with coordinates 𝑥1, 𝑥2, 𝑥3, 𝑠, 𝑦4, 𝑦3, 𝑦2, 𝑦1 respectively. The divisor 𝐷 ≅ ℙ𝑥1,𝑥2,𝑥3(1, 1, 1) is defined by the ideal
𝐼𝐷 = Span

[
𝑦1, 𝑦2, 𝑦3, 𝑦4

]
and𝐷 ⊂ 𝑍1 for𝑀 in Tom1. There are 24 nodes on 𝐷 ⊂ 𝑍1 (cf [12]). To summarise, we are looking

at the following varieties:

#10985 𝑋 ⊂ ℙ7
(
13, 2, 3, 4, 5, 6

)
codimension 4

{
1

2
(1, 1, 1),

1

6
(1, 1, 5)

}
,

#10962 𝑍1 ⊂ ℙ6
(
13, 3, 4, 5, 6

)
codimension 3 24 nodes on 𝐷.
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F IGURE 2 Mori cone of 𝔽1 for #10985, Tom1

We aim to put ideal variables in an ideal entry having their same weight, and do analogously for the orbinates. The rest
of the entries can be occupied by general polynomials in the given degrees, accordingly to the Tom1 constraints. In this
specific case, we end up with the following explicit matrix as in Section 3.2

𝑀 =

⎛⎜⎜⎜⎜⎜⎝

𝑥1 −𝑥2𝑥3 −𝑥32 + 𝑦4 −𝑥43 + 𝑦3

𝑦4 𝑦3 𝑦2

𝑥22𝑦4 − 𝑦2 𝑦1

𝑥41𝑦4

⎞⎟⎟⎟⎟⎟⎠
. (5.1)

The unprojection algorithm produces nine equations defining 𝑋. The blow-up 𝑌1 of 𝑋 at the Tom centre 𝑝 = 𝑃𝑠 is con-
tained in the rank 2 toric variety 𝔽1 with grading as in Proposition 3.7, whose ray-chamber structure is described in
Figure 2.
The Kawamata blow-up of the Tom centre 𝑃𝑠 is

Φ ∶ 𝔽1 ⟶ ℙ7
(
13, 2, 3, 4, 5, 6

)
(
𝑡, 𝑠, 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝑦4

)
⟼

(
𝑥1𝑡

1

2 , 𝑥2𝑡
1

2 , 𝑥3𝑡
1

2 , 𝑦4𝑡
5

2 , 𝑦3𝑡
6

2 , 𝑦2𝑡
7

2 , 𝑦1𝑡
8

2 , 𝑠

)
.

(5.2)

We record here only the pfaffian equations of 𝑌1.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑡𝑦24 + 𝑥1𝑥
2
2𝑦4 − 𝑥1𝑦2 − 𝑥32𝑦4 + 𝑥2𝑥3𝑦3 = 0,

−𝑡𝑦4𝑦3 − 𝑥1𝑦1 − 𝑥2𝑥3𝑦2 + 𝑥43𝑦4 = 0,

−𝑡𝑦4𝑦2 + 𝑡𝑦23 + 𝑥51𝑦4 + 𝑥32𝑦2 − 𝑡𝑥43𝑦3 = 0,

𝑡𝑦4𝑦1 + 𝑡𝑦3𝑦2 + 𝑥41𝑥2𝑥3𝑦4 + 𝑥1𝑥
2
2𝑦1 + 𝑥32𝑥3𝑦2 − 𝑥32𝑦1 − 𝑥43𝑦2 = 0,

𝑥41𝑦
2
4 + 𝑥22𝑦4𝑦2 − 𝑦3𝑦1 − 𝑦22 = 0.

(5.3)

From Theorem 4.3, crossing the ray 𝜌𝑥𝑖 gives that Ψ1 consists of 24 simultaneous flops based at the 24 nodes of 𝑍1. Since
the weights of𝑀 are in configuration (b), then either 𝜓2 or 𝜓3 is an isomorphism by Proposition 4.7; 𝑦2 appears as a pure
power in (5.3), so 𝜓3 is an isomorphism. To study 𝜓2 we need to localise at 𝑃𝑦1 ∈ 𝑍2, so we look at Equations 5.3 locally
analytically in a neighbourhood of the point 𝑃𝑦1 ∈ 𝑍2. Practically, 𝑦1 is a local coordinate and we perform row operations
on 𝔽2 in order to write the weight of 𝑦1 as either

(
±1

0

)
or
(

0

±1

)
. So, the grading of 𝔽2 becomes

⎛⎜⎜⎜⎝
𝑡 𝑠 𝑥1 𝑥2 𝑥3 𝑦1 𝑦2 𝑦3 𝑦4

6 8 1 1 1 0 −1 −2 −3

1 1 0 0 0 −1 −1 −1 −1

⎞⎟⎟⎟⎠.
The flipΨ2 has weights (6, 8, 1, 1, 1, −1, −2, −3); this stands for the contraction by 𝛼2 ofℙ4

𝑡,𝑠,𝑥1,𝑥2,𝑥3
(6, 8, 1, 1, 1) to the point

𝑃𝑦1 ∈ 𝑍2, and the extraction by 𝛽2 of ℙ2
𝑦2,𝑦3,𝑦4

(1, 2, 3) from 𝑃𝑦1 . However, the intersection ℙ4
𝑡,𝑠,𝑥2,𝑥3

(6, 8, 1, 1, 1) ∩ 𝑌2 can be
a projective space smaller than ℙ4. Analogously, this might hold for ℙ1

𝑦2,𝑦4
(1, 2, 3) ∩ 𝑌3. The study of these intersections is

done via the following argument.

 15222616, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/m

ana.202100116 by T
est, W

iley O
nline L

ibrary on [18/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



974 CAMPO

Localising at the base of the isomorphism in codimension 1, Ψ𝑖 , it is possible to write some of the variables as function
of the others using the equations of 𝑌𝑖 . Examining the equations of 𝑌2 locally analytically at a neighbourhood of 𝑃𝑦1 ∈ 𝑍2

and considering 𝑦1 as a local coordinate, we can set 𝑦1 = 1 in Equations (5.3). Some linear monomials will emerge in the
equations of 𝑌2 evaluated at 𝑦1 = 1: those variables appearing linearly in 𝑌2

||𝑦1=1 can be expressed in terms of the other
variables locally analytically. Thus, we can locally eliminate them. In this specific case, the evaluation of (5.3) at 𝑦1 = 1

shows that 𝑠, 𝑥1, 𝑦3 appear linearly. Therefore, theweights of the flip for𝑌2 are (6, 1, 1, −1, −3), associated to the remaining
variables 𝑡, 𝑥2, 𝑥3, 𝑦2, 𝑦4 respectively. Observe that it looks like that𝛼2 contracts a 2-dimensional locus inside𝑌2 to the point
𝑃𝑦1 , thus 𝛼2 does not seem like a small contraction, as required in flips. However, among the equations left after the local
elimination process there is one involving 𝑡 and 𝑦4: that is Pf2 = 0. This means that there is an equation cutting out the
contracted locus by one dimension.
In conclusion, 𝜓2 is a flip with weights (6, 1, 1, −1, −3; 3), where the last 3 in this notation tracks the degree of the

equation involving themonomial 𝑡𝑦4. In otherwords, aweighted projective spaceℙ𝑡,𝑥2,𝑥3(6, 1, 1) containing a hypersurface
of degree 3 with coefficients in ℙ𝑦2,𝑦4 (1, 3) is flipped to ℙ𝑦2,𝑦4 (1, 3). In particular, a

1

6
(1, 1, 5) singularity in 𝑌2 is contracted

to 𝑃𝑦1 via 𝛼2, and a
1

3
(1, 1, 2) is extracted in 𝑌3 from 𝑃𝑦1 via 𝛽2. This is a hypersurface flip. Despite the fact that there are

three surviving equations after the elimination process, the equation cutting out ℙ𝑡,𝑥2,𝑥3(6, 1, 1) is only one: the other two
are multiples of it, that is, Pf2 is the generator of the principal ideal of 𝑌2 on ℙ𝑡,𝑥2,𝑥3(6, 1, 1). The map Ψ3 based at 𝑃𝑦2
defines a flip from 𝔽3 to 𝔽4, but its exceptional locus does not intersect 𝑌3, which is therefore not affected by Ψ3. The last

map of the link is Φ′ ∶ 𝔽4 → 𝔾4, defined by the linear system
(

4

−1

)
: it contracts the exceptional locus 𝔼′ =

{
𝑦4 = 0

}
to

the point 𝑃𝑦3 ∈ 𝔾4. Explicitly, it is

Φ′ ∶ 𝔽4 ⟶ 𝔾4 = ℙ7(1, 1, 1, 1, 2, 3, 3, 5)(
𝑡, 𝑠, 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2, 𝑦3, 𝑦4

)
⟼

(
𝑥1𝑦4, 𝑥2𝑦4, 𝑥3𝑦4, 𝑦3, 𝑦2𝑦4, 𝑦1𝑦

2
4, 𝑡𝑦

3
4, 𝑠𝑦

6
4

)
.

(5.4)

The exceptional locus 𝔼′ is isomorphic to ℙ7(4, 6, 1, 1, 1, 2, 1) with coordinates 𝑡, 𝑠, 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2 respectively: their
weights are retrieved performing a localisation at 𝑃𝑦3 as before. However, the intersection 𝔼′ ∩ 𝑌4 is ℙ3(1, 1, 1, 1), as we
can eliminate the variables 𝑡, 𝑠, 𝑦1 locally analytically in a neighbourhood of 𝑃𝑦3 .
We call 𝑋′ the push-forward Φ′

∗

(
𝑌4

)
of 𝑌4 via Φ′. Practically, 𝑦4 plays for Φ′ the role that 𝑡 played for Φ, being the extra

variable needed to perform a blow-up: in this case,Φ′ blows up the point 𝑃𝑦3 ∈ 𝑋′. The equations of𝑋′ are therefore given
by evaluating the equations of𝑌4 at 𝑦4 = 1. Observe that this shows that the variables 𝑡 and 𝑠 can be algebraically expressed
as functions of the other variables: two equations of 𝑌4|𝑦4=1 are removed in order to perform this global elimination.
Call 𝜍𝑖 for 𝑖 ∈ {1, … , 8} the coordinates of 𝔾4. Since we globally eliminated 𝑡, 𝑠, then 𝑋′ ⊂ 𝑤ℙ′ ⊂ 𝔾4, where 𝑤ℙ′ ∶=

ℙ5(1, 1, 1, 1, 2, 3) with coordinates 𝜍1, … , 𝜍6. So, Φ′ restricts to 𝜙′ ∶ 𝑌4 → 𝑋′ ⊂ ℙ5(1, 1, 1, 1, 2, 3). The minimal basis of the
ideal generated by the surviving equations of 𝑌4|𝑦4=1 give the explicit equations of 𝑋′, both of degree 4, are{

𝜍1𝜍
2
2𝜍4 − 𝜍1𝜍4𝜍5 − 𝜍1𝜍6 − 𝜍32𝜍4 + 𝜍2𝜍3𝜍

2
4 − 𝜍2𝜍3𝜍5 + 𝜍43 = 0,

𝜍41 + 𝜍22𝜍5 − 𝜍4𝜍6 − 𝜍25 = 0.
(5.5)

In addition, it is possible to keep track of the singularities throughout the link. That is: 𝑋 has 1

2
(1, 1, 1) and 1

6
(1, 1, 5) sin-

gularities. After the blowupΦ,𝑌1 has only a singularity of type
1

6
: this holds for𝑌2 too, as the basket does not change after

the flops. The hypersurface flipΨ2 replaces
1

6
(1, 1, 5)with 1

3
(1, 1, 2), so 𝑌3 has one singularity of type

1

3
; same for 𝑌4, given

that 𝑌3 and 𝑌4 are actually isomorphic. Lastly, 𝜙′ contracts a smooth locus, so the
1

3
singularity of 𝑌4 is maintained in 𝑋′.

Now that we know the equations of 𝑋′ and their degrees, the basket of 𝑋 and its ambient space we deduce that 𝑋′ is a
representative of the family #16204 in [10], which is a Fano 3-fold in codimension 2.

5.2 Example for (v): #20652, Tom𝟏

Consider 𝑋 ∋ 𝑝 where 𝑋 is the Tom type Fano 3-fold associated to #20652 and 𝑝 ∈ 𝑋 is the Tom centre 1

2
(1, 1, 1). Its

ambient space isℙ7
(
15, 23

)
, with coordinates 𝑦1, 𝑦2, 𝑥1, 𝑥2, 𝑥3, 𝑦3, 𝑦4, 𝑠 respectively,𝐷 ≅ ℙ𝑥1,𝑥2,𝑥3(1, 1, 1) ⊂ 𝑍1 has 7 nodes,
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F IGURE 3 Mori cone of 𝔽1 for #20652, Tom1

and𝑀 is in Tom1 format with entries

𝑀 =

⎛⎜⎜⎜⎜⎜⎝

𝑥1 𝑥2 𝑥3 𝑦3

𝑦1 𝑦2 𝑥2𝑦4 − 𝑥3𝑦3 + 𝑦1

𝑥1𝑦3 − 𝑦2 𝑦24 − 𝑦2

𝑥1𝑦3 + 𝑦1

⎞⎟⎟⎟⎟⎟⎠
. (5.6)

#20652 𝑋 ⊂ ℙ7
(
15, 23

)
codimension 4 𝑋 =

{
3 ×

1

2
(1, 1, 1)

}
,

#20543 𝑍1 ⊂ ℙ6
(
15, 22

)
codimension 3 7 nodes on 𝐷.

This time, the Mori cone of 𝔽1 is given by the fan in Figure 3.
By Theorem 4.3, Ψ1 is given by 7 simultaneous flops. The weights of𝑀 are in configuration (a), so there is a quadratic

form determining two points 𝑃1, 𝑃2 in the intersection 𝑍2 ∩ ℙ1
𝑦1,𝑦2

(Proposition 4.13). Thus, Lemma 4.14 shows that the
pencil of flips along the lineℙ1

𝑦1,𝑦2
⊂ 𝔾2 restricts to two flipswith base𝑃1 and𝑃2 respectively. Sowe look locally analytically

in a neighbourhood of 𝑃1, 𝑃2 ∈ 𝑍2. Carrying out a similar calculation to the previous examples, we localise at ℙ1
𝑦1,𝑦2

𝑍2.
The weights of the flip of toric varieties based at ℙ1

𝑦1,𝑦2
are (2, 4, 1, 1, 1, −1, −1), where 𝛼2 contracts ℙ4

𝑡,𝑠,𝑥1,𝑥2,𝑥3
(2, 4, 1, 1, 1)

to ℙ1
𝑦1,𝑦2

, and 𝛽2 extracts ℙ1
𝑦3,𝑦4

. We study the intersections ℙ4
𝑡,𝑠,𝑥1,𝑥2,𝑥3

(2, 4, 1, 1, 1) ∩ 𝑌2 and ℙ1
𝑦3,𝑦4

∩ 𝑌2 locally analytically
at a neighbourhood of 𝑃1 and 𝑃2 respectively. The first and second unprojection equations allow one to globally eliminate
𝑠 at 𝑃1 and 𝑃2. Similarly happens for 𝑥1 using Pf3

(
𝛼∗
1(𝑀)

)
. On the other hand, we can use either Pf4

(
𝛼∗
1(𝑀)

)
to eliminate

𝑥2 at 𝑃1, or Pf2
(
𝛼∗
1(𝑀)

)
to eliminate 𝑥3 at 𝑃2. The intersection ℙ4

𝑡,𝑠,𝑥1,𝑥2,𝑥3
(2, 4, 1, 1, 1) ∩ 𝑌2 is formed by two disjoint loci,

generated by 𝑡, 𝑥2 and 𝑡, 𝑥3 at𝑃1 and𝑃2 respectively. Nonetheless, they determine twoprojective linesℙ1(2, 1). The fact that
this elimination process has not excluded 𝑦3 nor 𝑦4 shows thatℙ1

𝑦3,𝑦4
⊂ 𝑌2. The variable 𝑡 does not get eliminated because

in Pf1
(
𝛼∗
1(𝑀)

)
the polynomial 𝑡

(
𝑦21 − 𝑦1𝑦2 + 𝑦22

)
appears: the variable 𝑡 could be eliminated only if 𝑦21 − 𝑦1𝑦2 + 𝑦22 ≠ 0,

but 𝑃1 and 𝑃2 are exactly the two solutions of 𝑦21 − 𝑦1𝑦2 + 𝑦22 = 0.
In conclusion, Ψ2 restricts to two simultaneous Francia flips (2, 1, −1, −1) based at 𝑃1, 𝑃2 ∈ 𝑍2, as anticipated in

Remark 4.1. In particular, two cyclic quotient singularities of type 1

2
(1, 1, 1) in 𝑌2 are contracted to 𝑃1 and 𝑃2 respectively

via 𝛼2, and 𝛽2 extracts a smooth locus in 𝑌3. Therefore, 𝑌3 has Picard rank 2.
The last map of the link is the fibration Φ′ ∶ 𝔽4 → ℙ1

𝑦3,𝑦4
. Recall that −𝐾𝑌3

∼ 
(
1

0

)
. If 𝐹 is a general fibre of Φ′, then

𝐾𝐹 =
(
𝐾𝑌3

+ 𝐹
)||𝐹 = 𝐾𝑌3

|𝐹 by adjunction. Thus, 𝐾𝐹 is ample, 𝐹 a del Pezzo and, as a consequence, Φ′ a del Pezzo fibra-
tion. The unprojection variable 𝑠 can be globally eliminated over each general point ofℙ1

𝑦3,𝑦4
. There is no other elimination

that can be made. Therefore, the fibre 𝐹 of the del Pezzo fibration sits inside a projective space ℙ6 with coordinates
𝑡, 𝑥1, 𝑥2, 𝑥3, 𝑦1, 𝑦2. The matrix𝑀 has become a matrix of linear forms in these variables. The equations of 𝐹 are the five
(quadratic) maximal pfaffians of𝑀. Therefore, the degree of 𝐹, and of the del Pezzo fibration, is 5.

5.3 Example for (vi): #24097, Tom𝟏

Consider𝑋 ∋ 𝑝where𝑋 ⊂ ℙ7
(
16, 22

)
is the Tom type Fano 3-fold #24097, and𝑝 ∈ 𝑋 is the Tomcentre 1

2
(1, 1, 1). The coor-

dinates ofℙ7
(
16, 22

)
are 𝑥1, 𝑥2, 𝑥3, 𝑦2, 𝑦3, 𝑦4, 𝑦1, 𝑠. The unprojection of𝐷 ≅ ℙ𝑥1,𝑥2,𝑥3(1, 1, 1) ⊂ 𝑍1 in Tom1 format produces

𝑋, and there are 8 nodes on 𝐷. Here 𝑍1 is #24077 defined by𝑀:
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𝑀 =

⎛⎜⎜⎜⎜⎜⎝

𝑥1 𝑥2 𝑥3 −𝑦22 − 𝑥3𝑦3

𝑦2 𝑦3 𝑦1

𝑦4 𝑥1𝑦3 − 𝑦24
−𝑥2𝑦4 − 𝑥3𝑦4 + 𝑦1

⎞⎟⎟⎟⎟⎟⎠
.

After the 8 simultaneous flops ofΨ1, the mapΨ2 is a Francia flip (2, 1, −1, −1), andΦ′ is a weighted ℙ5-bundle over the
projective space ℙ2

𝑦2,𝑦3,𝑦4
(1, 1, 1). We show that 𝑌3 is a conic bundle over that base, and we compute its discriminant Δ.

Note that 𝑌3 is smooth. We record here the five pfaffian equations of 𝑌3.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

𝑥1𝑦
2
3 + 𝑥2𝑦2𝑦4 + 𝑥2𝑦3𝑦4 − 𝑥1𝑦

2
4 − 𝑡𝑦3𝑦

2
4 − 𝑦2𝑦1 − 𝑦4𝑦1 = 0,

𝑥1𝑥3𝑦3 + 𝑥22𝑦4 + 𝑥2𝑥3𝑦4 + 𝑡2𝑦22𝑦4 + 𝑡𝑥3𝑦3𝑦4 − 𝑡𝑥3𝑦
2
4 − 𝑥2𝑦1 = 0,

𝑡2𝑦22𝑦3 + 𝑡𝑥3𝑦
2
3 + 𝑥1𝑥2𝑦4 + 𝑥1𝑥3𝑦4 − 𝑥1𝑦1 + 𝑥3𝑦1 = 0,

𝑡2𝑦32 − 𝑥21𝑦3 + 𝑡𝑥2𝑦
2
3 − 𝑡𝑥1𝑦3𝑦4 + 𝑡𝑥1𝑦

2
4 + 𝑥2𝑦1 = 0,

𝑥3𝑦2 − 𝑥2𝑦3 + 𝑥1𝑦4 = 0.

At a general point in ℙ2
𝑦2,𝑦3,𝑦4

(1, 1, 1), it is possible to globally eliminate the variable 𝑠 thanks to the unprojection equa-
tions.
Now consider the line {𝑦4 = 0} in the base ℙ2

𝑦2,𝑦3,𝑦4
(1, 1, 1), and look at its two affine patches

{
𝑦2 ≠ 0

}
and

{
𝑦3 ≠ 0

}
.

We want to study the conic equations above each of these patches: in fact, they both contribute to the discriminant Δ.
Over the patch

{
𝑦2 ≠ 0

}
, Pf5 and Pf1 globally eliminate the variables 𝑥3 and 𝑦1 respectively: hence they are 𝑥3 = 𝑥2𝑦3

and 𝑦1 = 𝑥1𝑦
2
3 . Replace their expressions in the remaining three pfaffian equations, obtaining

⎧⎪⎨⎪⎩
𝑡2𝑦3 + 𝑡𝑥2𝑦

3
3 − 𝑥21𝑦

2
3 + 𝑥2𝑥1𝑦

3
3 = 0,

𝑥1𝑥2𝑦
2
3 − 𝑥2𝑥1𝑦

2
3 = 0,

𝑡2 − 𝑥21𝑦3 + 𝑡𝑥2𝑦
2
3 + 𝑥2𝑥1𝑦

2
3 = 0.

where Pf2 is identically zero, and Pf3 (above) is a multiple of Pf4 by a 𝑦3 factor. Therefore, the conic that Pf4 describes is
defined by the matrix

𝐴𝑦2 =

⎛⎜⎜⎜⎜⎜⎝

1 0
1

2
𝑦23

0 −𝑦3
1

2
𝑦23

1

2
𝑦23

1

2
𝑦23 0

⎞⎟⎟⎟⎟⎟⎠
as
(
𝑡, 𝑥1, 𝑥2

)
⋅ 𝐴𝑦2 ⋅

(
𝑡, 𝑥1, 𝑥2

)𝑇
. Its determinant is det

(
𝐴𝑦2

)
= −

1

4
𝑦43
(
1 + 𝑦3

)
= 0.

On the other hand, over the patch
{
𝑦3 ≠ 0

}
, Pf1 and Pf5 globally eliminate the variables 𝑥1 and 𝑥2 respectively: hence

they are 𝑥1 = 𝑦2𝑦1 and 𝑥2 = 𝑥3𝑦2. Replace their expressions in the remaining three pfaffian equations: similarly to the
other patch, the equation of the conic is 𝑡2𝑦22 + 𝑡𝑥3 − 𝑦2𝑦

2
1 + 𝑥3𝑦1 = 0 given by Pf3. It is defined by the matrix 𝐴𝑦3

𝐴𝑦3 =

⎛⎜⎜⎜⎜⎜⎝
𝑦22

1

2
0

1

2
0

1

2

0
1

2
−𝑦2

⎞⎟⎟⎟⎟⎟⎠
determinant det

(
𝐴𝑦3

)
= −1∕4𝑦2

(
1 + 𝑦2

)
and by the equation

(
𝑡, 𝑥3, 𝑦1

)
⋅ 𝐴𝑦3 ⋅

(
𝑡, 𝑥3, 𝑦1

)𝑇
= 0. Even though the con-

tribution of det
(
𝐴𝑦2

)
and det

(
𝐴𝑦3

)
to the discriminant might look like 5 + 2 = 7, the solutions to det

(
𝐴𝑦2

)
= 0 and

det
(
𝐴𝑦3

)
= 0 overlap at the point (−1, −1, 0) which is counted twice. Therefore, Δ = 5 + 7 − 1 = 6.
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TABLE 1 Fano 3-folds in codimension 4 with Picard rank 1

GRDB ID Embedding Format 𝒆(𝑿) 𝒉𝟐,𝟏(𝑿) 𝝆𝑿

1169 ℙ7(1, 2, 3, 4, 5, 72, 9) T1 −38 21 1
1253 ℙ7(1, 2, 3, 42, 52, 7) 𝑇1 −24 14 1
4925 ℙ7(12, 3, 4, 5, 6, 72) T1 −56 30 1
5177 ℙ7(12, 2, 3, 4, 52, 6) T1 −48 26 1
5279 ℙ7(12, 2, 32, 4, 52) T1,

1

5
−38 21 1

5305 ℙ7(12, 2, 32, 42, 5) T1,
1

5
−36 20 1

5963 ℙ7(12, 22, 33, 5) T1,
1

3
−28 16 1

11005 ℙ7(13, 2, 32, 4, 5) T1 −46 25 1
11125 ℙ7(13, 22, 32, 4) T1,

1

2
−32 18 1

11125 ℙ7(13, 22, 32, 4) T2,
1

4
−32 18 1

11455 ℙ7(13, 23, 32) T1,
1

3
−22 13 1

16339 ℙ7(14, 23, 3) T1,
1

2
−22 13 1

5.4 Comparison with Takagi

In [30], the author classifies all possible extremal contractions Φ′ appearing in sequences of flops and flips onℚ-factorial
terminal Fano 3-folds 𝑌 of Picard rank 𝜌𝑌 = 2. These are Sarkisov links from certainℚ-Fano 3-folds 𝑋 with Picard rank 1
enjoying some additional properties (cf. [30, “MainAssumption 0.1”]). In particular, these varietiesmust have a singularity
of type 1

2
(1, 1, 1), that is blown up to initiate the link. Six of the varieties falling in Takagi’s assumption are in codimension

4 and have a Type I centre. In particular, three of them are of Tom-type, and follow the description of Theorem 2.3. They
are: #24097 Tom1 (above in Subsection 5.3, number 4.4 in Takagi’s paper) falling in case 𝑑1 = 𝑑2 = 𝑑3 < 𝑑4, #20652 Tom1

(above in 5.2, number 5.4) in case 𝑑1 = 𝑑2 < 𝑑3 = 𝑑4, and #16645 Tom1 (number 2.2) in case 𝑑1 < 𝑑2 = 𝑑3 = 𝑑4.
We have examined them here with our method, and we have showed that the outcomes predicted by Theorem 2.3

match his results. The remaining three Hilbert series indicated by Takagi are of Jerry type. We omit their study from this
paper.

6 THE PICARD RANK OF CERTAIN CODIMENSION 4 TERMINAL FANO 3-FOLDS

The Picard rank of quasi-smooth terminal Fano 3-folds in codimension 4 is unknown, except for some computational
results in [8]. The construction carried out so far in this paper provides a tool to compute 𝜌𝑋 for certain Families of Fano
3-folds 𝑋 of Tom type in codimension 4.
Theorem 2.3 produces a birational link from each Fano 3-fold of Tom type. Among 161 families of such Fano 3-folds,

96 have a link to another Fano 3-fold 𝑋′, and moreover 𝑋 and 𝑋′ have the same Picard rank. In 12 of these cases, 𝑋′ is
quasi-smooth and so we may compute the rank directly.

Theorem 6.1. Let 𝑋 be a general Fano 3-fold of first Tom type and let 𝑝 ∈ 𝑋 be its Tom centre. Suppose that the birational
link for𝑋 ∋ 𝑝 terminates with a quasi-smooth Mori fibre space𝑋′ → 𝑆 with dim𝑆 = 0, that is,𝑋′ is a Fano 3-fold. Then, the
Picard rank of 𝑋 is 𝜌𝑋 = 1.

Proof. Recall that Φ′ ∶ 𝑌 → 𝑋′ is an extremal divisorial contraction and 𝑌 = 𝑌3, 𝑌4 is a ℚ-factorial Fano 3-fold. Hence,
𝑋′ is ℚ-factorial.
The Fano 3-fold𝑋′ is quasi-smooth if the birational link for𝑋 ∋ 𝑝 only involves toric flips and terminates with a diviso-

rial contraction Φ′ contracting the singular locus 𝔼′ to a quasi-smooth point 𝑝′ ∈ 𝑋′. Since codim(𝑋′) ≤ 3 by Lemma 4.9
and 𝑋′ is quasi-smooth, we apply [28, Proposition 2.3], [8, Tables 1, 2, 3] to conclude that 𝜌𝑋′ = 1. The birational link
extracts and contracts exactly one irreducible divisor, and is otherwise an isomorphism in codimension 1. Therefore
𝜌𝑋 = 𝜌𝑋′ = 1. □
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In particular, in the hypotheses of Theorem 6.1 the link is a Sarkisov link. We expect that the hypotheses of quasi-
smoothness of𝑋′ can be lifted, and that Theorem 6.1 can be generalised to the rest of the 96 Tom families. The Fano 3-fold
in codimension 4 having Picard rank 1 are summarised in Table 1 together with their formats, Euler characteristic 𝑒(𝑋),
and Hodge number ℎ2,1(𝑋), calculated using [8, Theorem 4 and Table 3]. Note that #11125 has two different birational
links with ending with a quasi-smooth 𝑋′, as reported in Table 1. Moreover, some of the Fano 3-folds in Table 1 admit
other links to non-quasi-smooth Fano 3-folds, which therefore have Picard rank 1. This constitutes a further evidence that
Theorem 6.1 could still hold for non-quasi-smooth 𝑋′.
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APPENDIX A: PAPADAKIS’ ALGORITHM FOR UNPROJECTION

In [26] the author explicitly builds the Type I unprojection equations from a codimension 3 Fano 3-fold 𝑍 in Tom format.
Here we briefly retrace the steps of Papadakis’ construction, combining the two notations. Suppose for simplicity that the
matrix 𝑀 is in format Tom1. For 𝐷 ≅ ℙ𝑥1,𝑥2,𝑥3(𝑎, 𝑏, 𝑐) the divisor in 𝑍, and 𝐼𝐷 ∶= Span

[
𝑦1, 𝑦2, 𝑦3, 𝑦4

]
, the graded matrix

𝑀 is

𝑀 =

⎛⎜⎜⎜⎜⎜⎝

𝑝1 𝑝2 𝑝3 𝑝4

𝑎23 𝑎24 𝑎25

𝑎34 𝑎35

𝑎45

⎞⎟⎟⎟⎟⎟⎠
. (A.1)

Here the 𝑎𝑖𝑗 are polynomials of the form 𝑎𝑖𝑗 ∶=
∑4

𝑘=1
𝛼𝑘
𝑖𝑗
𝑦𝑘 for some polynomial coefficients 𝛼𝑘

𝑖𝑗
. The 𝑎𝑖𝑗 are in the ideal

𝐼𝐷 . Instead, 𝑝𝑗 are not in 𝐼𝐷 , in accordance to Definition 3.2. Only in this Appendix, we calculate Pf 𝑖 by excluding the
(𝑖 + 1)-th row and the (𝑖 + 1)-th column for 𝑖 ∈ {0, 1, 2, 3, 4}. Only Pf1, … , Pf 4 are linear in the 𝑦𝑖; hence, there exists a

unique matrix 𝑄 such that
(
Pf1(𝑀), … , Pf 4(𝑀)

)𝑇
= 𝑄
(
𝑦1, … , 𝑦4

)𝑇
. Explicitly, 𝑄 =

(
Pf 𝑖
(
𝑁𝑗

))
𝑖,𝑗=1…4

where

𝑁𝑖 =

⎛⎜⎜⎜⎜⎜⎝

𝑝1 𝑝2 𝑝3 𝑝4

𝛼𝑖
23 𝛼𝑖

24 𝛼𝑖
25

𝛼𝑖
34 𝛼𝑖

35

𝛼𝑖
45

⎞⎟⎟⎟⎟⎟⎠
and 𝛼𝑖

𝑘𝑙
is the coefficient of 𝑦𝑖 in 𝑎𝑘𝑙. Define𝐻𝑖 as the vector of length 4 whose 𝑖-th entry is (−1)𝑖+1 times the determinant

of the submatrix of𝑄 obtained by removing the 𝑖-th column and the 𝑖-th row. F or all 𝑖, 𝑗 ∈ {1, … , 4}, the vectors𝐻𝑖 satisfy

𝑝𝑖𝐻𝑗 = 𝑝𝑗𝐻𝑖 (A.2)

(cf. Lemma 5.3 of [26]). Thus, the quotient 𝐻𝑖∕𝑝𝑖 is independent of 𝑖. The polynomials 𝑔1, … , 𝑔4 are defined via the fol-
lowing equality of vectors of length 4

(
𝑔1, 𝑔2, 𝑔3, 𝑔4

)
= 𝐻𝑖∕𝑝𝑖 . For instance, 𝑔1 is the determinant of the matrix obtained

deleting the first column and the first row of 𝑄 divided by 𝑝1, i.e.

𝑔1 =
1

𝑝1
det

⎛⎜⎜⎜⎝
Pf2
(
𝑁2

)
Pf2
(
𝑁3

)
Pf2
(
𝑁4

)
Pf3
(
𝑁2

)
Pf3
(
𝑁3

)
Pf3
(
𝑁4

)
Pf4
(
𝑁2

)
Pf4
(
𝑁3

)
Pf4
(
𝑁4

)
⎞⎟⎟⎟⎠ . (A.3)

The 𝑔𝑗 are the right-hand sides of the unprojection equations, that is, the unprojection equations defining 𝑋 are 𝑠𝑦𝑗 = 𝑔𝑗
for 𝑗 = 1,… , 4.
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