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Abstract

This paper introduces a novel optimisation algorithm for hybrid railway vehicles, com-
bining a non-linear programming solver with the highly efficient “Mayfly Algorithm” to
address a non-convex optimisation problem. The primary objective is to generate efficient
trajectories that enable effective power distribution, optimal energy consumption, and eco-
nomical use of multiple onboard power sources. By reducing unnecessary load stress on
power sources during peak time, the algorithm contributes to lower maintenance costs,
reduced downtime, and extended operational life of these sources. The algorithm’s design
considers various operational parameters, such as power demand, regenerative braking,
velocity and additional power requirements, enabling it to optimise the energy consump-
tion profile throughout the journey. Its adaptability to the unique characteristics of hybrid
railway vehicles allows for efficient energy management by leveraging its hybrid powertrain
capabilities.

1 INTRODUCTION

Over the past several decades, railway transport systems have
predominantly relied on conventional fuel sources, such as
diesel and electricity, to power their operations [1]. How-
ever, recent legislation targeting carbon dioxide emissions has
increasingly challenged the use of gasoline as a fuel source for
railway vehicles. To address this issue, railway operators and
governments have attempted to electrify railway tracks, only to
face significant obstacles like exorbitant costs and grid stability
concerns, particularly in urban areas [2]. As renewable energy
systems rapidly expand and political focus shifts towards clean
energy, the railway industry has turned to hybrid propulsion
systems that harness renewable energy sources for powering
railway vehicles [3]. In the context of sustainable travel models,
Transit-Oriented Development (TOD) has emerged as a key
strategy for encouraging environmentally friendly and efficient
transportation systems. The existing literature highlights the
importance of TOD in sustainable urban planning and its role

Abbreviations: DP, Dynamic programming; FCHTs, Fuelcell hybrid trains; HTS, Hybrid
train simulator; MINLP, Mixed integer non-Linear programming; MOA, Mayfly
optimisation algorithm; MPC, Model predictive control; PMP, Pontryagin’s maximum
principle; PWNL, Piecewise non-linearisation; SC, Super capacitor.
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in promoting the use of energy-efficient public transportation
solutions [4, 5]. Unlike conventional railway vehicles, hybrid
trains are inherently complex in terms of design and opera-
tion. The combination of hydrogen fuel cells and batteries in
hybrid propulsion systems is gaining popularity as a means of
decarbonising railway operations, particularly on less densely
trafficked routes where electrification is not economically
viable [6].

The challenges of hybrid transportation systems are mul-
tifaceted and include aspects such as hydrogen production,
refuelling station infrastructure, propulsion system topology,
power source sizing, and control mechanisms. A thorough
evaluation and optimisation of these aspects are crucial for facil-
itating the adoption and commercialisation of hybrid railway
vehicles [7, 8]. Optimisation in energy systems typically involves
identifying a single optimal solution to minimise or maximise
an objective function [6], which is the process of determining
the conditions or variable values that result in the minimum or
maximum of the function [9]. It is important to note that ‘opti-
misation’ and ‘improvement’ are not synonymous and should be
used judiciously [10]. The general optimisation problem seeks to
find the minima and maxima of an objective function subject to
specified constraints.
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Advancements in hybrid railway system technology have
spurred significant research on optimising hybrid trains, such as
developing energy management strategies for balancing battery
charge and discharge rates, minimising hydrogen consumption
and reducing fuel ageing costs. These strategies are scalable and
adaptive for conventional and bi-mode trains [11–13]. How-
ever, despite the extensive research on trajectory optimisation
for conventional trains, there is a gap in the literature concern-
ing hybrid railway vehicles. Existing methods and algorithms
may not be directly applicable to hybrid trains due to the
complexity and unique characteristics of their propulsion sys-
tems. Hybrid railway vehicles involve the integration of multiple
power sources, such as batteries and hydrogen fuel cells, which
present additional challenges in optimising energy management
and train dynamics.

In addressing the research gap, this study proposes a hybrid
optimisation algorithm that utilises a non-convex objective
function and considers both linear and non-linear constraints,
ultimately offering a more tailored and efficient solution for the
hybrid railway vehicles co-optimisation problem. The algorithm
focuses on identifying the best dataset, considering variables
such as time, distance, energy consumption, power distribu-
tion, traction forces, acceleration, and velocity. By employing
non-convex optimisation techniques, the need to convert non-
linear datasets into linear datasets is circumvented, avoiding
unnecessary noise and computational stress that often arise
from such conversions. Consequently, the proposed method
aims to maximise algorithm efficiency and deliver more accurate
results for hybrid railway vehicle optimisation. This innovative
approach holds the potential to contribute significantly to the
development of sustainable and efficient hybrid railway systems,
paving the way for further advancements in the field of green
transportation technologies.

The research presented in this paper offers several notable
contributions to hybrid railway vehicle optimisation and energy
management. These contributions can be summarised as
follows:

∙ The development of a hybrid optimisation algorithm tai-
lored specifically for hybrid railway vehicles, employing a
non-convex objective function. This algorithm is capable
of improving the efficiency of energy management sys-
tems in hybrid trains while simultaneously optimising their
trajectories.

∙ The proposed hybrid optimisation algorithm has implications
for the advancement of driving profile and guidance sys-
tems, paving the way for more efficient and sustainable hybrid
railway traction systems.

∙ The study also contributes to the broader field of evolu-
tionary optimisation processes for hybrid railway traction
systems, providing a solid foundation for future research and
development in this area.

The structure of this paper is as follows. Section 2 presents
the literature review along with a brief introduction to the hybrid
railway systems. Section 3 proposes the mathematical model of a
hybrid railway vehicle in detail, including the proposed optimisa-

tion algorithm model. Section 4 presents a case study employing
the proposed hybrid optimisation algorithm for hybrid railway
vehicles, where the existing hybrid train configuration is opti-
mised. Finally, Section 5 provides a conclusion for the study
presented in this paper and discusses future research directions.

2 LITERATURE REVIEW

2.1 Hybrid railway system

A hybrid railway vehicle can generally be described as a rail-
way vehicle equipped with two or more onboard power sources
[14]. Hybrid propulsion traction systems come in various con-
figurations, including a fuel cell combined with battery storage
or supercapacitors, a diesel engine with battery storage, or a
conventional bi-mode design featuring a pantograph and diesel
engine onboard [15]. Modern railway systems have increas-
ingly embraced hybrid traction systems due to their advantages
over conventional traction systems and governmental legisla-
tion driving railway manufacturers to prioritise hybrid traction
systems. Figure 1 provides a graphical illustration of the hybrid
railway vehicle used in this study.

2.2 Optimisation problem identification

A hybrid train’s journey, encompassing either a return or
one-way trip, is referred to as a hybrid train trajectory. Like
conventional railway vehicles, modern hybrid trains also face
certain deficiencies. The hybrid railway system is presently grap-
pling with the challenge of efficiently integrating multiple power
sources on board while concurrently optimising the energy
management system, taking into account the ergonomic utili-
sation of these power sources. By effectively addressing these
concerns, a hybrid train can attain optimal energy consump-
tion, efficient power distribution, and economical use of power
sources.

Trajectory optimisation for railway vehicles has garnered
significant attention in the literature, particularly concerning
conventional trains. In a study conducted by [16], the authors
formulated an optimal control problem aimed at minimising the
energy consumption of a train travelling between two stations.
They employed a continuous-time optimal control approach
and resolved the problem using a direct transcription method in
conjunction with non-linear programming. Similarly, in a study
by [17], the authors proposed an optimisation approach based
on dynamic programming for train trajectory optimisation in
the context of energy conservation. They examined the influ-
ence of various factors, including train mass, traction resistance,
and track gradient, on the optimised trajectory.

In recent years, numerous optimisation techniques have been
deployed to tackle the train trajectory optimisation problem.
For instance, [18] utilised a model predictive control (MPC)
strategy to optimise train trajectories while taking into account
energy efficiency and travel time. The authors demonstrated
that the MPC-based approach could optimise both the energy
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FIGURE 1 Hybrid railway vehicle equipped with hydrogen fuel cell and battery propulsion system.

consumption and travel time of high-speed trains. Another
study by [19] implemented a genetic algorithm to optimise
the train speed profile and minimise energy consumption for
regional trains subject to a fixed travel time constraint. A variety
of energy management optimisation methods have been pro-
posed and explored, including state machine strategies, fuzzy
logic control, equivalent consumption minimization strategies,
and more [20, 21]. Contemporary research predominantly
focuses on fixed power demand [22]. One study [12] leverages
the convexity of the specific consumption curve to enhance fuel
economy and designs a scalable energy management strategy
based on a suggested power-demand curve. Another study [23]
employs an online extremum-seeking method to estimate the
maximum efficiency and power points of a fuel cell.

In the context of fixed-speed trajectories for fuel cell hybrid
trains (FCHTs) [24], researchers have divided the trajectory into
four states: traction, braking, coasting, and station parking. They
then distribute power between the fuel cell and supercapac-
itor (SC) using a multi-mode equivalent energy consumption
method. Building on this work [25], researchers have extended
the approach to multiple fuel cells, splitting power among them
through an equivalent fitting circle method and optimizing SC
power output via an equivalent energy consumption method.

Yan et al. [26] optimised the speed trajectory to minimise
energy consumption and determined a hybrid system control
strategy based on minimum hydrogen consumption. Another
study [27] proposed a rule-based energy management strategy
to maximise regenerative braking energy recovery. A different
method [28] used the motor characteristic curve, supercapac-
itor capacity, maximum acceleration, and other information
to obtain the braking process speed trajectory, ensuring that
the supercapacitor captures more regenerative braking energy.
However, this method does not account for fuel cell efficiency.
Sequential optimisation was applied in [29] to enhance fuel effi-
ciency potential, developing a speed-smoothing strategy first,
followed by battery charge optimisation based on the smoothed
speed profile. Yet, train control strategies that directly impact
traction energy demand are not included in the energy manage-

ment process during the sequential optimisation process. This
exclusion may compromise the effectiveness of the optimisation
methods.

Genetic algorithms have demonstrated success in optimising
single-train trajectories for DC traction systems in the context
of solving linear optimisation problems [30–36]. In compari-
son, dynamic programming has exhibited superior performance
over genetic and ant colony optimisation algorithms, partic-
ularly when the solution space converges during the process
of finding a solution [37]. On the other hand, brute force
[38, 39] and direct search optimisation methods [40, 41] have
proven to be inefficient, slow, and non-constructive in contrast
to metaheuristic techniques. Predominantly, optimisation tech-
niques employ a convex linear cost function. Although convex
optimisation is time-efficient and relatively straightforward to
implement, it provides a single optimal global solution with
the potential uncertainty of a feasible solution to the problem
[42–46]. In contrast to convex optimisation, non-convex opti-
misation functions examine multiple locally optimal solutions in
order to explore a viable global solution to the problem. While
non-convex optimisation is comparatively slower, it is highly
efficient and offers a guaranteed optimal solution [47–51].

In the field of hydrogen & energy reduction for hybrid trains,
recent research has explored various methods for co-optimizing
train control strategies and onboard energy management simul-
taneously. In studies [52, 53], Pontryagin’s Maximum Principle
(PMP) and Dynamic Programming (DP) were integrated to
address this issue by using the Hamiltonian as the objec-
tive function for DP. However, this approach was inherently
limited by the “curse of dimensionality” and boundary-value
problems. Peng et al. [54] proposed dynamic programming
for co-optimising train driving cycles and energy manage-
ment in fuel cell trains. They suggested parallelising DP to
reduce computation time. Nonetheless, as the dimension of
state variables in the dynamic programming model increases,
the algorithm’s calculation time also rises significantly due to
its inherent characteristics. Jibrin et al. [55] tackled the co-
optimisation of energy management and speed trajectory by
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formulating a convex optimisation model, employing convexity
relaxation techniques to significantly improve calculation effi-
ciency. However, convex optimisation necessitates that every
constraint in the model is convex, which can limit the model’s
flexibility. In summary, current state-of-the-art studies have
utilized Dynamic Programming and convex programming to
address co-optimisation, highlighting the benefits of applying
co-optimisation to hybrid trains. However, these methods still
face limitations and challenges that need to be addressed.

In the above-mentioned research, co-optimisation primarily
employs dynamic programming [52–54] and convex optimi-
sation [55]. However, this paper proposes a new method to
address the co-optimisation problem, investigating the energy-
saving mechanism of hybrid trains using the co-optimisation
model based on Mixed Integer Non-Linear Programming
(MINLP). Furthermore, there is a need for further explo-
ration into the energy-saving potential of the regenerative
braking process and the enhancement of fuel cell efficiency
during application by leveraging the hybridisation of both fuel
cells and onboard energy storage devices. Although optimisa-
tion algorithms have been successfully applied in the railway
industry for conventional railway vehicles, a gap remains in
the literature regarding hybrid railway vehicles, whose propul-
sion systems’ complexity and unique characteristics present
additional challenges in optimising energy management and
train dynamics. Consequently, there is a growing demand for
innovative optimisation algorithms tailored to hybrid railway
systems.

Existing research predominantly concentrates on optimisa-
tion techniques for conventional railway vehicles, leaving a
noticeable gap in the application of these methods to hybrid rail-
way systems. Hybrid railway vehicles possess unique propulsion
system topologies compared to conventional trains, necessitat-
ing the development of advanced optimisation algorithms to
effectively address their distinct challenges. These challenges
include linear and non-linear constraints associated with hybrid
railway vehicles, such as power source sizing, energy manage-
ment, and train dynamics. To address this research gap, this
study proposes a novel approach that utilises non-convex opti-
misation techniques, allowing for the optimisation of non-linear
variables without conditioning while remodelling them as a lin-
ear dataset. This method aims to reduce the noise in the dataset
for optimisation caused by conditioning the benchmark dataset,
thereby enhancing the results and efficiency of the optimisation
process.

The proposed optimisation technique is based on numerical
and metaheuristic algorithms to address the optimisation prob-
lem in hybrid railway vehicle traction systems by developing
a time-based MINLP co-optimisation model. The optimisa-
tion method employs a non-linear programming solver to
solve the problem, interpreting it through a non-convex,
improved Rosenbrock function combined with a highly effi-
cient, improvised “Mayfly Algorithm.” The Mayfly Optimisa-
tion Algorithm (MOA) has emerged as a promising technique
inspired by mayflies’ unique behaviour and short lifespan
[56]. MOA mimics the swarming and mating behaviours
of mayflies, where the algorithm represents each mayfly as

a candidate solution searching for the global optimum in
the problem’s search space. The short lifespan of mayflies
encourages rapid exploration and exploitation of the search
space, leading to faster convergence and improved results [57,
58]. The Rosenbrock function is a non-linear, non-convex,
and continuous function that poses a significant challenge
for optimisation algorithms due to its narrow and curved
valley containing the global minimum [59]. By employing
the MOA to optimise the Rosenbrock function, researchers
can assess the algorithm’s accuracy, precision, and efficiency
in handling complex optimisation problems with intricate
landscapes.

Several studies have reported the successful application
of the MOA to various optimisation problems, including
those involving the Rosenbrock function [60–63]. These stud-
ies have demonstrated that MOA can provide accurate and
precise solutions for complex optimisation problems. More-
over, the algorithm has proven to be efficient in terms of
convergence speed and computational complexity when com-
pared to other metaheuristic algorithms [64, 65]. This study
focuses on determining an optimal hybrid train trajectory for
a mid-range light hybrid rail vehicle on typical British cross-
country and intercity railway routes. The hybrid train simulator
[66] is used for benchmark simulation, and the proposed
algorithm can simultaneously optimise multiple hybrid train
trajectories.

3 METHODOLOGY

3.1 Hybrid railway vehicle modelling

In general, distance-based mixed-integer linear programming
(MILP) models are employed to identify the optimal speed tra-
jectory for railway vehicles, where distance represents known
parameters and time serves as variable parameters. However, the
substantial computational effort is necessary when determin-
ing the power from onboard power sources, typically calculated
using the formula Pi = Ei∕tt . It is essential to recognise that
both energy and time are variables, and the linearisation of the
ratio in the MILP model leads to computational complexity due
to the significant magnitude difference and non-linear relation-
ship between energy consumption and the corresponding time
in the ith distance step.

As an alternative, this study proposes a time-based mixed-
integer non-linear programming (MINLP) model to circumvent
this non-linear relationship, where time is a known parameter,
and distance is a variable parameter. The hybrid train’s speed at
each time step is determined by the MINLP model, assuming
that the train accelerates and decelerates uniformly in each time
step. The speed trajectory is divided into n time steps, and the
train travels through each step within a fixed time period, the
length of which is set to 1 s per step in this case study. The
distance travelled in the ith step is denoted by Δdi .

The vehicle dynamics of the hybrid train were developed by
using the Lomonosff equation based on Newton’s second law
of motion, as shown in Equation (1):
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Mt (1 + 𝜆)
d 2s

dt 2
= TE −

[
C

(
ds

dt

)2

+ B

(
ds

dt

)
+ A

]
− Mt g sin (𝛼) (1)

It is assumed that the train maintains a steady rate of accelera-
tion or deceleration in each time interval. As a result, the change
in distance Δdi can be computed by using Equation (2).

Δdi = (Δt × vv ) (2)

where vi is the hybrid train velocity in the ith time step calculated
by Equation (3).

vi =
1
2
× (vi + vi+1 ) (3)

In order to determine the number of steps needed for the
simulation, the total running time T and travel distance D are
considered. Which allows us to calculate the number of steps by
n = T∕Δt . As a result, the overall distance covered by the train
must adhere to the imposed constraint as given by Equation (4).

D =

n∑
i=1

Δdi (4)

The traction forces exerted on the hybrid train are described
by Davis’s equation presented in Equation (5).

Ri = Cv2
i + Bvi + A (5)

where A, B and C are empirical constants representing the
rolling resistance of a hybrid train, and Ri represents the drag
resistance in the ith step.

The acceleration and deceleration values, which are calculated
using Equation (6), are set to ensure the safe operation of the
hybrid train without exceeding their maximum values.

Aacc,max ≥ (vi+1 − vi )∕Δt = ai ≥ Adec,max (6)

where Aacc,max is maximum acceleration and Adec,max is the max-
imum deceleration rate of the hybrid train. The speed limit on
the train is imposed by using Equation (7).

vi ≤ vi,lim (7)

The traction energy of the hybrid train is calculated by using
Equation (8).

ETotal =
1
2
× M ∗

(
v2
i+1 − v2

i

)
+ ΔhiMg + RiΔdi (8)

where M is the total weight of the hybrid train, g is the accel-
eration due to gravity, Δhi is the difference between the route’s
gradient. The traction power of the hybrid train is calculated by

using Equation (9).

PTotal = Ft vi + Paux + Ploss (9)

where Ft are traction forces, vi is the velocity of the hybrid train,
Paux is the auxiliary power used onboard and Ploss presents the
power losses along the drive train. The state of charge of the
hybrid train is calculated by using Equation (10).

SOCBatt =
Einitial +

∑i

j=1 E j ,charg −
∑i

j=1 E j ,disch

Ecapacity
(10)

where Einitial is the initial available charge in the battery. Ecapacity

is the total capacity of battery. E j ,charg is the charging energy at
ith step. E j , disch is the discharging energy at ith step.

The output power of the fuel cell should not exceed the rated
power, and the charging and discharging power of the battery
should be within the rated charging and discharging power lim-
its. These constraints are established based on the following
conditions.

Ei,FC ≤ PFC , max Δt

E j ,charg ≤ Pd , max Δt

E j ,disch ≤ Pc, max Δt

(11)

where PFC , max is the fuel cell’s maximum output power. Pd , max

is discharging power of the battery and Pc, max is charging power
of the battery.

3.2 Proposed hybrid optimisation model

The authors propose a novel hybrid optimisation algorithm,
grounded in sequential hybrid optimisation techniques, to
achieve optimised energy consumption for hybrid railway vehi-
cles by focusing on train trajectory and energy efficiency. This
hybrid optimisation algorithm is developed in MATLAB, which
employs a numerical programming solver, ‘fmincon’, to tackle the
non-convex optimisation problem and optimise the test func-
tion subject to non-convex constraints. The proposed hybrid
algorithm follows a sequential optimisation method, consid-
ering both global and local search to ensure convergence
speed and optimisation accuracy based on Speed Trajectory
Optimisation and Energy Management Optimisation. Several
techniques are incorporated to compensate for the limitations
of one method with others, ultimately achieving an optimal
solution. A numerical approach using MINLP and Piecewise
Non-Linearisation (PWNL) is employed to execute complex
mathematical operations.

The Speed Trajectory and Energy Management Optimisation
functions are subject to non-linear “convex and non-convex”
constraints, with the forecast function performing non-convex
optimisation. The hybrid railway vehicle dataset utilised in this
study encompasses train and route specifications, gradient, dis-
tance, energy consumption, power demand, traction forces,
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FIGURE 2 Framework schematic of hybrid railway vehicle trajectory optimisation algorithm.

velocity, and acceleration. The entire optimisation objective is
to optimise the energy management of the hybrid train, which
depends on speed trajectory and energy efficiency. Conse-
quently, the process is divided into two steps: Speed Trajectory
and Energy Management Optimisation. The Speed Trajectory
Optimisation utilises the hybrid train’s position data, including
distance, speed, and acceleration components, from the bench-
mark dataset, generating trajectory points for Energy Manage-
ment Optimisation. The latter uses the remaining benchmark
dataset elements, which include power, energy, and traction
forces. The mathematical model of the proposed optimisa-
tion algorithm is discussed in the following section. Figure 2
shows the framework schematic of the hybrid railway vehicle
trajectory optimisation by utilising the proposed optimisation
algorithm.

3.3 Speed profile related variables

In the Mixed-Integer Non-Linear Programming (MINLP)
model, a range of variables associated with speed is incor-
porated, exhibiting a non-linear relationship between them.
To manage these non-linear relationships, Piecewise Non-
Linearisation (PWNL) is employed. PWNL enables the rep-
resentation of a non-linear function through a series of
non-negative variables. Initially, variables such as distance,
velocity, and acceleration of the train at the ith step is
utilised to indicate the train’s position and is expressed by
Equations (12)–(14).

di =

t∑
i=1

(d (xi )) (12)

vi =

t∑
i=1

(v (xi )) (13)

ai =

t∑
i=1

(a (xi )) (14)

where t represents the constraints on speed and acceleration,
which are based on the distance, while xi denotes the variables
of a special order set. The hybrid train’s inequality constraints
for the Speed Trajectory subset, derived from the benchmark

dataset, are modelled using Equation (15):

dmin < dx < dInst i f (dcurrent > 0) ,

vmin < vx < vInst i f (dcurrent > 0)

amin < ax < aInst i f (acurrent > 0)

aInst < ax < amax i f (acurrent ≤ 0)

(15)

In Equation (15), minimum limits for the distance, veloc-
ity, and acceleration vectors are represented by dmin, vmin and
amin, respectively. Conversely, dmax , vmax and amax signify the
maximum limits for distance, velocity, and acceleration. The
instantaneous rates of the distance, velocity, and acceleration
vectors are denoted by dInst , vInst and aInst , respectively. The
scalar value of the iterative time counter for the distance data
from the benchmark trajectory is equal to dcurrent . Furthermore,
d (xi ), v(xi ) and a(xi ) represent the instantaneous points at a
specific iterative time counter i.

3.4 Energy management related variables

In this model, the final energy consumption of the hybrid
train is calculated using traction power and tractive forces. The
energy consumption rate for a hybrid train is closely asso-
ciated with its output power and is typically represented in
relation to normalised power. Consequently, within this pro-
posed method, the energy consumption rate can be modelled
by using Equations (16)–(18):

P
(
x′

i

)
=

N∑
j=1

S∑
i=1

t ′∑
x′

i, j=1

P (x′
i, j ) (16)

F
(
x′i

)
=

N∑
j=1

S∑
i=1

t ′∑
x′

i j
=1

F (x′i, j ) (17)

E
(
x′i

)
=

N∑
j=1

S∑
i=1

t ′∑
x′

i, j=1

E (x′i, j ) (18)

In this model, N denotes the constraints on Power, Energy,
and Tractive Forces, while S represents the limits on the number
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of stations encountered during each route journey. Additionally,
t ′ signifies the constraints on the time required for the route
journey in order to consume the total Power and Energy. This
approach ensures a comprehensive and structured representa-
tion of the various factors influencing the hybrid train’s energy
consumption. The hybrid train inequality constraints of the
energy consumption model are represented by Equation (19).

Pmini, j
< P

(
xi j

)
< Pinsti, j

i f
(

Pinsti, j
> 0

)
Pinsti, j

< P
(
xi j

)
< Pmaxi, j

i f
(

Pinsti, j
≤ 0

)
Emini, j

< E
(
xi j

)
< Einsti, j

i f
(

Einsti, j
> 0

)
Einsti, j

< E
(
xi j

)
< Emaxi, j

i f
(

Einsti, j
≤ 0

)
Fmini, j

< F
(
xi j

)
< Finsti, j

i f
(

Finsti, j
> 0

)
Finsti, j

< F
(
xi j

)
< Fmaxi, j

i f
(

Finsti, j
≤ 0

)
(19)

where Pmini, j
, Pinsti, j

and Pmaxi, j
are the minimum instantaneous

and maximum power values of the traction power subset.
Emini, j

, Einsti, j
and Emaxi, j

are the minimum, instantaneous and
maximum values of the energy subset. Fmini, j

, Finsti, j
and Fmaxi, j

are the minimum, instantaneous and maximum power val-
ues of the traction forces subset. P (xi, j ),E (xi, j ) and F (xi, j )
represent the instantaneous points of power, energy and trac-
tion forces at the instantaneous time i, which is an iterative
counter.

3.5 Forecast function (non-convex
constraints)

The forecast function, incorporated from the Mayfly algorithm,
serves as an equality constraint representing the hybrid train’s
journey time by analysing the route’s total distance and energy
consumption. Equation (20) presents the forecast equation,
which analyses the speed profile variables, including velocity,
acceleration, and distance, in order to determine the duration
of the journey successfully. This method allows for a thor-
ough evaluation of the hybrid train’s performance, ensuring
that the optimisation process takes into account all relevant
factors.

Gbest (xi + 1) =
t∑

x = 1
Gbest (xi ) +

t̄∑
x = t

(2Gbest (xi ) − d (xi − 1) ,

× i f (G (xi − 1) > Gbest (xi − 1))
(20)

where t̄ denotes the forecasted journey time while Gbest (xi )
and 2Gbest (xi ) represent the instantaneous route gradient rates
at the ith iterative time counter from the forecast trajec-
tory. (G (xi − 1) corresponds to the distinct set of gradient
values from the starting point of the route journey. Addition-
ally, Gbest (xi − 1) is associated with the forecast value of the
starting time for the route journey. Meanwhile, Gbest (xi + 1)
signifies the forecast value of the journey time at the
next point along the route. This comprehensive approach

ensures that all relevant factors are taken into consideration
when predicting the hybrid train’s performance and journey
time.

G ′
best

(
x′i, j + 1

)
=

N∑
j = 1

S∑
i = 1

⎛⎜⎜⎝
t ′∑

x′= 1

G ′
best

(
x′i, j

)

+

t ′∑
x′=t ′

2G ′
best

(
x′i, j

)
− G ′

(
x′i, j − 1

)⎞⎟⎟⎠
× i f

(
G ′

(
x′i, j − 1

)
> G ′

best

(
x′i, j − 1

))
(21)

The forecasted journey consumption of power, traction
forces, and energy subsets from the energy management opti-
misation set are derived from the forecasting executed in
Equation (21). The forecast equation serves to estimate the total
energy needed to complete the journey time by predicting the
energy and power sets of the forecast trajectory. This method
enables a comprehensive understanding of fuel requirements,
allowing for more accurate and efficient energy management
throughout the journey. Here, t ′ denotes the forecasted journey
time. G ′

best (x′i, j ) and 2G ′
best (x′i, j )represent the unique instanta-

neous points of the energy management-related vector at the
respective time, station, and vector counters from the forecast

trajectory, as evaluated using Equation (21). G ′(x
′,
i, j − 1) cor-

responds to the unique point at the first time-step backward
journey time counter, originating from the instantaneous time
iterative counter of the Energy Management vector within the
benchmark trajectory.

Meanwhile, G ′
best (x′i j − 1) signifies the unique point at the

first time-step backward journey time iterative counter from
the instantaneous journey time iterative counter of the Energy
Consumption vector within the optimised trajectory. Lastly,

G ′
best (x′i j + 1) corresponds to the unique point at the ini-

tial time-step forward journey time iterative counter from the
instantaneous time iterative counter of the core vector in the
optimised trajectory. The forecast Equation (22) evaluates the
first iteration of the optimisation process to the final time of the
benchmark trajectory.

G ′
best

(
x′i j + 1

)
=

N∑
j = 1

S∑
i = 1

⎛⎜⎜⎝
t ′∑

x′= 1

G ′
best

(
x′i

)

+

t ′∑
x′=t ′

G ′
best

(
x′i j − 1

)
− 2G ′

best

(
x′i j

)⎞⎟⎟⎠
× i f

(
G ′

(
x′i j − 1

)
< G ′

best

(
x′i j − 2

))
(22)

where G ′(x′
i j
− 2) corresponds to the unique point of the 2

(s) time-step backward journey time counter from the instanta-
neous time iterative counter of the energy consumption vector
of the benchmark trajectory.
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3.6 Test function

The evaluation of the speed profile-related variables of the
hybrid train from the benchmark trajectory is conducted by
using a single non-convex test function. The proposed objective
function employed for the benchmark dataset is as follows:

f (xi ) =

[
105−m

t∑
x = 1

(
G (xi + 1) − G (xi )

2
)2

+

(
1 − G (xi )

2

1015

)]
(23)

In the proposed objective function, G (xi + 1) represents the
scalar distance value of the distance variable for a one-second
time-step forward from the instantaneous journey time iterative
counter within the benchmark trajectory. The function f (xi )
has a mean of zero and a variance of one. Additionally, m is a
design constant with a set value of 3 for the distance vector in
the benchmark journey.

Conversely, the performance evaluation of the energy
management-related variables subset, which represents the trac-
tion power, energy, and traction forces subset model, is assessed
through an alternative approach and presented in Equation 24.
This method takes into account the unique characteristics and
requirements of the energy management subset within the
hybrid train trajectory optimisation process.

f ′
(

x′i, j

)
= 105−m′

N∑
j = 1

S∑
i = 1

t ′∑
x′= 1

(
G ′

(
x′i, j + 1

)

− G ′
(

x′i, j

)2)2

+

(
1 − G ′

(
x′i, j

)2)
(24)

In the above equation, f ′(x′i, j ) evaluates the data from the
initial to the final time of the iterative station and subset counter
while also considering the sum of the differences from the scalar
value of the instant journey time, station, and subset iterative
counters, respectively. The term x′i, j + 1 denotes a one-second
time step forward in the journey from the instant iterative
time counter of the iterative station and subset counter of the
benchmark subset. G (xi + 1) signifies the unique value of a
single subset of the forward journey time iterative counter of
the iterative station and subset counter within the benchmark
subset.

The test function has a mean of zero and a variance of one,
with m′ representing the design constant with values ranging
from 0 to 24 for the core journey dataset. The design parameters
for the cost function were established as follows:

m′ =

{
0 to 13, i f

(
t ′ > 2000

)
14 to 24 i f

(
t ′ < 2000

) (25)

3.7 Optimisation function (non-convex
constraints)

The optimisation function aims to minimise the isolated per-
formance value of the test function and returns the optimised
performance point from the core set of the journey’s current
time counter. Equation (26) calculates the optimised speed tra-
jectory at the optimised journey time for speed profile and
position-related variables. At each iteration from the initial time
to the benchmark journey time, f (xi ) evaluates and returns a
scalar performance value, which is then passed to the optimi-
sation function as depicted in Equation (26). This optimisation
function aims to minimise the scalar performance value of the
test function. As a result, it yields the optimised unique per-
formance point and the isolated distance value for the current
journey time counter from the distance vector of the optimised
trajectory, as demonstrated in Equation (26).

[ Gbest (xi ) , fbest (xi )] = mind

t∑
x = 1

f (xi ) (26)

The instantaneous optimised performance function, denoted
as fbest (xi ) corresponds to the instant time ranging from 1 s to
the benchmark journey time and is subject to the non-linear
inequality constraints of the hybrid train, as mentioned in Equa-
tion (15). Gbest (xi ) represents the instantaneous optimised value
of the distance and time non-linear dataset for the optimised
performance function. The time of the optimised reference
journey, Gbest (xi ) coincides with the benchmark reference jour-
ney time, (xi ) t . The journey time of the optimised trajectory,
Gbest (xi ), is replaced with the best journey time. By minimis-
ing the instantaneous value of the performance function at each
iteration from the starting time to the benchmark journey time,
the optimised distance vector is determined.

The f ′(x′i, j ) from Equation (24) returns the optimised energy
management-related variables and passes them to the optimi-
sation function in Equation (27). This optimisation function
denoted as [ G ′

best (x′i j ), f ′
best

(x′i j )] minimises the instantaneous
performance value at each iteration of the time and station
counter. As a result, the function returns the optimised perfor-
mance value and the optimised energy consumption dataset for
the hybrid train trajectory.

[
G ′

best

(
x′i j

)
, f ′

best

(
x′i j

)]
= mind ′

N∑
j = 1

S∑
i = 1

t ′∑
x′= 1

f ′
(

x′i j

)
(27)

where f ′
best

(x′i j ) represents the instantaneous optimised per-
formance function with respect to the instantaneous time
counter iterating from the initial time of the benchmark trajec-
tory and the instantaneous station counter iterating from the
initial station to the final station of the benchmark trajectory.
These iterations are subject to the inequality constraints of the
hybrid railway vehicle stated in Equation (19). G ′

best (x′
i j

) is the
instantaneous value of the energy management-related variables
of the optimised performance function. The optimised distance
variable is evaluated by minimising the immediate value of the
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TABLE 1 List of test functions used to calibrate the proposed hybrid
optimisation algorithm.

Function Equation Source

Sphere f1 (x ) =
t∑

i = 1
Gx2

i+1 [67]

Griewank f2 (x ) =
1

4000

t∑
i = 1

Gx2
i
−

t∏
i = 1

cos(
xi√

i
) + 1) [68]

Rastrigin f3(x ) = [(10t ) +
t∑

x = 1
(G (x )2 − Acos(2𝜋x )] [69]

Schaffer f4 (x ) = 0.5 +
sin2 (

∑t

i = 1 Gx2
i

)−0.5

(1+0.001 (
∑t

i = 1 Gx2
i

))
2 [70]

Rosenbrock f5 (x ) =
t−1∑

i = 1
100 (Gx2

i+1 − Gxi )
2
+

(Gxi − 1)2 {
−50 ≤ xi ≤ 50

i = 1, 2

[71]

Ackley f6 (x ) = −20 exp[−0.2
√

1

d

t∑
i = 1

Gx2
i
] −

exp[
√

1

d

t∑
i = 1

cos(G2𝜋xi )] + a + exp(1)

[72]

performance function at each iteration of the time, station and
vector counter.

3.8 Hybrid optimisation algorithm
calibration

The hybrid optimisation algorithm underwent a calibration pro-
cess using various test functions to ensure a robust and efficient
cost function. These test functions comprised benchmark data,
which was then evaluated by the optimisation and forecast
functions. The calibration process employed a combination of
typical non-convex and convex objective functions to fine-tune
the algorithm’s performance. The specific test functions utilised
for calibrating the hybrid optimisation algorithm are detailed
below (Table 1).

In above equation G (x )2 represents the unique data sub-
set of speed profile and energy management-related vari-
ables. The function is evaluated on the hypercube xi . t

represents the dimension of the solution space of each
function.

3.9 Hybrid algorithm performance
validation

3.9.1 Parameter settings

A series of experiments were conducted on the hybrid optimi-
sation algorithm to assess its performance. The non-negative
constant, k, was utilised in this study to evaluate the convex
and non-convex sets and was initially introduced in the forecast
Equation (22). The hybrid optimisation algorithm was tested
with various values of k, including k = {1, 2, 3, … , 8}. The
dimensions tested within the vector space of the hybrid algo-
rithm were chosen based on the route journey time, t , which
was approximately 35 min. This selection ensured a comprehen-
sive assessment of the algorithm’s effectiveness across different

TABLE 2 Optimisation of Rastrigin, Ackley & Griewank test functions by
the hybrid algorithm with k = {1, 2, 3, … , 8}.

Test functions Rastrigin (f1 ) Ackley (f2 ) Griewank (f3 )

No. of

iterations Mean Mean Mean

k = 1 15 1.86E-06 2.86E-03 1.06E-05

k = 2 10 3.08E-08 1.58E-05 2.98E-07

k = 3 19 2.99E-09 1.49E-06 3.47E-08

k = 4 21 6.59E-10 6.96E-07 7.96E-09

k = 5 17 2.15E-09 1.14E-06 2.84E-08

k = 6 10 7.99E-09 7.58E-06 8.68E-08

k = 7 12 9.59E-08 8.69E-05 7.69E-07

k = 8 14 4.81E-06 2.11E-03 3.19E-05

TABLE 3 Optimisation of Schaffer, Rosenbrock & Sphere test functions
by the hybrid algorithm with k = {1, 2, 3, … , 8}.

Test functions No. Schaffer (f4 ) Rosenbrock (f5) Sphere (f6 )

No. of

iterations Mean Mean Mean

k = 1 15 2.96E-04 1.88E-08 2.85E-07

k = 2 10 1.99E-06 1.60E-10 2.31E-06

k = 3 19 2.48E-07 1.50E-11 2.99E-09

k = 4 21 5.96E-08 7.03E-12 8.97E-05

k = 5 17 2.19E-07 1.15E-11 3.54E-07

k = 6 10 6.88E-07 7.66E-11 8.51E-08

k = 7 12 7.67E-06 8.78E-10 8.69E-07

k = 8 14 3.41E-04 2.13E-08 2.58E-07

scenarios, ultimately contributing to the development of an
optimised trajectory for hybrid railway vehicles.

3.9.2 Experimental results

The validation results for the Rastrigin, Ackley, Griewank,
Schaffer, Rosenbrock, and Sphere functions, as discussed in
Section 3.8, are presented in Tables 2 and 3. The parameter
k in the hybrid algorithm sets the optimisation parameters by
manipulating key aspects of the optimisation function, which
subsequently results in the exploration and exploitation of the
optimised dataset. As the k value in optimisation iterates from
zero to a random value, there is an observed increase in the
exploitation and a decrease in the exploration of the hybrid
algorithm. The experimental results suggest that, for each test
function optimisation, the best mean value of the optimised
function initially decreases, thereby improving the solution.
However, as the value of k increases, the solution deteriorates
at specific points in certain cases, two of which are illustrated in
Figure 3.
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FIGURE 3 The variations of the best mean value of the Rosenbrock and Rastrigin function with respect to k values of the hybrid algorithm.

It was observed that the performance of the hybrid algo-
rithm employing the Rosenbrock test function with k =

{4, 5 & 6} outperformed all other test functions. The Rastri-
gin function demonstrated performance levels nearest to the
Rosenbrock function; however, for the final implementation,
only the Rosenbrock test function was used to perform the case
study presented in Section 4. This decision was made based on
the superior performance of the Rosenbrock function in the
validation results, which indicated its suitability for effectively
optimising hybrid railway vehicle trajectories.

4 CASE STUDY

In this research, the case study is conducted by employing a
comprehensive simulation of benchmark trajectories for the
hybrid railway vehicle, utilising the hybrid train simulator devel-
oped by the author in a previous study [66]. The simulation
results derived from these benchmark trajectories are sub-
sequently fed into the novel hybrid optimisation algorithm,
specifically designed to optimise the single train trajectory of
the hybrid railway vehicle.

The case study aims to demonstrate the significant improve-
ments achieved through the application of the proposed hybrid
optimisation algorithm, such as a substantial reduction in energy
consumption and more efficient utilisation of power sources
throughout the journey. Moreover, the study will examine the
delicate balance between energy and time trade-offs, which
is critical in real-world applications of hybrid railway systems.
A detailed block diagram illustrating the various stages and
components of the optimisation operation is presented in
Figure 4. This graphical representation offers further insights
into the intricacies of the proposed algorithm, thus facilitating
a deeper understanding of the underlying optimisation pro-
cess and its implications for hybrid railway vehicle trajectory
optimisation.

4.1 Route selection

In this case study, the author has undertaken a detailed anal-
ysis of four distinct routes, each chosen for its representation
of British cross-country and intercity travel. Spanning a range
of distances from 22 to 200 km, these routes were care-
fully selected to provide a comprehensive and representative
overview of rail travel within the UK. Each route is subject to a
unique speed limit, as mandated by the regulations of Network
Rail. While the speed limits of each route were not included
in Table 4 due to the complexity of multiple speed limits
across longer routes, they were taken into consideration in the
analysis.

Table 4 provides an overview of the name and distance of
each route, which is instrumental in understanding the scope
and scale of this case study. The diverse selection of routes
ensures that the findings of this analysis can be applied to
a broad range of travel scenarios, thus contributing to the
development of more effective and efficient rail travel in the
UK.

4.2 Vehicle selection

In this case study, a heavily modified British Class 150 rail vehi-
cle equipped with a hybrid propulsion system has been chosen
as the subject of analysis. Originally, the British Class 150 diesel
train was fitted with a pair of 213 kW Cummins engines, deliver-
ing a combined output power of 426 kW. For this investigation,
the diesel engine was replaced with a 300 kW hydrogen fuel cell
system and a 120.24 kWh battery pack, capable of providing
120 kW of power at a 1C discharge rate. It should be noted
that the author’s previous research has utilised a different vari-
ant of the same vehicle and route [4]. The specifications of the
hybrid British Class 150 train under investigation, are presented
in Table 5.
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FIGURE 4 Block diagram of the optimisation process.

4.3 Trajectories simulation

Table 6 presents benchmark and optimised trajectories of a
hybrid train for four different routes, comparing various power,
energy, performance, and range parameters. A detailed tech-
nical analysis of the table enables us to derive key insights
and assess the consistency of optimised values percentage
for essential parameters, such as total energy at wheels, total
energy at traction motor, the total energy required for a return
journey, journey time, average traction power at wheels, and
range.

4.3.1 Total energy at wheels

The optimised trajectories consistently demonstrate a reduction
in energy consumption at wheels for all routes. The reduction
percentages are 10.91% (Route 1), 12.04% (Route 2), 10.26%
(Route 3), and 10.61% (Route 4). This consistency highlights the
algorithm’s ability to optimise energy consumption for diverse
route profiles effectively.

4.3.2 Total energy at traction motor

The optimised trajectories display reduced energy consumption
at the traction motor for all routes: 12.07% (Route 1), 12.78%
(Route 2), 11.46% (Route 3), and 11.99% (Route 4). These
results indicate that the optimisation algorithm consistently
improves energy efficiency at the traction motor.

4.3.3 Total energy required for a return journey

A comparison between the benchmark and optimised trajecto-
ries reveals a decline in energy consumption for all routes. The
reduction percentages are 17.78% (Route 1), 16.29% (Route 2),
16.75% (Route 3), and 16.54% (Route 4). These findings suggest
the optimisation algorithm’s effectiveness in improving energy
efficiency.

TABLE 4 List of the routes utilised in the case study, along with their
corresponding distances.

Route No. Name Distance

1 Camphill – Birmingham New street 22.40 km

2 Birmingham Moor Street – Strafford-upon-Avon 78.58 km

3 Paddington – Marlow 100 km

4 Gloucester – Westbury 199.37 km

TABLE 5 Hybrid train specifications and efficiencies.

Parameter Value Efficiency Efficiency

Tare mass 74.2 t Drive train 87%

Starting tractive
effort

37.52 kN Traction motor 95%

Maximum
acceleration

0.5 m/s2 DC-BUS/IGBT 97.5%

Maximum speed 121 km/h Fuel cell 50%

Davis equation R = 1.5+0.006v
+ 0.0067v2

Battery 94.5% [73]

Fuel cell 300 kW

Battery 120.24 kWh

Auxiliary power 28 kW

Available hydrogen 74 kg

Energy available in
hydrogen tanks

2464 kWh

4.3.4 Journey time

The optimised trajectories across all routes feature a slight
increase in journey time compared to the benchmark values.
The differences range from 0.12 min (Route 1) to 0.48 min
(Route 4). This trend suggests that the optimisation algorithm
prioritises energy efficiency over minimising journey dura-
tion, which may be an essential consideration for real-world
applications.
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TABLE 6 Benchmark and optimised trajectories of hybrid train simulation results.

Route 1 Route 2 Route 3 Route 4

Parameter Benchmark Optimised Benchmark Optimised Benchmark Optimised Benchmark Optimised

Power

Fuel cell power 300 kW 300 kW 300 kW 300 kW 300 kW 300 kW 300 kW 300 kW

Battery power
@1-C rating

120 kW 120 kW 120 kW 120 kW 120 kW 120 kW 120 kW 120 kW

Auxiliary power 28 kW 28 kW 28 kW 28 kW 28 kW 28 kW 28 kW 28 kW

Fuel cell power at
wheels

237 kW 180 kW 237 kW 180 kW 237 kW 180 kW 237 kW 180 kW

Battery power at
wheels

105 kW 105 kW 105 kW 105 kW 105 kW 105 kW 105 kW 105 kW

Average traction
power at wheels

155 kW 127 kW 202 kW 173 kW 198 kW 170 kW 234 kW 201 kW

Energy

Fuel cell energy at
wheels

33 kWh 27 kWh 133 kWh 110 kWh 177 kWh 147 kWh 245 kWh 202 kWh

Battery energy at
wheels

22 kWh 22 kWh 83 kWh 84 kWh 96 kWh 98 kWh 151 kWh 152 kWh

Total energy at
wheels

55 kWh 49 kWh 216 kWh 190 kWh 273 kWh 245 kWh 396 kWh 354 kWh

Total energy at
traction motor

58 kWh 51 kWh 227 kWh 198 kWh 288 kWh 255 kWh 417 kWh 367 kWh

Total energy at
DC-BUS

59 kWh 52 kWh 233 kWh 204 kWh 295 kWh 265 kWh 428 kWh 373 kWh

Total auxiliary
energy

17 kWh 17 kWh 51 kWh 52 kWh 57 kWh 58 kWh 77 kWh 77 kWh

Total output energy
for traction &
aux

76 kWh 69 kWh 284 kWh 256 kWh 352 kWh 321 kWh 507 kWh 450 kWh

Regenerated energy
saved in battery

35 kWh 38 kWh 124 kWh 136 kWh 178 kWh 191 kWh 197 kWh 215 kWh

Total energy
required for a
return journey

90 kWh 74 kWh 356 kWh 298 kWh 394 kWh 328 kWh 641 kWh 535 kWh

Hydrogen required
for one return
journey

2.85 kg 2.43 kg 11.50 kg 9.71 kg 12.61 kg 10.92 kg 19 kg 16.11 kg

Range of train
(return journeys)

25 29 6 7 5 6 3 4

Journey time 34.80 min 34.92 min 106.02 min 106.57 min 119.15 min 119.68 min 164.70 min 165.18 min

Max velocity reached 96.56 km/h 93.00 km/h 96.54 km/h 92.98 km/h 124.83 km/h 121.27 km/h 160.93 km/h 157.37 km/h

Max acceleration

reached

0.52 m/s2 0.52 m/s2 0.53 m/s2 0.53 m/s2 0.48 m/s2 0.48 m/s2 0.55 m/s2 0.55 m/s2

Total Distance

Traveled

22.40 km 22.40 km 78.58 km 78.58 km 100 km 100 km 199.52 km 199.52 km

This increase in journey time can be seen as an energy-
time trade-off, where the algorithm accepts slightly longer
journey times in exchange for significant reductions in energy
consumption. This trade-off is particularly relevant in the
context of hybrid railway systems as it balances opera-
tional efficiency with environmental and economic concerns.
By reducing energy consumption, the hybrid train lowers

its operational costs. It contributes to reducing greenhouse
gas emissions and overall environmental impact. Therefore,
the energy-time trade-off achieved by the optimisation algo-
rithm demonstrates its value in addressing critical aspects
of sustainable transportation, making it a viable solution for
enhancing the performance and efficiency of hybrid railway
vehicles.
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4.3.5 Average traction power at wheels

Average traction power at wheels: The optimised trajectories
show a reduction in average traction power at wheels across
all routes. The reduction percentages are 18.06% (Route 1),
14.36% (Route 2), 14.14% (Route 3), and 14.10% (Route
4). This consistency indicates the algorithm’s effectiveness in
optimising traction power for improved efficiency.

By reducing stress on traction power, the optimised trajecto-
ries not only contribute to energy efficiency but also have the
potential to decrease maintenance requirements and increase
the life of power sources. Lower average traction power at
wheels means reduced wear and tear on mechanical compo-
nents, such as motors and gearboxes, as well as decreased
thermal stress on the electrical systems. As a result, maintenance
costs can be lowered, and the service life of critical components
can be extended, which ultimately leads to higher overall system
reliability and cost-effectiveness.

4.3.6 Range

The range of the train shows improvements in the optimised
trajectories for all routes. The increases are 16.00% (Route 1),
16.67% (Route 2), 20.00% (Route 3), and 33.33% (Route 4).
This improvement signifies enhanced operational efficiency.

4.3.7 Energy and power distribution

The optimised trajectories showcase the hybrid optimisation
algorithm’s effectiveness in reducing the fuel cell power at
wheels for all routes. This results in a more efficient energy
distribution between the fuel cell and battery systems. This
translates to decreased hydrogen consumption for one return
journey across all routes, with savings varying from 0.42 kg
(Route 1) to 2.89 kg (Route 4). The optimisation algorithm
thus demonstrates its capability to optimise energy sources for
hybrid railway vehicles.

4.3.8 Performance metrics and journey
characteristics

The optimised trajectories indicate improvements in several per-
formance metrics. The maximum acceleration reached remains
constant between the benchmark and optimised trajectories
across all routes, indicating that the optimisation process does
not compromise acceleration performance. The total distance
travelled remains the same for both benchmark and optimised
trajectories, highlighting the algorithm’s ability to achieve energy
efficiency without altering the route’s overall distance.

For brevity, the author focuses solely on Route 1,
“Camphill—Birmingham New Street,” for a visual presenta-
tion in this paper. The benchmark trajectory results indicate an
energy consumption of 90 kWh, utilising a maximum traction
power at wheels of 342 kW. The benchmark trajectory was com-

pleted in 34.80 min, with an average traction power at wheels of
155 kW.

In this configuration, 28 kW of fuel cell power was allocated
exclusively for auxiliary systems, reducing the load stress on the
battery. Table 6 reveals that, during the benchmark trajectory
simulation, the fuel cell provided 33 kWh of traction energy
at the wheels, while the battery pack contributed an additional
22 kWh. The braking system regenerated 35 kWh of energy
stored in the battery pack. The hybrid train consumed 2.85 kg
of hydrogen for a return journey, enabling a range of 25 jour-
neys limited by battery charge depletion. Figure 5 shows the
benchmark trajectory simulation’s traction power and energy
consumption profiles.

In contrast, the optimised trajectory results showcase an
energy consumption of 74 kWh, utilising 285 kW of power.
The optimised trajectory was completed in 34.92 minutes, with
an average traction power at wheels of 127 kW. Similar to the
benchmark trajectory simulation, 28 kW of fuel cell power was
dedicated exclusively to auxiliary systems in the optimised tra-
jectory, thus reducing the load stress on the battery. As shown
in Table 6, the fuel cell supplied 27 kWh of traction energy at the
wheels during the optimised trajectory simulation, while the bat-
tery pack contributed an additional 22 kWh. The braking system
regenerated 38 kWh of energy stored in the battery pack.

The hybrid train consumed 2.43 kg of hydrogen for a return
journey, enabling a range of 29 journeys limited by battery
charge depletion. Figure 6 illustrates the optimised trajectory
simulation’s traction power and energy consumption profiles.

4.4 Analysis of benchmark and optimised
results

The hybrid optimisation algorithm developed by the author
focuses on the optimal control strategy for hybrid railway vehi-
cles, aiming to improve operational design parameters such as
energy consumption, journey time restrictions, and meeting
power demand during operation. The case study presented in
Section 4 serves as an application for the hybrid optimisation
algorithm and focuses on typical UK routes used for cross-
country and intercity traffic with varying lengths. This approach
ensures the integrity and consistency of the algorithm across
diverse scenarios.

Comparative analysis of the benchmark and optimised trajec-
tories demonstrates the algorithm’s effectiveness in optimising
energy consumption, power source utilisation, and regenerative
braking power. The consistency observed in the reduction of
average traction power at wheels, the total energy required for
a return journey, and hydrogen consumption across all routes
indicates the algorithm’s efficiency. The optimised trajectories
exhibit a minor increase in journey times, indicating that the
algorithm prioritises energy efficiency over journey duration
minimisation. This optimal energy-time trade-off results in a
slight extension of journey times while significantly reducing
energy consumption. This trade-off showcases the algorithm’s
capacity to focus on energy efficiency, a critical aspect of sus-
tainable transportation systems. Despite the initial perception of
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FIGURE 5 Traction power and energies of benchmark trajectory.

FIGURE 6 Traction power and energies of optimised trajectory.

increased journey times as a drawback, the considerable reduc-
tion in energy consumption compensates for the minimal time
increase. This balance promotes both economic and environ-
mental sustainability for hybrid railway vehicles while achieving
the most effective energy-time trade-off possible through the
algorithm.

The case study results reveal that the hybrid train is equipped
with a sufficiently sized battery pack and fuel cell. Due to mul-
tiple stops on each route, the hybrid train generates ample
regenerative energy, which is utilised to recharge the batteries
during the journey. The battery pack is depleted consistently in
benchmark and optimised trajectory simulations for all routes,
contributing to a more extensive range of journeys in the opti-
mised trajectories. The optimal use of power sources directly
impacts the economic life of fuel cells and batteries, as they
experience less stress during the journey. This reduction in
stress on traction power sources results in decreased mainte-
nance requirements and increased life expectancy for the power
sources.

Additionally, a graphical comparison of benchmark and opti-
mised trajectories is presented in Figures 7 and 8. It is evident
from Figure 6 that the benchmark trajectory utilised a maximum
traction power of 342 kW, whereas the optimised trajectory
utilised a maximum power of 285 kW for the hybrid train. Addi-
tionally, the benchmark trajectory consumed 90 kWh of energy,
whereas the optimised trajectory consumed only 74 kWh of
energy. Figure 8 depicts the disparity between the speed pro-
file and state of charge of the battery for the hybrid trains in
both benchmark and optimised trajectories of route 1.

Prior research on railway vehicle optimisation [37, 38, 66]
has indicated that there is often a significant trade-off between
energy consumption and journey time during the optimisation
process. Nevertheless, the author’s proposed hybrid optimisa-
tion algorithm for hybrid railway vehicles effectively minimises
the utilisation of power sources without compromising journey
time constraints. The optimised trajectories reveal an average
decrease of 15.18% in traction power at wheels, signifying the
algorithm’s proficiency in enhancing traction power efficiency
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FIGURE 7 Traction power and energies of benchmark & optimised trajectories.

FIGURE 8 Comparison of velocity and state of charge of benchmark and optimised trajectories.

across all routes. Furthermore, the optimised trajectories display
an average reduction of 16.85% in total energy consumption,
emphasising the algorithm’s ability to decrease energy con-
sumption under diverse route lengths and conditions. With an
average increase in journey times of only 0.40%, the optimised
trajectories showcase the algorithm’s capacity to achieve a well-
balanced energy-time trade-off, prioritising energy efficiency
without significantly compromising journey duration. This
seamless integration of priorities underscores the effectiveness
of the algorithm and its potential to contribute substantially
to the development of more sustainable and efficient railway
transportation systems.

4.5 Main findings and contributions

The research has led to several key findings, which have con-
tributed to the development of a more comprehensive and

robust framework for optimising the energy consumption and
operational performance of hybrid railway vehicles.

4.5.1 Theoretical contributions

Development of a novel optimisation algorithm
This research introduces a new hybrid optimisation algo-
rithm that combines a non-linear programming solver with
the highly efficient “Mayfly Algorithm” to address the com-
plex optimisation problem associated with hybrid railway
vehicles.

Adaptability to hybrid railway vehicles
The proposed algorithm is specifically designed to adapt to
the unique characteristics of hybrid railway vehicles, leverag-
ing their hybrid powertrain capabilities for efficient energy
management.
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Optimal energy-time trade-off
The algorithm effectively balances energy efficiency and jour-
ney time across various routes and conditions, demonstrating its
ability to optimise the energy consumption profile throughout
the journey.

4.5.2 Practical contributions

Improved energy efficiency
The optimised trajectories display an average reduction of
16.85% in total energy consumption and a 15.18% reduction
in traction power, emphasising the algorithm’s potential for
lowering energy % power consumption in real-world scenarios.

Minimised journey time impact
With an average increase in journey times of only 0.40%, the
algorithm achieves a well-balanced energy-time trade-off, pri-
oritising energy efficiency without significantly compromising
journey duration.

Enhanced sustainability and operational performance
The proposed hybrid optimisation algorithm has the potential
to contribute substantially to the development of more sustain-
able and efficient railway transportation systems by optimising
the energy consumption and operational performance of hybrid
railway vehicles.

4.5.3 Developed framework

Following the research and analysis of the data, a developed
framework has been created, which combines the theoretical
and practical contributions. This framework emphasises the
importance of optimising energy consumption and operational
performance in hybrid railway vehicles while maintaining a
balance between energy efficiency and journey time. The frame-
work also highlights the need for adaptive algorithms to address
hybrid railway vehicles’ unique characteristics, ensuring effective
energy management and sustainable transportation systems.

5 CONCLUSION

This paper presents the development of a novel optimisa-
tion algorithm for hybrid railway vehicles by utilisation of
MILNP & PWNL models. The objective is to generate efficient
trajectories that enable effective power distribution, optimal
energy consumption, and economical use of multiple onboard
power sources, leading to reduced maintenance costs, time, and
extended operational life of these sources.

The algorithm’s superior performance is attributed to its
adaptability to the unique characteristics of hybrid railway vehi-
cles, leveraging their hybrid powertrain capabilities for efficient
energy management. It considers various operational param-
eters, such as traction power. speed profile, route’s gradient,
journey time, traction forces, regenerative braking, and auxil-

iary power requirements, to optimise the energy consumption
profile throughout the journey.

The optimised trajectories exhibit an average reduction of
16.85% in total energy consumption, with an average increase
in journey times of only 0.40% and a 15.18% reduction in trac-
tion power. The algorithm achieves a well-balanced energy-time
trade-off, prioritising energy efficiency without significantly
compromising journey duration. This balance is crucial in
sustainable transportation systems, where reducing energy con-
sumption and emissions is vital without severely impacting
service quality and travel times.

In conclusion, the proposed hybrid optimisation algorithm
demonstrates an exceptional ability to optimise energy con-
sumption and operational performance of hybrid railway vehi-
cles, contributing significantly to the ongoing efforts towards
more sustainable and efficient railway transportation systems.
This study’s contributions advance the hybrid railway vehi-
cle optimisation field and provide valuable insights for future
research and practical applications in developing sustainable and
efficient railway transportation systems.

The current study provides a solid foundation for further
research in the hybrid railway vehicle optimisation field. Future
works could explore the following directions:

5.1 Integration of machine learning
techniques

Developing advanced algorithms incorporating machine learn-
ing techniques, such as deep learning or reinforcement learning,
to enhance the adaptability and performance of the optimisa-
tion algorithm.

5.2 Real-time optimisation

Investigating the feasibility of implementing the proposed opti-
misation algorithm in real-time, enabling dynamic trajectory
adjustments based on real-time data, such as traffic conditions,
weather, or system malfunctions.

5.3 Multi-objective optimisation

Expanding the optimisation framework to consider multiple
objectives simultaneously, such as energy efficiency, journey
time, passenger comfort, and system reliability, to achieve a
more comprehensive optimisation solution.

5.4 Large-scale applications

Evaluating the proposed algorithm’s performance on large-scale
railway networks, assessing its scalability and efficiency in more
complex and interconnected transportation systems.

By addressing these potential future works, researchers
can continue to refine and expand upon the current study,
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contributing to the advancement of sustainable and efficient
railway transportation systems.
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