UNIVERSITYOF
 BIRMINGHAM
 University of Birmingham Research at Birmingham

On directed versions of the Hajnal-Szemerédi theorem

Treglown, Andrew

DOI:
10.1017/S0963548315000036

License:
None: All rights reserved

Document Version

Peer reviewed version
Citation for published version (Harvard):
Treglown, A 2015, 'On directed versions of the Hajnal-Szemerédi theorem', Combinatorics, Probability and Computing, vol. 24, no. 6, pp. 873-928. https://doi.org/10.1017/S0963548315000036

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

Article available in final form at: http://dx.doi.org/10.1017/S0963548315000036.
Copyright © Cambridge University Press 2015
Checked July 2015

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
- Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
-User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
-Users may not further distribute the material nor use it for the purposes of commercial gain.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

ON DIRECTED VERSIONS OF THE HAJNAL-SZEMERÉDI THEOREM

ANDREW TREGLOWN

Abstract

We say that a (di)graph G has a perfect H-packing if there exists a set of vertex-disjoint copies of H which cover all the vertices in G. The seminal Hajnal-Szemerédi theorem characterises the minimum degree that ensures a graph G contains a perfect K_{r}-packing. In this paper we prove the following analogue for directed graphs: Suppose that T is a tournament on r vertices and G is a digraph of sufficiently large order n where r divides n. If G has minimum in- and outdegree at least $(1-1 / r) n$ then G contains a perfect T-packing.

In the case when T is a cyclic triangle, this result verifies a recent conjecture of Czygrinow, Kierstead and Molla [4] (for large digraphs). Furthermore, in the case when T is transitive we conjecture that it suffices for every vertex in G to have sufficiently large indegree or outdegree. We prove this conjecture for transitive triangles and asymptotically for all $r \geq 3$. Our approach makes use of a result of Keevash and Mycroft [10] concerning almost perfect matchings in hypergraphs as well as the Directed Graph Removal lemma $[1,6]$.

MSC2000: 5C35, 5C20, 5C70.

1. Introduction

1.1. Perfect packings in undirected graphs. Given two (di)graphs H and G, an H-packing in G is a collection of vertex-disjoint copies of H in G. An H-packing is called perfect if it covers all the vertices of G. Perfect H-packings are also referred to as H-factors or perfect H-tilings. Note that perfect H-packings are generalisations of perfect matchings (which correspond to the case when H is a single edge). Tutte's theorem characterises all those graphs that contain a perfect matching. On the other hand, Hell and Kirkpatrick [8] showed that the decision problem of whether a graph G has a perfect H-packing is NP-complete precisely when H has a component consisting of at least 3 vertices. Thus, for such graphs H, it is unlikely that there is a complete characterisation of those graphs containing a perfect H-packing. It is natural therefore to ask for simple sufficient conditions which force a graph to contain a perfect H-packing.

A seminal result in the area is the following theorem of Hajnal and Szemerédi [7].
Theorem 1.1 (Hajnal and Szemerédi [7]). Every graph G whose order n is divisible by r and whose minimum degree satisfies $\delta(G) \geq(1-1 / r) n$ contains a perfect K_{r}-packing.

It is easy to see that the minimum degree condition here cannot be lowered. In recent years there have been several generalisations of the Hajnal-Szemerédi theorem. Kühn and Osthus [15, 16] characterised, up to an additive constant, the minimum degree which ensures that a graph G contains a perfect H-packing for an arbitrary graph H. Kierstead and Kostochka [13] proved an Ore-type analogue of the Hajnal-Szemerédi theorem: If G is a graph whose order n is divisible by r, then G contains a perfect K_{r}-packing provided that $d(x)+d(y) \geq 2(1-1 / r) n-1$ for all non-adjacent $x \neq y \in V(G)$. Kühn, Osthus and Treglown [17] characterised, asymptotically, the Ore-type degree condition which ensures that a graph G contains a perfect H-packing for an arbitrary graph H.

[^0]Recently, Keevash and Mycroft [11] proved the following r-partite version of the Hajnal-Szemerédi theorem, thereby tackling a conjecture of Fischer [5] for sufficiently large graphs.
Theorem 1.2 (Keevash and Mycroft [11]). Given $r \in \mathbb{N}$ there exists an $n_{0} \in \mathbb{N}$ such that the following holds. Suppose G is an r-partite graph with vertex classes V_{1}, \ldots, V_{r} where $\left|V_{i}\right|=n \geq n_{0}$ for all $1 \leq i \leq r$. If

$$
\bar{\delta}(G) \geq(1-1 / r) n+1
$$

then G contains a perfect K_{r}-packing.
(Here $\bar{\delta}(G)$ denotes the minimum degree of a vertex from one vertex class V_{i} to another vertex class V_{j}.) Keevash and Mycroft [11] actually proved a stronger result than Theorem 1.2. Indeed, they showed that the minimum degree condition here can be relaxed to $\bar{\delta}(G) \geq(1-1 / r) n$ provided that G is not isomorphic to one special construction. Further, their result extends to perfect K_{k}-packings where $1 \leq k \leq r$ (see [11] for more details).
1.2. Packing tournaments in directed graphs. It is natural to seek analogues of the HajnalSzemerédi theorem in the digraph and oriented graph settings. We consider digraphs with no loops and at most one edge in each direction between every pair of vertices. An oriented graph is a digraph without 2 -cycles. In this paper we restrict our attention to the problem for digraphs. See [22, 2] for an overview of the known results concerning perfect packings in oriented graphs.

The minimum semidegree $\delta^{0}(G)$ of a digraph G is the minimum of its minimum outdegree $\delta^{+}(G)$ and its minimum indegree $\delta^{-}(G)$. Let $\delta(G)$ denote the minimum degree of G, that is, the minimum number of edges incident to a vertex in G. (Note that if both $x y$ and $y x$ are directed edges in G, they are counted as two separate edges.) Denote by \mathcal{T}_{r} the set of all tournaments on r vertices. Our main result is an analogue of the Hajnal-Szemerédi theorem for perfect tournament packings in digraphs.
Theorem 1.3. Given an integer $r \geq 3$, there exists an $n_{0} \in \mathbb{N}$ such that the following holds. Suppose $T \in \mathcal{T}_{r}$ and G is a digraph on $n \geq n_{0}$ vertices where r divides n. If

$$
\delta^{0}(G) \geq(1-1 / r) n
$$

then G contains a perfect T-packing.
Notice that the minimum semidegree condition in Theorem 1.3 is tight. Indeed, let $n, r \in \mathbb{N}$ such that r divides n. Let G^{\prime} be the digraph obtained from the complete digraph on n vertices by removing all those edges lying in a given vertex set of size $n / r+1$. Then $\delta^{0}\left(G^{\prime}\right)=(1-1 / r) n-1$ and G^{\prime} does not contain a perfect T-packing for any $T \in \mathcal{T}_{r}$. In general, any digraph $G^{\prime \prime}$ on n vertices with an independent set of size $n / r+1$ (and $\left.\delta^{0}\left(G^{\prime \prime}\right)=(1-1 / r) n-1\right)$ does not contain a perfect T-packing.

In the case when T is the cyclic triangle C_{3}, Theorem 1.3 verifies a recent conjecture of Czygrinow, Kierstead and Molla [4] for large digraphs. Further, notice that Theorem 1.3 is a 'true generalisation' of the Hajnal-Szemerédi theorem in the sense that the former implies the latter for large graphs.

We remark that, by applying the same probabilistic trick used by Keevash and Sudakov in Section 7 of [12], one can obtain an asymptotic version of Theorem 1.3 from Theorem 1.2. In [4] it was also shown that such an asymptotic version of Theorem 1.3 for $T=C_{3}$ follows from a result concerning perfect packings in multigraphs.

Similarly to many proofs in the area, our argument splits into 'extremal' and 'non-extremal' cases. When $T \neq C_{3}$, the extremal case considers digraphs G containing a set of vertices of size n / r that spans an 'almost' independent set (i.e. G is 'close' to an extremal graph $G^{\prime \prime}$ as above). Interestingly, when $T=C_{3}$ we have an extra extremal configuration (see Section 3.2), and thus have two separate extremal cases. In the non-extremal case our proof splits into two main tasks: finding an 'almost' perfect T-packing in G and finding a so-called 'absorbing set' that can be used
to cover the remaining vertices with disjoint copies of T (see Section 3.3 for the precise definition of such a set). To obtain the former we apply a result of Keevash and Mycroft [10] concerning almost perfect matchings in hypergraphs. We also make use of the Directed Graph Removal lemma (see e.g. [1, 6]). A substantial proportion of the paper is devoted to obtaining our desired absorbing set. A more detailed overview of the proof is given in Section 2.
1.3. Degree conditions forcing perfect transitive tournament packings. Although the minimum semidegree condition in Theorem 1.3 is 'best-possible' one could replace the condition by a weaker one. Indeed, for transitive tournaments we conjecture that the following stronger statement is true. Let T_{r} denote the transitive tournament on r vertices.

Conjecture 1.4. Let $n, r \in \mathbb{N}$ such that r divides n. Suppose that G is a digraph on n vertices so that for any $x \in V(G)$,

$$
\begin{equation*}
d^{+}(x) \geq(1-1 / r) n \text { or } d^{-}(x) \geq(1-1 / r) n . \tag{1}
\end{equation*}
$$

Then G contains a perfect T_{r}-packing.
Conjecture 1.4 would imply the following very recent result of Czygrinow, DeBiasio, Kierstead and Molla [3].

Theorem 1.5 (Czygrinow, DeBiasio, Kierstead and Molla [3]). Let $n, r \in \mathbb{N}$ such that r divides n. Then every digraph G on n vertices with

$$
\delta^{+}(G) \geq(1-1 / r) n
$$

contains a perfect T_{r}-packing.
In Section 4 we give a short proof of Conjecture 1.4 in the case when $r=3$. We also prove the following asymptotic version of Conjecture 1.4.

Theorem 1.6. Let $\eta>0$ and $r \geq 3$. Then there exists an $n_{0} \in \mathbb{N}$ such that the following holds. Suppose that G is a digraph on $n \geq n_{0}$ vertices where r divides n and that for any $x \in V(G)$,

$$
d^{+}(x) \geq(1-1 / r+\eta) n \text { or } d^{-}(x) \geq(1-1 / r+\eta) n .
$$

Then G contains a perfect T_{r}-packing.
We give a unified approach to proving Theorems 1.3 and 1.6, though the proof of the former is substantially more involved.

For 'most' tournaments T, there does not exist a 'non-trivial' minimum outdegree condition which forces a digraph G to contain a perfect T-packing. Indeed, let $T \in \mathcal{T}_{r}$ such that every vertex in T has an inneighbour. Let $n \in \mathbb{N}$ such that r divides n. Obtain the digraph G from the complete digraph on $n-1$ vertices by adding a vertex x that sends out all possible edges to the other vertices (but receives none). Then $\delta^{+}(G)=n-2$ but G does not contain a perfect T-packing since x does not lie in a copy of T.

So certainly Conjecture 1.4 and Theorem 1.5 cannot be generalised to arbitrary tournaments T. It would be interesting to establish whether the degree conditions in Conjecture 1.4 and Theorem 1.5 force a perfect T-packing for some non-transitive tournament T on r vertices.

In the next section we give an outline of the proofs as well as details about the organisation of the paper.

2. Overview of the proofs and organisation of the paper

2.1. Outline of the proof of Theorem 1.3. Suppose that G and $T \in \mathcal{T}_{r}$ are as in Theorem 1.3. Further, suppose that there is a 'small' set $M \subseteq V(G)$ with the property that both $G[M]$ and $G[M \cup Q]$ contain perfect T-packings for any 'very small' set $Q \subseteq V(G)$ where $|Q| \in r \mathbb{N}$. Then notice that, to find a perfect T-packing in G, it suffices to find an 'almost' perfect T-packing in $G^{\prime}:=G \backslash M$. Indeed, suppose that G^{\prime} contains a T-packing \mathcal{M}_{1} covering all but a very small set of vertices Q. Then by definition of $M, G[M \cup Q]$ contains a perfect T-packing \mathcal{M}_{2}. Thus, $\mathcal{M}_{1} \cup \mathcal{M}_{2}$ is a perfect T-packing in G, as desired.

Roughly speaking, we refer to such a set M as an 'absorbing set' (see Section 3.3 for the precise definition of such a set). The 'absorbing method' was first used in [20] and has subsequently been applied to numerous embedding problems in extremal graph theory.

In general, a digraph G as in Theorem 1.3 may not contain an absorbing set. For example, consider the complete 3-partite digraph G_{1} with vertex classes V_{1}, V_{2}, V_{3} of size $n / 3$. (So G_{1} contains all possible edges with endpoints in different vertex classes.) Then G_{1} satisfies the hypothesis of Theorem 1.3 in the case when $T=T_{3}$ and $r=3$. However, if $Q \subseteq V_{1}$ such that $|Q|=3$ then it is easy to see that there does not exist a set $M \subseteq V\left(G_{1}\right)$ such that both $G_{1}[M]$ and $G_{1}[M \cup Q]$ contain perfect T_{3}-packings. Notice though that G_{1} is 'close to extremal' (i.e. G_{1} contains an independent set of size $n / 3$).

It turns out that being 'close' to an extremal example is the only barrier preventing our digraph G from containing an absorbing set M. Indeed, in the case when $T \neq C_{3}$ we show that if G does not contain an 'almost' independent set of size n / r then G contains our desired set M. As mentioned in Section 1.2, when $T=C_{3}$ we have an extra extremal configuration $E x(n)$ (see Section 3.2). In this case we show that if G is far from $E x(n)$ and does not contain an 'almost' independent set of size $n / 3$ then G contains our desired set M (see Theorem 5.1).
Constructing the absorbing set in the non-extremal case. The crucial idea in proving that a non-extremal digraph G contains an absorbing set M is to first show that G has many 'connecting structures' of a certain type. For example, to find our desired absorbing set it suffices to show that, for any $x, y \in V(G)$, there are 'many' $(r-1)$-sets $X \subseteq V(G)$ so that both $X \cup\{x\}$ and $X \cup\{y\}$ span copies of T in G. In Section 8 we prove a number of so-called connection lemmas that guarantee such connecting structures. This turns out to be quite a subtle process as we prove different connection lemmas depending on the structure and size of T. In particular, we need to deal with the case when $T=C_{3}$ separately. (This stems from the fact that we now have two extremal cases. See Section 8 for more details.) In Section 9 we use the connection lemmas to construct the absorbing set M.
Covering the remaining vertices of G in the non-extremal case. As mentioned earlier, once we have constructed an absorbing set M in a non-extremal digraph G, it suffices to find an 'almost' perfect T-packing in $G^{\prime}=G \backslash M$. For this, we translate the problem into one about almost perfect matchings in hypergraphs. Indeed, from G^{\prime} we construct a hypergraph J on $V\left(G^{\prime}\right)$ where, for any $1 \leq i \leq r$, an i-tuple $Y \subseteq V\left(G^{\prime}\right)$ forms an edge in J precisely when Y spans a subtournament of T of size i in G^{\prime}. So one may think of J as consisting of 'layers' J_{1}, \ldots, J_{r} where J_{i} contains the edges of size i. For example, if $T=T_{3}$, then the edge set of J_{1} is $V\left(G^{\prime}\right)$, the edge set of J_{2} consists of all pairs $\{x, y\}$ where $x y \in E\left(G^{\prime}\right)$ or $y x \in E\left(G^{\prime}\right)$ and the edge set of J_{3} consists of all triples $\{x, y, z\}$ that span a copy of T_{3} in G^{\prime}. J is an example of a so-called r-complex (see Section 7 for the precise definition).

Vitally, J has the property that a matching in J_{r} corresponds to a T-packing in G^{\prime}. We thus apply a result of Keevash and Mycroft [10] on almost perfect matchings in r-complexes. (In order to apply this result we again use that G is non-extremal.) This ensures an almost perfect matching in J_{r} and thus an almost perfect T-packing in G^{\prime}, as desired.

The extremal cases. Finally, we deal with the case when G is close to an extremal example. If $T=C_{3}$ and G is close to $E x(n)$ then a relatively short argument shows that G must contain a perfect C_{3}-packing (see Lemma 5.6). On the other hand, the general extremal case when G contains an almost independent set of size n / r is more involved (see Lemma 5.5). (Note that the class of digraphs G on n vertices with an almost independent set of size n / r and $\delta^{0}(G) \geq(1-1 / r) n$ is wide.) We draw on ideas from [14] to tackle this case.

The extremal cases are the only parts of the proof where we use the full force of the minimum semidegree condition on G. Indeed, the argument in the non-extremal case holds even if we relax the condition to $\delta^{0}(G) \geq(1-1 / r-o(1)) n$.
2.2. The proof of Theorem 1.6. The proof of Theorem 1.6 follows the same general approach as that of Theorem 1.3 in the non-extremal case: Again our two main tasks are to (i) find an absorbing set and (ii) cover almost all of the remaining vertices with a T_{r}-packing. Thus, where possible, we present the tools for both proofs in a unified way. Indeed, many of our auxiliary results are applied in both proofs.
2.3. Organisation of the paper. In the next section we formally introduce the notion of an absorbing set and define the extremal digraph $E x(n)$. We also introduce other notation and definitions. We prove Conjecture 1.4 in the case of transitive triangles in Section 4. In Section 5 we state the main auxiliary results that we prove in the paper and derive Theorems 1.3 and 1.6 from them. In Section 6 we prove Turán-type results for digraphs. These results will be applied both when constructing our absorbing sets and when finding an almost perfect T-packing in the non-extremal case. Section 7 deals with this latter task. We state and prove the connection lemmas for Theorems 1.3 and 1.6 in Section 8. These are then used to construct our absorbing sets in Section 9. After giving a number of useful results in Section 10 we tackle the extremal cases of Theorem 1.3 in Sections 11 and 12.

3. Notation and preliminaries

3.1. Definitions and notation. Given two vertices x and y of a digraph G, we write $x y$ for the edge directed from x to y. We write $V(G)$ for the vertex set of $G, E(G)$ for the edge set of G and define $|G|:=|V(G)|$ and $e(G):=|E(G)|$. We denote by $N_{G}^{+}(x)$ and $N_{G}^{-}(x)$ the out- and the inneighbourhood of x and by $d_{G}^{+}(x)$ and $d_{G}^{-}(x)$ its out- and indegree. We will write $N^{+}(x)$ for example, if this is unambiguous. For a vertex $x \in V(G)$ and a set $Y \subseteq V(G)$ we write $d_{G}^{+}(x, Y)$ to denote the number of edges in G with startpoint x and endpoint in Y. We define $d_{G}^{-}(x, Y)$ analogously. The minimum semidegree $\delta^{0}(G)$ of G is the minimum of its minimum outdegree $\delta^{+}(G)$ and its minimum indegree $\delta^{-}(G)$. Let $\delta(G)$ denote the minimum degree of G, that is, the minimum number of edges incident to a vertex in G. (Note that if both $x y$ and $y x$ are directed edges in G, they are counted as two separate edges.)

Given a subset $X \subseteq V(G)$, we write $G[X]$ for the subdigraph of G induced by X. We write $G \backslash X$ for the subdigraph of G induced by $V(G) \backslash X$. For $x_{1}, \ldots, x_{m} \in V(G)$ we define $G\left[x_{1}, \ldots, x_{m}\right]:=$ $G\left[\left\{x_{1}, \ldots, x_{m}\right\}\right]$.

Given a set $X \subseteq V(G)$ and a digraph H on $|X|$ vertices we say that X spans a copy of H in G if $G[X]$ contains a copy of H. In particular, this does not necessarily mean that X induces a copy of H in G. For disjoint $X, Y \subseteq V(G)$ we let $G[X, Y]$ denote the digraph with vertex set $X \cup Y$ whose edge set consists of all those edges $x y \in E(G)$ with $x \in X$ and $y \in Y$. If G and H are digraphs, we write $G \cup H$ for the digraph whose vertex set is $V(G) \cup V(H)$ and whose edge set is $E(G) \cup E(H)$. If G and H have the same vertex set V then let $G-H$ denote the digraph with vertex set V and edge set $E(G) \backslash E(H)$.

Given digraphs G and H, we say that G is H-free if G does not contain H as a subdigraph. Let G be a (di)graph on n vertices and let $\gamma>0$. We say that a set $S \subseteq V(G)$ is γ-independent if $G[S]$ contains at most γn^{2} edges. Given two digraphs G and H on n vertices we say that G γ-contains H if, after adding at most γn^{2} edges to G, the resulting digraph contains a copy of H. More precisely, $G \gamma$-contains H if there is an isomorphic copy G^{\prime} of G such that $V\left(G^{\prime}\right)=V(H)$ and $\left|E(H) \backslash E\left(G^{\prime}\right)\right| \leq \gamma n^{2}$.

For a (di)graph G and disjoint $A, B \subseteq V(G)$, we write $e_{G}(A, B)$ for the number of edges in G with one endpoint in A and the other in B. (So $e_{G}(A, B)=e_{G}(B, A)$.) Given a (di)graph T, let $2 T$ denote the disjoint union of two copies of T.

Recall that T_{r} denotes the transitive tournament of r vertices. Given $1 \leq i \leq r$, we say a vertex $x \in V\left(T_{r}\right)$ is the i th vertex of T_{r} if x has indegree $i-1$ and outdegree $r-i$ in T_{r}. Given a set X and $r \in \mathbb{N}$ we denote by $\binom{X}{r}$ the set of all r-subsets of X.

Throughout the paper, we write $0<\alpha \ll \beta \ll \gamma$ to mean that we can choose the constants α, β, γ from right to left. More precisely, there are increasing functions f and g such that, given γ, whenever we choose some $\beta \leq f(\gamma)$ and $\alpha \leq g(\beta)$, all calculations needed in our proof are valid. Hierarchies of other lengths are defined in the obvious way.
3.2. The extremal digraph $E x(n)$. Suppose that $n \geq 3$ and c are non-negative integers. Define $a_{1}, a_{2}, a_{3} \in \mathbb{N}$ such that $\lfloor n / 3\rfloor \leq a_{1} \leq a_{2} \leq a_{3} \leq\lceil n / 3\rceil$ where $a_{1}+a_{2}+a_{3}=n$. Let A_{1}, A_{2} and A_{3} be disjoint vertex sets of size $a_{1}-c, a_{2}+c$ and a_{3} respectively. Let $E x_{c}(n)$ denote the digraph with vertex set $A_{1} \cup A_{2} \cup A_{3}$ and whose edge set is defined as follows:

- A_{i} induces a complete digraph in $E x_{c}(n)$ (for all $1 \leq i \leq 3$);
- If $x \in A_{i}$ and $y \in A_{i+1}$ then $x y \in E\left(E x_{c}(n)\right)$ (for all $1 \leq i \leq 3$, where indices are taken $\bmod 3)$.
Define $\operatorname{Ex}(n):=E x_{0}(n)$. (See Figure 1.) We call A_{1}, A_{2} and A_{3} the vertex classes of $\operatorname{Ex}(n)$.

Figure 1. The extremal digraph $E x(n)$
Suppose that n is divisible by 3 . Note that $\delta^{0}\left(E x_{1}(n)\right)=2 n / 3-2$ but $E x_{1}(n)$ does not contain a perfect C_{3}-packing. Thus, in the proof of Theorem 1.3 for $T=C_{3}$ we have two extremal cases to consider: when G contains an 'almost' independent set of size $n / 3$ and when G 'almost' contains $E x(n)$.
3.3. Absorbing sets. Let $T \in \mathcal{T}_{r}$. Given a digraph G, a set $S \subseteq V(G)$ is called a T-absorbing set for $Q \subseteq V(G)$, if both $G[S]$ and $G[S \cup Q]$ contain perfect T-packings. In this case we say that Q is T-absorbed by S. Sometimes we will simply refer to a set $S \subseteq V(G)$ as a T-absorbing set if there exists a set $Q \subseteq V(G)$ that is T-absorbed by S.

When constructing our absorbing sets in Section 9 we will use the following Chernoff bound for binomial distributions (see e.g. [9, Corollary 2.3]). Recall that the binomial random variable with parameters (n, p) is the sum of n independent Bernoulli variables, each taking value 1 with probability p or 0 with probability $1-p$.
Proposition 3.1. Suppose that X has binomial distribution and $0<a<3 / 2$. Then $\mathbb{P}(|X-\mathbb{E} X| \geq$ $a \mathbb{E} X) \leq 2 e^{-\frac{a^{2}}{3} \mathbb{E} X}$.

4. Proof of Conjecture 1.4 for transitive triangles

Let \mathcal{H} be a collection of digraphs and G a digraph. We say that G contains a perfect \mathcal{H}-packing if G contains a collection of vertex-disjoint copies of elements from \mathcal{H} that together cover all the vertices of G. We now prove Conjecture 1.4 in the case of transitive triangles.
Theorem 4.1. Let $m \in \mathbb{N}$. Suppose that G is a digraph on $n:=3 m$ vertices so that for any $x \in V(G)$,

$$
\begin{equation*}
d^{+}(x) \geq 2 n / 3 \text { or } d^{-}(x) \geq 2 n / 3 \tag{2}
\end{equation*}
$$

Then G contains a perfect T_{3}-packing.
Proof. Let G be a digraph as in the statement of the theorem. Remove as many edges from G as possible so that (2) still holds. Let G^{\prime} denote the graph on $V(G)$ where $x y \in E\left(G^{\prime}\right)$ if and only if $x y \in E(G)$ or $y x \in E(G)$. So $\delta(G) \geq 2 n / 3$ by (2). Thus, Theorem 1.1 implies that G^{\prime} contains a perfect K_{3}-packing and so G contains a perfect $\left\{T_{3}, C_{3}\right\}$-packing. Let \mathcal{M} denote the perfect $\left\{T_{3}, C_{3}\right\}$-packing in G that contains the most copies of T_{3}.

Suppose for a contradiction that \mathcal{M} is not a perfect T_{3}-packing. Then there is a copy C_{3}^{\prime} of C_{3} in \mathcal{M}. Let $V\left(C_{3}^{\prime}\right)=\{x, y, z\}$ where $x y, y z, z x \in E\left(C_{3}^{\prime}\right)$. Suppose that $d_{G}^{-}(w)<2 n / 3$ for some $w \in V\left(C_{3}^{\prime}\right)$. Without loss of generality assume that $w=x$. Then (2) implies that $d_{G}^{+}(x) \geq 2 n / 3$. If $d_{G}^{+}(z)<2 n / 3$ then we may remove the edge $z x$ from G and still (2) holds, a contradiction to the minimality of G. So $d_{G}^{+}(z) \geq 2 n / 3$. An identical argument implies that $d_{G}^{+}(y) \geq 2 n / 3$. This shows that $d_{G}^{-}(w) \geq 2 n / 3$ for all $w \in V\left(C_{3}^{\prime}\right)$ or $d_{G}^{+}(w) \geq 2 n / 3$ for all $w \in V\left(C_{3}^{\prime}\right)$.

Without loss of generality assume that $d_{G}^{+}(w) \geq 2 n / 3$ for all $w \in V\left(C_{3}^{\prime}\right)$. (The other case is analogous.) Note that $G[x, y, z]$ contains precisely three edges (else $V\left(C_{3}^{\prime}\right)$ spans a copy of T_{3}, a contradiction to the maximality of $\mathcal{M})$. In particular, there are at least $2 n-3=6 m-3>6(|\mathcal{M}|-1)$ edges in G with startpoint in $V\left(C_{3}^{\prime}\right)$ and endpoint in $V(G) \backslash V\left(C_{3}^{\prime}\right)$. This implies that there is an element $T \in \mathcal{M} \backslash\left\{C_{3}^{\prime}\right\}$ that receives at least 7 edges from $V\left(C_{3}^{\prime}\right)$ in G.

So there is a vertex, say x, in $V\left(C_{3}^{\prime}\right)$ such that $d_{G}^{+}(x, V(T))=3$. Furthermore, y and z have a common outneighbour in G that lies in $V(T)$. Together this implies that $V\left(C_{3}^{\prime}\right) \cup V(T)$ spans a copy of $2 T_{3}$ in G. This yields a perfect $\left\{T_{3}, C_{3}\right\}$-packing in G containing more copies of T_{3} than \mathcal{M}, a contradiction. So the assumption that \mathcal{M} is not a perfect T_{3}-packing is false, as desired.

5. Deriving Theorems 1.3 and 1.6 from the auxiliary results

In this section we state a number of auxiliary results that we will prove in the paper. We then combine these results to prove Theorems 1.3 and 1.6. Roughly speaking, the following result states that if G is as in Theorem 1.3 (namely has large semi-degree) and is non-extremal then G contains a 'small' absorbing set that absorbs any 'very small' set of vertices in G.
Theorem 5.1. Let $0<1 / n \ll \varepsilon \ll \xi \ll \gamma, \alpha \ll 1 / r$ where $n, r \in \mathbb{N}$ and $r \geq 3$, and let $T \in \mathcal{T}_{r}$. Suppose that G is a digraph on n vertices so that

$$
\delta^{0}(G) \geq(1-1 / r-\varepsilon) n
$$

Further suppose that

- G does not contain any γ-independent set of size at least n / r;
- If $T=C_{3}$ then G does not α-contain $E x(n)$.

Then $V(G)$ contains a set M so that $|M| \leq \xi n$ and M is a T-absorbing set for any $W \subseteq V(G) \backslash M$ such that $|W| \in r \mathbb{N}$ and $|W| \leq \xi^{2} n$.

The next result is an analogue of Theorem 5.1 that will be applied in the proof of Theorem 1.6.
Theorem 5.2. Let $0<1 / n \ll \varepsilon \ll \xi \ll \gamma \ll 1 / r$ where $n, r \in \mathbb{N}$ and $r \geq 3$. Suppose that G is a digraph on n vertices so that, for any $x \in V(G)$,

$$
d^{+}(x) \geq(1-1 / r-\varepsilon) n \quad \text { or } \quad d^{-}(x) \geq(1-1 / r-\varepsilon) n .
$$

Further suppose that G does not contain any γ-independent set of size at least n / r. Then $V(G)$ contains a set M so that $|M| \leq \xi n$ and M is a T_{r}-absorbing set for any $W \subseteq V(G) \backslash M$ such that $|W| \in r \mathbb{N}$ and $|W| \leq \xi^{2} n$.

We prove Theorems 5.1 and 5.2 in Section 9. The crucial tools used in these proofs are so-called 'connection lemmas' which we introduce in Section 8.

Theorem 5.3. Let $0<1 / n \ll 1 / \ell \ll \varepsilon \ll \gamma \ll 1 / r$ and $T \in \mathcal{T}_{r}$ for some $r \geq 3$. Suppose that G is a digraph on n vertices such that

$$
\begin{equation*}
\delta^{0}(G) \geq(1-1 / r-\varepsilon) n \tag{3}
\end{equation*}
$$

Then at least one of the following properties holds:
(i) G contains a T-packing that covers all but at most ℓ vertices;
(ii) G contains a γ-independent set of size at least n / r.

Theorems 5.1 and 5.3 together ensure that a non-extremal digraph G in Theorem 1.3 contains a perfect T-packing. The following result is an analogue of Theorem 5.3 that will be applied in the proof of Theorem 1.6.

Theorem 5.4. Let $0<1 / n \ll 1 / \ell \ll \varepsilon \ll \gamma \ll 1 / r$ where $n, r \in \mathbb{N}$ and $r \geq 3$. Suppose that G is a digraph on n vertices such that, for any $x \in V(G)$,

$$
\begin{equation*}
d^{+}(x) \geq(1-1 / r-\varepsilon) n \text { or } d^{-}(x) \geq(1-1 / r-\varepsilon) n \tag{4}
\end{equation*}
$$

Further suppose that, given any $x, y \in V(G)$, if $d^{+}(x)<(1-1 / r-\varepsilon) n$ and $d^{-}(y)<(1-1 / r-\varepsilon) n$ then $x y \notin E(G)$. Then at least one of the following properties holds:
(i) G contains a T_{r}-packing that covers all but at most ℓ vertices;
(ii) G contains a γ-independent set of size at least n / r.

In Section 7 we deduce Theorems 5.3 and 5.4 from a result of Keevash and Mycroft [10] concerning almost perfect matchings in hypergraphs. The next two results cover the extremal cases of Theorem 1.3.

Lemma 5.5. Let $r \in \mathbb{N}$ such that $r \geq 3$. There exist $\gamma>0$ and $n_{0} \in \mathbb{N}$ such that the following holds. Suppose that $T \in \mathcal{T}_{r}$ and G is a digraph on $n \geq n_{0}$ vertices where n is divisible by r. If

$$
\begin{equation*}
\delta^{0}(G) \geq(1-1 / r) n \tag{5}
\end{equation*}
$$

and G contains a γ-independent set of size n / r then G contains a perfect T-packing.
Lemma 5.6. There exist $\alpha>0$ and $n_{0} \in \mathbb{N}$ such that the following holds. Suppose that G is a digraph on $n \geq n_{0}$ vertices where n is divisible by 3 . If

- $\delta^{0}(G) \geq 2 n / 3-1$ and
- $G \alpha$-contains $\operatorname{Ex}(n)$,
then G contains a perfect C_{3}-packing.
Lemmas 5.5 and 5.6 are proved in Sections 11 and 12 respectively. We now deduce Theorem 1.3 from Theorems 5.1 and 5.3 and Lemmas 5.5 and 5.6.
Proof of Theorem 1.3. Define constants $\varepsilon, \xi, \gamma, \alpha$ and integers n_{0}, ℓ such that

$$
0<1 / n_{0} \ll 1 / \ell \ll \varepsilon \ll \xi \ll \gamma, \alpha \ll 1 / r .
$$

Let $T \in \mathcal{T}_{r}$ and suppose that G is a digraph on $n \geq n_{0}$ vertices such that r divides n and $\delta^{0}(G) \geq(1-1 / r) n$. By Lemmas 5.5 and 5.6 we may assume that
(i) G does not contain any γ-independent set of size n / r;
(ii) If $T=C_{3}$ then G does not α-contain $E x(n)$.
(Otherwise G contains a perfect T-packing, as desired.) Thus, we can apply Theorem 5.1 to obtain a set $M \subseteq V(G)$ so that $|M| \leq \xi n$ and M is a T-absorbing set for any $W \subseteq V(G) \backslash M$ such that $|W| \in r \mathbb{N}$ and $|W| \leq \xi^{2} n$. Set $G^{\prime}:=G \backslash M$ and let $n^{\prime}:=\left|G^{\prime}\right| \geq(1-\xi) n$. Since n is divisible by r and M is a T-absorbing set, n^{\prime} is also divisible by r. Further,

$$
\delta^{0}\left(G^{\prime}\right) \geq(1-1 / r) n-\xi n \geq(1-1 / r-\xi) n^{\prime}
$$

Notice that G^{\prime} does not contain any $\gamma / 2$-independent set of size at least n^{\prime} / r. (Otherwise G contains a γ-independent set of size n / r, a contradiction to (i).) Therefore, by applying Theorem 5.3 with $G^{\prime}, n^{\prime}, \xi, \gamma / 2$ playing the roles of $G, n, \varepsilon, \gamma$, we obtain a T-packing \mathcal{M}_{1} in G^{\prime} that covers all but at most ℓ vertices. Let W denote the set of vertices in G^{\prime} that are not covered by \mathcal{M}_{1}. So $|W| \leq \ell \leq \xi^{2} n$ and, since n^{\prime} is divisible by $r,|W| \in r \mathbb{N}$. Thus, by definition of $M, G[M \cup W]$ contains a perfect T-packing \mathcal{M}_{2}. Therefore, $\mathcal{M}_{1} \cup \mathcal{M}_{2}$ is a perfect T-packing in G, as desired.

Similarly we deduce Theorem 1.6 from Theorems 5.2 and 5.4.
Proof of Theorem 1.6. Define additional constants ε, ξ, γ and integers n_{0}, ℓ such that

$$
0<1 / n_{0} \ll 1 / \ell \ll \varepsilon \ll \xi \ll \gamma \ll 1 / r, \eta
$$

Suppose that G is a digraph on $n \geq n_{0}$ vertices where r divides n and:
(i) For any $x \in V(G), d^{+}(x) \geq(1-1 / r+\eta) n$ or $d^{-}(x) \geq(1-1 / r+\eta) n$.

Suppose that for some $x, y \in V(G), d^{+}(x)<(1-1 / r+\eta) n, d^{-}(y)<(1-1 / r+\eta) n$ and $x y \in E(G)$. Then if we remove the edge $x y$ from G, (i) still holds. In particular, this implies that we may assume:
(ii) Given any $x, y \in V(G)$, if $d^{+}(x)<(1-1 / r+\eta) n$ and $d^{-}(y)<(1-1 / r+\eta) n$ then $x y \notin$ $E(G)$.
Note that (i) implies that:
(iii) G does not contain any γ-independent set of size n / r.

Apply Theorem 5.2 to obtain a set $M \subseteq V(G)$ so that $|M| \leq \xi n$ and M is a T_{r}-absorbing set for any $W \subseteq V(G) \backslash M$ such that $|W| \in r \mathbb{N}$ and $|W| \leq \xi^{2} n$. Set $G^{\prime}:=G \backslash M$ and let $n^{\prime}:=\left|G^{\prime}\right| \geq(1-\xi) n$. Since n is divisible by r and M is a T_{r}-absorbing set, n^{\prime} is also divisible by r. Further, (i) implies that for any $x \in V\left(G^{\prime}\right)$,

$$
d_{G^{\prime}}^{+}(x) \geq\left(1-\frac{1}{r}-\varepsilon\right) n^{\prime} \quad \text { or } \quad d_{G^{\prime}}^{-}(x) \geq\left(1-\frac{1}{r}-\varepsilon\right) n^{\prime} .
$$

Suppose that for some $x, y \in V\left(G^{\prime}\right), d_{G^{\prime}}^{+}(x)<(1-1 / r-\varepsilon) n^{\prime}$ and $d_{G^{\prime}}^{-}(y)<(1-1 / r-\varepsilon) n^{\prime}$. Then $d_{G}^{+}(x)<(1-1 / r-\varepsilon) n^{\prime}+\xi n \leq(1-1 / r+\eta) n$ and $d_{G}^{-}(y)<(1-1 / r+\eta) n$. Thus, by (ii), $x y \notin E\left(G^{\prime}\right)$. Notice that G^{\prime} does not contain any $\gamma / 2$-independent set of size at least n^{\prime} / r. (Otherwise G contains a γ-independent set of size n / r, a contradiction to (iii).) Therefore, by applying Theorem 5.4 with $G^{\prime}, n^{\prime}, \gamma / 2$ playing the roles of G, n, γ, we obtain a T_{r}-packing \mathcal{M}_{1} in G^{\prime}
that covers all but at most ℓ vertices. Let W denote the set of vertices in G^{\prime} that are not covered by \mathcal{M}_{1}. So $|W| \leq \ell \leq \xi^{2} n$ and, since n^{\prime} is divisible by $r,|W| \in r \mathbb{N}$. Thus, by definition of M, $G[M \cup W]$ contains a perfect T_{r}-packing \mathcal{M}_{2}. Hence, $\mathcal{M}_{1} \cup \mathcal{M}_{2}$ is a perfect T_{r}-packing in G, as desired.

Suppose that G is a digraph on n vertices that satisfies (1). Suppose that for some $x, y \in V(G)$, $d^{+}(x)<(1-1 / r) n, d^{-}(y)<(1-1 / r) n$ and $x y \in E(G)$. Then if we remove the edge $x y$ from G, (1) still holds. Thus, to prove Conjecture 1.4 it suffices to consider digraphs G with the following additional assumption: Given any $x, y \in V(G)$, if $d^{+}(x)<(1-1 / r) n$ and $d^{-}(y)<(1-1 / r) n$ then $x y \notin E(G)$. The next result states that such a digraph G contains a perfect T_{r}-packing or contains an 'almost' independent set of size n / r.

Theorem 5.7. Given any $\gamma>0$ and an integer $r \geq 3$ there exists an $n_{0} \in \mathbb{N}$ such that the following holds. Suppose that G is a digraph on $n \geq n_{0}$ vertices where r divides n and that, for any $x \in V(G)$,

$$
d^{+}(x) \geq(1-1 / r) n \text { or } d^{-}(x) \geq(1-1 / r) n .
$$

Further suppose that, given any $x, y \in V(G)$, if $d^{+}(x)<(1-1 / r) n$ and $d^{-}(y)<(1-1 / r) n$ then $x y \notin E(G)$. Then at least one of the following properties holds:
(i) G contains a perfect T_{r}-packing;
(ii) G contains a γ-independent set of size at least n / r.

Proof. The proof is almost identical to that of Theorem 1.6 so we omit it.
So Theorem 5.7 implies that to prove Conjecture 1.4 for large digraphs it suffices to prove the extremal case.

6. Turán-type stability results for embedding tournaments

6.1. The Turán result for Theorem 1.3. The aim of this subsection is to prove Proposition 6.4 which, roughly speaking, states that a digraph G on n vertices of sufficiently large semidegree (i) contains many copies of a fixed $T \in \mathcal{T}_{r}$ or (ii) contains an 'almost' independent set of size n / r. Proposition 6.4 will be applied in the proof of both Theorem 5.1 and Theorem 5.3.

The next result is an immediate consequence of Turán's theorem.
Proposition 6.1. Let $n, r \in \mathbb{N}$ where $r \geq 2$. Suppose that G is a digraph on n vertices such that

$$
\begin{equation*}
e(G)>\left(1-\frac{1}{r-1}\right) \frac{n^{2}}{2}+\binom{n}{2} . \tag{6}
\end{equation*}
$$

Then G contains a copy of K_{r}.
Proof. Let G^{\prime} be the graph on $V(G)$ whose edge set consists of all pairs $x y$ where $x y, y x \in E(G)$. Then (6) implies that $e\left(G^{\prime}\right)>(1-1 /(r-1)) n^{2} / 2$ and thus G^{\prime} contains a copy of K_{r} by Turán's theorem. Hence, $K_{r} \subseteq G$ as required.

Proposition 6.2. Let $1 / n \ll \alpha \ll 1 / r$ with $n, r \in \mathbb{N}$ and $r \geq 3$, and let $T \in \mathcal{T}_{r}$. Suppose that G is a digraph on n vertices such that

$$
\begin{equation*}
\delta^{0}(G) \geq\left(1-\frac{1}{r-1}-\alpha\right) n . \tag{7}
\end{equation*}
$$

If G is T-free then G contains an independent set of size at least $\left(\frac{1}{r-1}-2 r^{2} \alpha\right) n$.

Proof. Let $V(T)=\left\{v_{1}, \ldots, v_{r-2}, a, b\right\}$ and set $T^{\prime}:=T\left[v_{1}, \ldots, v_{r-2}\right]$. Using (7), greedily construct a copy $T^{\prime \prime}$ of T^{\prime} in G. To simplify notation, for each $1 \leq i \leq r-2$, we will refer to the vertex in $T^{\prime \prime}$ (and thus G) corresponding to the vertex v_{i} in T^{\prime} as v_{i}.

We say that a vertex $v \in V(G)$ is a candidate for a in G if the following conditions hold:

- If $a v_{i} \in E(T)$ then $v v_{i} \in E(G)$ (for each $1 \leq i \leq r-2$);
- If $v_{i} a \in E(T)$ then $v_{i} v \in E(G)$ (for each $1 \leq i \leq r-2$).

We give an analogous definition of a candidate for b in G. Let A denote the set of candidates for a in G and let B denote the set of candidates for b in G. Thus, (7) implies that

$$
\begin{equation*}
|A|,|B| \geq\left(\frac{1}{r-1}-(r-2) \alpha\right) n \tag{8}
\end{equation*}
$$

Without loss of generality, suppose that $a b \in E(T)$. Since G is T-free, there is no edge in G whose startpoint lies in A and whose endpoint lies in B. In particular, $A \cap B$ is an independent set.

Set $A^{\prime}:=A \backslash B$. Suppose for a contradiction that $\left|A^{\prime}\right| \geq 2(r-1)^{2} \alpha n$. Given any vertex $x \in A^{\prime}$, since x sends no edges to B,(7) and (8) imply that there are at most

$$
\left(\frac{1}{r-1}+\alpha\right) n-\left(\frac{1}{r-1}-(r-2) \alpha\right) n=(r-1) \alpha n
$$

vertices in A^{\prime} that x does not send an edge to (including itself). Thus,

$$
\delta^{+}\left(G\left[A^{\prime}\right]\right) \geq\left|A^{\prime}\right|-(r-1) \alpha n \geq\left(1-\frac{1}{2(r-1)}\right)\left|A^{\prime}\right|
$$

and so

$$
e\left(G\left[A^{\prime}\right]\right) \geq\left(1-\frac{1}{2(r-1)}\right)\left|A^{\prime}\right|^{2}>\left(1-\frac{1}{r-1}\right) \frac{\left|A^{\prime}\right|^{2}}{2}+\binom{\left|A^{\prime}\right|}{2} .
$$

Hence, Proposition 6.1 implies that $K_{r} \subseteq G\left[A^{\prime}\right]$ and so G contains a copy of T, a contradiction. Therefore, $\left|A^{\prime}\right|<2(r-1)^{2} \alpha n$. Together with (8) this implies that the independent set $A \cap B$ is of size at least $\left(\frac{1}{r-1}-(r-2) \alpha\right) n-2(r-1)^{2} \alpha n \geq\left(\frac{1}{r-1}-2 r^{2} \alpha\right) n$, as required.

To prove Proposition 6.4 we will apply Proposition 6.2 together with the following directed version of the Removal lemma (see e.g. [1, 6]).
Lemma 6.3 (Directed Graph Removal lemma). Let $\gamma>0$ and $t \in \mathbb{N}$. Given any digraph H on t vertices, there exists $\alpha=\alpha(H, \gamma)>0$ and $n_{0}=n_{0}(H, \gamma) \in \mathbb{N}$ such that the following holds. Suppose that G is a digraph on $n \geq n_{0}$ vertices such that G contains at most αn^{t} copies of H. Then G can be made H-free by deleting at most γn^{2} edges.
Proposition 6.4. Let $0<1 / n \ll \alpha \ll \varepsilon \ll 1 / r$ where $r, n \in \mathbb{N}$ and $r \geq 2$, and let $T \in \mathcal{T}_{r}$. Suppose that G is a digraph on n vertices such that

$$
\delta^{0}(G) \geq\left(1-\frac{1}{r-1}-\varepsilon\right) n
$$

and so that G contains at most αn^{r} copies of T. Then G contains a $\sqrt{\varepsilon}$-independent set of size at least $n /(r-1)$.
Proof. The case when $r=2$ is trivial thus we may assume that $r \geq 3$. Define an additional constant γ so that $\alpha \ll \gamma \ll \varepsilon$. Suppose that G is as in the statement of the proposition. Since G contains at most αn^{r} copies of T, Lemma 6.3 implies that one can remove at most γn^{2} edges from G to obtain a spanning subdigraph G^{\prime} that is T-free. So at most $\sqrt{\gamma} n$ vertices in G are incident to more than $2 \sqrt{\gamma} n$ of the edges in $G-G^{\prime}$. Therefore, since $\gamma \ll \varepsilon$, there exists an induced subdigraph $G^{\prime \prime}$ of G^{\prime} such that $n^{\prime \prime}:=\left|G^{\prime \prime}\right| \geq(1-\varepsilon) n$ and $\delta^{0}\left(G^{\prime \prime}\right) \geq(1-1 /(r-1)-2 \varepsilon) n^{\prime \prime}$.

Since $G^{\prime \prime}$ is T-free, Proposition 6.2 implies that $G^{\prime \prime}$ contains an independent set S of size at least

$$
\left(\frac{1}{r-1}-4 r^{2} \varepsilon\right) n^{\prime \prime} \geq\left(\frac{1}{r-1}-5 r^{2} \varepsilon\right) n
$$

By construction of $G^{\prime \prime}, S$ is a γ-independent set in G. By adding at most $5 r^{2} \varepsilon n$ arbitrary vertices to S we obtain a $\sqrt{\varepsilon}$-independent set in G of size at least $n /(r-1)$, as desired.
6.2. The Turán result for Theorem 1.6. In this section we give an analogue of Proposition 6.4 which will be applied in the proof of both Theorem 5.2 and Theorem 5.4. The next result is an analogue of Proposition 6.2.

Proposition 6.5. Let $1 / n \ll \alpha \ll 1 / r$ where $n, r \in \mathbb{N}$ and $r \geq 3$. Suppose that G is a digraph on n vertices such that, for any $x \in V(G)$,

$$
\begin{equation*}
d^{+}(x) \geq\left(1-\frac{1}{r-1}-\alpha\right) n \text { or } d^{-}(x) \geq\left(1-\frac{1}{r-1}-\alpha\right) n . \tag{9}
\end{equation*}
$$

If G is T_{r}-free then G contains an independent set of size at least $\left(\frac{1}{r-1}-r \alpha\right) n$.
Proof. Let $r^{\prime} \in \mathbb{N}$. Suppose that T^{\prime} is a copy of $T_{r^{\prime}}$ in G. Let $V\left(T^{\prime}\right)=\left\{x_{1}, \ldots, x_{r^{\prime}}\right\}$ where x_{i} plays the role of the i th vertex of $T_{r^{\prime}}$. We say that T^{\prime} is consistent if there exists $0 \leq s^{\prime} \leq r^{\prime}$ such that

- $d^{+}\left(x_{i}\right) \geq(1-1 /(r-1)-\alpha) n$ for all $i \leq s^{\prime}$;
- $d^{-}\left(x_{i}\right) \geq(1-1 /(r-1)-\alpha) n$ for all $i>s^{\prime}$.

We call s^{\prime} a turning point of T^{\prime}. (Note that T^{\prime} could have more than one turning point.)
(9) implies that every copy of T_{1} in G is consistent. Suppose that, for some $1 \leq r^{\prime}<r-2$, we have found a consistent copy T^{\prime} of $T_{r^{\prime}}$ in G. As before, let $V\left(T^{\prime}\right)=\left\{x_{1}, \ldots, x_{r^{\prime}}\right\}$ where x_{i} plays the role of the i th vertex of $T_{r^{\prime}}$ and let s^{\prime} denote a turning point of T^{\prime}. Set $N^{\prime}:=\bigcap_{i \leq s^{\prime}} N^{+}\left(x_{i}\right) \cap \bigcap_{i>s^{\prime}} N^{-}\left(x_{i}\right)$. Since T^{\prime} is consistent with turning point s^{\prime} and $r^{\prime}<r-2$,

$$
\left|N^{\prime}\right| \geq\left(1-\frac{r^{\prime}}{r-1}-r^{\prime} \alpha\right) n>0
$$

Consider any $x \in N^{\prime}$. Then $V\left(T^{\prime}\right) \cup\{x\}$ spans a consistent copy of $T_{r^{\prime}+1}$ in G where x plays the role of the $\left(s^{\prime}+1\right)$ th vertex in $T_{r^{\prime}+1}$. (This is true regardless of whether $d^{+}(x) \geq(1-1 /(r-1)-\alpha) n$ or $d^{-}(x) \geq(1-1 /(r-1)-\alpha) n$.)

This observation implies that we can greedily construct a consistent copy T of T_{r-2} in G. Let $V(T)=\left\{y_{1}, \ldots, y_{r-2}\right\}$ where y_{i} plays the role of the i th vertex of T_{r-2} and let s denote a turning point of T. Set $N:=\bigcap_{i \leq s} N^{+}\left(y_{i}\right) \cap \bigcap_{i>s} N^{-}\left(y_{i}\right)$. Since T is consistent with turning point s,

$$
|N| \geq\left(1-\frac{r-2}{r-1}-(r-2) \alpha\right) n \geq\left(\frac{1}{r-1}-r \alpha\right) n
$$

Suppose that there is an edge $x y \in E(G[N])$. Then $V(T) \cup\{x, y\}$ spans a copy of T_{r} in G where x and y play the roles of the $(s+1)$ th and $(s+2)$ th vertices in T_{r} respectively. This is a contradiction, so N is an independent set in G, as required.

Proposition 6.6. Let $0<1 / n \ll \alpha \ll \varepsilon \ll 1 / r$ where $n, r \in \mathbb{N}$ and $r \geq 2$. Suppose that G is a digraph on n vertices such that, for any $x \in V(G)$,

$$
d^{+}(x) \geq\left(1-\frac{1}{r-1}-\varepsilon\right) n \text { or } d^{-}(x) \geq\left(1-\frac{1}{r-1}-\varepsilon\right) n .
$$

Further suppose that G contains at most αn^{r} copies of T_{r}. Then G contains $a \sqrt{\varepsilon}$-independent set of size at least $n /(r-1)$.
Proof. We follow the same argument as in the proof of Proposition 6.4 except that we apply Proposition 6.5 rather than Proposition 6.2.

7. k-COMPLEXES AND ALMOST PERFECT TOURNAMENT PACKINGS

The key tool in the proofs of Theorems 5.3 and 5.4 is a result of Keevash and Mycroft [10, Theorem 2.3] concerning almost perfect matchings in so-called k-complexes. To state this result we require some more definitions. Let $k \in \mathbb{N}$. A k-system is a hypergraph J in which every edge of J contains at most k vertices and $\emptyset \in E(J)$. For $0 \leq i \leq k$, we refer to the edges of size i in J as the i-edges of J, and write J_{i} to denote the i-uniform hypergraph on $V(J)$ induced by these edges. A k-complex J is a k-system whose edge set is closed under inclusion. That is, if $e \in E(H)$ and $e^{\prime} \subseteq e$ then $e^{\prime} \in E(H)$.

Let J be a k-complex. For any edge $e \in E(J)$, the degree $d(e)$ of e is the number of $(|e|+1)$-edges e^{\prime} of J that contain e as a subset. The minimum r-degree $\delta_{r}(J)$ of J is the minimum of $d(e)$ taken over all r-edges $e \in E(J)$. The degree sequence of J is defined as $\delta(J):=\left(\delta_{0}(J), \delta_{1}(J), \ldots, \delta_{k-1}(J)\right)$. Given a vector $\underline{a}=\left(a_{0}, \ldots, a_{k-1}\right)$ of positive integers we write $\delta(J) \geq \underline{a}$ to mean that $\delta_{i}(J) \geq a_{i}$ for all $0 \leq i \leq k-1$.

Suppose V is a set of n vertices, $1 \leq j \leq k-1$ and $S \subseteq V$. Define $J(S, j)$ to be the k-complex on V in which $J(S, j)_{i}$ (for $0 \leq i \leq k$) consists of all i-sets in V that contain at most j vertices of S. Let $\beta>0$. Given k-uniform hypergraphs H, K on the same vertex set of size n we say that K is β-contained in H if, by adding at most βn^{k} edges to H, we can find a copy of K in H. A matching in a hypergraph H is a collection of vertex-disjoint edges from H.

Theorem 7.1 (Keevash and Mycroft [10]). Suppose that $1 / n \ll 1 / \ell \ll \varepsilon \ll \beta \ll 1 / k$. Let J be a k-complex on n vertices such that

$$
\delta(J) \geq\left(n,\left(1-\frac{1}{k}-\varepsilon\right) n,\left(1-\frac{2}{k}-\varepsilon\right) n, \ldots,\left(\frac{1}{k}-\varepsilon\right) n\right) .
$$

Then at least one of the following properties holds:
(i) J_{k} contains a matching that covers all but at most ℓ vertices;
(ii) J_{k} is β-contained in $J(S, j)_{k}$ for some $1 \leq j \leq k-1$ and $S \subseteq V(J)$ with $|S|=\lfloor j n / k\rfloor$.

In the following two subsections we apply Theorem 7.1 to prove both Theorem 5.3 and Theorem 5.4.
7.1. Proof of Theorem 5.3. Define additional constants $\beta, \alpha, \alpha^{\prime}, \varepsilon^{\prime}$ such that

$$
0<1 / n \ll 1 / \ell \ll \varepsilon \ll \beta \ll \alpha \ll \alpha^{\prime} \ll \varepsilon^{\prime} \ll \gamma \ll 1 / r
$$

Let G be a digraph as in the statement of the theorem.
Our first task is to construct an r-complex J from G so that we can apply Theorem 7.1. Let J be the r-system on $V(G)$ where, for each $0 \leq i \leq r, J_{i}$ is defined as follows:

- For each subtournament T^{\prime} of T on i vertices, any i-tuple in $V(G)$ that spans a copy of T^{\prime} in G forms an i-edge in J_{i}.

So for example, if $T=C_{3}$, then $E\left(J_{1}\right)=V\left(J_{1}\right), E\left(J_{2}\right)$ is the set of all pairs $\{x, y\}$ where $x y \in E(G)$ or $y x \in E(G)$ and $E\left(J_{3}\right)$ is the set of all triples $\{x, y, z\}$ that span a copy of C_{3} in G. (Note though that $\{x, y, z\}$ does not have to induce a copy of C_{3} in G. For example, we could have $G[x, y, z]=K_{3}$.)

By construction J is an r-complex. Further, notice that a matching in the r-uniform hypergraph J_{r} corresponds to a T-packing in G. Clearly $\delta_{0}(J)=n$. Set $1 \leq i \leq r-1$ and let T^{\prime} be a subtournament of T on i vertices. If $T^{\prime \prime}$ is a copy of T^{\prime} in G then (3) implies that there are at least $(1-i / r-i \varepsilon) n \geq(1-i / r-\varepsilon r) n$ vertices x in G such that $V\left(T^{\prime \prime}\right) \cup\{x\}$ spans a copy of a subtournament of T on $i+1$ vertices. This therefore implies that,

$$
\delta(J) \geq\left(n,\left(1-\frac{1}{r}-\varepsilon r\right) n,\left(1-\frac{2}{r}-\varepsilon r\right) n, \ldots,\left(\frac{1}{r}-\varepsilon r\right) n\right)
$$

Hence, we can apply Theorem 7.1 with $r, \varepsilon r$ playing the roles of k, ε. So at least one of the following conditions holds:
(a) J_{r} contains a matching that covers all but at most ℓ vertices;
(b) J_{r} is β-contained in $J(S, j)_{r}$ for some $1 \leq j \leq r-1$ and $S \subseteq V(J)=V(G)$ with $|S|=\lfloor j n / r\rfloor$.

If (a) holds then this implies that (i) is satisfied. So we may assume that (b) holds. We will show that this implies that (ii) is satisfied.

Let j be as in (b) and consider an arbitrary subtournament T^{\prime} of T on $j+1$ vertices. Suppose for a contradiction that there are at least $\alpha n^{j+1}(j+1)$-tuples in S that span a copy $T^{\prime \prime}$ of T^{\prime} in G. If $j=r-1$ then $T^{\prime}=T$ and so this implies that J_{r} contains at least $\alpha n^{j+1}=\alpha n^{r}>\beta n^{r}$ edges that lie in S. This is a contradiction as J_{r} is β-contained in $J(S, j)_{r}$. So suppose that $j<r-1$. Then (3) implies that, for each copy $T^{\prime \prime}$ of T^{\prime} in G, there are at least

$$
\begin{aligned}
& \frac{1}{(r-j-1)!}\left(1-\frac{j+1}{r}-(j+1) \varepsilon\right) n \times\left(1-\frac{j+2}{r}-(j+2) \varepsilon\right) n \times \cdots \times\left(\frac{1}{r}-(r-1) \varepsilon\right) n \\
& \geq \frac{1}{(r-j-1)!} \times \frac{1}{2 r^{r}} n^{r-j-1} \geq \frac{1}{2 r^{2 r}} n^{r-j-1}
\end{aligned}
$$

$(r-j-1)$-tuples X in $V(G)$ such that $V\left(T^{\prime \prime}\right) \cup X$ spans a copy of T in G. Since $\beta \ll \alpha, 1 / r$, this implies that there are at least

$$
\frac{1}{\binom{r}{j+1}} \times \alpha n^{j+1} \times \frac{1}{2 r^{2 r}} n^{r-j-1}>\beta n^{r}
$$

r-tuples in $V(G)$ that span a copy of T and which contain at least $j+1$ vertices from S. So J_{r} contains more than βn^{r} edges that contain at least $j+1$ vertices from S. This is a contradiction as J_{r} is β-contained in $J(S, j)_{r}$.

So there are at most $\alpha n^{j+1}(j+1)$-tuples in S that span a copy of T^{\prime} in G. Thus, since any $(j+1)$ tuple of vertices spans at most 2^{j+1} copies of T^{\prime}, there are at most $2^{j+1} \alpha n^{j+1} \leq 2^{r} \alpha n^{j+1} \leq \alpha^{\prime}|S|^{j+1}$ copies of T^{\prime} in $G[S]$. Further, since $|S|=\lfloor j n / r\rfloor$, (3) implies that

$$
\delta^{0}(G[S]) \geq|S|-\frac{n}{r}-\varepsilon n \geq\left(1-\frac{1}{j}-\varepsilon^{\prime}\right)|S|
$$

Apply Proposition 6.4 with $G[S], T^{\prime}, j+1, \varepsilon^{\prime}, \alpha^{\prime}$ playing the roles of $G, T, r, \varepsilon, \alpha$. This implies that $G[S]$ contains a $\sqrt{\varepsilon^{\prime}}$-independent set of size at least $|S| / j \geq n / r-1$. Since $\sqrt{\varepsilon^{\prime}}|S|^{2} \ll \gamma n^{2}$, this implies that G contains a γ-independent set of size at least n / r, as required.
7.2. Proof of Theorem 5.4. Define additional constants $\beta, \alpha, \alpha^{\prime}, \varepsilon^{\prime}$ such that

$$
0<1 / n \ll 1 / \ell \ll \varepsilon \ll \beta \ll \alpha \ll \alpha^{\prime} \ll \varepsilon^{\prime} \ll \gamma \ll 1 / r
$$

Let G be a digraph as in the statement of the theorem.
Let $r^{\prime} \in \mathbb{N}$ and suppose that T^{\prime} is a copy of $T_{r^{\prime}}$ in G. Let $V\left(T^{\prime}\right)=\left\{x_{1}, \ldots, x_{r^{\prime}}\right\}$ where x_{i} plays the role of the i th vertex of $T_{r^{\prime}}$. We say that T^{\prime} is consistent if there exists $0 \leq s \leq r^{\prime}$ such that

- $d^{+}\left(x_{i}\right) \geq(1-1 / r-\varepsilon) n$ for all $i \leq s$;
- $d^{-}\left(x_{i}\right) \geq(1-1 / r-\varepsilon) n$ for all $i>s$.

We call s a turning point of T^{\prime}. (T^{\prime} could have more than one turning point.)
(4) implies that every copy of T_{1} in G is consistent. Suppose, for a contradiction, that T is a copy of $T_{r^{\prime}}$ in G that is not consistent (for some $r^{\prime} \geq 2$). Let y_{i} denote the vertex in T that plays the role of the i th vertex of $T_{r^{\prime}}$. Let k be the smallest positive integer such that $d^{+}\left(y_{k}\right)<(1-1 / r-\varepsilon) n$ (and so $d^{-}\left(y_{k}\right) \geq(1-1 / r-\varepsilon) n$ by (4)); such an integer exists else T is consistent with turning point r^{\prime}. Then there exists $k^{\prime}>k$ such that $d^{-}\left(y_{k^{\prime}}\right)<(1-1 / r-\varepsilon) n$ (otherwise T is consistent with turning point $k-1$). But then $y_{k} y_{k^{\prime}} \in E(T) \subseteq E(G)$ where $d^{+}\left(y_{k}\right)<(1-1 / r-\varepsilon) n$ and $d^{-}\left(y_{k^{\prime}}\right)<(1-1 / r-\varepsilon) n$. This is a contradiction to the hypothesis of the theorem. Thus, every transitive tournament in G is consistent.

Let J be the r-system on $V(G)$ where, for each $0 \leq i \leq r, J_{i}$ is defined as follows:

- Any i-tuple in $V(G)$ that spans a copy of T_{i} in G forms an i-edge in J_{i}.

By construction J is an r-complex. Further, a matching in J_{r} corresponds to a T_{r}-packing in G. Clearly $\delta_{0}(J)=n$. Suppose that T is a (consistent) copy of T_{i} in G for some $1 \leq i \leq r-1$ and let s denote a turning point of T. As before, let y_{k} denote the vertex in T that plays the role of the k th vertex in T_{i}. Set $N:=\bigcap_{k \leq s} N^{+}\left(y_{k}\right) \cap \bigcap_{k>s} N^{-}\left(y_{k}\right)$. Since T is consistent with turning point s,

$$
|N| \geq\left(1-\frac{i}{r}-i \varepsilon\right) n \geq\left(1-\frac{i}{r}-r \varepsilon\right) n
$$

Further, given any $x \in N, V(T) \cup\{x\}$ spans a copy of T_{i+1} in G. So $V(T) \cup\{x\}$ is an edge in J. This implies that

$$
\delta(J) \geq\left(n,\left(1-\frac{1}{r}-\varepsilon r\right) n,\left(1-\frac{2}{r}-\varepsilon r\right) n, \ldots,\left(\frac{1}{r}-\varepsilon r\right) n\right)
$$

Hence, we can apply Theorem 7.1 with $r, \varepsilon r$ playing the roles of k, ε. So at least one of the following conditions holds:
(a) J_{r} contains a matching that covers all but at most ℓ vertices;
(b) J_{r} is β-contained in $J(S, j)_{r}$ for some $1 \leq j \leq r-1$ and $S \subseteq V(J)=V(G)$ with $|S|=\lfloor j n / r\rfloor$.

If (a) holds then (i) is satisfied. So we may assume that (b) holds. We will show that this implies that (ii) is satisfied.

The argument now closely follows the proof of Theorem 5.3. Indeed, let j be as in (b). Suppose for a contradiction that there are at least $\alpha n^{j+1}(j+1)$-tuples in S that span a copy T of T_{j+1} in G. If $j=r-1$ then $T_{j+1}=T_{r}$ and so this implies that J_{r} contains at least $\alpha n^{j+1}=\alpha n^{r}>\beta n^{r}$ edges that lie in S. This is a contradiction as J_{r} is β-contained in $J(S, j)_{r}$. So suppose that $j<r-1$.

Recall that every copy T of T_{j+1} in G is consistent. This implies that there are at least ($1-$ $\left.\frac{j+1}{r}-(j+1) \varepsilon\right) n$ vertices $x \in V(G)$ such that $V(T) \cup\{x\}$ spans a copy of T_{j+2} in G. Repeating
this process we see that, for every copy T of T_{j+1} in G, there are at least

$$
\begin{aligned}
& \frac{1}{(r-j-1)!}\left(1-\frac{j+1}{r}-(j+1) \varepsilon\right) n \times\left(1-\frac{j+2}{r}-(j+2) \varepsilon\right) n \times \cdots \times\left(\frac{1}{r}-(r-1) \varepsilon\right) n \\
& \geq \frac{1}{(r-j-1)!} \times \frac{1}{2 r^{r}} n^{r-j-1} \geq \frac{1}{2 r^{2 r}} n^{r-j-1}
\end{aligned}
$$

$(r-j-1)$-tuples X in $V(G)$ such that $V(T) \cup X$ spans a copy of T_{r} in G. Since $\beta \ll \alpha, 1 / r$, this implies that there are at least

$$
\frac{1}{\binom{r}{j+1}} \times \alpha n^{j+1} \times \frac{1}{2 r^{2 r}} n^{r-j-1}>\beta n^{r}
$$

r-tuples in $V(G)$ that span a copy of T_{r} and which contain at least $j+1$ vertices from S. So J_{r} contains more than βn^{r} edges that contain at least $j+1$ vertices from S. This is a contradiction as J_{r} is β-contained in $J(S, j)_{r}$.

Thus, there are at most $\alpha n^{j+1}(j+1)$-tuples in S that span a copy of T_{j+1} in G. Since any $(j+1)$-tuple of vertices spans at most 2^{j+1} copies of T_{j+1}, there are at most $2^{j+1} \alpha n^{j+1} \leq 2^{r} \alpha n^{j+1} \leq$ $\alpha^{\prime}|S|^{j+1}$ copies of T_{j+1} in $G[S]$. Further, since $|S|=\lfloor j n / r\rfloor$, (4) implies that, for every $x \in V(G[S])$,

$$
d_{G[S]}^{+}(x) \geq|S|-\frac{n}{r}-\varepsilon n \geq\left(1-\frac{1}{j}-\varepsilon^{\prime}\right)|S| \text { or } d_{G[S]}^{-}(x) \geq\left(1-\frac{1}{j}-\varepsilon^{\prime}\right)|S| .
$$

Apply Proposition 6.6 with $G[S], j+1, \varepsilon^{\prime}, \alpha^{\prime}$ playing the roles of $G, r, \varepsilon, \alpha$. This implies that $G[S]$ contains a $\sqrt{\varepsilon^{\prime}}$-independent set of size at least $|S| / j \geq n / r-1$. Since $\sqrt{\varepsilon^{\prime}}|S|^{2} \ll \gamma n^{2}$, this implies that G contains a γ-independent set of size at least n / r, as required.

8. The connection lemmas

In Section 9 we prove Theorems 5.1 and 5.2. Roughly speaking, in both these theorems, when our digraph G is non-extremal we require a 'small' T-absorbing set in G that absorbs any 'very small' set of vertices in G (for some $T \in \mathcal{T}_{r}$).

The crucial idea in finding such an absorbing set is to first prove that our digraph G has many 'connecting structures' of a certain type. More precisely, to find our desired absorbing set it suffices to show that, for any $x, y \in V(G)$, there are 'many' $(r-1)$-sets $X \subseteq V(G)$ so that both $X \cup\{x\}$ and $X \cup\{y\}$ span copies of T in G. Our main task therefore is to prove so-called 'connection lemmas' that guarantee such sets X. In the case when $T=C_{3}$ though, we may not be able to find such sets. However, in this case we instead find, for any $x, y \in V(G)$, 'many' 5 -sets $X \subseteq V(G)$ so that both $X \cup\{x\}$ and $X \cup\{y\}$ span copies of $2 T$ in G.

The approach of proving connection lemmas to find absorbing structures for packing problems has been very fruitful. Indeed, Lo and Markström [18, 19] used such connection lemmas to tackle perfect packing problems for hypergraphs (although their terminology for these 'connecting structures' differs from ours). Further, recently the author [23] applied this method to prove a degree sequence version of the Hajnal-Szemerédi theorem.

A single connection lemma (Lemma 8.1) for Theorem 5.2 is given in Section 8.1. However, for Theorem 5.1, we need to prove a number of separate connection lemmas. In Section 8.3 we prove the connection lemma for Theorem 5.1 for those $T \in \mathcal{T}_{r}$ where $r \geq 5$ (see Lemma 8.4). The proof relies on T containing T_{3} as a subtournament. (So this method certainly cannot be applied in the case when $T=C_{3}$.) It is easy to see that all tournaments on at least four vertices contain T_{3}. However for $T \in \mathcal{T}_{4}$, the minimum semidegree condition on our digraph G is not high enough for the proof method of Lemma 8.4 to go through. Thus, we use a different approach to prove the
connection lemma in this case (see Section 8.2). This method makes use of a simple structural property of tournaments on four vertices (see Fact 8.2). The case when $T=T_{3}$ is covered by Lemma 8.1.

Finally, we need a separate connection lemma for when $T=C_{3}$ (see Section 8.4). Of all the connection lemmas, this one has the most involved proof. This stems from the fact that we now have two extremal cases. Thus, to find our connecting structures in a non-extremal digraph G on n vertices we must use both the property that G does not contain an 'almost' independent set of size $n / 3$ and that G does not α-contain $\operatorname{Ex}(n)$.
8.1. The connection lemma for Theorem 5.2. The following connection lemma is a straightforward consequence of Proposition 6.6.

Lemma 8.1. Let $0<1 / n \ll \varepsilon \ll \eta \ll \gamma \ll 1 / r$ where $n, r \in \mathbb{N}$ and $r \geq 3$. Suppose that G is a digraph on n vertices such that, for any $z \in V(G)$,

$$
\begin{equation*}
d^{+}(z) \geq(1-1 / r-\varepsilon) n \text { or } d^{-}(z) \geq(1-1 / r-\varepsilon) n . \tag{10}
\end{equation*}
$$

Further, suppose that G does not contain a γ-independent set on at least n / r vertices. Given any $x, y \in V(G)$, there exist at least $\eta n^{r-1}(r-1)$-sets $X \subseteq V(G)$ such that both $X \cup\{x\}$ and $X \cup\{y\}$ span copies of T_{r} in G.
Proof. Let $x, y \in V(G)$. Suppose that $d^{+}(x) \geq(1-1 / r-\varepsilon) n$ and $d^{-}(y) \geq(1-1 / r-\varepsilon) n$. (The other cases are identical.) Set $S:=N^{+}(x) \cap N^{-}(y)$. So $|S| \geq(1-2 / r-2 \varepsilon) n=\frac{r-2-2 \varepsilon r}{r} n$. This implies that,

$$
|S|-\frac{n}{r}-\varepsilon n \geq|S|-\frac{|S|}{r-2-2 \varepsilon r}-2 \varepsilon r|S| \geq|S|-\frac{|S|}{r-2}-3 \varepsilon r|S|-2 \varepsilon r|S| \geq\left(1-\frac{1}{r-2}-\frac{\gamma^{2}}{4}\right)|S| .
$$

Together with (10) this implies that, for any $z \in S$,

$$
d_{G[S]}^{+}(z) \geq\left(1-\frac{1}{r-2}-\frac{\gamma^{2}}{4}\right)|S| \text { or } d_{G[S]}^{-}(z) \geq\left(1-\frac{1}{r-2}-\frac{\gamma^{2}}{4}\right)|S| .
$$

Suppose for a contradiction that $G[S]$ contains at most $2^{3 r-3} \eta|S|^{r-1}$ copies of T_{r-1}. Note that $1 /|S| \ll 2^{3 r-3} \eta \ll \gamma^{2} / 4 \ll 1 /(r-1)$. Hence, applying Proposition 6.6 with $G[S], r-1,2^{3 r-3} \eta, \gamma^{2} / 4$ playing the roles of G, r, α and ε respectively, we obtain a $\gamma / 2$-independent set S^{\prime} in $G[S]$ of size at least $|S| /(r-2)$. Note that

$$
\frac{|S|}{r-2} \geq \frac{(r-2-2 \varepsilon r)}{r(r-2)} n \geq \frac{n}{r}-2 \varepsilon n .
$$

Therefore, S^{\prime} is a $\gamma / 2$-independent set in G of size at least $n / r-2 \varepsilon n$. By adding at most $2 \varepsilon n$ arbitrary vertices to S^{\prime}, we obtain a γ-independent set in G of size at least n / r, a contradiction.

Thus, there are at least $2^{3 r-3} \eta|S|^{r-1} \geq 2^{r-1} \eta n^{r-1}$ copies of T_{r-1} in $G[S]$. (The inequality here follows since $|S| \geq n / 4$.) Any ($r-1$)-set in S spans at most 2^{r-1} different copies of T_{r-1} in $G[S]$. So there are at least $\eta n^{r-1}(r-1)$-sets $X \subseteq S$ that span a copy of T_{r-1} in $G[S]$. By definition of S, for each such set X, both $X \cup\{x\}$ and $X \cup\{y\}$ span copies of T_{r} in G, as required.
8.2. The connection lemma for tournaments on four vertices. The following simple fact will be used in the proof of the connection lemma for tournaments on four vertices (Lemma 8.3).
Fact 8.2. If $T \in \mathcal{T}_{4}$ then there is a subset $S \subseteq V(T)$ with $|S| \in\{1,2\}$ and such that given any $s \in S$, either

- $s s^{\prime} \in E(T)$ for all $s^{\prime} \in V(T) \backslash S$ or
- $s^{\prime} s \in E(T)$ for all $s^{\prime} \in V(T) \backslash S$.

Lemma 8.3. Let $0<1 / n \ll \varepsilon \ll \eta \ll \gamma \ll 1$ and $T \in \mathcal{T}_{4}$. Suppose that G is a digraph on n vertices such that

$$
\begin{equation*}
\delta^{0}(G) \geq(3 / 4-\varepsilon) n \tag{11}
\end{equation*}
$$

and so that G does not contain any γ-independent set of size at least $n / 4$. Then, for any $x, y \in$ $V(G)$, there exist at least ηn^{3} 3-sets $X \subseteq V(G)$ such that $X \cup\{x\}$ and $X \cup\{y\}$ span copies of T in G.
Proof. By Fact 8.2, T contains a subset $S \subseteq V(T)$ with $|S| \in\{1,2\}$ and such that given any $s \in S$, either

- $s s^{\prime} \in E(T)$ for all $s^{\prime} \in V(T) \backslash S$ or
- $s^{\prime} s \in E(T)$ for all $s^{\prime} \in V(T) \backslash S$.

We divide the proof into two cases depending on $|S|$.
Case 1: $|S|=1$
Let $V(T)=\left\{x_{1}, x_{2}, x_{3}, s\right\}$ where $S=\{s\}$. Consider the case when $s x_{i} \in E(T)$ for $i=1,2,3$. (The other case, when $x_{i} s \in E(T)$ for $i=1,2,3$, is analogous.) Set $A:=N_{G}^{+}(x) \cap N_{G}^{+}(y)$ and let $T^{\prime}:=T\left[x_{1}, x_{2}, x_{3}\right]$. Our aim is to find $\eta n^{3} 3$-sets $X \subseteq A$ that span copies of T^{\prime} in $G[A]$. Then the choice of s and A ensures that each such set X has the property that $X \cup\{x\}$ and $X \cup\{y\}$ span copies of T in G (where x and y respectively play the role of s), as desired.

By (11) we have that $|A| \geq(1 / 2-2 \varepsilon) n$ and so

$$
\delta^{0}(G[A]) \geq|A|-(1 / 4+\varepsilon) n \geq|A|-(1 / 4+\varepsilon) \frac{|A|}{1 / 2-2 \varepsilon} \geq|A|-(1 / 2+5 \varepsilon)|A| \geq\left(1 / 2-\gamma^{2} / 4\right)|A|
$$

Suppose for a contradiction that $G[A]$ contains at most $65 \eta|A|^{3}$ copies of T^{\prime}. Note that $1 /|A| \ll$ $65 \eta \ll \gamma^{2} / 4 \ll 1 / 3$. Hence, applying Proposition 6.4 with $G[A], T^{\prime}, 3,65 \eta, \gamma^{2} / 4$ playing the roles of G, T, r, α and ε respectively, we obtain a $\gamma / 2$-independent set A^{\prime} in $G[A]$ of size at least $|A| / 2 \geq$ $(1 / 4-\varepsilon) n$. By adding at most εn arbitrary vertices to A^{\prime}, we obtain a γ-independent set in G of size at least $n / 4$, a contradiction.

Thus, there are at least $65 \eta|A|^{3} \geq 2^{3} \eta n^{3}$ copies of T^{\prime} in $G[A]$. Any 3 -set in A spans at most 2^{3} different copies of T^{\prime} in $G[A]$. So there are at least $\eta n^{3} 3$-sets $X \subseteq A$ that span a copy of T^{\prime} in $G[A]$, as required.

Case 2: $|S|=2$
Let $V(T)=\left\{x_{1}, x_{2}, s_{1}, s_{2}\right\}$ where $S=\left\{s_{1}, s_{2}\right\}$. Assume that $x_{1}, x_{2} \in N_{T}^{+}\left(s_{1}\right)$ and $x_{1}, x_{2} \in N_{T}^{-}\left(s_{2}\right)$. (The other cases can be dealt with analogously.) We may further assume that $s_{2} s_{1} \in E(T)$ (otherwise, we can reset $S=\left\{s_{1}\right\}$ and then follow the argument from Case 1). Finally, we may assume that $x_{1} x_{2} \in E(T)$.

For each of our desired 3 -sets X, the vertices x and y will play the role of s_{1} in the copy of T that spans $X \cup\{x\}$ and $X \cup\{y\}$, respectively. Let $s_{2}^{\prime} \in V(G)$ such that $s_{2}^{\prime} x, s_{2}^{\prime} y \in E(G)$. By (11) there are at least $(1 / 2-2 \varepsilon) n$ choices for s_{2}^{\prime}. Set $A:=N_{G}^{+}(x) \cap N_{G}^{+}(y) \cap N_{G}^{-}\left(s_{2}^{\prime}\right)$. Then (11) implies that

$$
|A| \geq\left(\frac{1}{4}-3 \varepsilon\right) n
$$

Suppose that $G[A]$ contains at most $\gamma n^{2} / 2$ edges. Then by adding at most $3 \varepsilon n$ vertices to A, we obtain a γ-independent set in G of size at least $n / 4$, a contradiction. So $G[A]$ contains at least $\gamma n^{2} / 2$ edges.

Given any $x_{1}^{\prime} x_{2}^{\prime} \in E(G[A])$, set $X:=\left\{s_{2}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}\right\}$. By construction, $X \cup\{x\}$ spans a copy of T in G where $x, s_{2}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}$ play the roles of s_{1}, s_{2}, x_{1} and x_{2} respectively and $X \cup\{y\}$ spans a copy of T in G where $y, s_{2}^{\prime}, x_{1}^{\prime}, x_{2}^{\prime}$ play the roles of s_{1}, s_{2}, x_{1} and x_{2} respectively.

Recall that there are at least $(1 / 2-2 \varepsilon) n$ choices for s_{2}^{\prime} and at least $\gamma n^{2} / 2$ choices for $x_{1}^{\prime} x_{2}^{\prime}$. Overall, this implies that there are at least

$$
(1 / 2-2 \varepsilon) n \times \frac{\gamma n^{2}}{2} \times \frac{1}{3!} \geq \eta n^{3}
$$

choices for X, as desired.

8.3. The connection lemma for tournaments on at least five vertices.

Lemma 8.4. Let $0<1 / n \ll \varepsilon \ll \eta \ll \gamma \ll 1 / r$ where $n, r \in \mathbb{N}$ and $r \geq 5$, and let $T \in \mathcal{T}_{r}$. Suppose that G is a digraph on n vertices such that

$$
\begin{equation*}
\delta^{0}(G) \geq(1-1 / r-\varepsilon) n \tag{12}
\end{equation*}
$$

and so that G does not contain a γ-independent set on at least n / r vertices. Given any $x, y \in V(G)$, there exist at least $\eta n^{r-1}(r-1)$-sets $X \subseteq V(G)$ such that both $X \cup\{x\}$ and $X \cup\{y\}$ span copies of T in G.
Proof. Define γ^{\prime} such that $\eta \ll \gamma^{\prime} \ll \gamma$. Since $|T| \geq 5, T$ contains a copy of T_{3}. Let $V(T)=$ $\left\{x_{1}, \ldots, x_{r-3}, s_{1}, s_{2}, s_{3}\right\}$ where $T\left[s_{1}, s_{2}, s_{3}\right]=T_{3}$ so that $s_{i} s_{j} \in E(T)$ for $i<j$.

Consider any $x, y \in V(G)$. We now explain how we construct our desired $(r-1)$-sets X. For each such X, x will play the role of x_{1} in the copy of T spanning $X \cup\{x\}$ and y will play the role of x_{1} in the copy of T spanning $X \cup\{y\}$. When constructing each X we introduce a special vertex x^{*} that will play the role of s_{1}, s_{2} or s_{3} in the copies of T spanned by $X \cup\{x\}$ and $X \cup\{y\}$.

Let $x^{*} \in V(G)$ be such that $x x^{*}, x^{*} x, y x^{*}, x^{*} y \in E(G)$. By (12) there are at least $(1-4 / r-4 \varepsilon) n \geq$ $n / 2 r$ choices for x^{*}. (Note that we could not guarantee such a vertex x^{*} exists if $r=4$. This is the reason why we cannot generalise this proof to work for $r \geq 4$.)

Next we iteratively choose vertices $x_{2}^{\prime}, \ldots, x_{r-3}^{\prime} \in V(G)$ such that, for each $2 \leq i \leq r-3$, the following conditions hold:
$\left(a_{i}\right) x^{*} x_{i}^{\prime}, x_{i}^{\prime} x^{*} \in E(G) ;$
$\left(b_{i}\right) x x_{i}^{\prime}, y x_{i}^{\prime} \in E(G)$ if $x_{1} x_{i} \in E(T)$ and $x_{i}^{\prime} x, x_{i}^{\prime} y \in E(G)$ if $x_{i} x_{1} \in E(T)$;
$\left(c_{i}\right) x_{i^{\prime}}^{\prime} x_{i}^{\prime} \in E(G)$ if $x_{i^{\prime}} x_{i} \in E(T)$ and $x_{i}^{\prime} x_{i^{\prime}}^{\prime} \in E(G)$ if $x_{i} x_{i^{\prime}} \in E(T)$ (for each $2 \leq i^{\prime}<i$).
Suppose that, for some $2 \leq j \leq r-4$, we have already chosen $x_{2}^{\prime}, \ldots, x_{j}^{\prime}$ so that $\left(a_{i}\right)-\left(c_{i}\right)$ hold for $2 \leq i \leq j$. Then (12) implies that there are at least

$$
\left(1-\frac{j+3}{r}-(j+3) \varepsilon\right) n \geq\left(1-\frac{r-1}{r}-(r-1) \varepsilon\right) n \geq \frac{n}{2 r}
$$

choices for x_{j+1}^{\prime} so that $\left(a_{j+1}\right)-\left(c_{j+1}\right)$ are satisfied.
Conditions $\left(a_{i}\right)-\left(c_{i}\right)$ ensure that x_{i}^{\prime} can play the role of x_{i} for each $2 \leq i \leq r-3$. Since there are double edges between x^{*} and $x, y, x_{2}^{\prime}, \ldots, x_{r-3}^{\prime}$ there is currently freedom as to whether x^{*} will play the role of s_{1}, s_{2} or s_{3}.

Our next task is to construct sets S_{1}, S_{2}, S_{3} of 'candidates' to play the role of s_{1}, s_{2} and s_{3} respectively. More precisely, we say that a vertex $z \in V(G)$ is a candidate for s_{1} in G if:

- $z x^{*} \in E(G)$;
- $x z, y z \in E(G)$ if $x_{1} s_{1} \in E(T)$ and $z x, z y \in E(G)$ if $s_{1} x_{1} \in E(T)$;
- $x_{i}^{\prime} z \in E(G)$ if $x_{i} s_{1} \in E(T)$ and $z x_{i}^{\prime} \in E(G)$ if $s_{1} x_{i} \in E(T)$ (for each $2 \leq i \leq r-3$).

We say that a vertex $z \in V(G)$ is a candidate for s_{2} in G if:

- $x^{*} z \in E(G)$;
- $x z, y z \in E(G)$ if $x_{1} s_{2} \in E(T)$ and $z x, z y \in E(G)$ if $s_{2} x_{1} \in E(T)$;
- $x_{i}^{\prime} z \in E(G)$ if $x_{i} s_{2} \in E(T)$ and $z x_{i}^{\prime} \in E(G)$ if $s_{2} x_{i} \in E(T)$ (for each $2 \leq i \leq r-3$).

Similarly we say that a vertex $z \in V(G)$ is a candidate for s_{3} in G if:

- $x^{*} z \in E(G)$;
- $x z, y z \in E(G)$ if $x_{1} s_{3} \in E(T)$ and $z x, z y \in E(G)$ if $s_{3} x_{1} \in E(T)$;
- $x_{i}^{\prime} z \in E(G)$ if $x_{i} s_{3} \in E(T)$ and $z x_{i}^{\prime} \in E(G)$ if $s_{3} x_{i} \in E(T)$ (for each $2 \leq i \leq r-3$).
(Note that it is important that the first condition in the definition of a candidate for s_{1} differs from the first condition in the definitions of candidates for s_{2} and s_{3}.)
Let S_{1}, S_{2}, S_{3} denote the set of candidates for s_{1}, s_{2} and s_{3} respectively. (12) implies that

$$
\begin{equation*}
\left|S_{1}\right|,\left|S_{2}\right|,\left|S_{3}\right| \geq\left(1-\frac{r-1}{r}-(r-1) \varepsilon\right) n \geq \frac{n}{r}-r \varepsilon n . \tag{13}
\end{equation*}
$$

Case 1: $\left|S_{1} \cup S_{2}\right| \geq n / r+\gamma^{\prime} n$.
In this case (12) implies that every $z \in S_{3}$ receives at least $\gamma^{\prime} n-\varepsilon n \geq \gamma^{\prime} n / 2$ edges from $S_{1} \cup S_{2}$ in G. So (13) implies that there are at least $\gamma^{\prime} n^{2} / 3 r$ edges in G with startpoint in $S_{1} \cup S_{2}$ and endpoint in S_{3}. Without loss of generality assume that there are at least $\gamma^{\prime} n^{2} / 6 r$ edges in G with startpoint in S_{1} and endpoint in S_{3}. Let $s_{1}^{\prime} s_{3}^{\prime}$ be such an edge. Notice that, by definition of candidates for s_{1} and $s_{3},\left\{s_{1}^{\prime}, x^{*}, s_{3}^{\prime}\right\}$ spans a copy of T_{3} in G with s_{1}^{\prime}, x^{*} and s_{3}^{\prime} playing the roles of s_{1}, s_{2} and s_{3} respectively. Set $X:=\left\{x^{*}, x_{2}^{\prime}, \ldots, x_{r-3}^{\prime}, s_{1}^{\prime}, s_{3}^{\prime}\right\}$. By construction $X \cup\{x\}$ spans a copy of T in G where x plays the role of x_{1}, x_{i}^{\prime} plays the role of $x_{i}\left(\right.$ for $2 \leq i \leq r-3$), s_{1}^{\prime} plays the role of s_{1}, x^{*} plays the role of s_{2} and s_{3}^{\prime} plays the role of s_{3}. Similarly, $X \cup\{y\}$ spans a copy of T in G where y plays the role of x_{1}, x_{i}^{\prime} plays the role of x_{i} (for $2 \leq i \leq r-3$), s_{1}^{\prime} plays the role of s_{1}, x^{*} plays the role of s_{2} and s_{3}^{\prime} plays the role of s_{3}.
Case 2: $\left|S_{1} \cup S_{2}\right|<n / r+\gamma^{\prime} n$.
In this case,

$$
\left|S_{1} \cap S_{2}\right|=\left|S_{1}\right|-\left|S_{1} \backslash S_{2}\right| \stackrel{(13)}{\geq}\left(\frac{n}{r}-r \varepsilon n\right)-\left(\gamma^{\prime} n+r \varepsilon n\right) \geq \frac{n}{r}-2 \gamma^{\prime} n .
$$

Note that there must be at least $\gamma n^{2} / 2 \geq \gamma^{\prime} n^{2} / 6 r$ edges in $S_{1} \cap S_{2}$ otherwise, by adding at most $2 \gamma^{\prime} n$ arbitrary vertices to $S_{1} \cap S_{2}$, we obtain a γ-independent set in G of size at least n / r, a contradiction. Consider any edge $s_{1}^{\prime} s_{2}^{\prime} \in E\left(G\left[S_{1} \cap S_{2}\right]\right)$.

By definition of candidates for s_{1} and $s_{2},\left\{s_{1}^{\prime}, s_{2}^{\prime}, x^{*}\right\}$ spans a copy of T_{3} in G with $s_{1}^{\prime}, s_{2}^{\prime}$ and x^{*} playing the roles of s_{1}, s_{2} and s_{3} respectively. (Indeed, by definition of $S_{1} \cap S_{2}$ there is a double edge from x^{*} to both s_{1} and s_{2} in G. Further, $s_{1}^{\prime} s_{2}^{\prime} \in E(G)$.) Set $X:=\left\{x^{*}, x_{2}^{\prime}, \ldots, x_{r-3}^{\prime}, s_{1}^{\prime}, s_{2}^{\prime}\right\}$. By construction $X \cup\{x\}$ spans a copy of T in G where x plays the role of x_{1}, x_{i}^{\prime} plays the role of x_{i} (for $2 \leq i \leq r-3$), s_{1}^{\prime} plays the role of s_{1}, s_{2}^{\prime} plays the role of s_{2} and x^{*} plays the role of s_{3}. Similarly, $X \cup\{y\}$ spans a copy of T in G.

Recall that there are at least $n / 2 r$ choices for x^{*}, at least $n / 2 r$ choices for each x_{i}^{\prime} and at least $\gamma^{\prime} n^{2} / 6 r$ choices for the edges selected in Cases 1 and 2 . Overall, this implies that there are at least

$$
\frac{n}{2 r} \times\left(\frac{n}{2 r}\right)^{r-4} \times \frac{\gamma^{\prime} n^{2}}{6 r} \times \frac{1}{(r-1)!} \geq \eta n^{r-1}
$$

choices for X, as desired.

8.4. The connection lemma for cyclic triangles.

Lemma 8.5. Let $0<1 / n \ll \varepsilon \ll \eta \ll \gamma, \alpha \ll 1$. Suppose that G is a digraph on n vertices such that

$$
\begin{equation*}
\delta^{0}(G) \geq(2 / 3-\varepsilon) n . \tag{14}
\end{equation*}
$$

Further suppose that

- G does not contain any γ-independent set of size at least $n / 3$, and
- G does not α-contain $E x(n)$.

Then, given any $x, y \in V(G)$, at least one of the following conditions holds.
(i) There are at least ηn^{2} 2-sets $X \subseteq V(G)$ such that $X \cup\{x\}$ and $X \cup\{y\}$ span copies of C_{3} in G.
(ii) There are at least ηn^{5} 5-sets $X \subseteq V(G)$ such that $X \cup\{x\}$ and $X \cup\{y\}$ span copies of $2 C_{3}$ in G.
Proof. Define additional constants $\varepsilon^{\prime}, \varepsilon^{\prime \prime}$ so that $\eta \ll \varepsilon^{\prime} \ll \varepsilon^{\prime \prime} \ll \gamma, \alpha$. Consider any $x, y \in V(G)$. Set $A^{\prime}:=N_{G}^{+}(x) \cap N_{G}^{+}(y)$ and $B^{\prime}:=N_{G}^{-}(x) \cap N_{G}^{-}(y)$. Note that (14) implies $\left|A^{\prime}\right|,\left|B^{\prime}\right| \geq(1 / 3-2 \varepsilon) n$. Further, define $A:=A^{\prime} \backslash B^{\prime}, B:=B^{\prime} \backslash A^{\prime}, C:=V(G) \backslash\left(A^{\prime} \cup B^{\prime}\right)$ and $D:=A^{\prime} \cap B^{\prime}$. (So A, B, C, D is a partition of $V(G)$.)
Note that given any $a b \in E(G)$ with $a \in A^{\prime}$ and $b \in B^{\prime},\{x, a, b\}$ and $\{y, a, b\}$ span copies of C_{3} in G. Thus, if there are at least $2 \eta n^{2}$ such edges $a b \in E(G)$, then we obtain at least $\eta n^{2} 2$-sets $X \subseteq V(G)$ such that $X \cup\{x\}$ and $X \cup\{y\}$ span copies of C_{3} in G, as desired. Therefore, we may assume that
(α) there are at most $2 \eta n^{2}$ edges $a b \in E(G)$ with $a \in A^{\prime}$ and $b \in B^{\prime}$.
Suppose that $\left|B^{\prime}\right|>(1 / 3+8 \eta) n$. Then by (14), every vertex in A^{\prime} sends out at least $8 \eta n-\varepsilon n \geq 7 \eta n$ edges to B^{\prime} in G. Hence, there are at least

$$
7 \eta n\left|A^{\prime}\right| \geq 7 \eta n \times(1 / 3-2 \varepsilon) n>2 \eta n^{2}
$$

edges $a b \in E(G)$ with $a \in A^{\prime}$ and $b \in B^{\prime}$, a contradiction to (α). Together with an analogous argument, this implies that

$$
\begin{equation*}
\left(\frac{1}{3}-2 \varepsilon\right) n \leq\left|A^{\prime}\right|,\left|B^{\prime}\right| \leq\left(\frac{1}{3}+8 \eta\right) n \tag{15}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left(\frac{1}{3}-16 \eta\right) n \leq|C| . \tag{16}
\end{equation*}
$$

Suppose that $|D|>\left(\frac{1}{3}-\varepsilon^{\prime \prime}\right) n$. Then by $(\alpha), e(G[D]) \leq 2 \eta n^{2}$. By adding at most $\varepsilon^{\prime \prime} n$ arbitrary vertices to D we obtain a γ-independent set in G of size at least $n / 3$, a contradiction. Hence,

$$
|D| \leq\left(\frac{1}{3}-\varepsilon^{\prime \prime}\right) n
$$

We now split the proof into two cases depending on the size of D.
Case 1: $|D|<\varepsilon^{\prime} n$.
In this case,

$$
\begin{equation*}
\left(\frac{1}{3}-2 \varepsilon^{\prime}\right) n \leq\left(\frac{1}{3}-2 \varepsilon\right) n-\varepsilon^{\prime} n \stackrel{(15)}{\leq}|A|,|B| \stackrel{(15)}{\leq}\left(\frac{1}{3}+8 \eta\right) n \tag{17}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left(\frac{1}{3}-16 \eta\right) n \stackrel{(16)}{\leq}|C| \stackrel{(17)}{\leq}\left(\frac{1}{3}+4 \varepsilon^{\prime}\right) n . \tag{18}
\end{equation*}
$$

By (α), all but at most $2 \sqrt{\eta} n$ vertices $a \in A$ send out at most $\sqrt{\eta} n$ edges to B in G. So each such vertex a sends out at least $(2 / 3-\varepsilon) n-\sqrt{\eta} n-\varepsilon^{\prime} n-|C| \geq\left(1 / 3-6 \varepsilon^{\prime}\right) n$ edges to A in G and at least $(2 / 3-\varepsilon) n-\sqrt{\eta} n-\varepsilon^{\prime} n-|A| \geq\left(1 / 3-2 \varepsilon^{\prime}\right) n$ edges to C in G. Altogether, this implies that

$$
\begin{equation*}
e(G[A]) \geq(|A|-2 \sqrt{\eta} n)\left(1 / 3-6 \varepsilon^{\prime}\right) n \stackrel{(17)}{\geq}(|A|-2 \sqrt{\eta} n)\left(|A|-7 \varepsilon^{\prime} n\right) \stackrel{(17)}{\geq}|A|^{2}-3 \varepsilon^{\prime} n^{2} \tag{19}
\end{equation*}
$$

and
(20) $e(G[A, C]) \geq(|A|-2 \sqrt{\eta} n)\left(1 / 3-2 \varepsilon^{\prime}\right) n \stackrel{(18)}{\geq}(|A|-2 \sqrt{\eta} n)\left(|C|-6 \varepsilon^{\prime} n\right) \stackrel{(17),(18)}{\geq}|A||C|-3 \varepsilon^{\prime} n^{2}$.

An analogous argument implies that

$$
\begin{equation*}
e(G[B]) \geq|B|^{2}-3 \varepsilon^{\prime} n^{2} \text { and } e(G[C, B]) \geq|C||B|-3 \varepsilon^{\prime} n^{2} \tag{21}
\end{equation*}
$$

Suppose that $d_{G}^{-}(x, A) \geq \varepsilon^{\prime \prime} n$ and $d_{G}^{-}(y, A) \geq \varepsilon^{\prime \prime} n$. Then since $e(G[A]) \geq|A|^{2}-3 \varepsilon^{\prime} n^{2}$, there are at least

$$
\frac{\varepsilon^{\prime \prime} n\left(\varepsilon^{\prime \prime} n-1\right)}{2}-3 \varepsilon^{\prime} n^{2} \geq \eta n^{2}
$$

pairs of distinct vertices a, a^{\prime} where $a \in\left(N_{G}^{-}(x) \cap A\right), a^{\prime} \in\left(N_{G}^{-}(y) \cap A\right)$ and $a a^{\prime}, a^{\prime} a \in E(G)$. For each such pair $a, a^{\prime},\left\{x, a, a^{\prime}\right\}$ and $\left\{y, a, a^{\prime}\right\}$ both span copies of C_{3} in G (in fact, they both span copies of K_{3}^{-}). This implies that (i) is satisfied. Similarly, (i) holds if both $d_{G}^{+}(x, B) \geq \varepsilon^{\prime \prime} n$ and $d_{G}^{+}(y, B) \geq \varepsilon^{\prime \prime} n$.
We may therefore assume that $d_{G}^{-}(x, A)<\varepsilon^{\prime \prime} n$ or $d_{G}^{-}(y, A)<\varepsilon^{\prime \prime} n$. Without loss of generality assume that

$$
d_{G}^{-}(x, A)<\varepsilon^{\prime \prime} n .
$$

This implies that

$$
\begin{equation*}
d_{G}^{-}(x, C) \stackrel{(14),(17)}{\geq}(2 / 3-\varepsilon) n-\varepsilon^{\prime} n-\varepsilon^{\prime \prime} n-(1 / 3+8 \eta) n \geq\left(1 / 3-2 \varepsilon^{\prime \prime}\right) n \stackrel{(18)}{\geq}|C|-3 \varepsilon^{\prime \prime} n \tag{22}
\end{equation*}
$$

Furthermore, we may assume that $d_{G}^{+}(x, B)<\varepsilon^{\prime \prime} n$ or $d_{G}^{+}(y, B)<\varepsilon^{\prime \prime} n$. We now deal with these two subcases separately.

Case 1a: $d_{G}^{+}(x, B)<\varepsilon^{\prime \prime} n$.
In this case we will show that (ii) is satisfied. Note that

$$
\begin{equation*}
d_{G}^{+}(x, C) \stackrel{(14),(17)}{\geq}(2 / 3-\varepsilon) n-\varepsilon^{\prime \prime} n-\varepsilon^{\prime} n-(1 / 3+8 \eta) n \stackrel{(18)}{\geq}|C|-3 \varepsilon^{\prime \prime} n . \tag{23}
\end{equation*}
$$

If $d_{G}^{+}(y, C)>3 \varepsilon^{\prime \prime} n$ then (23) implies that there is a vertex $c \in\left(N_{G}^{+}(x) \cap N_{G}^{+}(y) \cap C\right)=A^{\prime} \cap C$. But by definition $A^{\prime} \cap C=\emptyset$, a contradiction. Thus,

$$
\begin{equation*}
d_{G}^{+}(y, C) \leq 3 \varepsilon^{\prime \prime} n . \tag{24}
\end{equation*}
$$

Claim 8.6. If $e(G[B, C]) \geq 6 \varepsilon^{\prime \prime} n^{2}$ then (ii) is satisfied.
Proof. Suppose that $e(G[B, C]) \geq 6 \varepsilon^{\prime \prime} n^{2}$. This implies that there are at least $5 \varepsilon^{\prime \prime} n$ vertices $c \in C$ that receive at least $\varepsilon^{\prime \prime} n$ edges from B in G. By (21), all but at most $3 \sqrt{\varepsilon^{\prime}} n$ vertices $c \in C$ send out at least $|B|-\sqrt{\varepsilon^{\prime}} n$ edges to B in G. Together with (23) this implies that there are at least $5 \varepsilon^{\prime \prime} n-3 \sqrt{\varepsilon^{\prime}} n-3 \varepsilon^{\prime \prime} n-1 \geq \varepsilon^{\prime \prime} n$ vertices $c \in C \backslash\{y\}$ such that

- $c \in N_{G}^{+}(x)$;
- $d_{G}^{-}(c, B) \geq \varepsilon^{\prime \prime} n$ and $d_{G}^{+}(c, B) \geq|B|-\sqrt{\varepsilon^{\prime}} n$.

Fix such a vertex c. By the choice of c and (21) there are at least $\varepsilon^{\prime \prime} n-\sqrt{\varepsilon^{\prime}} n-3 \sqrt{\varepsilon^{\prime}} n \geq \varepsilon^{\prime \prime} n / 2$ vertices $b_{1} \in B$ so that

- $b_{1} c, c b_{1} \in E(G)$;
- $d_{G}^{-}\left(b_{1}, B\right) \geq|B|-\sqrt{\varepsilon^{\prime}} n$.

Fix such a vertex b_{1}. By definition of $B, b_{1} \in N_{G}^{-}(x)$. Thus, $\left\{x, c, b_{1}\right\}$ spans a copy of C_{3} in G.
(14), (17) and (24) imply that

$$
d_{G}^{+}(y, B) \geq(2 / 3-\varepsilon) n-3 \varepsilon^{\prime \prime} n-\varepsilon^{\prime} n-(1 / 3+8 \eta) n \geq|B|-4 \varepsilon^{\prime \prime} n .
$$

Together with (21) this implies that there are at least $|B|-5 \varepsilon^{\prime \prime} n$ vertices $b_{2} \in B \backslash\left\{b_{1}\right\}$ so that

- $b_{2} \in N_{G}^{+}(y)$;
- $d_{G}^{+}\left(b_{2}, B\right), d_{G}^{-}\left(b_{2}, B\right) \geq|B|-\sqrt{\varepsilon^{\prime}} n$.

Fix such a vertex b_{2}. Next fix a vertex $b_{3} \in B \backslash\left\{b_{1}\right\}$ such that

- $b_{3} \in N_{G}^{+}\left(b_{2}\right)$;
- $d_{G}^{+}\left(b_{3}, B\right) \geq|B|-\sqrt{\varepsilon^{\prime}} n$.

There are at least $|B|-5 \sqrt{\varepsilon^{\prime}} n$ choices for b_{3}. By definition of $B, b_{3} \in N_{G}^{-}(y)$. Thus, $\left\{y, b_{2}, b_{3}\right\}$ spans a copy of C_{3} in G.

Finally, choose a vertex $b_{4} \in B$ such that

- $b_{4} \in N_{G}^{+}(c) \cap N_{G}^{-}\left(b_{1}\right) \cap N_{G}^{-}\left(b_{2}\right) \cap N_{G}^{+}\left(b_{3}\right)$.

The choice of c, b_{1}, b_{2} and b_{3} ensures that there are at least $|B|-4 \sqrt{\varepsilon^{\prime}} n$ choices for b_{4}. Set $X:=$ $\left\{c, b_{1}, b_{2}, b_{3}, b_{4}\right\}$. By construction both $X \cup\{x\}$ and $X \cup\{y\}$ span copies of $2 C_{3}$ in G (see Figure 2).

Figure 2. The connecting structure in Case 1a

Recall that there are at least $\varepsilon^{\prime \prime} n$ choices for c, at least $\varepsilon^{\prime \prime} n / 2$ choices for b_{1}, at least $|B|-5 \varepsilon^{\prime \prime} n$ choices for b_{2}, at least $|B|-5 \sqrt{\varepsilon^{\prime}} n$ choices for b_{3} and at least $|B|-4 \sqrt{\varepsilon^{\prime}} n$ choices for b_{4}. Overall, this implies that there are at least

$$
\varepsilon^{\prime \prime} n \times \frac{\varepsilon^{\prime \prime} n}{2} \times\left(|B|-5 \varepsilon^{\prime \prime} n\right) \times\left(|B|-5 \sqrt{\varepsilon^{\prime}} n\right) \times\left(|B|-4 \sqrt{\varepsilon^{\prime}} n\right) \times \frac{1}{4!} \geq \eta n^{5}
$$

choices for X. So indeed (ii) is satisfied. This proves the claim.

Assume for a contradiction that $e(G[B, C])<6 \varepsilon^{\prime \prime} n^{2}$. This implies that

$$
\begin{align*}
e(G[C]) & \geq \delta^{-}(G)|C|-e(G[B, C])-e(G[A, C])-e(G[D, C]) \tag{25}\\
& \stackrel{(14)}{\geq}(2 / 3-\varepsilon) n|C|-6 \varepsilon^{\prime \prime} n^{2}-|A||C|-\varepsilon^{\prime} n|C| \\
& \stackrel{(17),(18)}{\geq}|C|\left(2 / 3-\varepsilon-24 \varepsilon^{\prime \prime}-1 / 3-8 \eta-\varepsilon^{\prime}\right) n \geq|C|\left(1 / 3-25 \varepsilon^{\prime \prime}\right) n \\
& \stackrel{(18)}{\geq}|C|^{2}-\sqrt{\varepsilon^{\prime \prime}} n^{2} .
\end{align*}
$$

Similarly,

$$
\begin{align*}
e(G[B, A]) & \geq \delta^{+}(G)|B|-e(G[B])-e(G[B, C])-e(G[B, D]) \tag{26}\\
& \stackrel{(14)}{\geq}(2 / 3-\varepsilon) n|B|-|B|^{2}-6 \varepsilon^{\prime \prime} n^{2}-\varepsilon^{\prime} n|B| \\
& \stackrel{(17)}{\geq}|B|\left(2 / 3-\varepsilon-1 / 3-8 \eta-24 \varepsilon^{\prime \prime}-\varepsilon^{\prime}\right) n \geq|B|\left(1 / 3-25 \varepsilon^{\prime \prime}\right) n \\
& \stackrel{(17)}{\geq}|B||A|-\sqrt{\varepsilon^{\prime \prime}} n^{2}
\end{align*}
$$

Let $A^{\prime \prime}, B^{\prime \prime}, C^{\prime \prime}$ be a partition of $V(G)$ such that

- $\lfloor n / 3\rfloor \leq\left|A^{\prime \prime}\right| \leq\left|B^{\prime \prime}\right| \leq\left|C^{\prime \prime}\right| \leq\lceil n / 3\rceil ;$
- $\left|A^{\prime \prime} \backslash A\right|,\left|B^{\prime \prime} \backslash B\right|,\left|C^{\prime \prime} \backslash C\right| \leq 3 \varepsilon^{\prime} n$.

Such a partition exists by (17) and (18). Further,

- $e\left(G\left[A^{\prime \prime}, C^{\prime \prime}\right]\right) \stackrel{(20)}{\geq}\left|A^{\prime \prime}\right|\left|C^{\prime \prime}\right|-\alpha n^{2} / 6 ;$
- $e\left(G\left[C^{\prime \prime}, B^{\prime \prime}\right]\right) \stackrel{(21)}{\geq}\left|C^{\prime \prime}\right|\left|B^{\prime \prime}\right|-\alpha n^{2} / 6 ;$
- $e\left(G\left[B^{\prime \prime}, A^{\prime \prime}\right]\right) \stackrel{(26)}{\geq}\left|B^{\prime \prime}\right|\left|A^{\prime \prime}\right|-\alpha n^{2} / 6$;
- $e\left(G\left[A^{\prime \prime}\right]\right) \stackrel{(19)}{\geq}\left|A^{\prime \prime}\right|^{2}-\alpha n^{2} / 6$;
- $e\left(G\left[B^{\prime \prime}\right]\right) \stackrel{(21)}{\geq}\left|B^{\prime \prime}\right|^{2}-\alpha n^{2} / 6 ;$
- $e\left(G\left[C^{\prime \prime}\right]\right) \stackrel{(25)}{\geq}\left|C^{\prime \prime}\right|^{2}-\alpha n^{2} / 6$.

This implies that $G \alpha$-contains $E x(n)$, a contradiction. So $e(G[B, C]) \geq 6 \varepsilon^{\prime \prime} n^{2}$. Claim 8.6 therefore implies that (ii) holds, as required.

Case 1b: $d_{G}^{+}(y, B)<\varepsilon^{\prime \prime} n$.
In this case we will show that (i) is satisfied. Since $d_{G}^{+}(y, B)<\varepsilon^{\prime \prime} n$,

$$
\begin{equation*}
d_{G}^{+}(y, C) \stackrel{(14),(17)}{\geq}(2 / 3-\varepsilon) n-\varepsilon^{\prime \prime} n-\varepsilon^{\prime} n-(1 / 3+8 \eta) n \geq\left(1 / 3-2 \varepsilon^{\prime \prime}\right) n \stackrel{(18)}{\geq}|C|-3 \varepsilon^{\prime \prime} n \tag{27}
\end{equation*}
$$

If $d_{G}^{-}(y, C)>3 \varepsilon^{\prime \prime} n$ then (22) implies that there is a vertex $c \in\left(N_{G}^{-}(x) \cap N_{G}^{-}(y) \cap C\right)=B^{\prime} \cap C$. But by definition $B^{\prime} \cap C=\emptyset$, a contradiction. Thus,

$$
d_{G}^{-}(y, C) \leq 3 \varepsilon^{\prime \prime} n
$$

This implies that

$$
\begin{equation*}
d_{G}^{-}(y, A) \stackrel{(14),(17)}{\geq}(2 / 3-\varepsilon) n-3 \varepsilon^{\prime \prime} n-\varepsilon^{\prime} n-(1 / 3+8 \eta) n \geq\left(1 / 3-4 \varepsilon^{\prime \prime}\right) n \stackrel{(17)}{\geq}|A|-5 \varepsilon^{\prime \prime} n \tag{28}
\end{equation*}
$$

Claim 8.7. If $e(G[C, A]) \geq 14 \varepsilon^{\prime \prime} n^{2}$ then (i) is satisfied.
Proof. Suppose that $e(G[C, A]) \geq 14 \varepsilon^{\prime \prime} n^{2}$. This implies that there are at least $8 \varepsilon^{\prime \prime} n$ vertices $c \in C$ that send out at least $6 \varepsilon^{\prime \prime} n$ edges to A in G. By (20) all but at most $3 \sqrt{\varepsilon^{\prime}} n$ vertices $c \in C$ receive at least $|A|-\sqrt{\varepsilon^{\prime}} n$ edges from A in G. Together with (22) and (27) this implies that there are at least $8 \varepsilon^{\prime \prime} n-3 \sqrt{\varepsilon^{\prime}} n-6 \varepsilon^{\prime \prime} n \geq \varepsilon^{\prime \prime} n$ vertices $c \in C$ so that

- $c \in N_{G}^{-}(x) \cap N_{G}^{+}(y)$;
- $d_{G}^{+}(c, A) \geq 6 \varepsilon^{\prime \prime} n$ and $d_{G}^{-}(c, A) \geq|A|-\sqrt{\varepsilon^{\prime}} n$.

Fix such a vertex c. Let $a \in A$ such that

- $a \in N_{G}^{-}(y) \cap N_{G}^{+}(c) \cap N_{G}^{-}(c)$.

The choice of c together with (28) implies that there are at least $6 \varepsilon^{\prime \prime} n-\sqrt{\varepsilon^{\prime}} n-5 \varepsilon^{\prime \prime} n \geq \varepsilon^{\prime \prime} n / 2$ choices for a. Since $a \in A, a \in N_{G}^{+}(x)$. Set $X:=\{a, c\}$. By construction $X \cup\{x\}$ and $X \cup\{y\}$ both span copies of C_{3} in G. In total there are at least

$$
\varepsilon^{\prime \prime} n \times \varepsilon^{\prime \prime} n / 2 \geq \eta n^{2}
$$

choices for X. Therefore (i) is satisfied. This proves the claim.

Assume for a contradiction that $e(G[C, A])<14 \varepsilon^{\prime \prime} n^{2}$. This implies that

$$
\begin{align*}
e(G[C]) & \geq \delta^{+}(G)|C|-e(G[C, A])-e(G[C, B])-e(G[C, D]) \tag{29}\\
& \stackrel{(14)}{\geq}(2 / 3-\varepsilon) n|C|-14 \varepsilon^{\prime \prime} n^{2}-|C||B|-\varepsilon^{\prime} n|C| \\
& \stackrel{(17),(18)}{\geq}|C|\left(2 / 3-\varepsilon-50 \varepsilon^{\prime \prime}-1 / 3-8 \eta-\varepsilon^{\prime}\right) n \geq|C|\left(1 / 3-51 \varepsilon^{\prime \prime}\right) n \\
& \stackrel{(18)}{\geq}|C|^{2}-\sqrt{\varepsilon^{\prime \prime}} n^{2} .
\end{align*}
$$

Similarly,

$$
\begin{align*}
e(G[B, A]) & \geq \delta^{-}(G)|A|-e(G[A])-e(G[C, A])-e(G[D, A]) \tag{30}\\
& \stackrel{(14)}{\geq}(2 / 3-\varepsilon) n|A|-|A|^{2}-14 \varepsilon^{\prime \prime} n^{2}-\varepsilon^{\prime} n|A| \\
& \stackrel{(17)}{\geq}|A|\left(2 / 3-\varepsilon-1 / 3-8 \eta-50 \varepsilon^{\prime \prime}-\varepsilon^{\prime}\right) n \geq|A|\left(1 / 3-51 \varepsilon^{\prime \prime}\right) n \\
& \stackrel{(17)}{\geq}|B||A|-\sqrt{\varepsilon^{\prime \prime}} n^{2} .
\end{align*}
$$

By arguing precisely as in Case 1a, (19)-(21), (29) and (30) imply that $G \alpha$-contains $E x(n)$, a contradiction. So $e(G[C, A]) \geq 14 \varepsilon^{\prime \prime} n^{2}$. Claim 8.7 therefore implies that (i) holds, as required.
Case 2: $\varepsilon^{\prime} n \leq|D| \leq\left(1 / 3-\varepsilon^{\prime \prime}\right) n$.
In this case we will show that (ii) is satisfied. Set $d:=|D| / n$. So

$$
\begin{equation*}
\varepsilon^{\prime} \leq d \leq 1 / 3-\varepsilon^{\prime \prime} \tag{31}
\end{equation*}
$$

This implies that

$$
\begin{equation*}
\varepsilon^{\prime \prime} n / 2 \stackrel{(31)}{\leq}(1 / 3-2 \varepsilon-d) n \stackrel{(15)}{\leq}|A|,|B| \stackrel{(15)}{\leq}(1 / 3+8 \eta-d) n \tag{32}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
|C| \stackrel{(32)}{\leq} n-d n-2(1 / 3-2 \varepsilon-d) n=(1 / 3+4 \varepsilon+d) n \tag{33}
\end{equation*}
$$

and

$$
\begin{equation*}
|C| \stackrel{(32)}{\geq} n-d n-2(1 / 3+8 \eta-d) n=(1 / 3-16 \eta+d) n \stackrel{(31)}{\geq}\left(1 / 3+\varepsilon^{\prime} / 2\right) n \tag{34}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
d_{G}^{+}(x, C), d_{G}^{+}(y, C) \stackrel{(14),(34)}{\geq}(2 / 3-\varepsilon) n-\left(2 / 3-\varepsilon^{\prime} / 2\right) n \geq \varepsilon^{\prime} n / 3 \tag{35}
\end{equation*}
$$

By (α), all but at most $2 \sqrt{\eta} n$ vertices $b \in B$ receive at most $\sqrt{\eta} n$ edges from $A \cup D=A^{\prime}$ in G.
So each such vertex b receives at least

$$
(2 / 3-\varepsilon) n-\sqrt{\eta} n-|B| \stackrel{(32)}{\geq} \underset{25}{(1 / 3-2 \sqrt{\eta}+d) n \stackrel{(33)}{\geq}|C|-3 \sqrt{\eta} n}
$$

edges from C in G. This implies that

$$
\begin{equation*}
e(G[C, B]) \geq(|B|-2 \sqrt{\eta} n)(|C|-3 \sqrt{\eta} n) \geq|C||B|-5 \sqrt{\eta} n^{2} . \tag{36}
\end{equation*}
$$

By (α),

$$
\begin{equation*}
e(G[D])+e(G[A, D]) \leq 2 \eta n^{2} \text { and } e(G[D])+e(G[D, B]) \leq 2 \eta n^{2} . \tag{37}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
e(G[B, D]) & \geq \delta^{-}(G)|D|-e(G[A, D])-e(G[D])-e(G[C, D]) \tag{38}\\
& \stackrel{(14),(37)}{\geq}(2 / 3-\varepsilon) n|D|-2 \eta n^{2}-|C||D| \stackrel{(33)}{\geq}(1 / 3-\sqrt{\eta}-d) n|D| \stackrel{(32)}{\geq}|B||D|-\sqrt{\eta} n^{2}
\end{align*}
$$

and

$$
\begin{equation*}
e(G[D, C]) \stackrel{(14),(37)}{\geq}(2 / 3-\varepsilon) n|D|-2 \eta n^{2}-|D||A| \stackrel{(32)}{\geq}(1 / 3-\sqrt{\eta}+d) n|D| \stackrel{(33)}{\geq}|C||D|-\sqrt{\eta} n^{2} . \tag{39}
\end{equation*}
$$

Fix $c_{1} \in C \backslash\{y\}$ such that

- $x c_{1} \in E(G)$;
- $d_{G}^{+}\left(c_{1}, B\right) \geq|B|-\eta^{1 / 4} n$;
- $d_{G}^{-}\left(c_{1}, D\right) \geq|D|-\eta^{1 / 4} n$.
(35), (36) and (39) imply that there are at least $\varepsilon^{\prime} n / 3-6 \eta^{1 / 4} n-1 \geq \varepsilon^{\prime} n / 4$ choices for c_{1}. Next fix $b_{1} \in B$ such that
- $c_{1} b_{1} \in E(G)$;
- $d_{G}^{+}\left(b_{1}, D\right) \geq|D|-\eta^{1 / 4} n$.

The choice of c_{1} together with (38) implies that there are at least $|B|-2 \eta^{1 / 4} n \geq \varepsilon^{\prime \prime} n / 3$ choices for b_{1}. Further, $b_{1} x \in E(G)$ by definition of B. Thus, $\left\{x, b_{1}, c_{1}\right\}$ spans a copy of C_{3} in G.

Fix $c_{2} \in C \backslash\left\{c_{1}, x\right\}$ such that

- $y c_{2} \in E(G)$;
- $d_{G}^{+}\left(c_{2}, B\right) \geq|B|-\eta^{1 / 4} n$;
- $d_{G}^{-}\left(c_{2}, D\right) \geq|D|-\eta^{1 / 4} n$.

Again (35), (36) and (39) imply that there are at least $\varepsilon^{\prime} n / 4$ choices for c_{2}. Next fix $b_{2} \in B \backslash\left\{b_{1}\right\}$ such that

- $c_{2} b_{2} \in E(G)$;
- $d_{G}^{+}\left(b_{2}, D\right) \geq|D|-\eta^{1 / 4} n$.

There are at least $|B|-2 \eta^{1 / 4} n-1 \geq \varepsilon^{\prime \prime} n / 3$ choices for b_{2}. Since $b_{2} y \in E(G),\left\{y, b_{2}, c_{3}\right\}$ spans a copy of C_{3} in G.

Finally let $d \in\left(N_{G}^{+}\left(b_{1}\right) \cap N_{G}^{+}\left(b_{2}\right) \cap N_{G}^{-}\left(c_{1}\right) N_{G}^{-}\left(c_{2}\right) \cap D\right)$. There are at least $|D|-4 \eta^{1 / 4} n \geq \varepsilon^{\prime} n / 2$ choices for d. Set $X:=\left\{b_{1}, b_{2}, c_{1}, c_{2}, d\right\}$. By construction $X \cup\{x\}$ and $X \cup\{y\}$ both span copies of $2 C_{3}$ in G (see Figure 3).

In total there are at least

$$
\frac{\varepsilon^{\prime} n}{4} \times \frac{\varepsilon^{\prime \prime} n}{3} \times \frac{\varepsilon^{\prime} n}{4} \times \frac{\varepsilon^{\prime \prime} n}{3} \times \frac{\varepsilon^{\prime} n}{2} \times \frac{1}{5!} \geq \eta n^{5}
$$

choices for X. Therefore (ii) is satisfied, as desired.

Figure 3. The connecting structure in Case 2

9. Proof of Theorems 5.1 and 5.2

In this section we apply our connection lemmas to prove Theorems 5.1 and 5.2. Following the ideas in $[20,21]$, we first show in Lemma 9.1 that in order to find the absorbing set described in Theorems 5.1 and 5.2 , it suffices to prove that there are at least $\xi n^{2 r^{2}} T$-absorbing $2 r^{2}$-sets for every fixed r-set from $V(G)$.

Lemma 9.1 (Absorbing lemma). Let $0<\xi \ll 1$ and let $r \geq 2$. Then there exists an $n_{0} \in \mathbb{N}$ such that the following holds. Let $T \in \mathcal{T}_{r}$. Consider a digraph G on $n \geq n_{0}$ vertices. Suppose that any r-set of vertices $Q \subseteq V(G)$ can be T-absorbed by at least $\xi n^{2 r^{2}} 2 r^{2}$-sets of vertices from $V(G)$. Then $V(G)$ contains a set M so that

- $|M| \leq \xi n$;
- M is a T-absorbing set for any $W \subseteq V(G) \backslash M$ such that $|W| \in r \mathbb{N}$ and $|W| \leq \xi^{2} n$.

The proof of Lemma 9.1 follows the same ideas as other such absorbing lemmas in the area. In particular, the proof of Lemma 9.1 follows the proof of Lemma 5.2 in [24] very closely. For completeness, we give the proof in Section 9.1.

Lemma 9.2. Let $0<1 / n \ll \varepsilon \ll \xi \ll \gamma, \alpha \ll 1 / r$ where $n, r \in \mathbb{N}$ and $r \geq 3$, and let $T \in \mathcal{T}_{r}$. Suppose that G is a digraph on n vertices so that

$$
\begin{equation*}
\delta^{0}(G) \geq(1-1 / r-\varepsilon) n \tag{40}
\end{equation*}
$$

Further suppose that

- G does not contain any γ-independent set of size at least n / r, and
- If $T=C_{3}$ then G does not α-contain $E x(n)$.

Then there are at least $\xi n^{2 r^{2}} T$-absorbing $2 r^{2}$-sets in $V(G)$ for every r-subset of $V(G)$.
Theorem 5.1 follows immediately from Lemmas 9.1 and 9.2. Similarly, Theorem 5.2 follows immediately from Lemma 9.1 and the following result.

Lemma 9.3. Let $0<1 / n \ll \varepsilon \ll \xi \ll \gamma \ll 1 / r$ where $n, r \in \mathbb{N}$ and $r \geq 3$. Suppose that G is a digraph on n vertices so that, for any $x \in V(G)$,

$$
\begin{equation*}
d^{+}(x) \geq(1-1 / r-\varepsilon) n \quad \text { or } \quad d^{-}(x) \geq(1-1 / r-\varepsilon) n . \tag{41}
\end{equation*}
$$

Further suppose that G does not contain any γ-independent set of size at least n / r. Then there are at least $\xi n^{2 r^{2}} T_{r}$-absorbing $2 r^{2}$-sets in $V(G)$ for every r-subset of $V(G)$.

The rest of the section is devoted to the proofs of Lemmas 9.1-9.3.
9.1. Proof of Lemma 9.1. Given an r-set $Q \subseteq V(G)$, let L_{Q} denote the family of all T-absorbing $2 r^{2}$-sets for Q in $\binom{V(G)}{2 r^{2}}$. By assumption, $\left|L_{Q}\right| \geq \xi n^{2 r^{2}}$. Let F be the family of $2 r^{2}$-sets obtained by selecting each of the $\binom{n}{2 r^{2}}$ elements of $\binom{V(G)}{2 r^{2}}$ independently with probability $p:=\xi / n^{2 r^{2}-1}$. Then

$$
\mathbb{E}(|F|)=p\binom{n}{2 r^{2}}<\frac{\xi}{\left(2 r^{2}\right)!} n \text { and } \mathbb{E}\left(\left|L_{Q} \cap F\right|\right) \geq p \xi n^{2 r^{2}}=\xi^{2} n
$$

for every set $Q \in\binom{V(G)}{r}$.
Since n is sufficiently large, Proposition 3.1 implies that with high probability we have

$$
\begin{gather*}
|F| \leq 2 \mathbb{E}(|F|)<\frac{2 \xi}{\left(2 r^{2}\right)!} n \tag{42}\\
\left|L_{Q} \cap F\right| \geq \frac{1}{2} \mathbb{E}\left(\left|L_{Q} \cap F\right|\right) \geq \frac{\xi^{2}}{2} n \quad \text { for all } Q \in\binom{V(G)}{r} \tag{43}
\end{gather*}
$$

Let Y be the number of intersecting pairs of members of F. Then

$$
\mathbb{E}(Y) \leq p^{2}\binom{n}{2 r^{2}} 2 r^{2}\binom{n}{2 r^{2}-1} \leq \frac{\xi^{2} n}{\left(2 r^{2}-1\right)!\left(2 r^{2}-1\right)!}
$$

By Markov's bound, the probability that $Y \leq \frac{2 \xi^{2}}{\left(2 r^{2}-1\right)!\left(2 r^{2}-1\right)!} n$ is at least $\frac{1}{2}$. Therefore we can find a family F of $2 r^{2}$-sets satisfying (42) and (43) and having at most $\frac{2 \xi^{2}}{\left(2 r^{2}-1\right)!\left(2 r^{2}-1\right)!} n$ intersecting pairs. Removing all non-absorbing $2 r^{2}$-sets and one set from each of the intersecting pairs in F, we obtain a family F^{\prime} of disjoint T-absorbing $2 r^{2}$-sets such that $\left|F^{\prime}\right| \leq|F| \leq \frac{2 \xi}{\left(2 r^{2}\right)!} n \leq \xi n / 2 r^{2}$ and for all $Q \in\binom{V(G)}{r}$,

$$
\begin{equation*}
\left|L_{Q} \cap F^{\prime}\right| \geq \frac{\xi^{2}}{2} n-\frac{2 \xi^{2}}{\left(2 r^{2}-1\right)!\left(2 r^{2}-1\right)!} n>\frac{\xi^{2}}{r} n \tag{44}
\end{equation*}
$$

Let M denote the disjoint union of the sets in F^{\prime}. Then $|M|=\left|F^{\prime}\right| 2 r^{2} \leq \xi n$. Since F^{\prime} consists of disjoint T-absorbing sets and each T-absorbing set is covered by a perfect T-packing, $G[M]$ contains a perfect T-packing. Now let $W \subseteq V(G) \backslash M$ be a set of at most $\xi^{2} n$ vertices such that $|W|=r \ell$ for some $\ell \in \mathbb{N}$. We arbitrarily partition W into r-sets Q_{1}, \ldots, Q_{ℓ}. Because of (44), we are able to T-absorb each Q_{i} with a different $2 r^{2}$-set from $L_{Q_{i}} \cap F^{\prime}$. Therefore $G[M \cup W]$ contains a perfect T-packing, as desired.
9.2. Proof of Lemma 9.2. Define η such that $\xi \ll \eta \ll \gamma$. Note that (40) implies that there are at least

$$
\begin{equation*}
n \times\left(1-\frac{1}{r}-\varepsilon\right) n \times\left(1-\frac{2}{r}-2 \varepsilon\right) n \times \cdots \times\left(1-\frac{r-1}{r}-(r-1) \varepsilon\right) n \times \frac{1}{r!} \geq 2 \eta^{2} n^{r} \tag{45}
\end{equation*}
$$

r-sets in $V(G)$ that span copies of T in G.
Claim 9.4. For any $x, y \in V(G)$ there are at least $\eta^{4} n^{2 r-1}(2 r-1)$-sets $X \subseteq V(G)$ such that both $X \cup\{x\}$ and $X \cup\{y\}$ span copies of $2 T$ in G.
Proof. Suppose for a contradiction that Claim 9.4 is false. Then if $T=C_{3}$, certainly Lemma 8.5(ii) does not hold. In particular, Lemmas 8.1, 8.3-8.5 imply that, for any $x, y \in V(G)$ there are at least $\eta n^{r-1}(r-1)$-sets $X^{\prime} \subseteq V(G)$ such that both $X^{\prime} \cup\{x\}$ and $X^{\prime} \cup\{y\}$ span copies of T in G. Fix such a set X^{\prime}. (45) implies that there are least

$$
2 \eta^{2} n^{r}-(r+1)\binom{n}{r-1} \geq \eta^{2} n^{r}
$$

r-sets $X^{\prime \prime} \subseteq V(G)$ that span copies of T in G and that are disjoint from $X^{\prime} \cup\{x, y\}$. Fix such a set $X^{\prime \prime}$ and define $X:=X^{\prime} \cup X^{\prime \prime}$. By construction both $X \cup\{x\}$ and $X \cup\{y\}$ span copies of $2 T$ in G. Further, since $\eta \ll 1 / r$, there are at least

$$
\eta n^{r-1} \times \eta^{2} n^{r} \times \frac{1}{\binom{2 r-1}{r-1}} \geq \eta^{4} n^{2 r-1}
$$

choices for X, a contradiction. This proves the claim.

Consider any r-subset $Q:=\left\{x_{1}, x_{2}, \ldots, x_{r}\right\}$ of $V(G)$. Fix some r-subset $Y:=\left\{y_{1}, y_{2}, \ldots, y_{r}\right\}$ of $V(G)$ that spans a copy of T in G and that is disjoint from Q. (45) implies that there are least

$$
2 \eta^{2} n^{r}-r\binom{n}{r-1} \geq \eta^{2} n^{r}
$$

choices for Y. Next fix a $(2 r-1)$-set $X_{1} \subseteq V(G)$ such that both $X_{1} \cup\left\{x_{1}\right\}$ and $X_{1} \cup\left\{y_{1}\right\}$ span copies of $2 T$ in G and so that X_{1} is disjoint from $Q \cup Y$. Claim 9.4 implies that there are at least

$$
\eta^{4} n^{2 r-1}-2 r\binom{n}{2 r-2} \geq \eta^{4} n^{2 r-1} / 2
$$

choices for X_{1}. Similarly, Claim 9.4 implies that we can iteratively choose $(2 r-1)$-sets $X_{2}, \ldots, X_{r} \subseteq$ $V(G)$ such that, for each $2 \leq i \leq r$:

- Both $X_{i} \cup\left\{x_{i}\right\}$ and $X_{i} \cup\left\{y_{i}\right\}$ span copies of $2 T$ in G;
- X_{i} is disjoint from $Q \cup Y$;
- X_{i} is disjoint from X_{j} for all $1 \leq j<i$;
- There are at least $\eta^{4} n^{2 r-1} / 2$ choices for X_{i}.

Set $S:=Y \cup \bigcup_{1 \leq i \leq r} X_{i}$. Then S is a T-absorbing $2 r^{2}$-set for Q. Indeed, $G\left[X_{i} \cup\left\{y_{i}\right\}\right]$ contains a perfect T-packing for all $1 \leq i \leq r$ so $G[S]$ contains a perfect T-packing. Furthermore, $G\left[X_{i} \cup\left\{x_{i}\right\}\right]$ contains a perfect T-packing for all $1 \leq i \leq r$ and Y spans a copy of T in G so $G[S \cup Q]$ contains a perfect T-packing.

In summary, there are at least $\eta^{2} n^{r}$ choices for Y and at least $\eta^{4} n^{2 r-1} / 2$ choices for each of the X_{i}. Since each T-absorbing $2 r^{2}$-set may be counted $\binom{2 r^{2}}{r}\binom{r(2 r-1)}{2 r-1}\binom{(r-1)(2 r-1)}{2 r-1} \ldots\binom{2(2 r-1)}{2 r-1}$ times there are at least

$$
\eta^{2} n^{r} \times\left(\frac{\eta^{4} n^{2 r-1}}{2}\right)^{r} \times \frac{1}{\binom{r^{2}}{r}\binom{r(2 r-1)}{2 r-1}\binom{(r-1)(2 r-1)}{2 r-1} \ldots\binom{2(2 r-1)}{2 r-1}} \geq \xi n^{2 r^{2}}
$$

T-absorbing $2 r^{2}$-sets for Q, as desired.
9.3. Proof of Lemma 9.3. Define η such that $\xi \ll \eta \ll \gamma$. By Lemma 8.1, for every vertex $x \in V(G)$, there are at least $\eta n^{r-1}(r-1)$-sets $X \subseteq V(G)$ such that $X \cup\{x\}$ spans a copy of T_{r} in G. Thus, there are at least

$$
\begin{equation*}
n \times \eta n^{r-1} \times \frac{1}{r} \geq 2 \eta^{2} n^{r} \tag{46}
\end{equation*}
$$

r-sets in $V(G)$ that span copies of T_{r} in G.
By now following the proof of Lemma 9.2 identically (applying (46) and Lemma 8.1) we conclude that there are at least $\xi n^{2 r^{2}} T_{r}$-absorbing $2 r^{2}$-sets in $V(G)$ for every r-subset of $V(G)$, as required.

10. Tools for the proof of Lemma 5.5

In Sections 11 and 12 we deal with the extremal cases of Theorems 1.3. The proof of Lemma 5.5 builds on the ideas from the extremal case in [14]. (Note though that [14] concerns embedding powers of Hamilton cycles in graphs.) In this section we give a number of results that will be applied in the proof of Lemma 5.5.
10.1. Perfect T-packings in the non-extremal case. In the proof of Lemma 5.5 we will apply the following result which is a direct consequence of Theorems 5.1 and 5.3 (its proof is implicit in the proof of Theorem 1.3 given in Section 5).

Theorem 10.1. Let $0<1 / n \ll \varepsilon \ll \gamma \ll 1 / r$ where $n, r \in \mathbb{N}$ and $r \geq 3$ so that r divides n, and let $T \in \mathcal{T}_{r} \backslash\left\{C_{3}\right\}$. Suppose that G is a digraph on n vertices so that

$$
\delta^{0}(G) \geq(1-1 / r-\varepsilon) n .
$$

Further suppose that G does not contain any γ-independent set of size at least n / r. Then G contains a perfect T-packing.
10.2. Perfect K_{r}-packings in r-partite digraphs. We will also apply the following immediate consequence of Theorem 1.2.

Theorem 10.2. Given $r \in \mathbb{N}$ there exists an $n_{0} \in \mathbb{N}$ such that the following holds. Suppose G is an r-partite digraph with vertex classes V_{1}, \ldots, V_{r} where $\left|V_{i}\right|=n \geq n_{0}$ for all $1 \leq i \leq r$. If

$$
\bar{\delta}^{+}(G), \bar{\delta}^{-}(G) \geq(1-1 / 2 r) n+1
$$

then G contains a perfect K_{r}-packing.
Here $\bar{\delta}^{+}(G)\left(\bar{\delta}^{-}(G)\right)$ denotes the minimum outdegree (indegree) of a vertex from one vertex class V_{i} to another vertex class V_{j}.
10.3. Matchings in digraphs. A matching in a (di)graph G is a collection of vertex-disjoint edges $M \subseteq E(G)$. We write $V(M)$ for the set of vertices covered by the edges from M. We say that M is a d-matching if $|M|=d$. We say that M is a perfect matching if $V(M)=V(G)$.

Proposition 10.3. Let $d, n \in \mathbb{N}$. Suppose that G is a graph on $n \geq 2 d$ vertices such that $\delta(G) \geq d$. Let $X \subseteq V(G)$ such that $|X|=d$. Then G contains a d-matching that covers all the vertices in X.
Proof. It is easy to see that G contains a d-matching. Let M be a d-matching in G that covers the maximum number of vertices from X. Suppose for a contradiction that there is a vertex $x \in X$ uncovered by M. In particular, M covers more vertices in $V(G) \backslash X$ than in X. There exist non-negative integers a, b, c such that $a+b+c=d$ and:
(i) M contains precisely a edges $w z$ where $w \in X$ and $z \in V(G) \backslash X$;
(ii) M contains precisely b edges with both endpoints in X;
(iii) M contains precisely c edges with both endpoints in $V(G) \backslash X$.

Since M covers more vertices in $V(G) \backslash X$ than in $X, b<c$ (and so $c \geq 1$). Suppose x has a neighbour $y \in V(G) \backslash V(M)$. Then add $x y$ to M and delete an edge $w z$ from M such that $w, z \in V(G) \backslash X$. Then M is a d-matching covering more vertices in X than before, a contradiction. So x only has neighbours in $V(M)$.

Suppose $w z$ is an edge in M such that $w \in X$ and $z \in V(G) \backslash X$. If $x w \in E(G)$ then delete $w z$ from M and add $x w$ to M. So again M is a d-matching covering more vertices in X than before, a contradiction. Thus, x is not adjacent to w. A similar argument shows that, if $w z \in M$ with $w, z \in V(G) \backslash X$, then $x w, x z \notin E(G)$. Together with (i)-(iii) this shows that x has at most $a+2 b<a+b+c=d$ neighbours in G, a contradiction, as desired.

The following immediate consequence of Proposition 10.3 will be applied in the proof of Lemma 5.5.
Proposition 10.4. Let $d, n \in \mathbb{N}$. Suppose that G is a digraph on $n \geq 2 d$ vertices such that, for any $x \in V(G), d^{+}(x) \geq d$ or $d^{-}(x) \geq d$. Let $X \subseteq V(G)$ such that $|X|=d$. Then G contains a d-matching that covers all the vertices in X.

Let $\varepsilon>0$. Suppose that G is a (di)graph G on n vertices. Then we say that G is ε-close to $2 K_{n / 2}$ if there exists a partition A, B of $V(G)$ such that $|A|=\lfloor n / 2\rfloor,|B|=\lceil n / 2\rceil$ and $e_{G}(A, B) \leq \varepsilon n^{2}$.

Proposition 10.5. Let $\gamma>0$ and $n \in \mathbb{N}$ be even such that $1 / n \ll \gamma$. Suppose that G is a graph on n vertices so that

$$
\begin{equation*}
\delta(G) \geq(1 / 2-\gamma) n \tag{47}
\end{equation*}
$$

Then at least one of the following conditions holds:

- G contains a 3γ-independent set of size at least $n / 2$;
- G is 3γ-close to $2 K_{n / 2}$;
- G contains a perfect matching.

Proof. Suppose that G does not contain a perfect matching. Let M be a maximal matching in G. So there exists distinct $x, y \in V(G) \backslash V(M)$. The maximality of M implies that $N(x), N(y) \subseteq V(M)$. Define $S N(x):=\{z \in V(M): w z \in M$ for some $w \in N(x)\}$. Define $S N(y)$ analogously. (47) implies that

$$
\begin{equation*}
|S N(x)|,|S N(y)| \geq(1 / 2-\gamma) n . \tag{48}
\end{equation*}
$$

Suppose for a contradiction that there is an edge $z z^{\prime} \in E(G)$ such that $z \in S N(x)$ and $z^{\prime} \in$ $S N(y)$. If $z z^{\prime} \in M$ then by definition of $S N(x)$ and $S N(y), x z^{\prime}, y z \in E(G)$. Define $M^{\prime}:=$ $\left(M \backslash\left\{z z^{\prime}\right\}\right) \cup\left\{x z^{\prime}, y z\right\} \subseteq E(G)$. Thus, M^{\prime} is a larger matching than M, a contradiction. So $z z^{\prime} \notin M$. Let $w, w^{\prime} \in V(M)$ such that $w z, w^{\prime} z^{\prime} \in M$. Then by definition of $S N(x)$ and $S N(y)$, $x w, y w^{\prime} \in E(G)$. Set $M^{\prime}:=\left(M \backslash\left\{w z, w^{\prime} z^{\prime}\right\}\right) \cup\left\{x w, y w^{\prime}, z z^{\prime}\right\} \subseteq E(G)$. Then M^{\prime} is a larger matching than M, a contradiction. This proves that there is no such edge $z z^{\prime}$.

Define $S N(x, y):=S N(x) \cap S N(y)$. Suppose that $S N(x, y) \neq \emptyset$. Consider any $z \in S N(x, y)$. Then in G, z does not have any neighbours in $S N(x) \cup S N(y)$. So (47) implies that $\mid S N(x) \cup$ $S N(y) \mid \leq(1 / 2+\gamma) n$. So together with (48) this implies that $|S N(x, y)| \geq(1 / 2-3 \gamma) n$. Further, $S N(x, y)$ is an independent set in G. By adding at most $3 \gamma n$ arbitrary vertices to $S N(x, y)$ we obtain a 3γ-independent set of size at least $n / 2$ in G.

Finally, suppose that $S N(x, y)=\emptyset$. So $S N(x)$ and $S N(y)$ are disjoint and $e_{G}(S N(x), S N(y))=$ 0 . Together with (48) this implies that G is 3γ-close to $2 K_{n / 2}$, as desired.

We will also apply the following consequence of Proposition 10.5.
Proposition 10.6. Let $\gamma>0$ and $n \in \mathbb{N}$ be even such that $1 / n \ll \gamma$. Suppose that G is a digraph on n vertices so that, for every $x \in V(G)$,

$$
d^{+}(x) \geq(1 / 2-\gamma) n \text { or } d^{-}(x) \geq(1 / 2-\gamma) n .
$$

Then at least one of the following conditions holds:

- G contains a 6γ-independent set of size at least $n / 2$;
- G is 6γ-close to $2 K_{n / 2}$;
- G contains a perfect matching.

11. Proof of Lemma 5.5

Define constants $\gamma, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{r}$ and $n_{0} \in \mathbb{N}$ such that

$$
0<1 / n_{0} \ll \gamma \ll \gamma_{1} \ll \gamma_{2} \ll \cdots \ll \gamma_{r} \ll 1 / r
$$

Let $T \in \mathcal{T}_{r}$ and G be a digraph on $n \geq n_{0}$ vertices as in the statement of the lemma. By assumption G contains a γ-independent set A_{1} of size n / r. (So A_{1} is also a γ_{1}-independent set in G.) Consider $G_{1}:=G \backslash A_{1}$. If G_{1} contains a γ_{2}-independent set A_{2} of size n / r set $G_{2}:=G_{1} \backslash A_{2}$. (Note that A_{2} is also a γ_{2}-independent set in G.) Otherwise let $B:=V\left(G_{1}\right)$. Repeating this process, for some $1 \leq s \leq r$, we obtain a partition A_{1}, \ldots, A_{s}, B of $V(G)$ such that:

- A_{i} is a γ_{i}-independent set of size n / r in G (for all $\left.1 \leq i \leq s\right)$;
- $|B|=(r-s) n / r$ and $G[B]$ does not contain a γ_{s+1}-independent set of size n / r.
(The latter condition is vacuous if $B=\emptyset$.) If $B=\emptyset$ define additional constants $\alpha, \beta^{\prime}, \beta$ so that

$$
\gamma_{r} \ll \alpha \ll \beta^{\prime} \ll \beta \ll 1 / r
$$

If $B \neq \emptyset$ then define $\alpha, \beta^{\prime}, \beta, \eta$ so that

$$
\gamma_{s} \ll \alpha \ll \beta^{\prime} \ll \beta \ll \eta \ll \gamma_{s+1}
$$

Let $\delta>0$ and $1 \leq i \leq s$. We now introduce a number of definitions.

- We say that a vertex $x \in A_{i}$ is $(\delta, i)-b a d$ if $d_{G}^{+}\left(x, A_{i}\right) \geq \delta n$ or $d_{G}^{-}\left(x, A_{i}\right) \geq \delta n$. Otherwise we say that x is (δ, i)-good.
- We say that a vertex $x \in V(G) \backslash A_{i}$ is (δ, i)-exceptional if $d_{G}^{+}\left(x, A_{i}\right), d_{G}^{-}\left(x, A_{i}\right) \leq \delta n$. Otherwise we say that x is (δ, i)-acceptable.
- We say that a vertex $x \in V(G) \backslash A_{i}$ is (δ, i)-excellent if $d_{G}^{+}\left(x, A_{i}\right), d_{G}^{-}\left(x, A_{i}\right) \geq\left|A_{i}\right|-\delta n$.
- Similarly, we say that a vertex $x \in V(G) \backslash B$ is (δ, B)-excellent if $d_{G}^{+}(x, B), d_{G}^{-}(x, B) \geq$ $|B|-\delta n$.
Later on we will modify the vertex classes A_{1}, \ldots, A_{s}, B. When referring to, for example, (δ, i)-bad vertices, we mean with respect to the current class A_{i} and not the original class.

For each $1 \leq i \leq s$, since A_{i} is a γ_{i}-independent set in G and $\gamma_{i} \ll \alpha \ll \beta$, there are at most αn vertices in A_{i} that are (β, i)-bad. Furthermore, (5) implies that there are at least

$$
2 \delta^{0}(G)\left|A_{i}\right|-2 \gamma_{i} n^{2} \geq 2\left|A_{i}\right|\left|V(G) \backslash A_{i}\right|-2 \gamma_{i} n^{2}
$$

edges in G with one endpoint in A_{i} and the other in $V(G) \backslash A_{i}$. So as $\gamma_{i} \ll \alpha \ll \beta^{\prime}$, there are at most αn vertices $x \in V(G) \backslash A_{i}$ that are not $\left(\beta^{\prime}, i\right)$-excellent. (This implies that there are at most $\alpha n(\beta, i)$-exceptional vertices.)
Modifying the partition A_{1}, \ldots, A_{s}, B. Let t be the largest integer such that there exists both $t(\beta, 1)$-bad vertices $x_{1}, \ldots, x_{t} \in A_{1}$ and $t(\beta, 1)$-exceptional vertices $y_{1}, \ldots, y_{t} \in V(G) \backslash A_{1}$. Note that $t \leq \alpha n$. Move y_{1}, \ldots, y_{t} into A_{1} and remove x_{1}, \ldots, x_{t} from A_{1} so that each x_{i} replaces y_{i} in their respective classes. (So if originally $y_{i} \in A_{j}$ then we move x_{i} into A_{j}. If originally $y_{i} \in B$ then we move x_{i} into B.) We call this 'phase' Step 1.

If a vertex $x \in A_{1}$ was initially $(\beta, 1)$-good then after Step $1, x$ is still $(\beta+\alpha, 1)$-good. Further, each y_{i} is now $(\beta+\alpha, 1)$-good. So if A_{1} initially contained precisely $t(\beta, 1)$-bad vertices, then A_{1} no longer contains any $(\beta+\alpha, 1)$-bad vertices.

If a vertex $y \in V(G) \backslash A_{1}$ was initially $(\beta, 1)$-acceptable, then after Stage $1, y$ is still $(\beta-\alpha, 1)$ acceptable. Further, each vertex x_{i} is $(\beta-\alpha, 1)$-acceptable. So if initially there were precisely t $(\beta, 1)$-exceptional vertices, then after Stage 1 there are no $(\beta-\alpha, 1)$-exceptional vertices.

Thus, after Stage 1 we have that:

- A_{i} is an α-independent set of size n / r in G (for all $1 \leq i \leq s$);
- If $B \neq \emptyset$ then $G[B]$ does not contain any $\left(\gamma_{s+1}-2 \alpha r\right)$-independent set of size n / r;
- There are no $(\beta+\alpha, 1)$-bad vertices in A_{1} or there are no $(\beta-\alpha, 1)$-exceptional vertices in $V(G) \backslash A_{1}$;
- A_{i} contains at most $2 \alpha n(\beta+\alpha, i)$-bad vertices (for all $\left.1 \leq i \leq s\right)$;
- There are at most $2 \alpha n$ vertices in $V(G) \backslash A_{i}$ that are not $\left(\beta^{\prime}+\alpha, i\right)$-excellent (for each $1 \leq i \leq s)$.
Suppose that $s \geq 2$. We now explain Stage 2 of the switching procedure. Let t^{\prime} be the largest integer such that there exists both $t^{\prime}(\beta+\alpha, 2)$-bad vertices $x_{1}, \ldots, x_{t^{\prime}} \in A_{2}$ and $t^{\prime}(\beta, 2)$-exceptional vertices $y_{1}, \ldots, y_{t^{\prime}} \in V(G) \backslash A_{2}$ at the end of Stage 1 . Note that $t^{\prime} \leq 2 \alpha n$. Move $y_{1}, \ldots, y_{t^{\prime}}$ into A_{2} and remove $x_{1}, \ldots, x_{t^{\prime}}$ from A_{2} so that each x_{i} replaces y_{i} in their respective classes.

If a vertex $x \in A_{2}$ was $(\beta+\alpha, 2)$-good after Stage 1 then x is still $(\beta+3 \alpha, 2)$-good. Further, each y_{i} is now $(\beta+3 \alpha, 2)$-good. So if at the end of Stage 1, A_{2} contained precisely $t^{\prime}(\beta+\alpha, 2)$-bad vertices, then A_{2} no longer contains any ($\beta+3 \alpha, 2$)-bad vertices.

If a vertex $y \in V(G) \backslash A_{2}$ was $(\beta, 2)$-acceptable at the end of Stage 1 , then y is still $(\beta-2 \alpha, 2)$ acceptable. Further, each vertex x_{i} is $(\beta-2 \alpha, 2)$-acceptable. So if at the end of Stage 1, there were precisely $t^{\prime}(\beta, 2)$-exceptional vertices, then there are now no ($\beta-2 \alpha, 2$)-exceptional vertices.

Recall that after Stage 1 there are no $(\beta+\alpha, 1)$-bad vertices in A_{1} or there are no $(\beta-\alpha, 1)$ exceptional vertices in $V(G) \backslash A_{1}$. Suppose that the former holds. Then (5) implies that after Stage 1 every vertex in A_{1} is $(\beta+\alpha, 2)$-excellent. In particular, A_{1} is not modified in Stage 2. Next suppose that after Stage 1 there were no ($\beta-\alpha, 1$)-exceptional vertices in $V(G) \backslash A_{1}$. Suppose that x is a vertex that lies in $V(G) \backslash A_{1}$ both after Stage 1 and after Stage 2. Then after Stage $2 x$ is a ($\beta-3 \alpha, 1$)-acceptable vertex. Suppose that x is a vertex in A_{1} after Stage 1 and a vertex in $V(G) \backslash A_{1}$ after Stage 2. Then $x \in A_{2}$ after Stage 2 and so was a $(\beta, 2)$-exceptional vertex after Stage 1. Together with (5), this implies that, after Stage $2, x$ is a ($\beta+2 \alpha, 1$)-excellent vertex (in particular, x is not $(\beta-3 \alpha, 1)$-exceptional). Overall this implies that, after Stage 2, there are no ($\beta+3 \alpha, 1$)-bad vertices in A_{1} or there are no ($\beta-3 \alpha, 1$)-exceptional vertices in $V(G) \backslash A_{1}$.

Therefore, after Stage 2 we have that:

- A_{i} is a 3α-independent set of size n / r in G (for all $1 \leq i \leq s$);
- If $B \neq \emptyset$ then $G[B]$ does not contain any $\left(\gamma_{s+1}-6 \alpha r\right)$-independent set of size n / r;
- There are no $(\beta+3 \alpha, i)$-bad vertices in A_{i} or there are no ($\beta-3 \alpha, i$)-exceptional vertices in $V(G) \backslash A_{i}$ for $i=1,2$;
- A_{i} contains at most $4 \alpha n(\beta+3 \alpha, i)$-bad vertices (for all $\left.1 \leq i \leq s\right)$;
- There are at most $4 \alpha n$ vertices in $V(G) \backslash A_{i}$ that are not $\left(\beta^{\prime}+3 \alpha, i\right)$-excellent (for each $1 \leq i \leq s)$.
By applying an analogous switching procedure iteratively for A_{3}, \ldots, A_{s} we modify the partition A_{1}, \ldots, A_{s}, B of $V(G)$ such that the following conditions hold:
$\left(\alpha_{1}\right) A_{1}, \ldots, A_{s}, B$ remains a partition of $V(G)$ so that A_{i} is a $\sqrt{\alpha}$-independent set of size n / r in G (for all $1 \leq i \leq s$);
$\left(\alpha_{2}\right)$ If $B \neq \emptyset$ then $G[B]$ does not contain any ($\gamma_{s+1} / 2$)-independent set of size n / r;
$\left(\alpha_{3}\right)$ There are no $(2 \beta, i)$-bad vertices in A_{i} or there are no ($\left.\beta / 2, i\right)$-exceptional vertices in $V(G) \backslash$ $A_{i}($ for all $1 \leq i \leq s) ;$
$\left(\alpha_{4}\right) A_{i}$ contains at most $\sqrt{\alpha} n(2 \beta, i)$-bad vertices (for all $\left.1 \leq i \leq s\right)$;
$\left(\alpha_{5}\right)$ There are at most $\sqrt{\alpha} n$ vertices in $V(G) \backslash A_{i}$ that are not $\left(2 \beta^{\prime}, i\right)$-excellent (for each $1 \leq$ $i \leq s)$.

Note that if $B \neq \emptyset$ then (5) implies that

$$
\begin{equation*}
\delta^{0}(G[B]) \geq\left(1-\frac{1}{r-s}\right)|B| . \tag{49}
\end{equation*}
$$

11.1. The case when $|B| \neq 2 n / r$ or $G[B]$ is not close to $2 K_{n / r}$. In this subsection we will assume that either (i) $r-s \neq 2$ (and so $|B| \neq 2 n / r$) or (ii) $r-s=2$ and $G[B]$ is not η-close to $2 K_{n / r}$. The case when $r-s=2$ and $G[B]$ is η-close to $2 K_{n / r}$ is considered in Section 11.2.
Covering the exceptional vertices with matchings. Given any $1 \leq i \leq s$, let $V_{e x, i}$ denote the set of $(\beta / 2, i)$-exceptional vertices in $V(G) \backslash A_{i}$. (α_{5}) implies that $c_{i}:=\left|V_{e x, i}\right| \leq \sqrt{\alpha} n$ for all $1 \leq i \leq s$. (5) implies that a vertex cannot be both ($\beta / 2, i$)-exceptional and ($\beta / 2, j$)-exceptional for $i \neq j$. So $V_{e x, i}$ and $V_{e x, j}$ are disjoint for all $i \neq j$.

Given $1 \leq i \leq s$, if $V_{e x, i}=\emptyset$, set G_{i} to be the empty digraph. If $V_{e x, i} \neq \emptyset$, set $G_{i}:=G\left[A_{i} \cup V_{e x, i}\right]$. If $V_{e x, i} \neq \emptyset$ then by $\left(\alpha_{3}\right)$, there are no $(2 \beta, i)$-bad vertices in A_{i}. Thus, by (5) every vertex in A_{i} is $(2 \beta, j)$-excellent for all $j \neq i$. In particular, if $x \in A_{i}$ then $x \notin V_{e x, j}$. Therefore the digraphs G_{1}, \ldots, G_{s} are vertex-disjoint.

If $V_{e x, i} \neq \emptyset$ then, since $\left|G_{i}\right|=n / r+c_{i}$, (5) implies that $\delta^{0}\left(G_{i}\right) \geq c_{i}$ (for $1 \leq i \leq s$). Further, $\left|G_{i}\right| \geq 2 c_{i}$. So Proposition 10.4 implies that there are disjoint matchings M_{1}, \ldots, M_{s} in G such that:
$\left(\beta_{1}\right) M_{i}$ is a c_{i}-matching in G_{i} that covers all the vertices in $V_{e x, i}$ (for all $\left.1 \leq i \leq s\right)$.
Note that if $V_{e x, i}=\emptyset$ then M_{i} is empty.
Extending the matchings M_{i} into T-packings. Our next task is to find vertex-disjoint T packings $\mathcal{M}_{1}, \ldots, \mathcal{M}_{s}$ in G so that, for each $1 \leq i \leq s$:
$\left(\gamma_{1}\right) \mathcal{M}_{i}$ contains precisely c_{i} disjoint copies of T;
$\left(\gamma_{2}\right) \mathcal{M}_{i}$ covers M_{i}. In particular, each copy of T in \mathcal{M}_{i} contains a unique edge from M_{i};
$\left(\gamma_{3}\right) \mathcal{M}_{i}$ covers precisely c_{i} vertices from A_{j} (for each $\left.1 \leq j \leq s\right)$ and precisely $(r-s) c_{i}$ vertices from B.
Suppose that for some $1 \leq i \leq s$ we have found our desired T-packings $\mathcal{M}_{1}, \ldots, \mathcal{M}_{i-1}$. We now construct \mathcal{M}_{i}. If M_{i} is empty then we set $\mathcal{M}_{i}=\emptyset$ and then $\left(\gamma_{1}\right)-\left(\gamma_{3}\right)$ are vacuously true for \mathcal{M}_{i}. So suppose that M_{i} is non-empty. Since $\left|V_{e x, i}\right|=c_{i},\left(\beta_{1}\right)$ implies that there exist non-negative integers a_{i}, b_{i} so that $c_{i}=a_{i}+2 b_{i}$ and
(i) M_{i} contains precisely a_{i} edges with one endpoint in $V_{e x, i}$ and the other in A_{i};
(ii) M_{i} contains precisely b_{i} edges with both endpoints in $V_{e x, i}$;
(iii) M_{i} contains precisely b_{i} edges with both endpoints in A_{i}.

Consider any edge e in M_{i} with one endpoint $x \in A_{i}$ and one endpoint $y \in V_{e x, i}$. Since $V_{e x, i} \neq \emptyset,\left(\alpha_{3}\right)$ implies that x is (2 $2 \beta, i$)-good. In particular, together with (5) this implies that $d^{+}\left(x, A_{j}\right), d^{-}\left(x, A_{j}\right) \geq\left|A_{j}\right|-2 \beta n$ for all $j \neq i$ and $d^{+}(x, B), d^{-}(x, B) \geq|B|-2 \beta n$. Since y is $(\beta / 2, i)$-exceptional, (5) implies that $d^{+}\left(y, A_{j}\right), d^{-}\left(y, A_{j}\right) \geq\left|A_{j}\right|-\beta n / 2$ for all $j \neq i$ and $d^{+}(y, B), d^{-}(y, B) \geq|B|-\beta n / 2$. It is easy to see that, together with (49), $\left(\alpha_{4}\right)$ and (α_{5}), this implies that we can greedily construct a copy T^{\prime} of T in G such that:

- T^{\prime} is vertex-disjoint from $\mathcal{M}_{1}, \ldots, \mathcal{M}_{i-1}$ and $M_{i} \backslash\{e\}, M_{i+1}, \ldots, M_{s}$;
- T^{\prime} contains e and contains precisely one vertex from each of $A_{1} \ldots, A_{s}$ and $r-s$ vertices from B.
Further, we can repeat this process for all a_{i} such edges e so that the a_{i} copies of T thus obtained are vertex-disjoint. Let \mathcal{M}_{i}^{\prime} denote the set of these copies of T. So \mathcal{M}_{i}^{\prime} covers a_{i} vertices from each A_{j} and $a_{i}(r-s)$ vertices from B.

Next pair off each of the b_{i} edges from (ii) with a unique edge from (iii). Consider one such pair $\left(e, e^{\prime}\right)$ of edges. So the endpoints x, y of e lie in $V_{e x, i}$ and the endpoints x^{\prime}, y^{\prime} of e^{\prime} lie in A_{i}. Suppose that $x, y \in A_{i^{\prime}}$ for some $i^{\prime} \neq i$. (The other cases are similar.) Since x, y are $(\beta / 2, i)-$ exceptional, (5) implies that $d^{+}\left(x, A_{j}\right), d^{-}\left(x, A_{j}\right), d^{+}\left(y, A_{j}\right), d^{-}\left(y, A_{j}\right) \geq\left|A_{j}\right|-\beta n / 2$ for all $j \neq i$ and $d^{+}(x, B), d^{-}(x, B), d^{+}(y, B), d^{-}(y, B) \geq|B|-\beta n / 2$. It is easy to see that, together with (49), $\left(\alpha_{4}\right)$ and $\left(\alpha_{5}\right)$, this implies that we can greedily construct a copy T^{\prime} of T in G such that:

- T^{\prime} is vertex-disjoint from $\mathcal{M}_{1}, \ldots, \mathcal{M}_{i-1}, \mathcal{M}_{i}^{\prime}$ and $M_{i} \backslash\{e\}, M_{i+1}, \ldots, M_{s}$;
- T^{\prime} contains e and contains two vertices from $A_{i^{\prime}}$ (namely x and y), no vertices from A_{i}, one vertex from A_{j} (for $j \neq i, i^{\prime}$) and $r-s$ vertices from B.
Similarly we can greedily construct a copy $T^{\prime \prime}$ of T in G such that:
- $T^{\prime \prime}$ is vertex-disjoint from $\mathcal{M}_{1}, \ldots, \mathcal{M}_{i-1}, \mathcal{M}_{i}^{\prime}, T^{\prime}$ and $M_{i} \backslash\left\{e^{\prime}\right\}, M_{i+1}, \ldots, M_{s}$;
- $T^{\prime \prime}$ contains e^{\prime} and contains two vertices from A_{i} (namely x^{\prime} and y^{\prime}), no vertices from $A_{i^{\prime}}$, one vertex from $A_{j}\left(\right.$ for $\left.j \neq i, i^{\prime}\right)$ and $r-s$ vertices from B.
So together T^{\prime} and $T^{\prime \prime}$ cover precisely two vertices from each A_{j} and $2(r-s)$ vertices from B. Further, we can repeat this process for all such pairs of edges $\left(e, e^{\prime}\right)$ so that the $2 b_{i}$ copies of T thus obtained are vertex-disjoint. Let $\mathcal{M}_{i}^{\prime \prime}$ denote the set of these copies of T. Then by construction $\mathcal{M}_{i}^{\prime \prime}$ covers precisely $2 b_{i}$ vertices from each A_{j} and $2 b_{i}(r-s)$ vertices from B. Set $\mathcal{M}_{i}:=\mathcal{M}_{i}^{\prime} \cup \mathcal{M}_{i}^{\prime \prime}$. So \mathcal{M}_{i} is a T-packing in G. By construction \mathcal{M}_{i} is vertex-disjoint from $\mathcal{M}_{1}, \ldots, \mathcal{M}_{i-1}$ and satisfies $\left(\gamma_{1}\right)-\left(\gamma_{3}\right)$, as desired.
Covering the remaining vertices. Remove all those vertices covered by $\mathcal{M}_{1}, \ldots, \mathcal{M}_{s}$ from G (and from the classes $\left.A_{1}, \ldots, A_{s}, B\right)$. Call the resulting digraph G^{\prime}. So $n^{\prime}:=\left|G^{\prime}\right| \geq\left(1-r^{2} \sqrt{\alpha}\right) n$ by $\left(\gamma_{1}\right),\left|A_{i}\right|=n^{\prime} / r$ for all $1 \leq i \leq s$ and $|B|=(r-s) n^{\prime} / r$ by $\left(\gamma_{3}\right)$. Further, (5) and $\left(\alpha_{1}\right)-\left(\alpha_{5}\right)$ imply that the following conditions hold:
($\left.\delta_{1}\right) \delta^{0}\left(G^{\prime}\right) \geq\left(1-1 / r-r^{2} \sqrt{\alpha}\right) n \geq\left(1-1 / r-r^{2} \sqrt{\alpha}\right) n^{\prime}$;
(δ_{2}) A_{1}, \ldots, A_{s}, B is a partition of $V\left(G^{\prime}\right)$ so that A_{i} is a $2 \sqrt{\alpha}$-independent set of size n^{\prime} / r in G^{\prime} (for all $1 \leq i \leq s$);
$\left(\delta_{3}\right)$ If $B \neq \emptyset$ then $G^{\prime}[B]$ does not contain any ($\gamma_{s+1} / 3$)-independent set of size n^{\prime} / r;
$\left(\delta_{4}\right)$ Every vertex in $V\left(G^{\prime}\right) \backslash A_{i}$ is ($\beta / 3, i$)-acceptable (for each $1 \leq i \leq s$);
$\left(\delta_{5}\right)$ There are at most $\sqrt{\alpha} n$ vertices in $V\left(G^{\prime}\right) \backslash A_{i}$ that are not $\left(2 \beta^{\prime}, i\right)$-excellent (for each $1 \leq i \leq s)$.
In particular, note that $\left(\delta_{4}\right)$ follows since \mathcal{M}_{i} contains the vertices in $V_{e x, i}$. If $B \neq \emptyset$ then $\left(\delta_{1}\right)$ implies that

$$
\begin{equation*}
d_{G^{\prime}}^{+}(y, B), d_{G^{\prime}}^{-}(y, B) \geq\left(1-\frac{1}{r}-r^{2} \sqrt{\alpha}\right) n^{\prime}-\frac{s n^{\prime}}{r} \geq\left(1-\frac{1}{r-s}-\alpha^{1 / 3}\right)|B| \tag{50}
\end{equation*}
$$

for all $y \in V\left(G^{\prime}\right)$.
We now split the proof into cases depending on the size of B.
Case 1: $B=\emptyset$. In this case $s=r$ and A_{1}, \ldots, A_{r} is a partition of $V\left(G^{\prime}\right)$. Then G^{\prime} contains a T-packing \mathcal{M}^{\prime} such that:
$\left(\varepsilon_{1}\right) \mathcal{M}^{\prime}$ contains at most $r \sqrt{\alpha} n$ copies of T;
(ε_{2}) If $x \in V\left(G^{\prime}\right) \backslash A_{i}$ is not $\left(2 \beta^{\prime}, i\right)$-excellent then x is contained in a copy of T in \mathcal{M}^{\prime} (for any $1 \leq i \leq r) ;$
$\left(\varepsilon_{3}\right)$ Each copy of T in \mathcal{M}^{\prime} covers exactly one vertex from A_{i} (for each $\left.1 \leq i \leq r\right)$.
To see that such a T-packing \mathcal{M}^{\prime} exists, suppose that we have found a T-packing \mathcal{M}^{*} in G^{\prime} that satisfies $\left(\varepsilon_{1}\right)$ and $\left(\varepsilon_{3}\right)$. Suppose that for some $1 \leq i \leq r, x \in V(G) \backslash A_{i}$ so that x is not $\left(2 \beta^{\prime}, i\right)$ excellent and x is not covered by \mathcal{M}^{*}. (By $\left(\delta_{5}\right)$ there are at most $r \sqrt{\alpha} n$ such vertices x.) Without loss of generality assume that $x \in A_{1}$. Then by (δ_{1}) and (δ_{4}) there exist $2 \leq i^{\prime} \neq i^{\prime \prime} \leq r$ such that:

- $d_{G^{\prime}}^{+}\left(x, A_{i^{\prime}}\right) \geq \beta n / 3 ;$
- $d_{G^{\prime}}^{-}\left(x, A_{i^{\prime \prime}}\right) \geq \beta n / 3$;
- $d_{G^{\prime}}^{+}\left(x, A_{j}\right), d_{G^{\prime}}^{-}\left(x, A_{j}\right) \geq \beta n / 3$ for all $2 \leq j \leq r$ such that $j \neq i^{\prime}, i^{\prime \prime}$.

Without loss of generality assume that $i^{\prime}=2$ and $i^{\prime \prime}=3$. Write $V(T)=\left\{x_{1}, \ldots, x_{r}\right\}$ where $x_{1} x_{2}, x_{3} x_{1} \in E(T)$. Since $d_{G^{\prime}}^{+}\left(x, A_{2}\right) \geq \beta n / 3,\left(\delta_{5}\right)$ implies that there is a vertex $y_{2} \in A_{2} \backslash V\left(\mathcal{M}^{*}\right)$ such that $x y_{2} \in E\left(G^{\prime}\right)$ and y_{2} is $\left(2 \beta^{\prime}, i\right)$-excellent for all $3 \leq i \leq r$. Further, since $d_{G^{\prime}}^{-}\left(x, A_{3}\right) \geq \beta n / 3$,
the choice of y_{2} together with $\left(\delta_{5}\right)$ ensures that there is a vertex $y_{3} \in A_{3} \backslash V\left(\mathcal{M}^{*}\right)$ such that $y_{3} x, y_{2} y_{3}, y_{3} y_{2} \in E\left(G^{\prime}\right)$ and y_{3} is $\left(2 \beta^{\prime}, i\right)$-excellent for all $4 \leq i \leq r$. In particular, $\left\{x, y_{2}, y_{3}\right\}$ spans a copy of $T\left[x_{1}, x_{2}, x_{3}\right]$ in G^{\prime} that is vertex-disjoint from \mathcal{M}^{*}. Continuing in this way we obtain vertices y_{2}, \ldots, y_{r} such that $y_{i} \in A_{i} \backslash V\left(\mathcal{M}^{*}\right)$ and $\left\{x, y_{2}, \ldots, y_{r}\right\}$ spans a copy of T in G^{\prime} where x, y_{2}, \ldots, y_{r} play the roles of x_{1}, \ldots, x_{r} respectively. This argument shows that we can indeed find a T-packing \mathcal{M}^{\prime} that satisfies $\left(\varepsilon_{1}\right)-\left(\varepsilon_{3}\right)$.

Remove all those vertices covered by \mathcal{M}^{\prime} from G^{\prime} (and from the classes A_{1}, \ldots, A_{r}). Call the resulting digraph $G^{\prime \prime}$. So $n^{\prime \prime}:=\left|G^{\prime \prime}\right| \geq\left(1-2 r^{2} \sqrt{\alpha}\right) n$ by $\left(\varepsilon_{1}\right)$ and $\left|A_{i}\right|=n^{\prime \prime} / r$ for all $1 \leq i \leq r$ by $\left(\varepsilon_{3}\right)$. Further, (ε_{2}) implies that, given any $x \in V\left(G^{\prime \prime}\right) \backslash A_{i}, x$ is ($2 \beta^{\prime}, i$)-excellent (for all $1 \leq i \leq r$). So Theorem 10.2 implies that $G^{\prime \prime}$ contains a perfect K_{r}-packing and thus a perfect T-packing $\mathcal{M}^{\prime \prime}$. Set $\mathcal{M}:=\mathcal{M}^{\prime} \cup \mathcal{M}^{\prime \prime} \cup \mathcal{M}_{1} \cup \cdots \cup \mathcal{M}_{r}$. Then \mathcal{M} is a perfect T-packing in G, as required.
Case 2: $B \neq \emptyset$. In this case $s \leq r-1$. Given any $1 \leq i \leq s,\left(\delta_{1}\right)$ and $\left(\delta_{2}\right)$ imply that there are at least

$$
2|B|\left|A_{i}\right|-r^{2} \sqrt{\alpha} n^{2}-4 \sqrt{\alpha} n^{2} \geq 2|B|\left|A_{i}\right|-\alpha^{1 / 3} n^{2}
$$

edges in G^{\prime} with one endpoint in A_{i} and the other endpoint in B. Since $\alpha \ll \beta \ll 1 / r$, this implies that there are at most $\alpha^{1 / 4} n / r$ vertices in A_{i} that are not (β, B)-excellent. Let $V_{e x, B}$ denote the set of all those vertices in $V\left(G^{\prime}\right) \backslash B$ that are not (β, B)-excellent. So $\left|V_{e x, B}\right| \leq \alpha^{1 / 4} n$.

Then G^{\prime} contains a T-packing \mathcal{M}^{\prime} such that:
$\left(\varepsilon_{1}^{\prime}\right) \mathcal{M}^{\prime}$ contains $m^{\prime} \leq 2 r \sqrt{\alpha} n+2 \alpha^{1 / 4} n \leq 3 \alpha^{1 / 4} n$ copies of T;
$\left(\varepsilon_{2}^{\prime}\right)$ If $x \in V\left(G^{\prime}\right) \backslash A_{i}$ is not (β, i)-excellent then x is contained in a copy of T in \mathcal{M}^{\prime} (for any $1 \leq i \leq s)$. Similarly, if $x \in V\left(G^{\prime}\right) \backslash B$ is not (β, B)-excellent then x is contained in a copy of T in \mathcal{M}^{\prime};
$\left(\varepsilon_{3}^{\prime}\right) \mathcal{M}^{\prime}$ covers exactly m^{\prime} vertices from A_{i} (for each $\left.1 \leq i \leq s\right)$ and $m^{\prime}(r-s)$ vertices from B. To prove that such a T-packing \mathcal{M}^{\prime} exists, we will use the follow three claims.
Claim 11.1. Let $x \in V\left(G^{\prime}\right) \backslash B$ be such that x is not (β, B)-excellent and let $W \subseteq V\left(G^{\prime}\right) \backslash\{x\}$ where $|W| \leq \alpha^{1 / 5} n$. Then there are two vertex-disjoint copies $T^{\prime}, T^{\prime \prime}$ of T in G^{\prime} so that:
(i) $V\left(T^{\prime}\right) \cup V\left(T^{\prime \prime}\right)$ contains two vertices from A_{i} (for each $1 \leq i \leq s$) and $2(r-s)$ vertices from B;
(ii) $x \in V\left(T^{\prime}\right) \cup V\left(T^{\prime \prime}\right)$ and $V\left(T^{\prime}\right) \cup V\left(T^{\prime \prime}\right)$ is disjoint from W.

Proof. To prove the claim consider a vertex $x \in V\left(G^{\prime}\right) \backslash B$ that is not (β, B)-excellent. If $s=1$ then $x \in A_{1}$. Further, since x is not (β, B)-excellent, $\left(\delta_{1}\right)$ implies that

- $d_{G^{\prime}}^{+}\left(x, A_{1}\right) \geq \beta n-r^{2} \sqrt{\alpha} n^{\prime} \geq \beta n / 2$ or $d_{G^{\prime}}^{-}\left(x, A_{1}\right) \geq \beta n / 2$.

Without loss of generality assume that $d_{G^{\prime}}^{+}\left(x, A_{1}\right) \geq \beta n / 2$.
Fix a vertex y in A_{1} such that

- $x y \in E\left(G^{\prime}\right)$;
- y is (β, B)-excellent;
- $y \notin W$.

Note that there are at least $\beta n / 2-\alpha^{1 / 4} n-\alpha^{1 / 5} n \geq \beta n / 4$ choices for y since $\left|V_{e x, B}\right| \leq \alpha^{1 / 4} n$ and $|W| \leq \alpha^{1 / 5} n$. Then by repeatedly applying (50) we can greedily extend $x y$ to a copy T^{\prime} of T in G^{\prime} containing two vertices from A_{1} (namely x and y) and $r-2$ vertices from B so that T^{\prime} is disjoint from W.

Next suppose that $s \geq 2$. Since x is not (β, B)-excellent, $\left(\delta_{1}\right)$ and $\left(\delta_{4}\right)$ imply that there exist $1 \leq i^{\prime} \neq i^{\prime \prime} \leq s$ such that:

- $d_{G^{\prime}}^{+}\left(x, A_{i^{\prime}}\right) \geq \beta n / 3 ;$
- $d_{G^{\prime}}^{-}\left(x, A_{i^{\prime \prime}}\right) \geq \beta n / 3$;

Without loss of generality assume that $x \in A_{1}, i^{\prime}=1$ and $i^{\prime \prime}=2$ (the other cases are similar).
Write $V(T)=\left\{x_{1}, \ldots, x_{r}\right\}$ where $x_{1} x_{2}, x_{3} x_{1} \in E(T)$. Since $d_{G^{\prime}}^{+}\left(x, A_{1}\right) \geq \beta n / 3,\left|V_{e x, B}\right| \leq \alpha^{1 / 4} n$ and $|W| \leq \alpha^{1 / 5} n,\left(\delta_{5}\right)$ implies that there is a vertex $y_{2} \in A_{1}$ such that:

- $x y_{2} \in E\left(G^{\prime}\right)$;
- y_{2} is $\left(2 \beta^{\prime}, i\right)$-excellent for all $2 \leq i \leq s$;
- y_{2} is (β, B)-excellent;
- $y_{2} \notin W$.

Since $d_{G^{\prime}}^{-}\left(x, A_{2}\right) \geq \beta n / 3$, the choice of y_{2} together with $\left(\delta_{5}\right)$ ensures that there is a vertex $y_{3} \in A_{2}$ such that:

- $y_{3} x, y_{2} y_{3}, y_{3} y_{2} \in E\left(G^{\prime}\right)$;
- y_{3} is $\left(2 \beta^{\prime}, i\right)$-excellent for all $3 \leq i \leq s$;
- y_{3} is (β, B)-excellent;
- $y_{3} \notin W$.

In particular, $\left\{x, y_{2}, y_{3}\right\}$ spans a copy of $T\left[x_{1}, x_{2}, x_{3}\right]$ in G^{\prime}. Continuing in this fashion and then repeatedly applying (50) we can greedily find a copy T^{\prime} of T in G^{\prime} that covers two vertices in A_{1} (namely x and y_{2}), one vertex from A_{j} (for $2 \leq j \leq s$) and $r-s-1$ vertices from B so that T^{\prime} is disjoint from W. So in both cases we have found a copy T^{\prime} of T in G^{\prime} that covers two vertices in A_{1} (including x), one vertex from A_{j} (for $2 \leq j \leq s$) and $r-s-1$ vertices from B.

Let T^{*} be a subtournament of T of size $r-s+1$. Let B^{\prime} denote the set of vertices $x \in$ $B \backslash\left(V\left(T^{\prime}\right) \cup W\right)$ that are $\left(2 \beta^{\prime}, j\right)$-excellent for all $1 \leq j \leq s$. Then $\left|B^{\prime}\right| \geq|B|-r \sqrt{\alpha} n-r-\alpha^{1 / 5} n$ by $\left(\delta_{5}\right)$. Together with (50) this implies that

$$
\delta^{0}\left(G^{\prime}\left[B^{\prime}\right]\right) \geq\left(1-\frac{1}{r-s}-\alpha^{1 / 6}\right)\left|B^{\prime}\right| .
$$

Moreover, $\left(\delta_{3}\right)$ implies that $G^{\prime}\left[B^{\prime}\right]$ does not contain any $\left(\gamma_{s+1} / 4\right)$-independent set of size $\left|B^{\prime}\right| /(r-s)$. Proposition 6.4 (with $G^{\prime}\left[B^{\prime}\right],\left|B^{\prime}\right|, \alpha^{1 / 6}, T^{*}, r-s+1$ playing the roles of G, n, ε, T, r respectively) implies that $G^{\prime}\left[B^{\prime}\right]$ contains a copy T_{1}^{*} of T^{*}. The choice of B^{\prime} ensures that we can greedily extend T_{1}^{*} to a copy $T^{\prime \prime}$ of T in G^{\prime} that is disjoint from $V\left(T^{\prime}\right) \cup W$ and that covers no vertices from A_{1}, one vertex from A_{j} (for $2 \leq j \leq s$) and $r-s+1$ vertices from B. So together T^{\prime} and $T^{\prime \prime}$ satisfy (i) and (ii). This completes the proof of Claim 11.1.

Claim 11.2. Let $x \in V\left(G^{\prime}\right) \backslash\left(A_{i} \cup B\right)$ be such that x is not (β, i)-excellent (for some $1 \leq i \leq s$) and let $W \subseteq V\left(G^{\prime}\right) \backslash\{x\}$ where $|W| \leq \alpha^{1 / 5} n$. Then there are two vertex-disjoint copies $T^{\prime}, T^{\prime \prime}$ of T in G^{\prime} so that:
(i) $V\left(T^{\prime}\right) \cup V\left(T^{\prime \prime}\right)$ contains two vertices from A_{j} (for each $1 \leq j \leq s$) and $2(r-s)$ vertices from B;
(ii) $x \in V\left(T^{\prime}\right) \cup V\left(T^{\prime \prime}\right)$ and $V\left(T^{\prime}\right) \cup V\left(T^{\prime \prime}\right)$ is disjoint from W.

The proof of Claim 11.2 is essentially identical to the proof of Claim 11.1, so we omit it.
Claim 11.3. Let $x \in B$ be such that x is not (β, i)-excellent (for some $1 \leq i \leq s$) and let $W \subseteq V\left(G^{\prime}\right) \backslash\{x\}$ where $|W| \leq \alpha^{1 / 5} n$. Then there is a copy T^{\prime} of T in G^{\prime} so that:
(i) $V\left(T^{\prime}\right)$ contains one vertex from A_{j} (for each $1 \leq j \leq s$) and $r-s$ vertices from B;
(ii) $x \in V\left(T^{\prime}\right)$ and $V\left(T^{\prime}\right)$ is disjoint from W.

It is easy to see that $\left(\delta_{1}\right),\left(\delta_{4}\right)$ and (50) imply that we can greedily construct a copy T^{\prime} of T as in Claim 11.3.

Recall that $\left|V_{e x, B}\right| \leq \alpha^{1 / 4} n$. Together with (δ_{5}) this implies that we can repeatedly apply Claims 11.1-11.3 to obtain a T-packing \mathcal{M}^{\prime} in G^{\prime} satisfying $\left(\varepsilon_{1}^{\prime}\right)-\left(\varepsilon_{3}^{\prime}\right)$.

Remove all those vertices covered by \mathcal{M}^{\prime} from G^{\prime} (and from the classes A_{1}, \ldots, A_{s}, B). Call the resulting digraph $G^{\prime \prime}$. So $n^{\prime \prime}:=\left|G^{\prime \prime}\right| \geq\left(1-\alpha^{1 / 5}\right) n$ by $\left(\varepsilon_{1}^{\prime}\right)$ and $\left|A_{i}\right|=n^{\prime \prime} / r$ for all $1 \leq i \leq s$ and $|B|=(r-s) n^{\prime \prime} / r$ by $\left(\varepsilon_{3}^{\prime}\right)$. Further, $\left(\varepsilon_{2}^{\prime}\right)$ implies that, given any $x \in V\left(G^{\prime \prime}\right) \backslash A_{i}, x$ is (β, i)-excellent (for all $1 \leq i \leq s$) and every vertex $y \in V\left(G^{\prime \prime}\right) \backslash B$ is (β, B)-excellent.

Suppose that $|B|=n^{\prime \prime} / r$. Then as in Case 1, Theorem 10.2 implies that $G^{\prime \prime}$ contains a perfect K_{r}-packing and thus a perfect T-packing $\mathcal{M}^{\prime \prime}$. Set $\mathcal{M}:=\mathcal{M}^{\prime} \cup \mathcal{M}^{\prime \prime} \cup \mathcal{M}_{1} \cup \cdots \cup \mathcal{M}_{s}$. Then \mathcal{M} is a perfect T-packing in G, as required.

Next suppose that $|B| \geq 2 n^{\prime \prime} / r$. Let T^{*} be a subtournament of T on $r-s$ vertices such that $T^{*} \neq C_{3}$. (Note that if $r-s=3$ then $r \geq 4$. Every tournament on at least four vertices contains T_{3}, so we indeed may choose $T^{*} \neq C_{3}$.) By (50) and (ε_{1}^{\prime}) we have that

$$
\delta^{0}\left(G^{\prime \prime}[B]\right) \geq\left(1-1 /(r-s)-\alpha^{1 / 5}\right)|B| .
$$

Moreover, $\left(\delta_{3}\right)$ implies that $G^{\prime \prime}[B]$ does not contain any ($\gamma_{s+1} / 4$)-independent set of size $n^{\prime \prime} / r=$ $|B| /(r-s)$. Further, if $|B|=2 n^{\prime \prime} / r$ (and so $r-s=2$) then by assumption $G^{\prime \prime}[B]$ is not $\eta / 2$-close to $2 K_{n^{\prime \prime} / r}$. Thus, by Theorem 10.1 and Proposition $10.6, G^{\prime \prime}[B]$ contains a perfect T^{*}-packing \mathcal{M}^{*}.

Define an auxiliary digraph G^{*} from $G^{\prime \prime}$ as follows. G^{*} has vertex set $A_{1} \cup \cdots \cup A_{s} \cup B^{*}$ where $\left|B^{*}\right|=n^{\prime \prime} / r$ and each vertex $x \in B^{*}$ corresponds to a unique copy T_{x}^{*} of T^{*} from \mathcal{M}^{*}. The edge set of G^{*} consists of every edge $w z \in E\left(G^{\prime \prime}\right)$ such that $w \in A_{i}$ and $z \in A_{j}$ for some $i \neq j$ together with the following edges: Suppose that $x \in B^{*}$ and $y \in V\left(G^{*}\right) \backslash B^{*}$. Then

- $y x \in E\left(G^{*}\right)$ precisely if y sends an edge to every vertex in T_{x}^{*} in $G^{\prime \prime}$;
- $x y \in E\left(G^{*}\right)$ precisely if y receives an edge from every vertex in T_{x}^{*} in $G^{\prime \prime}$.

Note that G^{*} is an $(s+1)$-partite digraph with vertex classes of size $n^{\prime \prime} / r$. Further,

$$
\bar{\delta}^{+}\left(G^{*}\right), \bar{\delta}^{-}\left(G^{*}\right) \geq n^{\prime \prime} / r-\beta r n .
$$

So by Theorem 10.2, G^{*} contains a perfect K_{s+1}-packing. By construction of G^{*} this implies that $G^{\prime \prime}$ contains a perfect T-packing $\mathcal{M}^{\prime \prime}$. Set $\mathcal{M}:=\mathcal{M}^{\prime} \cup \mathcal{M}^{\prime \prime} \cup \mathcal{M}_{1} \cup \cdots \cup \mathcal{M}_{s}$. Then \mathcal{M} is a perfect T-packing in G, as required.
11.2. The case when $|B|=2 n / r$ and $G[B]$ is close to $2 K_{n / r}$. In this subsection we consider the case when $|B|=2 n / r$ and $G[B]$ is η-close to $2 K_{n / r}$. Thus, there exists a partition B_{1}, B_{2} of B such that $\left|B_{1}\right|=\left|B_{2}\right|=n / r$ and $e_{G}\left(B_{1}, B_{2}\right) \leq \eta|B|^{2}$. (49) implies that $\delta^{0}(G[B]) \geq|B| / 2=n / r$.

For $i=1,2$ and $\delta>0$ we say that a vertex $x \in B_{i}$ is $\left(\delta, B_{i}\right)$-excellent if $d_{G}^{+}\left(x, B_{i}\right), d_{G}^{-}\left(x, B_{i}\right) \geq$ $\left|B_{i}\right|-\delta n$. (Later on we will modify the classes B_{1}, B_{2}. When referring to, for example, (δ, B_{1})excellent vertices, we mean with respect to the current class B_{1} and not the original class.) Note that there are at most $\eta^{1 / 2}|B|$ vertices $x \in B_{i}$ that are not $\left(\eta^{1 / 2}, B_{i}\right)$-excellent for $i=1,2$.

Let $V_{e x}^{1}$ denote the set of vertices $x \in B_{1}$ that are not $\left(\eta^{1 / 2}, B_{1}\right)$-excellent. Define $V_{e x}^{2}$ analogously. Given a vertex $x \in V_{e x}^{1}$, if $d_{G}^{+}\left(x, B_{2}\right) \geq n / 2 r$ then move x into B_{2}. Similarly, if $x \in V_{e x}^{2}$ and $d_{G}^{+}\left(x, B_{1}\right) \geq n / 2 r$ then move x into B_{1}. Thus, the following conditions hold:
($\left.\zeta_{1}\right) n / r-\eta^{1 / 2} n \leq\left|B_{1}\right|,\left|B_{2}\right| \leq n / r+\eta^{1 / 2} n$;
($\left.\zeta_{2}\right) e_{G}\left(B_{1}, B_{2}\right) \leq 5 \eta^{1 / 2}|B|^{2}$;
$\left(\zeta_{3}\right)$ There are at most $2 \eta^{1 / 2}|B|$ vertices $x \in B_{i}$ that are not $\left(2 \eta^{1 / 2}, B_{i}\right)$-excellent (for $i=1,2$);
$\left(\zeta_{4}\right)$ Given any $x \in B_{i}, d_{G}^{+}\left(x, B_{i}\right) \geq n / 3 r$ (for $i=1,2$).
Actually, there is slack in conditions $\left(\zeta_{1}\right)$ and $\left(\zeta_{2}\right)$. Indeed, if we move a single vertex from B_{2} to B_{1} (or vice versa) then $\left(\zeta_{1}\right)$ and $\left(\zeta_{2}\right)$ still hold.

Since $|B|=2 n / r$ is even, either $\left|B_{1}\right|$ and $\left|B_{2}\right|$ are even or $\left|B_{1}\right|$ and $\left|B_{2}\right|$ are odd. Suppose that $\left|B_{1}\right|$ and $\left|B_{2}\right|$ are odd. Without loss of generality assume that $\left|B_{2}\right| \geq n / r$. Fix a vertex $b_{1} \in B_{1}$ such that
(i) b_{1} is $\left(2 \beta^{\prime}, i\right)$-excellent for all $1 \leq i \leq s$.
(Such a vertex b_{1} exists by $\left(\alpha_{5}\right)$.) Then by (5) there is a vertex $b_{2} \in B_{2}$ such that $b_{1} b_{2} \in E(G)$. Further, (5) implies that
(ii) $d_{G}^{+}\left(b_{2}, A_{i}\right), d_{G}^{-}\left(b_{2}, A_{i}\right) \geq \eta n$ for all $1 \leq i \leq s$ or;
(iii) $d_{G}^{+}\left(b_{2}, B_{1}\right) \geq n / 3 r$ or $d_{G}^{-}\left(b_{2}, B_{1}\right) \geq n / 3 r$.

If (iii) holds then move b_{2} into B_{1}. Otherwise, we leave the partition B_{1}, B_{2} of B unchanged. Thus, the following conditions hold:
$\left(\eta_{1}\right) n / r-\eta^{1 / 2} n \leq\left|B_{1}\right|,\left|B_{2}\right| \leq n / r+\eta^{1 / 2} n ;$
$\left(\eta_{2}\right) e_{G}\left(B_{1}, B_{2}\right) \leq 5 \eta^{1 / 2}|B|^{2}$;
$\left(\eta_{3}\right)$ There are at most $3 \eta^{1 / 2}|B|$ vertices $x \in B_{i}$ that are not $\left(3 \eta^{1 / 2}, B_{i}\right)$-excellent (for $\left.i=1,2\right)$;
$\left(\eta_{4}\right)$ Given any $x \in B_{i}, d_{G}^{+}\left(x, B_{i}\right) \geq n / 4 r$ or $d_{G}^{-}\left(x, B_{i}\right) \geq n / 4 r$ (for $i=1,2$).
Additionally, one of the following conditions holds:
$\left(\eta_{5}\right)\left|B_{1}\right|$ and $\left|B_{2}\right|$ are even or;
$\left(\eta_{6}\right)\left|B_{1}\right|$ and $\left|B_{2}\right|$ are odd. Further, there exist $b_{1} \in B_{1}$ and $b_{2} \in B_{2}$ such that
$-b_{1} b_{2} \in E(G)$;

- b_{1} is $\left(2 \beta^{\prime}, i\right)$-excellent for all $1 \leq i \leq s$;
$-d_{G}^{+}\left(b_{2}, A_{i}\right), d_{G}^{-}\left(b_{2}, A_{i}\right) \geq \eta n$ for all $1 \leq i \leq s$.
If $\left(\eta_{6}\right)$ holds then we will extend the edge $b_{1} b_{2}$ into a copy of T in G. First though we will cover the 'exceptional vertices' in G with T-packings.

Covering the exceptional vertices with T-packings. Given any $1 \leq i \leq s$, let $V_{e x, i}$ denote the set of $(\beta / 2, i)$-exceptional vertices in $V(G) \backslash A_{i}$. (Note that if $\left(\eta_{6}\right)$ holds then $b_{1}, b_{2} \notin V_{e x, i}$.) $\left(\alpha_{5}\right)$ implies that $c_{i}:=\left|V_{e x, i}\right| \leq \sqrt{\alpha} n$ for all $1 \leq i \leq s$. Then there exist vertex-disjoint T-packings $\mathcal{M}_{1}, \ldots, \mathcal{M}_{s}$ in G so that, for each $1 \leq i \leq s$:
$\left(\theta_{1}\right) \mathcal{M}_{i}$ contains precisely c_{i} disjoint copies of T;
$\left(\theta_{2}\right)$ Each vertex from $V_{e x, i}$ lies in a copy of T in \mathcal{M}_{i};
$\left(\theta_{3}\right) \mathcal{M}_{i}$ covers precisely c_{i} vertices from A_{j} (for each $1 \leq j \leq s$) and precisely $2 c_{i}$ vertices from B;
$\left(\theta_{4}\right) \mathcal{M}_{i}$ covers an even number of vertices from B_{1} and an even number of vertices from B_{2};
$\left(\theta_{5}\right)$ If $\left(\eta_{6}\right)$ holds then \mathcal{M}_{i} does not cover b_{1} or b_{2}.
Note that the same argument used to construct $\mathcal{M}_{1}, \ldots, \mathcal{M}_{s}$ in Section 11.1 shows that we can construct $\mathcal{M}_{1}, \ldots, \mathcal{M}_{s}$ here so that $\left(\theta_{1}\right)-\left(\theta_{3}\right)$ hold. It is not difficult to see that we can additionally ensure that $\left(\theta_{4}\right)$ and $\left(\theta_{5}\right)$ hold.

Extending the edge $b_{1} b_{2}$ to a copy of T. If $\left|B_{1}\right|$ and $\left|B_{2}\right|$ are even set $\mathcal{T}:=\emptyset$. Otherwise, $\left(\eta_{6}\right)$ holds. In this case, we can greedily construct a copy T^{\prime} of T in G such that:

- T^{\prime} is vertex-disjoint from $\mathcal{M}_{1}, \ldots, \mathcal{M}_{s}$;
- T^{\prime} contains $b_{1} b_{2}$ (and so one vertex from each of B_{1} and B_{2}) and precisely one vertex from each of A_{1}, \ldots, A_{s}.
Set $\mathcal{T}:=\left\{T^{\prime}\right\}$.
Covering the remaining vertices. Remove all those vertices covered by $\mathcal{M}_{1}, \ldots, \mathcal{M}_{s}, \mathcal{T}$ from G (and from the classes A_{1}, \ldots, A_{s}, B and from B_{1}, B_{2}). Call the resulting digraph G^{\prime}. So $n^{\prime}:=$ $\left|G^{\prime}\right| \geq\left(1-2 r^{2} \sqrt{\alpha}\right) n$ by $\left(\theta_{1}\right),\left|A_{i}\right|=n^{\prime} / r$ for all $1 \leq i \leq s$ and $|B|=2 n^{\prime} / r$ by $\left(\theta_{3}\right)$ and the choice of \mathcal{T}.

Further, (5) and $\left(\alpha_{1}\right)-\left(\alpha_{5}\right)$ imply that the following conditions hold:
$\left(\iota_{1}\right) \delta^{0}\left(G^{\prime}\right) \geq\left(1-1 / r-2 r^{2} \sqrt{\alpha}\right) n \geq\left(1-1 / r-2 r^{2} \sqrt{\alpha}\right) n^{\prime}$;
$\left(\iota_{2}\right) A_{1}, \ldots, A_{s}, B$ is a partition of $V\left(G^{\prime}\right)$ so that A_{i} is a $2 \sqrt{\alpha}$-independent set of size n^{\prime} / r in G^{\prime} (for all $1 \leq i \leq s$);
$\left(\iota_{3}\right)$ Every vertex in $V\left(G^{\prime}\right) \backslash A_{i}$ is $(\beta / 3, i)$-acceptable (for each $\left.1 \leq i \leq s\right)$;
$\left(\iota_{4}\right)$ There are at most $\sqrt{\alpha} n$ vertices in $V\left(G^{\prime}\right) \backslash A_{i}$ that are not $\left(2 \beta^{\prime}, i\right)$-excellent (for each $1 \leq i \leq s)$.
In particular, note that $\left(\iota_{3}\right)$ follows from $\left(\theta_{2}\right)$. Further, $\left(\eta_{1}\right)-\left(\eta_{6}\right)$ and $\left(\theta_{1}\right)-\left(\theta_{5}\right)$ together with the choice of \mathcal{T} implies that:
$\left(\kappa_{1}\right) n / r-2 \eta^{1 / 2} n \leq\left|B_{1}\right|,\left|B_{2}\right| \leq n / r+\eta^{1 / 2} n$ and $\left|B_{1}\right|$ and $\left|B_{2}\right|$ are even;
$\left(\kappa_{2}\right)$ There are at most $4 \eta^{1 / 2}|B|$ vertices $x \in B_{i}$ that are not ($3 \eta^{1 / 2}, B_{i}$)-excellent (for $i=1,2$);
$\left(\kappa_{3}\right)$ Given any $x \in B_{i}, d_{G^{\prime}}^{+}\left(x, B_{i}\right) \geq n / 5 r$ or $d_{G^{\prime}}^{-}\left(x, B_{i}\right) \geq n / 5 r$ (for $\left.i=1,2\right)$.
Note that $\left(\iota_{1}\right)$ implies that

$$
d_{G^{\prime}}^{+}(y, B), d_{G^{\prime}}^{-}(y, B) \geq\left(\frac{1}{2}-\alpha^{1 / 3}\right)|B|
$$

for all $y \in V\left(G^{\prime}\right)$.
Let $V_{e x, B}$ denote the set of all those vertices in $V\left(G^{\prime}\right) \backslash B$ that are not (β, B)-excellent. By arguing as in Case 2 from Section 11.1 we see that $\left|V_{e x, B}\right| \leq \alpha^{1 / 4} n$.
G^{\prime} contains a T-packing \mathcal{M}^{\prime} such that:
$\left(\lambda_{1}\right) \mathcal{M}^{\prime}$ contains $m^{\prime} \leq 2 r \sqrt{\alpha} n+2 \alpha^{1 / 4} n \leq 3 \alpha^{1 / 4} n$ copies of T;
$\left(\lambda_{2}\right)$ If $x \in V\left(G^{\prime}\right) \backslash A_{i}$ is not (β, i)-excellent then x is contained in a copy of T in \mathcal{M}^{\prime} (for any $1 \leq i \leq s)$. Similarly, if $x \in V\left(G^{\prime}\right) \backslash B$ is not (β, B)-excellent then x is contained in a copy of T in \mathcal{M}^{\prime};
$\left(\lambda_{3}\right) \mathcal{M}^{\prime}$ covers exactly m^{\prime} vertices from A_{i} (for each $1 \leq i \leq s$) and $2 m^{\prime}$ vertices from B. Further, \mathcal{M}^{\prime} covers an even number of vertices from B_{1} and an even number of vertices from B_{2}.
To prove that such a T-packing \mathcal{M}^{\prime} exists, we will use the follow three claims.
Claim 11.4. Let $x \in V\left(G^{\prime}\right) \backslash B$ be such that x is not (β, B)-excellent and let $W \subseteq V\left(G^{\prime}\right) \backslash\{x\}$ where $|W| \leq \alpha^{1 / 5} n$. Then there are two vertex-disjoint copies $T^{\prime}, T^{\prime \prime}$ of T in G^{\prime} so that:
(i) $V\left(T^{\prime}\right) \cup V\left(T^{\prime \prime}\right)$ contains two vertices from A_{i} (for each $1 \leq i \leq s$) and four vertices from B;
(ii) $x \in V\left(T^{\prime}\right) \cup V\left(T^{\prime \prime}\right)$ and $V\left(T^{\prime}\right) \cup V\left(T^{\prime \prime}\right)$ is disjoint from W.
(iii) $V\left(T^{\prime}\right) \cup V\left(T^{\prime \prime}\right)$ contains an even number of vertices from B_{1} and an even number of vertices from B_{2}.
Proof. To prove the claim consider a vertex $x \in V\left(G^{\prime}\right) \backslash B$ that is not (β, B)-excellent. Without loss of generality suppose that $x \in A_{1}$. By arguing precisely as in Claim 11.1 one can find a copy T^{\prime} of T in G^{\prime} that covers two vertices in A_{1} (including x), one vertex from A_{i} (for $2 \leq i \leq s$) and one vertex from B so that T^{\prime} is disjoint from W.

Without loss of generality suppose that T^{\prime} covers a vertex from B_{1}. Then by applying $\left(\kappa_{2}\right)$ and $\left(\iota_{4}\right)$ it is easy to see that we can greedily construct a copy $T^{\prime \prime}$ of T so that $T^{\prime \prime}$ covers three vertices from B_{1}, no vertices from A_{1} and one vertex from A_{j} (for all $2 \leq j \leq s$) and so that $T^{\prime \prime}$ is disjoint from $V\left(T^{\prime}\right) \cup W$. Together T^{\prime} and $T^{\prime \prime}$ satisfy (i)-(iii). This completes the proof of Claim 11.4.

Claim 11.5. Let $x \in V\left(G^{\prime}\right) \backslash\left(A_{i} \cup B\right)$ be such that x is not (β, i)-excellent (for some $1 \leq i \leq s$) and let $W \subseteq V\left(G^{\prime}\right) \backslash\{x\}$ where $|W| \leq \alpha^{1 / 5} n$. Then there are two vertex-disjoint copies $T^{\prime}, T^{\prime \prime}$ of T in G^{\prime} so that:
(i) $V\left(T^{\prime}\right) \cup V\left(T^{\prime \prime}\right)$ contains two vertices from A_{i} (for each $1 \leq i \leq s$) and four vertices from B;
(ii) $x \in V\left(T^{\prime}\right) \cup V\left(T^{\prime \prime}\right)$ and $V\left(T^{\prime}\right) \cup V\left(T^{\prime \prime}\right)$ is disjoint from W.
(iii) $V\left(T^{\prime}\right) \cup V\left(T^{\prime \prime}\right)$ contains an even number of vertices from B_{1} and an even number of vertices from B_{2}.

The proof of Claim 11.5 is essentially identical to the proof of Claim 11.4, so we omit it.

Claim 11.6. Let $x \in B$ be such that x is not (β, i)-excellent (for some $1 \leq i \leq s$) and let $W \subseteq V\left(G^{\prime}\right) \backslash\{x\}$ where $|W| \leq \alpha^{1 / 5} n$. Then there is a copy T^{\prime} of T in G^{\prime} so that:
(i) $V\left(T^{\prime}\right)$ contains one vertex from A_{j} (for each $1 \leq j \leq s$) and two vertices from either B_{1} or B_{2};
(ii) $x \in V\left(T^{\prime}\right)$ and $V\left(T^{\prime}\right)$ is disjoint from W.

It is easy to see that $\left(\kappa_{3}\right),\left(\iota_{3}\right)$ and $\left(\iota_{4}\right)$ imply that we can greedily construct a copy T^{\prime} of T as in Claim 11.6.
Recall that $\left|V_{e x, B}\right| \leq \alpha^{1 / 4} n$. Together with (ι_{4}) this implies that we can repeatedly apply Claims 11.4-11.6 to obtain a T-packing \mathcal{M}^{\prime} in G^{\prime} satisfying $\left(\lambda_{1}\right)-\left(\lambda_{3}\right)$.

Remove all those vertices covered by \mathcal{M}^{\prime} from G^{\prime} (and from the classes A_{1}, \ldots, A_{s}, B and from B_{1} and B_{2}). Call the resulting digraph $G^{\prime \prime}$. So $n^{\prime \prime}:=\left|G^{\prime \prime}\right| \geq\left(1-\alpha^{1 / 5}\right) n$ by $\left(\lambda_{1}\right)$ and $\left|A_{i}\right|=n^{\prime \prime} / r$ for all $1 \leq i \leq s$ and $|B|=2 n^{\prime \prime} / r$ by $\left(\lambda_{3}\right)$. (λ_{2}) implies that, given any $x \in V\left(G^{\prime \prime}\right) \backslash A_{i}, x$ is (β, i)-excellent (for all $1 \leq i \leq s$) and every vertex $y \in V\left(G^{\prime \prime}\right) \backslash B$ is (β, B)-excellent.

Moreover, $\left(\kappa_{1}\right)$ and $\left(\lambda_{3}\right)$ imply that $\left|B_{1}\right|$ and $\left|B_{2}\right|$ are even. $\left(\kappa_{1}\right)-\left(\kappa_{3}\right)$ and $\left(\lambda_{1}\right)$ imply that

- $\left|B_{1}\right|,\left|B_{2}\right| \geq n / r-3 \eta^{1 / 2} n$;
- There are at most $5 \eta^{1 / 2}|B|$ vertices $x \in B_{i}$ that are not ($3 \eta^{1 / 2}, B_{i}$)-excellent (for $i=1,2$);
- Given any $x \in B_{i}, d_{G^{\prime \prime}}^{+}\left(x, B_{i}\right) \geq n / 6 r$ or $d_{G^{\prime \prime}}^{-}\left(x, B_{i}\right) \geq n / 6 r$ (for $i=1,2$).

It is easy to see that this implies that $G^{\prime \prime}[B]$ contains a perfect matching \mathcal{P}.
Define an auxiliary digraph G^{*} from $G^{\prime \prime}$ as follows. G^{*} has vertex set $A_{1} \cup \cdots \cup A_{s} \cup B^{*}$ where $\left|B^{*}\right|=n^{\prime \prime} / r$ and each vertex $x \in B^{*}$ corresponds to a unique edge e_{x} from \mathcal{P}. The edge set of G^{*} consists of every edge $w z \in E\left(G^{\prime \prime}\right)$ such that $w \in A_{i}$ and $z \in A_{j}$ for some $i \neq j$ together with the following edges: Suppose that $x \in B^{*}$ and $y \in V\left(G^{*}\right) \backslash B^{*}$. Then

- $y x \in E\left(G^{*}\right)$ precisely if y sends an edge to both vertices on e_{x} in $G^{\prime \prime}$;
- $x y \in E\left(G^{*}\right)$ precisely if y receives an edge from both vertices on e_{x} in $G^{\prime \prime}$.

Note that G^{*} is an $(r-1)$-partite digraph with vertex classes of size $n^{\prime \prime} / r$. Further,

$$
\bar{\delta}^{+}\left(G^{*}\right), \bar{\delta}^{-}\left(G^{*}\right) \geq n^{\prime \prime} / r-2 \beta n .
$$

So by Theorem 10.2, G^{*} contains a perfect K_{r-1}-packing. By construction of G^{*} this implies that $G^{\prime \prime}$ contains a perfect T-packing $\mathcal{M}^{\prime \prime}$. Set $\mathcal{M}:=\mathcal{M}^{\prime} \cup \mathcal{M}^{\prime \prime} \cup \mathcal{M}_{1} \cup \cdots \cup \mathcal{M}_{s} \cup \mathcal{T}$. Then \mathcal{M} is a perfect T-packing in G, as required.

12. Proof of Lemma 5.6

Let $0<1 / n_{0} \ll \alpha \ll \beta \ll \gamma \ll 1$. Suppose that G is as in the statement of the lemma and let A_{1}, A_{2}, A_{3} denote the partition of $V(G)$ corresponding to the vertex classes of $E x(n)$.

Given any $1 \leq i \leq 3$, any $x \in A_{i}$ and any $\delta>0$, we say that x is externally δ-excellent if x sends out at least $(1-\delta)\left|A_{i+1}\right|$ edges to A_{i+1} in G and receives at least $(1-\delta)\left|A_{i-1}\right|$ edges from A_{i-1} in G. (Here indices are taken mod 3.) Otherwise we say that x is externally δ-bad. Since G α-contains $E x(n)$ and $\alpha \ll \beta \ll \gamma$, there are at most βn vertices in G that are externally γ-bad.

We also require analogous definitions corresponding to edges inside our vertex classes. Indeed, given any $1 \leq i \leq 3$, any $x \in A_{i}$ and any $\delta>0$, we say that x is internally δ-excellent if x sends out at least $(1-\delta)\left|A_{i}\right|$ edges in $G\left[A_{i}\right]$ and receives at least $(1-\delta)\left|A_{i}\right|$ edges in $G\left[A_{i}\right]$. Otherwise we say that x is internally δ-bad. Since $G \alpha$-contains $E x(n)$ and $\alpha \ll \beta \ll \gamma$, there are at most βn vertices in G that are internally γ-bad. Throughout the proof we will modify the classes A_{1}, A_{2} and A_{3}. When referring to, for example, internally excellent vertices, we mean with respect to the current classes A_{1}, A_{2} and A_{3} rather than the original partition of $V(G)$.

Since $\delta^{0}(G) \geq 2 n / 3-1$, given any vertex $x \in V(G)$ there is an $1 \leq i_{x} \leq 3$ such that x sends out at least $n / 10$ edges to $A_{i_{x}}$ in G and receives at least $n / 10$ edges from $A_{i_{x}}$ in G. For each vertex $x \in V(G)$ that is internally γ-bad we move x into the class $A_{i_{x}}$. Thus, we now have that:
(a) $\left|A_{i}\right|=n / 3 \pm 2 \beta n$ for each $1 \leq i \leq 3$;
(b) $\delta^{0}\left(G\left[A_{i}\right]\right) \geq n / 20$ for each $1 \leq i \leq 3$;
(c) All but at most βn vertices in G are internally 2γ-excellent;
(d) All but at most $2 \beta n$ vertices in G are externally 2γ-excellent.

Actually there is some slack in these conditions. Indeed, (a)-(d) hold even if we remove three vertices from G (and thus from A_{1}, A_{2} and A_{3}).

Changing the parity of the class sizes. Our next task is to remove (the vertices of) at most one copy of C_{3} from G to ensure that $\left|A_{1}\right| \equiv\left|A_{2}\right| \equiv\left|A_{3}\right|(\bmod 3)$. If $\left|A_{1}\right| \equiv\left|A_{2}\right| \equiv\left|A_{3}\right|(\bmod 3)$ already then we do not remove a copy of C_{3}. Recall that $n \equiv 0(\bmod 3)$. Therefore, without loss of generality we may assume that $\left|A_{1}\right| \equiv 0,\left|A_{2}\right| \equiv 1$ and $\left|A_{3}\right| \equiv 2(\bmod 3)$. (The other cases follow analogously.)

In this case there exists a $1 \leq j \leq 3$ such that $\left|A_{j}\right| \geq n / 3+1$. Suppose that $\left|A_{2}\right| \geq n / 3+1$. Fix some $a \in A_{1}$ that is externally 2γ-excellent. (Such a vertex exists by (a) and (d).) Since $d^{-}(a) \geq 2 n / 3-1$ there exists a vertex $b \in A_{2}$ such that $b a \in E(G)$. Further, since a is externally 2γ-excellent and $d_{G\left[A_{2}\right]}^{-}(b) \geq n / 20$ by (b), there is a vertex $c \in A_{2}$ such that $a c, c b \in E(G)$. Thus, a, b and c together span a copy C_{3}^{\prime} of C_{3} in G. Remove $V\left(C_{3}^{\prime}\right)$ from G (and thus from A_{1} and A_{2}). So now $\left|A_{1}\right| \equiv\left|A_{2}\right| \equiv\left|A_{3}\right| \equiv 2(\bmod 3)$. In all other cases, we can similarly remove three vertices from G that span a copy C_{3}^{\prime} of C_{3} so that $\left|A_{1}\right| \equiv\left|A_{2}\right| \equiv\left|A_{3}\right|(\bmod 3)$. As outlined earlier, (a)-(d) still hold.

Covering the externally bad vertices and balancing the class sizes. (b) $-(\mathrm{d})$ ensure that we can greedily construct a collection \mathcal{C}_{1} of at most $2 \beta n$ vertex-disjoint copies of C_{3} in G that together cover all those vertices in G that are externally 2γ-bad. In particular, (b) and (c) ensure that we can choose each such copy of C_{3} to lie in one of $G\left[A_{1}\right], G\left[A_{2}\right]$ and $G\left[A_{3}\right]$. So after removing the vertices in \mathcal{C}_{1} from G we still have that $\left|A_{1}\right| \equiv\left|A_{2}\right| \equiv\left|A_{3}\right|(\bmod 3)$. Further, $n / 3-8 \beta n \leq\left|A_{i}\right| \leq n / 3+2 \beta n$ for each $1 \leq i \leq 3$.

These last two properties together with (b) and (c) ensure that we can greedily construct a collection \mathcal{C}_{2} of at most $7 \beta n$ vertex-disjoint copies of C_{3} in G such that:

- The copies of C_{3} in \mathcal{C}_{2} are vertex-disjoint from the copies of C_{3} in \mathcal{C}_{1};
- Each copy of C_{3} in \mathcal{C}_{2} lies in one of $G\left[A_{1}\right], G\left[A_{2}\right]$ and $G\left[A_{3}\right]$.
- By removing the vertices in $\mathcal{C}_{1} \cup \mathcal{C}_{2}$ from G we have that $\left|A_{1}\right|=\left|A_{2}\right|=\left|A_{3}\right| \geq n / 3-8 \beta n$.

Covering the remaining vertices. Remove the vertices in $\mathcal{C}_{1} \cup \mathcal{C}_{2}$ from G (and thus from A_{1}, A_{2} and A_{3}). The choice of \mathcal{C}_{1} ensures that every vertex now in G is externally 3γ-excellent and the choice of \mathcal{C}_{2} ensures that now $\left|A_{1}\right|=\left|A_{2}\right|=\left|A_{3}\right| \geq n / 3-8 \beta n$. Let $G^{\prime}:=G\left[A_{1}, A_{2}\right] \cup G\left[A_{2}, A_{3}\right] \cup$ $G\left[A_{3}, A_{1}\right]$. By ignoring the orientations of the edges in G^{\prime}, we can (for example) apply Theorem 1.2 to find a perfect C_{3}-packing \mathcal{C}_{3} in G^{\prime}. (Indeed, the underlying graph of G^{\prime} satisfies the minimum degree condition in Theorem 1.2 since every vertex in $V\left(G^{\prime}\right)$ is externally 3γ-excellent.) The union of $\mathcal{C}_{1}, \mathcal{C}_{2}, \mathcal{C}_{3}$ and C_{3}^{\prime} (if it exists) is a perfect C_{3}-packing in G, as desired.

13. Concluding remarks

In this section we raise a number of open questions concerning perfect packings in digraphs.
13.1. Minimum degree conditions forcing perfect tournament packings. In [3], Czygrinow, DeBiasio, Kierstead and Molla proved the following minimum degree result for perfect transitive tournament packings.

Theorem 13.1 (Czygrinow, DeBiasio, Kierstead and Molla [3]). Let $n, r \in \mathbb{N}$ such that r divides n. Then every digraph G on n vertices with

$$
\delta(G) \geq 2(1-1 / r) n-1
$$

contains a perfect T_{r}-packing.
Note that Conjecture 1.4 would imply Theorem 13.1. At first sight one may ask whether T_{r} can be replaced by any $T \in \mathcal{T}_{r}$ in Theorem 13.1. However, the following result of Wang [25] shows that one requires a significantly larger minimum degree condition in the case when $T=C_{3}$.

Theorem 13.2 (Wang [25]). Let $n \in \mathbb{N}$ such that 3 divides n. If G is a digraph on n vertices and

$$
\delta(G) \geq \frac{3 n-3}{2}
$$

then G contains a perfect C_{3}-packing. Moreover, if $n / 3$ is odd, then there is a digraph G^{\prime} on n vertices with $\delta\left(G^{\prime}\right)=\frac{3 n-5}{2}$ which does not contain a perfect C_{3}-packing.

Together with Zhang [26], Wang also characterised the minimum degree threshold that ensures a digraph contains a perfect C_{4}-packing. (Here C_{4} denotes the directed cycle on four vertices.) Czygrinow, Kierstead and Molla [4] showed that the degree condition in Theorem 13.2 can be relaxed to $\delta(G) \geq(4 n-3) / 3$ if we instead seek a perfect packing consisting of a fixed number of cyclic triangles and at least one transitive triangle.

In light of Theorems 13.1 and 13.2 we ask the following question.
Question 13.3. Let $n, r \in \mathbb{N}$ such that r divides n. Let $T \in \mathcal{T}_{r} \backslash\left\{C_{3}\right\}$. Does every digraph G on n vertices with $\delta(G) \geq 2(1-1 / r) n-1$ contain a perfect T-packing?

Czygrinow, DeBiasio, Kierstead and Molla [3] have answered Question 13.3 in the affirmative under the additional assumptions that r is sufficiently large and $\delta(G) \geq 2(1-1 / r+o(1)) n$.
13.2. Packing other directed graphs. It is also natural to seek minimum degree conditions which ensure a digraph contains a perfect H-packing where H is some digraph other than a tournament. Let K_{r} denote the complete digraph on r vertices, and write K_{r}^{-}to denote K_{r} minus an edge. (In the undirected setting we also use K_{r} to denote the complete graph on r vertices.) The following result is a simple consequence of the Hajnal-Szemerédi theorem.

Proposition 13.4. Let $n, r \in \mathbb{N}$ such that r divides n. Suppose that G is a digraph on n vertices such that

$$
\delta(G) \geq(2-1 / r) n-1 .
$$

Then G contains a perfect K_{r}-packing.
Proof. Let G^{\prime} denote the graph on $V(G)$ whose edge set consists of all those pairs $x y$ such that both $x y, y x \in E(G)$. Since $\delta(G) \geq(2-1 / r) n-1$, we have that $\delta\left(G^{\prime}\right) \geq(1-1 / r) n$. Thus, Theorem 1.1 implies that G^{\prime} contains a perfect K_{r}-packing. By definition of G^{\prime} this implies that G contains a perfect K_{r}-packing.

Note that the minimum degree condition in Proposition 13.4 is best-possible: Let $n \in \mathbb{N}$ such that r divides n. Suppose A and B are disjoint vertex sets where $|A|=n / r+1$ and $|B|=(1-1 / r) n-1$. Let G_{1} be the digraph with vertex set $A \cup B$ such that G_{1} contains all possible edges between A and B, all edges in B and so that A induces a tournament. Then $\delta\left(G_{1}\right)=(2-1 / r) n-2$ and G does not contain a perfect K_{r}-packing since every copy of K_{r} in G_{1} contains at most one vertex from A.

Proposition 13.4 implies that a digraph G whose order n is divisible by r and with $\delta^{0}(G) \geq$ $(1-1 / 2 r) n-1 / 2$ contains a perfect K_{r}-packing. Further, in the digraph G_{1} above, set n / r to be even and $G_{1}[A]$ to be a regular tournament. Then G_{1} does not contain a perfect K_{r}-packing but $\delta^{0}\left(G_{1}\right)=(1-1 / 2 r) n-1$. Thus, together with Theorem 1.3 , this shows that the minimum semidegree threshold that forces a perfect K_{r}-packing is much higher than the threshold that forces a perfect T-packing for any tournament T on r vertices. It would be interesting to establish the minimum semidegree threshold that forces a perfect K_{r}^{-}-packing in a digraph. In particular, is this threshold significantly lower than the corresponding threshold for perfect K_{r}-packings?

Let $m \in \mathbb{N}$ be divisible by 6 and set $n:=2 m+3$. Suppose that G is a digraph on n vertices with the following properties: $V(G)=V_{1} \cup V_{2}$ where $\left|V_{1}\right|=m+1$ and $\left|V_{2}\right|=m+2 ; G\left[V_{1}\right]$ and $G\left[V_{2}\right]$ are complete digraphs; the edges between V_{1} and V_{2} in G form a bipartite tournament that is as regular as possible. Note that, since $\left|V_{1}\right|$ and $\left|V_{2}\right|$ are not divisible by $3, G$ does not contain a perfect K_{3}^{-}-packing. Further, $\delta^{0}(G)=m / 2+1+m=(3 n-5) / 4$.

Question 13.5. Let $n \in \mathbb{N}$ be divisible by 3. Does every digraph G on n vertices with $\delta^{0}(G) \geq 3 n / 4$ contain a perfect K_{3}^{-}-packing?

Acknowledgements

The author is very grateful to Reshma Ramadurai for many helpful discussions, to Richard Mycroft for a discussion on [10] and to Daniela Kühn, Deryk Osthus and Katherine Staden for their comments on the manuscript. The author is also grateful to the two referees for quick and helpful reviews. In particular, the comments of one reviewer helped to significantly improve the presentation of the paper.

References

[1] N. Alon and A. Shapira, Testing subgraphs in directed graphs, J. Comput. System Sci. 69 (2004), 354-382.
[2] J. Balogh, A. Lo and T. Molla, Transitive triangle tilings in oriented graphs, submitted.
[3] A. Czygrinow, L. DeBiasio, H.A. Kierstead and T. Molla, An extension of the Hajnal-Szemerédi theorem to directed graphs, Combin. Probab. Comput., to appear.
[4] A. Czygrinow, H.A. Kierstead and T. Molla, On directed versions of the Corrádi-Hajnal Corollary, European J. Combin. 42 (2014), 1-14.
[5] E. Fischer, Variants of the Hajnal-Szemerédi theorem, J. Graph Theory 31 (1999), 275-282.
[6] J. Fox, A new proof of the graph removal lemma, Ann. of Math. 174 (2011), 561-579.
[7] A. Hajnal and E. Szemerédi, Proof of a conjecture of Erdős, Combinatorial Theory and its Applications vol. II 4 (1970), 601-623.
[8] P. Hell and D.G. Kirkpatrick, On the complexity of general graph factor problems, SIAM J. Computing 12 (1983), 601-609.
[9] S. Janson, T. Łuczak and A. Ruciński, Random Graphs, Wiley, 2000.
[10] P. Keevash and R. Mycroft, A geometric theory for hypergraph matching, Mem. Amer. Math. Soc. 233 (2014), monograph 1098.
[11] P. Keevash and R. Mycroft, A multipartite Hajnal-Szemerédi theorem, submitted.
[12] P. Keevash and B. Sudakov, Triangle packings and 1-factors in oriented graphs, J. Combin. Theory B 99 (2009), 709-727.
[13] H.A. Kierstead and A.V. Kostochka, An Ore-type Theorem on Equitable Coloring, J. Combin. Theory B 98 (2008), 226-234.
[14] J. Komlós, G.N. Sárközy and E. Szemerédi, Proof of the Seymour conjecture for large graphs, Annals of Combinatorics 2 (1998), 43-60.
[15] D. Kühn and D. Osthus, Critical chromatic number and the complexity of perfect packings in graphs, 17th ACM-SIAM Symposium on Discrete Algorithms (SODA 2006), 851-859.
[16] D. Kühn and D. Osthus, The minimum degree threshold for perfect graph packings, Combinatorica 29 (2009), 65-107.
[17] D. Kühn, D. Osthus and A. Treglown, An Ore-type theorem for perfect packings in graphs, SIAM J. Disc. Math. 23 (2009), 1335-1355.
[18] A. Lo and K. Markström, Minimum codegree threshold for ($K_{4}^{3}-e$)-factors, J. Combin. Theory A 120 (2013), 708-721.
[19] A. Lo and K. Markström, F-factors in hypergraphs via absorption, Graphs Combin., to appear.
[20] V. Rödl, A. Ruciński and E. Szemerédi, A Dirac-type theorem for 3-uniform hypergraphs, Combin. Probab. Comput. 15 (2006), 229-251.
[21] V. Rödl, A. Ruciński and E. Szemerédi, Perfect matchings in large uniform hypergraphs with large minimum collective degree, J. Combin. Theory Ser. A 116 (2009), 613-636.
[22] A. Treglown, A note on some oriented graph embedding problems, J. Graph Theory 69 (2012), 330-336.
[23] A. Treglown, A degree sequence Hajnal-Szemerédi theorem, submitted.
[24] A. Treglown and Y. Zhao, Exact minimum degree thresholds for perfect matchings in uniform hypergraphs, J. Combin. Theory A 119 (2012), 1500-1522.
[25] H. Wang, Independent directed triangles in a directed graph, Graphs Combin. 16 (2000), 453-462.
[26] H. Wang and D. Zhang, Disjoint directed quadrilaterals in a directed graph, J. Graph Theory 50 (2005), 91-104.
Andrew Treglown
School of Mathematics
University of Birmingham
Edgbaston
Birmingham
B15 2TT
UK
a.c.treglown@bham.ac.uk

[^0]: Date: September 25, 2014.
 This research was in part undertaken whilst the author was a researcher at Charles University, Prague. The work leading to this invention has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no. 259385.

