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Abstract 17 

Limited transmission capacity may lead to network congestion which results in wind 18 

curtailment during periods of high availability of wind. Conventional congestion 19 

management techniques usually involve generation management which may not always 20 

benefit large wind farms. This paper investigates the problem in detail and presents an 21 

improved methodology to quantify the latent scheduling capacity of a power system taking 22 

into account stochastic variation in line-thermal rating, intermittency of wind, and mitigating 23 

the risk of network congestion associated with high penetration of wind. The mathematical 24 

model converts conventional thermal constraints to dynamic constraints by using a 25 

discretized stochastic penalty function with quadratic approximation of constraint relaxation 26 

risk. The uniqueness of the approach is that it can limit the generation to be curtailed or re-27 

dispatch by dynamically enhancing the network latent capacity as per the need. The approach 28 

is aimed at strategic planning of power systems in the context of power systems with short to 29 

medium length lines with a priori known unit commitment decisions and uses stochastic 30 

optimization with a two stage recourse action. Results suggest that a considerable level of 31 
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wind penetration is possible with dynamic line ratings, without adversely affecting the risk of 32 

network congestion. 33 

Keywords – Wind Power, Network congestion, dynamic line rating, power system 34 

optimisation 35 

1. Introduction 36 

Network congestion is a major factor hindering the large scale integration of renewable 37 

energy generators into the grid. It is an undesirable result of insufficient capacity being 38 

available on a network to transport electricity from generation to loads which leads to 39 

volatility in locational marginal prices (LMP) and inequitable allocation of available network 40 

capacity to market participants. A number of publications have used the volatility in LMP as 41 

an indicator of network congestion [1-3]. In systems with large amount of wind power, 42 

network congestion hinders effective integration and utilization of wind as extra wind 43 

generated has to be curtailed thereby leading to uncertainty in revenue for wind power 44 

producers and overall higher costs for customers. The dynamic nature of wind results in large 45 

variations in power output over a short period of time, which makes effective utilization of 46 

wind an even bigger challenge in congested networks.  47 

Currently, line ratings are based on worst case assumptions of ambient weather conditions 48 

according to the process outlined in IEEE Std 738-2012 [4]. The IEEE standard also covers 49 

transient and dynamic rating methodologies and a number of publications [5-9] have applied 50 

this methodology to demonstrate that the true thermal capacity of a transmission line is 51 

usually considerably higher than the rated values. This is to be expected since conventional 52 

ratings are calculated under the worst case weather assumption although such operating 53 

conditions occurs rarely in practice. It is possible to exploit this property by using dynamic 54 

line ratings (DLR) which model the thermal limit of transmission lines as a stochastically 55 

varying function of internal and external real time operating conditions such as ambient 56 

temperature, cooling due to wind, level of loading, and sag.  57 

To partially account for variation in ambient conditions, some ISOs (independent system 58 

operators) currently use normal and emergency ratings as well as separate ratings for hot and 59 

cold weather. While these ratings consider some variation in ambient conditions they still 60 

assume the worst case scenario for a shorter period of time. These ratings are an 61 

approximation at best and the actual thermal limit has a high likelihood of being significantly 62 

different. In modern power systems which consist of multiple competing entities and fast 63 
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changing power flows due to presence of intermittent renewable generation, inaccurate 64 

estimation of real time ampacity can result in underutilization of network capacity and 65 

congestion. Any network investment requires strong economic justification and it may be 66 

viable to fully utilize existing network capacity prior to considering further investment in new 67 

assets. This is especially true for renewable generation which has to be competitive with 68 

conventional generation and cannot afford to add on the cost of increasing network capacity. 69 

Dynamic ratings can provide a significant increase in the normal and emergency operational 70 

flexibility of power transmission systems compared to the more traditional static rating and 71 

alleviate network congestion due to short periods of high wind power output. DLR is 72 

applicable for power systems with short to medium lines where thermal capacity as opposed 73 

to stability limit is the limiting factor to line capacity. 74 

The benefit of DLR over conventional congestion management approaches is that it can 75 

potentially release latent capacity dynamically rather than relying on generation curtailment 76 

and demand reduction in congested parts of a network, thus improving the operational 77 

flexibility and deferring investments. Dynamic line ratings can exploit the advanced real time 78 

monitoring and control capabilities of smart grids to potentially alleviate network congestion, 79 

and ensure a more equitable allocation of costs between market participants. 80 

The two immediate challenges of implementing the dynamic line rating methods presented in 81 

[5-8] are the need for an online, smart monitoring system to capture real time variation and 82 

the modelling of uncertainty in constraints in optimal scheduling. While uncertainty in 83 

optimization variables can be accounted for by stochastic optimization techniques, 84 

uncertainty in constraints is more challenging to model since analytical constrained 85 

optimization techniques only allow fixed constraints. Most of the power system applications 86 

of optimal scheduling problems model line power transfer limits as deterministic values and 87 

place less emphasis on dynamic variation in line capacity. Exceeding thermal limits for a 88 

short period of time results in an increased level of risk and it is important to account for this 89 

when modelling dynamic ratings. An alternative to this is chance constrained optimization 90 

which allows some flexibility in the constraint satisfaction by allowing constraint violation, 91 

provided their probability is limited to a specified value [10, 11].  92 

This paper proposes a new mathematical framework and a methodology to incorporate 93 

benefits of real time variation in line ratings to temporarily relax constrained capacity of a 94 

network and to vary reinforcement thresholds. The technique allows the stochastically 95 

estimated real time ampacity to be included in scheduling decisions by allowing a degree of 96 

flexibility to satisfy dynamic thermal limit constraints. The uniqueness of the proposed 97 
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approach is that it replaces the current deterministic constraints (normal and emergency) in 98 

the optimal scheduling problem, with dynamic constraints. The approach dynamically 99 

quantifies the extent to which capacity could be relaxed by utilizing a discrete stochastic 100 

penalty function to model the risk associated with relaxing thermal limits. This method also 101 

incorporates the benefits of smart grid environments where real time data of system 102 

parameters such as sag and ambient temperature is available. The proposed approach could 103 

potentially provide considerable advantage over traditional approaches of using deterministic 104 

ratings due to the use of real time extraction of latent capacities during the optimization 105 

process. The proposed technique indicates the extent of congestion in a power network by 106 

weighting LMP at each node with respect to demand and finding the difference in the 107 

weighted LMP from the uncongested base case. The extended conic quadratic (ECQ) 108 

approach presented in [12] is used for optimization. It is modified to include dynamic line 109 

ratings. 110 

 111 

2. Dynamic Asset Rating 112 

2.1 Stochastic Optimisation with Dynamic Asset Ratings 113 

The maximum thermal capacity of a line depends on the maximum allowable temperature of 114 

the line at which the conductors start to lose structural integrity or undergo annealing. IEEE 115 

Std 738 2012 outlines the process for calculating the maximum ampacity based on weather 116 

conditions for steady state, transient and dynamic scenarios. A number of models [5, 6, 8] 117 

apply the concepts in IEEE Std. 738 to determine dynamic line ratings which use weather 118 

data as an input. Kazerooni et al [7] have shown that when all the stochastic variations in 119 

weather are accounted for, the thermal capacity of the line can be modelled by the 120 

generalized extreme value probability distribution and in most cases the rated line capacity is 121 

on the lower end of the possible range of thermal capacities.  122 

The correlation between wind speed and the cooling of the line was considered negligible in 123 

for this study, due the variation in weather conditions in different parts of  a line [8]. While it 124 

is expected that weather conditions will mostly be favourable compared to the worst case 125 

assumptions for conventional line ratings, it is unlikely that all parts of the line will be 126 

exposed to high wind speeds which coincide with periods of high wind at the single location 127 

of the wind farm. It is assumed that the dynamic capacity is limited by regions where cooling 128 

due to wind is low and this provides a conservative estimate of the benefit due to DLR on 129 
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wind integration. Typical parameters for the probability distribution of line capacity are 130 

provided in [7]. To determine the probability distribution of line ampacity historical weather 131 

data across the line will be necessary as per the procedure outlined in [7]. If correlation 132 

between wind speed and dynamic thermal ratings are to be accounted for, a different 133 

approach is required where the probability distribution of line capacity is conditional based 134 

on the probability of the wind speed distribution. A range of probability distributions for line 135 

capacity would be necessary for different wind speeds. Such an approach should be used with 136 

caution as it may overestimate the benefit of DLR. 137 

The parameters of the probability distribution are determined according to the rated 138 

maximum limit on transmission lines. Based on the analysis in [5] most utilities load their 139 

lines such that the probability of exceeding the rated capacity ranges from 20 – 30%, 140 

depending on the season. Thus it was assumed that the probability of exceeding the rated 141 

capacity was 25% and an inverse distribution was used to determine the parameters for the 142 

probability distribution. The probability distribution was discretised by considering ten 143 

frequency and value pairs to represent the probability distribution. The actual probability can 144 

vary depending on the utility but it is straightforward to perform the analysis with a different 145 

value. A more detailed study might treat this as a random variable. The objective function 146 

incorporating DLR as a penalty function with stochastic elements is shown in (1) 147 

 
congestionCDLRCwPwCgPgCxf  )()()(  (1) 

where Cg(Pg), Cw(Pw), CDLR and Ccongestion represent cost of conventional generation, cost of 148 

wind (including reserves), cost of dynamic ratings, and cost of congestion respectively. 149 

Cg(Pg) and associated constraints of conventional OPF (optimal power flow) problems are 150 

given in [12-15]. Cw(Pw) is the cost of uncertainty due to wind, which can be incorporated 151 

into OPF by using stochastic optimization and is given in [12]. The problem is solved by 152 

transforming to a conic quadratic optimization problem and using an interior point method 153 

[12, 16]. This has the advantage that the objective function becomes quadratic and almost all 154 

the constraints become linear. These transformations are not system dependent and hence can 155 

be applied directly without a modification. 156 

 157 

2.2 Formulation 158 

The total cost of DLR (CDLR) in (1) is determined stochastically and represents the penalty for 159 

temporarily relaxing the line thermal constraint. The stochastic penalty function enables 160 

substitution of the static line thermal constraint with a dynamic constraint. The cost of DLR is 161 
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partly due to the long term cost of derating due to repeatedly overloading lines and the short 162 

term risk of causing damage by severe overloading which causes line temperature to exceed 163 

the maximum allowable value. It is assumed that when implementing DLR, the short term 164 

risk and expected cost of thermal overload is considered much more significant than long 165 

term derating costs. Separate studies by Wang [17] and Zhang [18] describe the variation of 166 

thermal overload risk with line current and demonstrate that for low levels of current 167 

overloading the risk of thermal overload is low but this increases rapidly for higher levels of 168 

DLR. Thus, the sensitivity of the penalty function to dynamic overloading must increase with 169 

increasing levels of DLR, thus suggesting an exponential penalty function. Instead it is 170 

modelled using a quadratic function as given in (2) since it can approximate the exponential 171 

function accurately for low levels of DLR, and the relative ease of calculating the Jacobian 172 

and Hessian matrices for quadratic functions. 173 
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where p-q represents a line from bus p to bus q. The cost of violating the constraint is 174 

proportional to the magnitude by which the actual line flow exceeds the line capacity. The 175 

constraints in (3) complement the expression for CDLR in (2) to account for the cost of 176 

uncertainty in stochastic line rating. 177 
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The thermal capacity of line p-q is approximated by a discrete random variable where each 178 

discrete value (represented by index k) of smax,pq,k has corresponding probability hpq,k. The 179 

term apq,k (with per unit cost cOLp) represents the amount by which the actual line flow 180 

exceeds the discrete line capacity in the k
th

 ordered pair and it corrects any violation in the 181 

constraint Ssch,pq > smax,pq,k. Thus (hpq,k, apq,k) represents the probability distribution of dynamic 182 

line rating and the average value of apq,k for all k represents the expected dynamic line rating.  183 

The cost of DLR is based on the expected value of dynamic line rating which includes both 184 

the amount of DLR (apq) and the time for which it is implemented (hpq). hpq is an array of 185 

relative frequencies associated with each value of apq. If the time for which DLR is 186 

implemented varies, the value of hpq,k will change so that the probability distribution of apq 187 

changes. If the time for a specific amount of DLR is varied, it will change the probability 188 

distribution (specifically a change in probability for that level of DLR) and hence the 189 

expected value of DLR. 190 

The DLR scheduling framework is to be used for a fixed scheduling period. This will 191 
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typically be in the order of 15 – 30 minutes as longer periods of DLR will result in substantial 192 

risk of thermal overload. For the scheduling period under consideration, DLR is implemented 193 

at all times or not at all and the risk of implementing DLR for that time is captured by the 194 

cost function. In practice, smart monitoring systems will record the line temperature at the 195 

start of the scheduling period and simulate the final line temperature at the end of the 196 

scheduling period including the uncertainty based on the method in IEEE Std. 738. Based on 197 

this, the probability of exceeding the maximum line temperature can be determined. The line 198 

capacity probability distribution for the given scheduling period can be determined by the 199 

generalized extreme value distribution and based on this capacity, current is scheduled to 200 

minimize the time for which the line is overloaded. The severity associated with an outage in 201 

the event that the risk of thermal overload is realized can be determined by the number of 202 

customers affected by the outage and the total energy not supplied. 203 

The risk associated with thermal overload includes both the likelihood of exceeding line 204 

maximum temperature and the cost of an outage in the line under consideration. The value of 205 

cOLp is chosen so that the quadratic function in (2) best fits the variation of risk of thermal 206 

overload with current. Thus the risk of thermal overload is described by the expected cost of 207 

outage in a particular line which is considered the cost/penalty of DLR. In the case studies, a 208 

number of different values of cOLp are used to determine the effect that the cost of DLR has 209 

on the effectiveness of DLR.  210 

The proposed approach assumes cost of congestion (Ccongestion) to increase linearly with the 211 

extent of congestion in the system. The main contributor to Ccongestion is the cost of 212 

dispatching expensive reserve generation after lower cost generation has been curtailed. It is 213 

assumed that these rapid response reserve generators have minimal startup cost and a much 214 

smaller output range compared to large generators. They are distributed in the network and 215 

the operating cost over the small range of output is approximated by linear cost functions. 216 

Alternatively, load may have to be shed if redispatch cannot supply load. The penalty 217 

associated with shedding load is also assumed to be linearly related to the load curtailed as 218 

shown in (4). 219 
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nlocalDcongestion PcC
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(4) 

where Plocal,n represents any adjustment of load (by calling on local reserves or load shedding) 220 

at bus n (where the total number of buses is N). Plocal,n is required to balance the system when 221 
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congestion has occurred but it has a high cost per unit (cD). Cost of network congestion can 222 

also represent the loss of revenue for generators since they cannot sell energy. This increased 223 

cost required to balance the system under congestion is allocated unevenly among customers 224 

which results in the volatility in nodal pricing that is observed during congestion. 225 

For low levels of DLR, cost of congestion is higher relative to the risk of thermal overload 226 

from dynamically overloading lines. The optimization algorithm prefers to use DLR than call 227 

on expensive reserves after redispatch due to the lower cost of DLR. However, there is a 228 

maximum amount of DLR indicated by the intersection of the two functions in (2) and (4) 229 

beyond which, risk of DLR is greater than cost of congestion. Beyond the threshold point 230 

CDLR is greater than Ccongestion thus forcing the optimization to not allow DLR beyond this 231 

limit as the risk associated with further overloading would not be justifiable. The DLR limit 232 

point represents both the maximum extent to which thermal limits can be relaxed and the 233 

time for which it can be relaxed 234 

In addition to CDLR and Ccongestion the basic OPF formulation includes generator fuel cost 235 

(Cg(Pg)) and constraints including real and reactive power balance, voltage limits, generator 236 

limits, and minimum generator up and down time. Line thermal constraints are replaced by 237 

the dynamic line rating formulation. The proposed approach modelled wind power 238 

intermittency cost (Cw(Pw)) using stochastic optimization by discretizing the probability 239 

distribution of wind power and balancing probabilistic reserve cost with cost of wasted wind 240 

[12] as shown in (5). 241 
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Where the power output of wind generator j is PWj and the unit feed in cost is ej. The cost of 242 

wind in (5) is subject to the constraints in (6). 243 
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(6) 

where (fjk, wjk) is the k
th

 ordered pair (out of a total of M) representing the discretized 244 

probability distribution of wind generator j. NW is the number of wind generators in the 245 

system and cWj and cRj are the unit cost of wasted wind and reserve generation respectively at 246 

wind generator j. The cost of wasted wind represents the opportunity cost of not being able to 247 

sell the energy generated. 248 

The problem was solved by transforming it to an extended conic quadratic (ECQ) form 249 

using the transformations in (7) [12, 16]. 250 
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Adding the rotated conic quadratic and arctangent equality constraints in (8) captured the 251 

nonlinearity of the classical OPF problem [12, 16]. 252 
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All other constraints are transformed into linear expressions making the ECQ-OPF problem 253 

easily tractable by primal-dual interior point methods. 254 

 255 

 256 

2.3 Metrics for indicating the level of congestion 257 

The severity of congestion is quantified by the volatility in LMP and the amount of wind 258 

curtailment. Volatility in LMP is most commonly used as an indicator of network congestion 259 

as congestion cost is a significant component of LMP in transmission systems [2, 3, 19]. 260 

Pricing signals have been proposed as a control mechanism for renewable energy integration 261 

[20].  The proposed method first establishes a base case for LMP without incorporating 262 

network constraints. For each outage scenario, the LMP at each bus is compared to the base 263 

case LMP, weighted by the load at that bus and the overall weighted variation in LMP is 264 

found. To compare the LMP profile of a specific case to the base case, the term LMPV is 265 

defined by (9).  266 
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LMPV is the LMP normalized by base LMP. A large value of LMPV generally indicates that 267 

the given LMP profile is very different to the uncongested LMP profile which most likely 268 

suggests that the network is congested. 269 

The other important indicator of network congestion in the context of the problem of wind 270 

curtailment is the level of curtailment compared to the uncongested base case. Wind 271 

curtailment is normalized with respect to the wind generation in the uncongested base case 272 

and determined by (10). 273 
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The wind curtailed percentage is defined as difference between the wind scheduled in the 274 

base case and the case under consideration, normalized with respect to wind scheduled in the 275 

base case. The level of wind curtailment independently cannot indicate the level of 276 

congestion as wind may be curtailed due to multiple reasons such as low demand. Similarly, 277 

if the wind curtailment is low then the network congestion may not necessarily be low. Thus, 278 

if both the variation in LMP and wind curtailment indicates that there is network congestion 279 

then there is a high probability that congestion induced wind curtailment occurs. If LMPV is 280 

high but wind curtailment is low, then it indicates that there is network congestion but it may 281 

not necessarily be leading to curtailment of wind power. Alternatively, congestion may have 282 

affected individual wind farms but the total wind curtailed may not have changed.  283 

A third indicator of network congestion, in addition to the LMP volatility and wind curtailed, 284 

is the spare capacity in the network. It is measured as the total available capacity expressed 285 

relative to the total rated capacity of all lines and is determined by equation (11). 286 
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Where Imax is the magnitude of maximum current in a line and Iflow is the magnitude of 287 

current actually flowing in the line. Imax is the deterministic thermal limit of the line and when 288 

DLR is implemented the spare capacity may be negative. This is because Iflow will exceed the 289 

deterministic Imax. In the case studies, additional spare capacity required to relieve network 290 

congestion with deterministic ratings is used to determine the capacity released by DLR. 291 

The metrics presented in this section are not exhaustive. Considering all three metrics would 292 

indicate the likelihood that congestion is occurring and that a detailed investigation of nodal 293 

pricing distribution and wind generation profile should be undertaken. Table 1 shows how to 294 

interpret the metrics for cases when no DLR has been implemented. 295 

 296 

 297 

 298 

 299 



 

11 
 

Table 1 Matrix for network congestion and wind curtailment  300 

 301 

If DLR is implemented, the spare capacity will be negative in lines with DLR as the flow will 302 

exceed the deterministic thermal limit. The overall spare capacity may not be negative if the 303 

congestion is localised and DLR is only implemented in a few lines in the network. The other 304 

indicators can be used in the same way as shown in Table 1. 305 

3. Results and discussion 306 

3.1 Effect of wind penetration level  307 

Figure 1 shows the effect of varying the total available wind capacity on the scheduled wind 308 

and the LMPV for DLR and non DLR cases in the IEEE 14 bus test system.  309 
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 310 

Figure 1 Effect of varying wind penetration level on (a) wind scheduled and (b)  LMPV 311 

for IEEE 14 bus test system 312 

In Figure 1 the wind scheduled with and without DLR appears to increase linearly until 313 

approximately 150 MW of wind is available. The wind scheduled is identical between DLR 314 

and non DLR cases. If the total wind available is increased above 150 MW, the DLR case 315 

shows a higher amount of wind scheduled than the non DLR case. Furthermore, above 200 316 

MW of available wind, no additional wind is scheduled as available wind is increased for the 317 

non DLR case. However, if DLR is implemented, the amount of wind scheduled continues to 318 

increase as the available wind capacity is increased. Thus, without DLR the amount of wind 319 

in the system reaches saturation much earlier than with DLR.  320 

Figure 1 shows the variation in LMPV with varying wind penetration. When no DLR is 321 

implemented the level of congestion appears quite insensitive to the total available wind 322 

capacity until it is increased to 150 MW. Beyond this value there is a drop in the level of 323 

LMPV indicating a reduction in congestion between a total available wind capacity of 150 324 

MW to 200 MW. Above 200 MW the variation in LMPV appears to be minimal with a 325 

slightly increasing trend. Since additional wind in the system is not scheduled as per Figure 1, 326 

the associated cost of wind curtailment may cause slight increase in the LMPV. However, this 327 

increase is small since the cost of wind curtailment is typically considered to be negligible 328 

considered to cost of unsupplied load and cost of scheduling emergency generation. 329 

When DLR is implemented the LMPV decreases with increasing levels of wind availability 330 

and reaches a minimum value at 250 MW of wind availability. This is possibly due to the 331 

extra latent capacity released by DLR which can accommodate the increased wind 332 
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availability. Since the cost of wind and ancillary services is lower than the cost of supplying 333 

demand during congestion, this leads to a reduction in the LMPV. As evident from 0, not all 334 

the available wind is scheduled when DLR is used, however, a fixed percentage of available 335 

wind is scheduled. 336 

Figure 2 shows the effect of varying wind penetration level for the IEEE 118 bus system. In 337 

contrast to the 14 bus system, the trend for the wind scheduled versus wind available is nearly 338 

identical for DLR and non DLR cases. This indicates that DLR does not lead to any increase 339 

in the wind scheduled. 340 

 341 

Figure 2 Effect of varying wind penetration level on (a) wind scheduled and (b)  LMPV 342 

for IEEE 118 bus test system 343 

An examination of the variation in LMPV shows that DLR causes a reduction in the level of 344 

LMPV for almost all levels of available wind. In a large system with multiple generators it 345 

may not necessarily be economical to allocate latent capacity released by DLR to wind 346 

generation. The overall effect on the system due to DLR is not as high as for the 14 bus 347 

system. However, DLR may still be effective to relieve localised congestion if a smaller part 348 

of the network was considered as seen in the 14 bus system. 349 

According to Figure 2(b) the LMPV reaches a minimum value at an available wind capacity of 350 

500 MW with and without DLR. This indicates there is an optimum penetration level of wind 351 

at which network congestion will be minimised. This point nearly coincides with the point in 352 

Figure 2(a) where the sensitivity of wind scheduled to available wind decreases significantly.  353 
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Initially wind penetration is limited by network capacity but as penetration of wind increases, 354 

cost of reserves starts to limit the amount of wind that can be scheduled. This eventually 355 

leads to a maximum level of wind penetration and any wind added above this level is 356 

unutilised. This maximum penetration was 150 MW in the 14 bus system and 500 MW in 357 

118 bus system. If cost of reserves did not limit the wind scheduled, the curve in Figure 2(a) 358 

may have shown a linear increase. Due to the high cost of reserves relative to conventional 359 

generation, the cost of reserves is the limiting factor for the maximum penetration of wind 360 

rather than available network capacity. Thus the reserve cost is expected to have an impact on 361 

how much latent capacity is released and how this is allocated to various generation sources. 362 

3.2 Effect of varying reserve cost on wind scheduling 363 

Reserves are necessary to manage the intermittency of wind. These reserves may be storage 364 

or additional generation maintained on site at the wind farm to enable the wind power 365 

producer to regulate their output to the grid. In this case the cost of the reserves is borne by 366 

the wind power producer and they can make decisions on how much wind to commit to the 367 

system. Alternatively, the system operator may choose to maintain reserves in the grid if 368 

there is a large penetration of renewables. These may be in the form of thermal generators’ 369 

inherent capability to adjust output over a range, grid connected storage, or smaller high 370 

speed generators. Impact of cost of reserves on the effect of DLR for the IEEE 14 bus system 371 

is shown in Figure 3. Reserve cost is expressed in $1000 per 100 MW of reserves. 372 

 373 
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 374 

Figure 3 Effect of varying reserve cost on (a) wind scheduled (b) LMPV for IEEE 14 375 

bus test system. 376 

According to Figure 3(a) there are three distinct regions in the curve. For reserve cost less 377 

than 1, wind scheduled due to DLR is constant. Between reserve cost 1 to 1.5, the wind 378 

scheduled with DLR decreases sharply and becomes less than the wind scheduled without 379 

DLR. Above reserve cost of 1.5, the wind scheduled without DLR decreases at a much 380 

slower rate than wind scheduled with DLR. 381 

In region 1, the LMPV in Figure 3(b) does not vary with reserve cost for reserve cost up to 1. 382 

However, the LMPV is lower with DLR than without since any latent capacity is allocated to 383 

low cost wind generation. As the wind scheduled does not change significantly with reserve 384 

cost in this region, there is no change in LMPV. 385 

In region 2, the DLR cost is higher, and it starts to become uneconomical to allocate latent 386 

capacity to wind. As a result, the wind scheduled with DLR decreases sharply. Since cost of 387 

wind has increased, this leads to an overall increase in generation cost which results in the 388 

increase in LMPV in Figure 3(b). In the case without DLR, wind scheduled does not decrease 389 

as sharply as the DLR case, since the lack of transmission capacity may not allow this. The 390 

reduced wind may allow more economical forms of generation which leads to a slight 391 

decrease in LMPV. However, this LMPV is still higher than the LMPV with DLR. 392 

In region 3, less wind is scheduled with DLR than without indicating it is uneconomical to 393 

allocate latent capacity released by DLR to wind. The overall cost of generation continues to 394 
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increase leading to the increase in LMPV in Figure 3(b). In the no DLR case, the trend from 395 

region 2 continues for the wind scheduled. The LMPV appears to reach a constant value due 396 

to any decrease in wind scheduled being compensated by conventional generation which has 397 

a similar cost. 398 

Generally, increasing reserve costs adds to the overall cost of wind generation since reserves 399 

are required to manage intermittency, thus leading to less utilization of wind. When the 400 

reserve cost is comparable to cost of conventional generation, more wind is scheduled since it 401 

is more economical than conventional generation. Lack of transmission capacity does not 402 

limit the wind generation in this case since conventional generation is reduced accordingly. 403 

The variation of wind scheduled and LMPV with reserve cost for the IEEE 118 bus test 404 

system is shown in Figure 4 405 

 406 

Figure 4 Effect of varying reserve cost on (a) wind scheduled (b) LMPV for IEEE 118 407 

bus test system 408 

In Figure 4(a) the trends are less prominent. The wind scheduled is similar between DLR and 409 

no DLR cases for low reserve cost. As reserve cost increases, the total wind scheduled with 410 

DLR is lower than total wind schedule without DLR. Similar to the 14 bus system, the 411 

capacity released by DLR is not allocated to wind if the cost of reserves is too high. In Figure 412 

4(b) the LMPV with and without DLR are similar for reserve costs below 3.5. However, at 413 

higher reserve costs LMPV is lower with DLR. The steady increase in LMPV is due to the 414 
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overall increasing cost of generation when reserve costs are increased. However, any latent 415 

capacity released is allocated to less expensive generation sources thus ensuring that LMPV is 416 

lower when DLR is used. 417 

The weather patterns will determine the amount of wind available and the available network 418 

capacity will determine the extent of wind utilisation. While the analysis in this section refers 419 

to congestion under normal operating conditions (without outages), there is always a risk of 420 

further congestion if a system contingency occurs. When DLR is not used, the risk of 421 

network congestion for a given penetration level of wind would be significantly higher and 422 

the risk is reduced by using dynamic line ratings.  423 

For systems without contingencies, the effect of DLR may not be evident in large systems. 424 

However, localised congestion may be relieved when DLR is implemented. While DLR 425 

usually releases some amount of latent capacity, this is allocated to the most efficient forms 426 

of generation which may or may not be wind. Thus while DLR can reduce congestion, it may 427 

not necessarily increase wind integration.  428 

Dynamic Line rating methodologies present a viable temporary alternative to network 429 

reinforcement and expansion to alleviate localised congestion. Smart grid infrastructure for 430 

monitoring ambient conditions as well as asset conditions need to be in place to implement 431 

dynamic line ratings. Protection devices will have to adapt to levels of current flow which 432 

would exceed conventional ratings. Distance relays monitor voltage in addition to current so 433 

it is likely to operate under DLR events compared to current relays. Alternatively, smart 434 

protection devices may be used which could operate on the basis of line temperature or line 435 

sag exceeding a specified limit rather than line current. 436 

4. Conclusion 437 

The paper proposed a new mathematical framework to assess the potential ability of DLR to 438 

reduce the level of network congestion and limit the curtailment levels of wind power in 439 

power systems. The model converts conventional thermal constraints to dynamic constraints 440 

by using a discretized stochastic penalty function with quadratic approximation of constraint 441 

relaxation risk. The novelty of this method is that it allows real time variation of dynamic line 442 

rating to be modelled stochastically and incorporated into planning and scheduling decisions 443 

while controlling the extent of DLR by varying the cost parameters. This method is ideal for 444 
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application in a smart grid environment where real time data about the network status is 445 

readily available. 446 

Case studies suggest that DLR can potentially release a considerable amount of capacity of 447 

network assets in systems under congestion, enabling increased wind power integration. DLR 448 

is especially effective in reducing localised congestion and may be considered as an 449 

alternative for deferring or completely avoiding network expansion in congested areas. While 450 

DLR releases latent network capacity it does not directly influence the allocation of the latent 451 

capacity released among generators. The effect of DLR on increasing wind integration 452 

depends on factors such as reserve cost and the level of available wind relative to 453 

conventional generation. 454 

Power systems need periodic investment planning to meet growth in demand, uncertainties, 455 

and risks associated with active operation. In that context, the proposed approach can be used 456 

to monitor the net network reinforcement requirement in power systems by utilizing the 457 

benefits that can be offered by DLR of assets under normal operation and credible 458 

contingencies. 459 

 460 
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