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A Ramsey bound on stable sets in Jordan
pillage games∗

Manfred Kerber† Colin Rowat‡

June 17, 2010

Abstract

Jordan [2006] defined ‘pillage games’, a class of cooperative games
whose dominance operator is represented by a ‘power function’ satisfy-
ing coalitional and resource monotonicity axioms. In this environment, he
proved that stable sets must be finite. We provide a graph theoretical inter-
pretation of the problem which tightens the finite bound to a Ramsey num-
ber. We also prove that the Jordan pillage axioms are independent.
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Jordan [2006] introduced ‘pillage games’, a class of cooperative games whose
dominance relation derived from a contest of power between competing coali-
tions. Power was formalised via three monotonicity axioms in coalitional mem-
bership and resource holdings. Exploiting resource monotonicity, he proved that
stable sets in pillage games are necessarily finite, a property that distinguishes pil-
lage games from many other classes of cooperative games.1 We tighten Jordan’s
argument by noting an immediate graph theoretical interpretation of the mono-
tonicity argument. This interpretation eases exploitation of transitive consequences

∗We are grateful to Andrew Thomason, Jim Jordan, Staszek Radziszowski the Associate Editor
and two referees for useful comments, and to the ESRC for funding under its World Economy and
Finance programme (RES-156-25-0022). Rowat thanks Birkbeck for its hospitality.
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‡Department of Economics, University of Birmingham; c.rowat@bham.ac.uk
1Most famously, the Shapley [1959] ‘signature result’ showed that uncountable stable sets

could be built around arbitrary closed components.
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of resource monotonicity unused by Jordan, thereby tightening his finite bound to
a Ramsey number. Only for two agents is the Ramsey bound tight; otherwise, a
huge gap exists between tight bounds in given examples [q.v.Kerber and Rowat,
2009] and the Ramsey bound; closing this remains an open question.2 Graph and
cooperative game theory have a long common history;3 to our knowledge, though,
this is the first application of Ramsey theory to game theory.Other branches of
economics drawing on graph theory – such as network economics – may therefore
find this useful.

Let I = {1, . . . , n} be a finite set ofagents. An allocationdivides a unit resource
among them, so that the feasible set is a compact, continuousn − 1 dimensional
simplex:

X ≡















{xi}i∈I
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∣
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xi ≥ 0,
∑

i∈I

xi = 1
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Following Jordan [2006], apower functionis defined over subsets of agents and
allocations, so thatπ : 2I × X→ R satisfies:

(WC) if C ⊂ C′ ⊆ I thenπ (C′,x) ≥ π (C,x)∀x ∈ X;

(WR) if yi ≥ xi∀i ∈ C ⊆ I thenπ (C,y) ≥ π (C,x); and

(SR) if C , ∅ ⊆ I andyi > xi∀i ∈ C thenπ (C,y) > π (C,x).

Axiom WC requires weak monotonicity in coalitional inclusion; WR requires
weak monotonicity in resources; SR requires strong monotonicity in resources.

An allocationy dominates an allocationx, writteny K x iff

π (W,x) > π (L,x) ;

whereW ≡ {i | yi > xi} andL ≡ {i | xi > yi}. By the strict inequality, domination is
irreflexive; by axiom SR, it is asymmetric.

ForY ⊂ X, let

D (Y) ≡ {x ∈ X| ∃y ∈ Y s.t.y K x} ;

2Saxton [2010] extends a theorem of Erdős and Szekeres to exploit a second of Jordan’s ax-
ioms; his result, while tighter than the Ramsey bound, remains doubly exponential and relies on a
much more sophisticated construction than that here.

3As Richardson [1953] observed, the stable set appears as aPunktbasis zweiter Art- a point
basis of the second type - in the pioneering text on graph theory [König, 1936]. More recently,
Brandt et al. [2007] proved that, when the dominance operator is irreflexive and asymmetric, the
question of whether an allocation belongs to a stable set isNP-complete in the number of possible
allocations.
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be thedominionof Y, the set of allocations dominated by an allocation inY. Then
a set of allocations,S ⊆ X, is astable set4 iff it satisfiesinternal stability,

S ∩ D (S) = ∅; and (IS)

andexternal stability,
S ∪ D (S) = X. (ES)

Denote by 2c the number of non-empty, non-intersecting sets,W andL, in-
duced by distinct allocations. Thus,c, is the the number of distinct, unordered
pairs,(W, L), so induced. We now state our main result:

Theorem 1. An internally stable set can contain at most Rc (4) − 1 allocations,
the diagonal multicolour Ramsey number.

To aid understanding, we first define the graph theoretical terms used.5 A
graph(or undirected graph) G = (V,E) with E ⊆ [V]2 is a set of vertices,V, and a
set of edges,E, connecting them. Vertices areadjacentif an edge connects them.
A graph iscompleteif all pairs of its vertices are adjacent; it isc-colouredif each
edge is represented by one ofc colours. Anr-clique is a complete subgraph ofG
on r vertices; it ismonochromaticif all edges in the clique are of the same colour.
A directed graph(or digraph) is a graph in which each edge is oriented from an
initial vertex to a terminal vertex. Apath is an ordered set of distinct vertices,
the initial vertex connected to its successor, and so on until the terminal vertex is
reached. Anoriented graphis a digraph withoutloops(edges whose initial and
terminal vertex is the same) or multiple edges between two vertices. Ramsey’s
theorem guarantees that any sufficiently large, completec-coloured graph will
have a monochromaticr-clique; Ramsey’s number,Rc (r), is the least bound on
the number of vertices in the graph required to make it “sufficiently large”.

Proof. Let S be an internally stable set. By Lemma 1, any distinctx
i ,x j ∈ S

induce one of 2c distinct associated non-empty sets,W andL. Consequently,xi

andx j induce one ofc distinct unordered pairs,(W, L). Now form an undirected,
c-coloured, complete graph as follows: let eachx

i ∈ S be a vertex; for each
x

i ,x j ∈ S, colour the edge between them according to the induced unordered
pair, (W, L).

The proof of Theorem 2.9 [Jordan, 2006] established that there exists no se-

quence of allocations
{

x
i
}4

i=1
in S which holdsW andL constant as the sequence

4The stable sets of combinatorial optimisation [Korte and Vygen, 2006] are game theory’s in-
ternally stable sets: connect two nodes (allocations) withan edge if either of the two allocations
dominates the other.

5See Diestel [2005], from which the definitions here are taken, for more detailed treatment of
the terms and theory.
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progresses: by axiom SR,π
(

W,xi
)

increases withi andπ
(

L,xi
)

decreases, forc-
ing one allocation in the sequence to dominate another, a violation of internal
stability. More than this is true: any such sequence inducesa transitive relation on
S asi ≤ j ≤ k imply i ≤ k. Thus, the subsequences

{

x
1,x3
}

,
{

x
1,x4
}

and
{

x
2,x4
}

also maintainW andL constant, so that the existence of the sequence implies a
monochromatic 4-clique in the graph.

The converse is also true: a monochromatic 4-clique impliesa sequence
{

x
i
}4

i=1
in S over whichW and L are constant. This follows from two general results:
first, a complete digraph contains – by definition – an oriented complete graph,
or tournament; second, every tournament contains a (directed) Hamilton path that
visits each vertex exactly once [Diestel, 2005,§10.3].

By definition of a Ramsey number, an undirected,c-coloured, complete graph
with Rc (4) vertices guarantees the existence of a monochromatic 4-clique, which
cannot exist. The result follows. �

Figure 1 illustrates a 4-digraph associated with a 4-clique: while there is a
direct path fromx1 to x

4, the sequence
{

x
1,x4
}

may be augmented to includex2

andx3 while maintaining constantW andL.

x
1

x
2

x
3

x
4

Figure 1: A 4-digraph associated with a sequence,
{

x
i
}4

i=1
, that maintains constant

W andL

Given a fixed number of agents,n, determiningc allows determination of the
Ramsey bound:

Lemma 1. There are2c ≡ 3n−2n+1+1 non-empty, non-intersecting subsets(W, L)
of I × I.

Proof. There are 3n functions from{1, . . . , n} to {W, L, I\ (W∪ L)}. Of these, 2n

assign no agents toW, so are disqualified. Symmetrically, 2n assign no agents to
L, so are also disqualified. As one function assigns no agents to W or L, it has
been disqualified twice; correcting for this, leaves 3n − 2n+1 + 1 ways of assigning
agents to the non-empty, non-intersecting setsW andL. �
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For n = 2, c = 1; for n = 3, c = 1
2 (27− 16+ 1) = 6; for n = 4, it is

1
2 (81− 32+ 1) = 25. The simplest two examples are:

Example 1. For n = 2, the theorem’s upper bound is R1 (4)−1 = 3, and therefore
tight. This can be demonstrated with the ‘wealth is power’ function,πw (C,x) =
∑

i∈C xi [Jordan, 2006].

Example 2. When n= 3, the upper bound is R6 (4) − 1, which is bounded by

16,129= 1272 ≤ [R3 (4) − 1]2 < R6 (4) ≤ 19,100,738.

The bounds are obtained through direct calculation of inequality 5.n and recursive
application of inequality 5.a, respectively, in Radziszowski [2006].6 7

For Jordan’s wealth is power function, the unique stable sethas nine elements.
For all power functions satisfying an anonymity, a continuity and a responsive-
ness axiom, the unique stable set has no more than15 elements, when it exists
[Kerber and Rowat, 2009].

To gain an idea of the numbers involved for largern, we note the quick bounds
3c ≤ Rc (4) ≤ c2c+1 provided by Saxton [2010].

In closing, note that axioms WC, WR and SR are independent. While perhaps
unsurprising, this has not yet been formally established elsewhere, and it may
be of interest to see how the ‘strong’ axiom SR may be satisfiedeven when the
‘weak’ axiom WR is violated.

Lemma 2. Axioms WC, WR and SR are independent.

Proof. The ‘weakest link’ function,π (C,x) = mini∈C xi, satisfies axioms WR and
SR but not WC. The constant function,π (C,x) = 1, satisfies WC and WR but not
SR. Finally, defining Kronecker’s delta,δ (x), as 0 for allx , 0 and 1 forx = 0,
only axiom WR is violated by

π (C,x) = v‖C‖ +min
i∈C

xi − δ

(

min
i∈C

xi

)















∑

i∈C

xi −min
i∈C

xi















;

for largev. The first term ensures satisfaction of WC. Whenxi strictly increases
for all i ∈ C, the first term is unchanged, the second strictly increases,and the
third weakly increases. The third term penalises increasedresources by members
of C if some member still has nothing. �

6The code for the latter may be found at www.cs.bham.ac.uk/∼mmk/demos/ramsey-upper-limit.lisp.
7Xiaodong et al. [2004, Theorem 2] constructed a graph satisfying the lower bound. The con-

struction in Xiaodong [2002] added a further 595 vertices tothe lower bound, for a new lower
bound of 16,724.
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Transposing an ‘O-ring’ production function [Kremer, 1993] to a pillage game
yields π (C,x) =

∏

i∈C xi, which, like the weakest link function, also violates
only WC. The constant function corresponds to strong property rights. Functions
violating only WR are less compelling; in the example used inthe proof, mini∈C xi

can be replaced by
∏

i∈C xi or any other increasing function that remains constant
when its least argument is zero.
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