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uclear  data  for  fusion:  Validation  of  typical  pre-processing  methods
or  radiation  transport  calculations

.  Huttona,b,∗,  J.C.  Subletb, L.  Morganb,  T.W.  Leadbeatera

School of Physics and Astronomy, University of Birmingham, B15 2TT, UK
Culham Centre for Fusion Energy, OX14 3DB, UK

 i g  h  l  i g  h  t  s

We  quantify  the  effect  of processing  nuclear  data  from  ENDF  to ACE  format.
We  consider  the  differences  between  fission  and  fusion  angular  distributions.
C-nat(n,el)  at  2.0  MeV  has  a 0.6%  deviation  between  original  and processed  data.
Fe-56(n,el)  at  14.1  MeV  has  a 11.0%  deviation  between  original  and  processed  data.
Processed  data  do not  accurately  depict  ENDF  distributions  for fusion  energies.
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a  b  s  t  r  a  c  t

Nuclear  data  form  the  basis  of  the  radiation  transport  codes  used  to  design  and  simulate  the  behaviour
of  nuclear  facilities,  such  as the  ITER  and  DEMO  fusion  reactors.  Typically  these  data  and  codes  are
biased  towards  fission  and  high-energy  physics  applications  yet  are  still  applied  to  fusion  problems.  With
increasing  interest  in  fusion  applications,  the lack  of  fusion  specific  codes  and  relevant  data  libraries  is
becoming  increasingly  apparent.  Industry  standard  radiation  transport  codes  require  pre-processing  of
the evaluated  data  libraries  prior to use  in simulation.  Historically  these  methods  focus  on speed  of  simu-
lation  at the  cost  of  accurate  data  representation.  For  legacy  applications  this  has  not  been  a  major  concern,
but current  fusion  needs  differ significantly.  Pre-processing  reconstructs  the  differential  and  double
differential  interaction  cross  sections  with  a coarse  binned  structure,  or more  recently  as  a  tabulated
cumulative  distribution  function.  This  work  looks  at  the validity  of  applying  these  processing  methods
to  data  used  in  fusion  specific  calculations  in comparison  to  fission.  The  relative  effects  of  applying  this
pre-processing  mechanism,  to  both  fission  and  fusion  relevant  reaction  channels  are  demonstrated,  and
as such  the  poor  representation  of these  distributions  for the  fusion  energy  regime.  For  the natC(n,el)  reac-
tion  at 2.0  MeV,  the  binned  differential  cross  section  deviates  from  the original  data  by 0.6%  on  average.

56
For  the Fe(n,el)  reaction  at 14.1  MeV,  the  deviation  increases  to  11.0%.  We  show  how  this  discrepancy
propagates  through  to  varying  levels  of  simulation  complexity.  Simulations  were  run  with  Turnip-MC
and  the  ENDF-B/VII.1  library  in  an  effort  to define  a new  systematic  error  for  this  range  of  applications.
Alternative  representations  of  differential  and  double  differential  distributions  are  explored  in  addition
to  their  impact  on  computational  efficiency  and  relevant  simulation  results.

©  2015  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
. Introduction
Please cite this article in press as: T. Hutton, et al., Nuclear data for fu
transport calculations, Fusion Eng. Des. (2015), http://dx.doi.org/10.10

The Monte Carlo method has been used for many years to simu-
ate the transport of uncharged and charged radiation throughout
ssion reactors and other nuclear facilities, and as such, there are

∗ Corresponding author at: School of Physics and Astronomy, University of Bir-
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920-3796/© 2015 The Authors. Published by Elsevier B.V. This is an open access article u
(http://creativecommons.org/licenses/by/4.0/).

multiple codes designed for this purpose. The progression towards
nuclear fusion as a commercially viable power source demands a
closer look to be taken at the applicability of the currently available
legacy codes and data to such purposes. The neutron fluxes pre-
dicted in ITER and future fusion reactors will be far higher than that
seen in any current devices in civil nuclear technology. The inter-
sion: Validation of typical pre-processing methods for radiation
16/j.fusengdes.2015.04.045

action of the 14.1 MeV  neutrons from D-T fusion with the reactor
components cause radiation damage, activation and heating. These
reactions must be accurately predicted to determine the shielding
and lifetime requirements as with any other reactor. For D-T fusion

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).

dx.doi.org/10.1016/j.fusengdes.2015.04.045
dx.doi.org/10.1016/j.fusengdes.2015.04.045
http://www.sciencedirect.com/science/journal/09203796
http://www.elsevier.com/locate/fusengdes
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
mailto:txh739@bham.ac.uk
dx.doi.org/10.1016/j.fusengdes.2015.04.045
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


ARTICLE ING Model
FUSION-7915; No. of Pages 6

2 T. Hutton et al. / Fusion Engineering a

Fig. 1. Block diagram to show the flow of nuclear data from experimental mea-
surements stored in the EXFOR [4] database through to use in radiation transport
codes. The experimental data are selected by evaluators to use within nuclear model
codes, to construct continuous data libraries in the ENDF format. For use in radiation
transport codes such as MCNP or Serpent, the data must be further processed via
pre-processing codes such as NJOY, into the ACE format. A detailed description of
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though in some cases the polynomials can be much more com-
his can be found in [5]. The shaded region shows the simplified use of these data
ithin a generic radiation transport input file through to an output value from the

ode  that can be used to calculate relevant quantities.

evices in particular, the breeding of tritium as a fuel within the
eactor is necessary to ensure self-sufficiency. The relevant reaction
hannels are induced by neutrons and so the associated data must
e accurate to determine the location and quantity of the tritium for
xtraction. This is just one example of many of the important neu-
ron interactions within a fusion device. The neutronics modelling
f these devices must be of an exceptionally high quality to ensure
he safe operation of financially viable fusion reactors, in particu-
ar with respect to shielding, design tolerances and breeder blanket
ptimisation. The current practice for modelling these devices con-
ists of using the available radiation transport codes, designed for
n alternative purpose, with fusion specific nuclear data. This is
ot ideal as the requirements for fusion modelling differ from
hose for fission. Furthermore, the current fusion data libraries are
ncomplete; thus implying a need for future experimental stud-
es to populate these libraries. In the longer term, a specialised set
f codes and data would be created for fusion neutronics, but for
urrent facilities and experiments it is not feasible to wait for this
o be implemented. This study considers how the processing and
eutronics codes handle nuclear data within the current modelling
ethods; in addition to exploring alternatives that could be imple-
ented within future code developments for fusion neutronics.
Radiation transport codes are only ever as accurate as the model

upplied to them. This includes the use of materials and their corre-
ponding interaction data. These data start as experimental results
roduced by multiple facilities worldwide, they undergo a series of
rocesses before they are able to be used within the radiation trans-
ort codes. The process from experimental data to libraries suitable
or use in neutronics modelling is shown in Fig. 1. In this instance
e focus on ENDF1 data processed by NJOY [1] to be used within the

adiation transport code, MCNP [2]. This combination of the NJOY
re-processing code and MCNP radiation transport code is consid-
Please cite this article in press as: T. Hutton, et al., Nuclear data for fu
transport calculations, Fusion Eng. Des. (2015), http://dx.doi.org/10.10

red to be the industry standard for typical simulations. The initial
hases of pre-processing include the reconstruction of interaction
ross sections with resonances to interpolated data points on a fine

1 For a list of acronyms used here and their definitions, see Appendix A
 PRESS
nd Design xxx (2015) xxx–xxx

energy grid. The differential and double differential cross sections2

undergo a different type of processing. NJOY allows two different
ways of dealing with these distributions; a legacy method that is
fast to sample as part of the Monte Carlo (MC) approach and min-
imises data requirements, or a newer method that tends to better
represent the data in comparison [3], though this has never strictly
been quantified. The cost of this is a longer sampling time and larger
data file. A major consideration when running MC  simulations of
ITER scale is computational efficiency. Not only are huge numbers
of individual histories required to achieve the necessary statisti-
cal convergence, but all material data required for the simulation
is loaded into physical memory. From here the data are accessed,
so the amount of available memory is an additional limiting fac-
tor for these simulations. For this reason we will be looking at the
applicability of the legacy method of data processing to fusion data,
to determine if the loss in data accuracy outweighs the need for
computational efficiency.

When the MC method is applied to neutron transport, many
histories are run and these each undergo a series of interactions
to simulate the average behaviour of neutrons within the system.
Examples of how this average behaviour is used are:

• to determine the energy dependent neutron flux incident on a
breeder blanket, which in turn leads to calculations for tritium
self-sufficiency;

• to check if any streaming occurs from the vacuum vessel and
hence determine shielding requirements in these areas;

• to calculate the corresponding activation calculation of materials
post irradiation.

Each interaction within the history is determined by the ran-
dom sampling of the nuclear data. Of particular interest here is the
sampling of the differential and double differential cross section
distributions to determine the exit energy and angles of radiative
particles after each interaction. The MC  process used by MCNP is
described by the block diagram in Fig. 2, with each sampling stage
indicated.

The original method for processing the differential and double
differential cross section distributions is to represent them with
32 equal probability channels. This particular format is specific to
the ACE files used in MCNP, though many other codes use an equal
probability structure in a similar fashion with differing numbers
of channels. The downfall of using this representation is the loss
of features or information within the range of the reaction distri-
bution. For fission relevant reactions, this loss of information is
less noticeable as these reactions tend to be more isotropic than
those expected for fusion reactors. One example of this can be seen
in Fig. 3. The reaction channels shown here are for angular distri-
butions of elastically scattered neutrons from natC at 2.0 MeV, i.e.
a fission relevant reaction channel, and from 56Fe at 14.1 MeV, a
fusion relevant reaction channel. In the fission specific case, the
function is more isotropic in scattering cosine than the fusion spe-
cific case, in the sense that there is little or no forward bias and no
major features. This is reinforced when one considers the complex-
ity of the distributions, the natC distribution is described by a 4th
order polynomial, but the 56Fe distribution requires a 12th order
polynomial as determined by the evaluators and nuclear models.
This is fairly typical for the majority of fission and fusion channels,
sion: Validation of typical pre-processing methods for radiation
16/j.fusengdes.2015.04.045

plex. When the equal probability format is considered for the fusion
specific channel, much of the fine detail in the lower probability
region is lost. For the fission specific case, the bins are more evenly

2 Distributions for reaction products with respect to angle and/or energy

dx.doi.org/10.1016/j.fusengdes.2015.04.045
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Fig. 2. Flow diagram to show the simplified transport process for a single neutron
history, in radiation transport code MCNP. Stages where sampling is required are
indicated by the shaded areas. The area of interest for this paper is the sampling of
exit  direction and energy.

Fig. 3. Normalised probability distribution functions f(�, E) for the elastic scatter
of  neutrons from 56Fe at 14.1 MeV  (red) and natC at 2.0 MeV  (blue). The solid lines
represent the polynomial distributions as taken from the ENDF/B-VII.1 files and the
dashed lines represent the processed equivalent. The abscissa represents the cosine
of the scattering angle, �, for a single scatter in the centre of mass (CM) frame, and the
ordinate represents the normalised probability distribution function for a neutron
at energy, E, scattering into �. The inset shows the forward scattering section of
the distributions on a linear scale to highlight the high level of anisotropy for the
56Fe reaction and the effect of applying the histogram over areas with a high rate of
change. (For interpretation of the references to color in this figure legend, the reader
is  referred to the web version of this article.)

Table 1
List of variables used in Eqs. (1)–(3) with associated definitions.

Variable Description

� Scattering cosine in CM frame (unit cosine−1)
E  Neutron energy (eV)
f(�,  E) Differential probability distribution for incident E and exit �
Pl Legendre polynomial of order l
al Coefficient l as given in ENDF file
NL Maximum order of Legendre polynomial
P(�, E) Probability distribution function used for sampling in MC
�(�,  E) Differential cross section (b · sr−1)a

�s(E) Elastic scattering cross section (b)

d�s(E)
a This can also be written as
d�

, where d� is the solid angle subtended by
sin � · d� · d�.

distributed over the range in � and will be shown to better repre-
sent the function.

2. Approach

In order to determine the effect of the processing methods
used on final simulation results, it is necessary to first consider
the nuclear data as given in the ENDF file. While these data form
is not necessarily exact with respect to the original experimental
data, it is taken as the reference for the most accurate input to the
transport codes and is used here to define a standard by which
the pre-processing methods can be compared against. The ENDF/B-
VII.1 library was  used in this work. This was  parsed to extract the
relevant information for each isotope and energy. For the elastic
scatter of neutrons from 56Fe [6] and natC [7], the associated reac-
tion cross sections were extracted, along with the differential data
which correspond to the polar angular distribution of the scatter.
For the energies considered data were given in terms of Legendre
coefficients. Eq. (1) shows how the normalised probability distri-
bution, f(�, E) is determined at a certain energy with respect to the
scattering cosine in the centre of mass frame (see Table 1 for vari-
able definitions). f(�, E) is calculated from the coefficients al(E) as
given in the ENDF file for each energy in combination with the Leg-
endre polynomials, Pl(�). This angular distribution is normalised,
so that the integral between the limits of −1 ≤ � ≤ 1 is equal to 1.
To obtain the true differential cross section, �(�, E), the normalised
angular distribution must be multiplied by the reaction channel
cross section, �(E) as extracted from elsewhere within the file.

f (�, E) =
NL∑
l=0

2l + 1
2

al(E)Pl(�) (1)

P(�, E) =
∫ �

−1

f (�, E)d� (2)

�(�, E) = �s(E)
2� f (�, E)

(3)

The normalised angular probability distributions were recon-
structed at the relevant energies into their exact functional forms,3

and then processed into the 32 equal probability bin format as used
in the MCNP data files. This structure was  calculated using Eq. (4),
sion: Validation of typical pre-processing methods for radiation
16/j.fusengdes.2015.04.045

where k is the bin number and N is the total number of bins, in this
instance N = 32. To find the limits of � for each bin, the integral was

3 This representation cannot currently be used by MCNP or other radiation trans-
port codes, but may  be implemented in future developments.

dx.doi.org/10.1016/j.fusengdes.2015.04.045
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Fig. 4. Top: Difference between the functional and histogrammed distributions,
with the point of maximum difference marked with dashed lines. Bottom:
Coefficients of variation for the histogram data with respect to the functional form,

shows the distributions for 1, 2 and 3 scatters for the Fe reaction
channel with functional and histogrammed data. For comparison,
the equivalent simulation results for the natC reaction channel can
be seen in Fig. 6. For 1 through to 10 scatters, the coefficient of vari-
ARTICLEUSION-7915; No. of Pages 6
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valuated exactly with numerical Gaussian quadrature to the same
recision as the input data.

�k

−1

f (�, E)d� = k

N
(4)

The processed data form was compared to the exact functional
orm for each reaction channel with three levels of analysis.

. Point-wise analysis

. Simple statistical analysis using Turnip-MC4

. Statistical analysis with transport using Turnip-MC

Point-wise analysis requires both distributions to be evaluated
n a fine � grid of 105 equally spaced samples, where the differ-
nces between them are considered in the centre of mass frame.
he second level employs the use of a reaction channel Monte
arlo code, Turnip-MC. This stage simulates large numbers of sta-
istically identical events without the complexities of geometry,

aterial compositions, etc. as would be present in traditional radi-
tion transport codes. This allows a closer look at how distributions
re sampled and how any deviations here might propagate through
o observables. In a similar fashion multiple events can be studied
long with their resulting probability distribution functions. The
nal stage of analysis here allows for the full transport of particles,
hilst still only allowing a single reaction channel. This includes

ull scattering kinematics and the resulting histories were his-
ogrammed with respect to exit angle and energy across a spherical
urface.

To quantify the differences between exact and processed data
ormats two main metrics are used; the maximum difference, �,
nd the coefficient of variation, Cv. The maximum difference, as
iven by Eq. (5), provides information on any narrow or peaked
eatures that would otherwise be lost in averages and retains the
ature of the difference, thus quantifying over or underestimation.
his tends to be the standard nuclear data method for compar-
ng two data sets [8, p. 300]. The coefficient of variation, as given
n Eq. (7), is derived from the statistical mean of the deviations.
he arithmetic mean provides no usable information concerning
he differences, as by definition this is zero. The root mean square
eviation provides information on how far, on average, the differ-
nce deviates from zero as shown in Eq. (6), by normalising we get
he coefficient of variation. This provides a measure of the extent
f variability with respect to the mean of the distributions, though
he nature of the deviations is lost. These two metrics have been
sed to provide a consistent measure of variability over each level
f analysis.

 = max
−1≤�≤1

|f (�) − h(�)| (5)

MSD =

√√√√1
n

n∑
i=0

(f (�i) − h(�i))
2 (6)

v = RMSD

h(�)
(7)

.1. Point-wise results

Both functions and reaction channels were calculated on a fine
Please cite this article in press as: T. Hutton, et al., Nuclear data for fu
transport calculations, Fusion Eng. Des. (2015), http://dx.doi.org/10.10

cattering cosine grid, with the number of points determined by
 simple sensitivity study to ensure convergence. Fig. 4 shows the
esults of the difference measurements for the 56Fe and the natC

4 In-house Monte Carlo code for nuclear data analysis developed by T.W. Lead-
eater, T. Hutton, Nuclear Data Group, University of Birmingham, UK
with overall values marked with dashed lines. Refer to Fig. 3 for original distribu-
tions.

(n,el) reaction channels over the entire range in � for the given
energies. From this figure it is clear to see that for this fusion reac-
tion the low probability events are poorly represented, but the main
contributing factor for the differences corresponds to the forward
peaked section. Table 2 presents the metrics as described in Section
2, the maximum difference for the considered 56Fe reaction channel
is an order of magnitude greater than that for natC. Both maximum
differences are negative, corresponding to an underestimate of a
feature by the histogram. It is worth noting that the mean differ-
ence is zero; the processing of the raw data introduces an error on
a point-by-point basis, but does not introduce a systematic error
over the entire range of the distribution. This point-by-point devi-
ation shows a loss of features within each channel. For the 56Fe
reaction channel the residuals vary by 11.0% on average from the
mean, though on a continuous basis (see Fig. 4) this can range up
to 52.4%. For the natC reaction, the coefficient of variation is two
orders of magnitude lower at 0.6%, ranging up to 2.4%. Comparing
the fission and fusion reaction channels, the histogram format is
a better representation for more isotropic events considered. The
high level of anisotropy for the fusion reaction channel not only
makes it difficult to retain detail in the back scattering region, but
is mis-represented in areas with a large rate of change.

2.2. Statistical results

Turnip-MC was  passed both the functional and histogrammed
data for each reaction channel, with the histogram sampled accord-
ingly and the functional form solved with an iterative search. Fig. 5

56
sion: Validation of typical pre-processing methods for radiation
16/j.fusengdes.2015.04.045

Table 2
Calculated values for maximum difference and coefficient of variation from analyt-
ical  comparison of histogrammed data format with respect to exact functional form
for  the 56Fe and natC reaction channels.

� Cv(%)

natC(n,el) 2.0 MeV  −0.012 0.6
56Fe(n,el) 14.1 MeV  −0.265 11.0

dx.doi.org/10.1016/j.fusengdes.2015.04.045
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Fig. 5. Turnip-MC results for multiple scatter showing continuous distributions for
the 56Fe(n,el) reaction channel at 14.1 MeV  in the lab frame. Top: Normalised proba-
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Fig. 7. Calculated coefficient of variation with number of forced scatters with
Turnip-MC. Dashed lines correspond to an exponential fit to the form of
a  · exp(− b · x) + c. Inset: Maximum difference for 1–10 forced elastic scatters in 56Fe
ility distributions for exit scattering cosine, � for 1, 2 and 3 scatters with histogram
ata. Bottom: As above, with exact functional data.

tion and maximum difference were calculated. Fig. 7 shows how
hese metrics behave when propagated through multiple events.
or both the 56Fe and natC channels considered here, there is an
xponential fall off to a baseline of less than 1.0%. For the 56Fe chan-
el, the Cv does not drop below 1.0% until after three scatters. The
aximum allowable statistical error for MCNP calculations is 10.0%

9, p. 2.116], so for the natC reaction channel considered, the asso-
iated processing error is below this for any number of events. For
he 56Fe reaction channel, the average deviation is above this until
he second scatter.

.3. Statistical results with transport

Turnip-MC was run with histories originating at the centre of
 unit-density sphere as a directional beam with an initial energy
f 14.1 MeV  or 2.0 MeV  respectively for the 56Fe and natC reactions.
Please cite this article in press as: T. Hutton, et al., Nuclear data for fu
transport calculations, Fusion Eng. Des. (2015), http://dx.doi.org/10.10

or each reaction channel at the specific energy, the path length
o the next interaction was determined by sampling of the scatter-
ng cross section, �s. The average number of scatters is dependent
n the mean free path of the neutron, and approximately propor-

ig. 6. Turnip-MC results for multiple scatter to show continuous distributions for
he natC(n,el) reaction channel at 2.0 MeV  in the lab frame. Top: Normalised proba-
ility distributions for exit scattering cosine, � for 1, 2 and 3 scatters with histogram
ata. Bottom: As above with exact functional distributions.
(red) and natC (blue). (For interpretation of the references to color in this figure
legend, the reader is referred to the web  version of this article.)

tional to the square of the sphere radius. The coefficient of variation
for the average number of scatters behaves in the same manner
as with forced scatters (Fig. 7) for the two  materials at relevant
energies. With conventional transport and scattering kinematics,
the variation of the processed and unprocessed distributions drops
exponentially, as previously seen, to a baseline below the required
MCNP error. This suggests that for a pure scatterer, if the material
thickness is much greater than the mean free path of the neutron,
then the errors are dominated by statistics. On the other hand,
if we  have a material with a thickness of the order of one mean
free path, or lower, the observed error would be dominated by the
processing.

3. Conclusions

Based on the reaction channels considered in the study, the 32
binned format is not a suitable structure for reaction channels with
a high level of anisotropy. The average deviation of the fusion type
reaction channel, 56Fe(n,el) at 14.1 MeV  was  11.0%. For natC(n,el) at
2.0 MeV  reaction channel the deviation is much lower at only 0.6%.
These deviations would be most noticeable in thin target experi-
ments, or for rare events. In these instances, the processing error
would dominate the statistical error calculations. The low prob-
ability regions are described poorly with the 32 equiprobable bin
format, this means that we  gain little or no information about them.
Regions with a high rate of change are mis-represented by the his-
togram format. However, if we consider how this might propagate
through to large numbers of events, such as in a bulk shielding
experiment, the error introduced by the processing of the origi-
nal data drops below the statistical tolerance of most Monte Carlo
radiation transport codes. It is worth noting that elastic scattering
is the simplest distribution to consider. Within a full-scale reac-
tor simulation, many other reactions occur and, in comparison to
the elastic distributions, are much more complex in their struc-
ture. It is expected that the more complex the distribution, the
greater the observed effect from processing the data. In addition to
this we see mixing of isotopes to construct the required materials
and have much more complex geometries than the simple sphere
sion: Validation of typical pre-processing methods for radiation
16/j.fusengdes.2015.04.045

considered here. By introducing these additional complexities one
would expect to see the effect of these deviations to become more
prominent.

dx.doi.org/10.1016/j.fusengdes.2015.04.045
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