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a b s t r a c t

Let G be an edge-coloured graph. A rainbow subgraph in G is a subgraph such that its edges
have distinct colours. The minimum colour degree δc(G) of G is the smallest number of
distinct colours on the edges incidentwith a vertex ofG.We show that every edge-coloured
graph G on n ≥ 7k/2 + 2 vertices with δc(G) ≥ k contains a rainbow matching of size at
least k, which improves the previous result for k ≥ 10.

Let∆mon(G) be themaximumnumber of edges of the same colour incidentwith a vertex
of G. We also prove that if t ≥ 11 and ∆mon(G) ≤ t , then G can be edge-decomposed into
at most ⌊tn/2⌋ rainbowmatchings. This result is sharp and improves a result of LeSaulnier
and West.
© 2015 The Author. Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Let G be a simple graph, that is, it has no loops or multi-edges. We write V (G) for the vertex set of G and δ(G) for the
minimum degree of G. An edge-coloured graph is a graph in which each edge is assigned a colour. We say that an edge-
coloured graph G is proper if no two adjacent edges have the same colour. A subgraph H of G is rainbow if all its edges have
distinct colours. Rainbow subgraphs are also called totally multicoloured, polychromatic, or heterochromatic subgraphs.

In this paper, we are interested in rainbow matchings in edge-coloured graphs. The study of rainbow matchings began
with a conjecture of Ryser [10], which states that every Latin square of odd order contains a Latin transversal. Equivalently,
for n odd, every properly n-edge-colouring of Kn,n, the complete bipartite graph with n vertices on each part, contains a
rainbow copy of a perfect matching. In a more general setting, given a graph H , we wish to know if an edge-coloured graph
G contains a rainbow copy of H . A survey on rainbowmatchings and other rainbow subgraphs in edge-coloured graphs can
be found in [3].

For a vertex v of an edge-coloured graph G, the colour degree, dc(v), of v is the number of distinct colours on the edges
incident with v. The smallest colour degree of all vertices in G is the minimum colour degree of G and is denoted by δc(G).
Note that a properly edge-coloured graph G with δ(G) ≥ k has δc(G) ≥ k.

Li and Wang [8] showed that if δc(G) = k, then G contains a rainbow matching of size ⌈(5k − 3)/12⌉. They further
conjectured that if k ≥ 4, then G contains a rainbow matching of size ⌈k/2⌉. LeSaulnier et al. [6] proved that if δc(G) = k,
then G contains a rainbow matching of size ⌊k/2⌋. The conjecture was later proved in full by Kostochka and Yancey [4].

Wang [11] asked does there exist a function f (k) such that every properly edge-coloured graph G on n ≥ f (k) vertices
with δ(G) ≥ k contains a rainbow matching of size at least k. Diemunsch et al. [1] showed that such function does exist
and f (k) ≤ 98k/23. Gyárfás and Sarkozy [2] improved the result to f (k) ≤ 4k − 3. Independently, Tan and the author [9]
showed that f (k) ≤ 4k − 4 for k ≥ 4.
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Kostochka, Pfender and Yancey [5] showed that every (not necessarily properly) edge-coloured G on n ≥ 17k2/4 vertices
with δc(G) ≥ k contains a rainbow matching of size k. Tan and the author [9] improved the bound to n ≥ 4k − 4 for k ≥ 4.
In this paper we show that n ≥ 7k/2 + 2 is sufficient.

Theorem 1.1. Every edge-coloured graph G on n ≥ 7k/2 + 2 vertices with δc(G) ≥ k contains a rainbow matching of size k.

Moreover if G is bipartite, then we further improve the bound to n ≥ (3 + ε)k + ε−2.

Theorem 1.2. Let 0 < ε ≤ 1/2 and k ∈ N. Every edge-coloured bipartite graph G on n ≥ (3+ε)k+ε−2 vertices with δc(G) ≥ k
contains a rainbow matching of size k.

Wealso consider covering an edge-coloured graphG by rainbowmatchings. Given an edge-coloured graphG, let∆mon(G)
be the largestmaximumdegree ofmonochromatic subgraphs ofG. LeSaulnier andWest [7] showed that every edge-coloured
graph G on n vertices with∆mon(G) ≤ t has an edge-decomposition into at most t(1+ t)n ln n rainbowmatchings.We show
that G can be edge-decomposed into ⌊tn/2⌋ rainbow matchings provided t ≥ 11.

Theorem 1.3. For all t ≥ 11, every edge-coloured graph G on n vertices with ∆mon(G) ≤ t can be edge-decomposed into ⌊tn/2⌋
rainbow matchings.

Note that the bound is best possible by considering edge-coloured graphs, where one colour class induces a t-regular
graph.

Theorems 1.1 and 1.2 are proved in Section 2. Theorem 1.3 is proved in Section 3.

2. Existence of rainbowmatchings

We write [k] for {1, 2, . . . , k}. Let G be a graph with an edge-colouring c. We denote by c(G) the set of colours in G. We
write |G| for |V (G)|. GivenW ⊆ V (G), G[W ] is the induced subgraph of G onW . All colour sets are assumed to be finite.

Before proving Theorems 1.1 and 1.2, we consider the following (weaker) question. Suppose that G is an edge-coloured
graph and contains a rainbow matching M of size k − 1. Under what colour degree and |G| conditions can we ‘extend’ M
into a matching of size kwith at least k − 1 colours? We formalise the question below.

Let G be a family of graphs closed under vertex/edge deletions. Define γ (G) to be the smallest constant γ such that,
whenever k ∈ N, G ∈ G is a graph with |G| ≥ γ k and an edge-colouring c on G, the following holds. If for any rainbow
matching M of size k − 1 in G, we have dc(z) ≥ k for all z ∈ V (G)\V (M), then G contains a rainbow matching M ′ of size
k− 1 and a disjoint edge. (Note that the colour of the disjoint edge may appear inM ′.) Clearly, γ (G) ≥ 2 for any family G of
graphs. It is easy to see that equality holds if G is the family of bipartite graphs.

Proposition 2.1. Let G be the family of bipartite graphs. Then γ (G) = 2.

Proof. LetG be a bipartite graph on at least 2k vertices. Suppose thatM is a rainbowmatching of size k−1 and that dc(z) ≥ k
for all z ∈ V (G)\V (M). Since G is bipartite, there exists an edge vertex-disjoint fromM and so the proposition follows. �

If G is the family of all graphs, we will show that γ (G) ≤ 3.

Lemma 2.2. Let G be a graph with at least 3(k − 1) + 1 vertices. Suppose that M is a rainbow matching of size k − 1 and that
dc(z) ≥ k for all z ∈ V (G)\V (M). Then G contains a rainbow matching M ′ of size k − 1 and a disjoint edge.

Proof. Let x1y1, . . . , xk−1yk−1 be the edges ofM with c(xiyi) = i. LetW = V (G)\V (M). Wemay assume that G[W ] is empty
or else the lemma holds easily.

Suppose the lemma does not hold for G. By relabelling the indices of i and swapping the roles of xi and yi if necessary, we
will show that there exist distinct vertices z1, . . . , zk−1 inW such that for each 1 ≤ i ≤ k − 1, the following holds:
(ai) yizi is an edge and c(yizi) ∉ [i].
(bi) Let Ti be the vertex set {xj, yj, zj : i ≤ j ≤ k − 1}. For any colour j′, there exists a rainbow matching M i

j′ of size k − i on
Ti such that c(M i

j′) ∩ ([i − 1] ∪ {j′}) = ∅.
(ci) LetWi = W \ {zi, zi+1, . . . , zk−1}. For all w ∈ Wi, N(w) ∩ Ti ⊆ {yi, . . . , yk−1}.

LetWk = W and Tk = ∅. Suppose that we have already found zk−1, zk−2, . . . , zi+1. We find zi as follows.
Note that |Wi+1| ≥ n−2(k−1)− (k− i−1) ≥ 1, soWi+1 ≠ ∅. Let z be a vertex inWi+1. By the colour degree condition,

z must be incident to at least k edges of distinct colours, and in particular, at least k − i distinct coloured edges not using
colours in [i]. By (ci+1), z sends at most k − i − 1 edges to Ti+1. So there exists a vertex u ∈ V (M)\Ti+1 = {xj, yj : 1 ≤ j ≤ i}
such that uz is an edge with c(uz) ∉ [i]. Without loss of generality, u = yi and we set zi = z. Clearly (ai) holds.

We now show that (bi) holds for any colour j′. If j′ ≠ i, then by (bi+1), there is a rainbowmatchingM i+1
j′ of size k− i−1 on

Ti+1 such that c(M i+1
j′ ) ∩ ([i] ∪ {j′}) = ∅. SetM i

j′ = M i+1
j′ ∪ xiyi. SoM i

j′ is a rainbowmatching on Ti of size k− i and moreover
c(M i

j′) ∩ ([i − 1] ∪ {j′}) = ∅ as required. If j′ = i, then by (bi+1), there is a rainbowmatchingM i+1
c(yizi)

of size k − i − 1 on Ti+1

such that c(M i+1
c(yizi)

) ∩ ([i] ∪ {c(yizi)}) = ∅. SetM i
i = M i+1

c(yizi)
∪ yizi. Note thatM i

i is the desired rainbow matching.
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Let wt be an edge with w ∈ Wi and t ∈ Ti. Since G[W ] is empty, t ∉ {zi, zi+1, . . . , zk−1}. By (ci+1), t ∉ {xi+1, xi+2, . . . ,

xk−1}. Suppose that t = xi. By (bi+1), there exists a rainbow matchingM i+1
c(yizi)

of size k − i − 1 on Ti+1 such that c(M i+1
c(yizi)

) ∩

([i]∪{c(yizi)}) = ∅. LetM ′ be thematching {xjyj : j ∈ [i−1]}∪M i+1
c(yizi)

∪{yizi}. Note thatM ′ is a rainbowmatching of size k−1
vertex-disjoint from the edgewxi. This contradicts the fact thatG is a counterexample. Hencewehave t ∈ {yi, yi+1, . . . , yk−1}

implying (ci).
Therefore we have found z1, . . . , zk−1. Let w ∈ W1 ≠ ∅. Recall the G[W ] = ∅, so N(w) ⊆ {y1, . . . , yk−1} by (c1), which

implies that dc(w) ≤ d(w) ≤ k − 1, a contradiction. �

Corollary 2.3. Every family G of graphs satisfies γ (G) ≤ 3.

For colour sets C and integers ℓ, we now define a (C, ℓ)-adapter below, which will be crucial in the proof of Lemma 2.5.
Roughly speaking a (C, ℓ)-adapter is a vertex subset W that contains a rainbow matching M with c(M) = C even after
removing a vertex inW .

Given ℓ ∈ N and a set C of colours, a vertex subsetW ⊆ V (G) is said to be a (C, ℓ)-adapter if there exist (not necessarily
edge-disjoint) rainbowmatchingsM1, . . . ,Mℓ in G[W ] such that c(Mi) = C for all i ∈ [ℓ], and given anyw ∈ W , there exists
i ∈ [ℓ] such thatw ∉ V (Mi). We write C-adapter for (C, |C |+1)-adapter. Note that a (C, ℓ)-adapter is also a (C, ℓ′)-adapter
for all ℓ ≤ ℓ′. The following proposition studies some basic properties of (C, ℓ)-adapters.

Proposition 2.4. Let G be a graph with an edge-colouring c.
(i) Let C = {c1, . . . , cℓ} be a set of distinct colours. Let W = {xi, yi, zi, w : i ∈ [ℓ]} be a vertex set such that c(xiyi) = ci =

c(ziw) for all i ∈ [ℓ]. Then W is a C-adapter.
(ii) Let ℓ1, . . . , ℓp ∈ N and let C1, . . . , Cp be pairwise disjoint colour sets. Suppose that Wj is a (Cj, ℓj)-adapter for all j ∈ [p]

and that W1, . . . ,Wp are pairwise disjoint. Then
p

j=1 Wj is a
p

j=1 Cj,maxj∈[p]{ℓj}

-adapter.

(iii) Let C be a colour set. Suppose that W is a (C, ℓ)-adapter. Suppose that x, y, z ∈ V (G)\W and w ∈ W such that xy, zw ∈

E(G) and c(xy) = c(zw) ∉ C. Then W ∪ {x, y, z} is a (C ∪ {c(xy)}, ℓ + 1)-adapter.

Proof. To prove (i), we simply setMi = {xjyj : j ∈ [ℓ]\{i}} ∪ {wzi} for all i ∈ [ℓ] andMℓ+1 = {xjyj : j ∈ [ℓ]}.
(ii) Let ℓ = max{ℓj : j ∈ [p]}. Note that each Wj is a (Cj, ℓ)-adapter. For j ∈ [p], let M j

1, . . . ,M
j
ℓ be rainbow matchings in

G[Wj] such that c(M j
i ) = Cj for all i ∈ [ℓ], and given anyw ∈ Wj, there exists i ∈ [ℓ] such thatw ∉ V (M j

i ). SetMi =
p

j=1 M
j
i .

So (ii) holds.
(iii) LetM1, . . . ,Mℓ be rainbowmatchings in G[W ] such that c(Mi) = C for all i ∈ [ℓ], and given anyw′

∈ W , there exists
i ∈ [ℓ] such that w′

∉ V (Mi). Without loss of generality we have w ∉ V (M1). Now set M ′

i = Mi ∪ {xy} for all i ∈ [ℓ] and
M ′

ℓ+1 = M ′

1 ∪ {wz}. Hence, W ∪ {x, y, z} is a (C ∪ {c(xy)}, ℓ + 1)-adapter. �

We prove the following lemma. The main idea of the proof is to consider (C, ℓ)-adapters in Gwith ℓ maximal.

Lemma 2.5. Let k ∈ N and let 2 < γ ≤ 3. Let G be a family of graphs closed under vertex/edge deletion with γ (G) ≤ γ . Suppose
that G ∈ G with

|G| ≥


2 +

γ

2


k +

2(4 − γ )

(γ − 2)2
− 3 + γ

and that G contains a rainbow matching of size k − 1. Further suppose that for all rainbow matchings M of size k − 1 in G, we
have dc(v) ≥ k for all v ∈ V (G)\V (M). Then G contains a rainbow matching of size k.

Proof. We proceed by induction on k. It is trivial for k = 1, so we may assume that k ≥ 2.
Let p ∈ N ∪ {0} and let ℓ1, . . . , ℓp ∈ N with ℓ1 ≥ . . . ≥ ℓp and

p
i=1 ℓi ≤ k − 1. Let P = {W1, . . . ,Wp,U} be a vertex

partition of V (G). We say that P has parameters (ℓ1, ℓ2, . . . , ℓp) if
(a) there exist p pairwise disjoint colour sets C1, . . . , Cp such that |Ci| = ℓi for all i ∈ [p];
(b) Wi is a Ci-adapter and |Wi| = 3ℓi + 1 for all i ∈ [p];
(c) there exists a rainbow matchingMU of size k − 1 −

p
i=1 ℓi in G[U] with c(MU) ∩ Ci = ∅ for all i ∈ [p];

(d) U\V (MU) ≠ ∅.

Since G contains a rainbow matching M of size k − 1, such a vertex partition exists (p = 0 and U = V (G) say). We now
assume that P is chosen such that the string (ℓ1, . . . , ℓp) is lexicographically maximal. (Here, we view (a1, a2, . . . , ap) as
(a1, a2, . . . , ap, 0, . . . , 0), e.g. (3, 2, 2) ≤ (4, 1) ≤ (4, 1, 1).)

Let C1, . . . , Cp be the sets of colours guaranteed by (a)–(c). Set W = W1 ∪ · · · ∪ Wp and C =
p

i=1 Ci. Let ℓ0 = k − 1 −p
i=1 ℓi. By (b) and Proposition 2.4(ii), W is a (C, ℓ1 + 1)-adapter. The following claim gives some useful properties of the

rainbow matchings in G[U] and G\W . This will be needed to finish the proof of the lemma.

Claim 2.6. (i) Let MU be a rainbow matching of size ℓ0 in G[U] with c(MU) ∩ C = ∅. If |U| ≥ 2ℓ0 + 2 and there is an edge
wz ∈ E(G) with w ∈ W and z ∈ U\V (MU), then we have c(wz) ∈ C.

(ii) Let M ′ be a rainbow matching of size k − 1 − ℓ1 in G\W with c(M ′) ∩ C1 = ∅. If wx ∈ E(G) with w ∈ W1 and x ∈

V (G)\(W1 ∪ V (M ′)), then c(wx) ∈ C1.
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Proof of Claim. Suppose that (i) is false. There exists an edge wz ∈ E(G) such that c(wz) ∉ C , w ∈ Wi for some i ∈ [p] and
z ∈ U\V (MU). Note that there exists a rainbow matching MW in G[W\w] such that c(MW ) = C since W is a C-adapter. If
c(wz) ∉ C ∪ c(MU), then MU ∪ MW ∪ {wz} is a rainbow matching of size k, so we are done. If c(wz) ∈ c(MU), then let xy
be the edge in MU such that c(xy) = c(wz). Set W ′

i = Wi ∪ {x, y, z}, W ′

j = Wj for all j ∈ [p]\{i} and U ′
= U\{x, y, z}. Let

ℓ′

i = ℓi + 1 and let ℓ′

j = ℓj for all j ∈ [p]\{i}. Set C ′

i = Ci ∪ {c(xy)} and C ′

j = Cj for all j ∈ [p]\{i}. By Proposition 2.4(iii), W ′

j
is a C ′

j -adapter for all j ∈ [p]. Note that MU ′ = MU − xy is a rainbow matching in G[U ′
] with c(MU ′) ∩ C ′

j = ∅ for all j ∈ [p].
Also U ′

\V (MU ′) = U\(V (MU)∪ {z}) ≠ ∅. By relabelling the setsW ′

j and C ′

j if necessary, we deduce that the vertex partition
P ′

= {W ′

1, . . . ,W
′
p,U

′
} has parameters (ℓ′

1, . . . , ℓ
′
p) > (ℓ1, . . . , ℓp), which contradicts themaximality ofP . Hence (i) holds.

A similar argument proves (ii). �

Suppose that |U| > γ (ℓ0+1), so |U| ≥ 2ℓ0+3. LetH be the resulting subgraph of G[U] obtained after removing all edges
of colours in C . Let MU be a rainbow matching in H of size ℓ0 with c(MU) ∩ C = ∅, which exists by (c). By Claim 2.6(i), we
have for all z ∈ V (H)\V (MU), dcH(z) ≥ k−|C | = ℓ0 +1. Since γ (G) ≤ γ , H contains a rainbowmatchingM0 of size ℓ0 and a
disjoint edge e. If c(e) = c(xy) for some xy ∈ M0, then setWp+1 = V (e)∪{x, y}, Cp+1 = {c(xy)}, and U ′

= U\(V (e)∪{x, y}).
Observe that Wp+1 is a Cp+1-adapter by Proposition 2.4(i). Note that M0 − xy is a rainbow matching of size ℓ0 − 1 in G[U ′

]

with c(M0) ∩


j∈[p+1] Cj = ∅ and |U ′
\V (M0)| = |U| − 2ℓ0 − 2 ≥ 1. Hence the vertex partition P ′

= {W1, . . . ,Wp+1,U ′
}

has parameters (ℓ1, . . . , ℓp, 1), contradicting the maximality of P . If c(e) ∉ c(M0), thenM0 ∪ e is a rainbowmatching with
c(M0 ∪ e) ∩ C = ∅. Together with (b), G contains a rainbow matching of size k with colours c(M0 ∪ e) ∪ C , so we are done.
Therefore we may assume that

|U| ≤ γ (ℓ0 + 1). (1)

Since 2 < γ ≤ 3 and ℓ0 ≤ k − 1, by the assumptions of Lemma 2.5, we have |G| > (2 + γ /2)k > γ k ≥ |U|. Therefore,
W ≠ ∅ and ℓ1 ≥ 1.

Next, suppose that (γ − 2)ℓ1 ≥ 2, so |W1| = 3ℓ1 + 1 ≤ (2 + γ /2)ℓ1. Let H1 be the subgraph of G obtained by removing
all vertices ofW1 and all edges of colours in C1. By the assumptions of Lemma 2.5, we then have

|H1| = |G| − |W1| ≥


2 +

γ

2


(k − ℓ1) +

2(4 − γ )

(γ − 2)2
− 3 + γ .

By (b) and (c), H1 contains a rainbow matching M ′ of size k − 1 − ℓ1. By Claim 2.6(ii), c(wx) ∈ C1 for all w ∈ W1 and x ∈

V (H1)\V (M ′). Hence, dcH1
(z) ≥ k − |C1| = k − ℓ1 for all z ∈ V (H1)\V (M ′). Note that this statement also holds for any

rainbow matchings M ′ of size k − 1 − ℓ1 in H1. Hence H1 satisfies the hypothesis of the lemma with k = k − ℓ1. By the
induction hypothesis,H1 contains a rainbowmatchingM ′′ of size k−ℓ1. By (b), there exists a rainbowmatchingM1 of size ℓ1
in G[W1] such that c(M1) = C1. Since c(M1)∩ c(M ′′) ⊆ C1 ∩ c(H1) = ∅,M1 ∪M ′′ is a rainbowmatching of size k as required.
Therefore we may assume that

(γ − 2)ℓ1 < 2. (2)

Recall that W is a (C, ℓ1 + 1)-adapter. So there exist rainbow matchings M∗

1 , M
∗

2 , . . . , M
∗

ℓ1+1 such that c(M∗

i ) = C for all
i ∈ [ℓ1 + 1] and

W =

ℓ1+1
i=1

(W\V (M∗

i )). (3)

LetMU be a rainbowmatching of size ℓ0 in G[U]with c(MU)∩C = ∅ (which exists by (c)). By (d), there exists z ∈ U\V (MU).
Note that z sends at least dc(z)−|V (MU)| ≥ k−2ℓ0 edges of distinct colours to V (G)\V (MU). Let q = ⌈(k−2ℓ0)/(ℓ1 +1)⌉.
By (3) and an averaging argument, there exists i ∈ [ℓ1 + 1] such that there exist vertices x1, . . . , xq ∈ V (G)\V (MU ∪ M∗

i )
such that c(zxj) is distinct for each j ∈ [q]. By Claim 2.6(i), we have c(zxj) ∈ C = c(M∗

i ) for all j ∈ [q]. Let e1, . . . , eq be edges
ofM∗

i such that c(ej) = c(zxj) for all j ∈ [q]. SetW ′
=


j∈[q](V (ej) ∪ {xj, z}) and C ′

= {c(ej) : j ∈ [q]}. By Proposition 2.4(i),
W ′ is a C ′-adapter. Set U ′

= V (G)\W ′ andMU ′ = (M∗

i ∪ MU)\W ′. Note that V (MU ′) ⊆ U ′ andMU ′ is a rainbowmatching of
size k − 1 − qwith c(MU ′) ∩ C ′

= ∅. Therefore, the vertex partition P ′
= {W ′,U ′

} has parameter (q). By the maximality of
P , we have ℓ1 ≥ q ≥ (k − 2ℓ0)/(ℓ1 + 1) and so

ℓ0 ≥ (k − ℓ1(ℓ1 + 1))/2. (4)

Recall that |Wi| = 3ℓi + 1 ≤ 4ℓi for all i ∈ [p], that
p

i=1 ℓi + ℓ0 = k − 1, and that 2 < γ ≤ 3. Finally, we have

|G| = |W1| +

p
i=2

|Wi| + |U|
(1)
≤ 3ℓ1 + 1 + 4

p
i=2

ℓi + γ (ℓ0 + 1)

= 3ℓ1 + 1 + 4(k − 1 − ℓ1) − (4 − γ )ℓ0 + γ

(4)
≤ 4k − 3 − ℓ1 −

(4 − γ )(k − ℓ1(ℓ1 + 1))
2

+ γ
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=


2 +

γ

2


k − 3 − ℓ1 +

(4 − γ )ℓ1(ℓ1 + 1)
2

+ γ

<

2 +

γ

2


k +

(4 − γ )ℓ2
1

2
− 3 + γ

(2)
<


2 +

γ

2


k +

2(4 − γ )

(γ − 2)2
− 3 + γ ,

a contradiction. This completes the proof of the lemma. �

We are now ready to prove Theorems 1.1 and 1.2.

Proof of Theorems 1.1 and 1.2. We first prove Theorem 1.1 by induction on k. Let G be an edge-coloured graph on n ≥

7k/2 + 2 vertices with δc(G) ≥ k. This is trivial for k = 1 and so we may assume that k ≥ 2. By the induction hypothesis G
contains a rainbowmatching of size k−1. Since δc(G) ≥ k, Corollary 2.3 implies that G satisfies the hypothesis of Lemma 2.5
with γ = 3. Therefore, G contains a rainbow matching of size k as required.

To prove Theorem 1.2, first note that by Proposition 2.1, γ (G′) = 2, where G′ is the family of all bipartite graphs. Also,
for γ = 2 + 2ε, we have

2 +
γ

2


k +

2(4 − γ )

(γ − 2)2
− 3 + γ = (3 + ε)k +

2(2 − 2ε)
4ε2

− 1 + 2ε ≤ (3 + ε)k + ε−2.

Therefore, Theorem 1.2 follows from a similar argument used in the preceding paragraph, where we take γ = 2 + 2ε and
G to be the family of all bipartite graphs in the application of Lemma 2.5. �

Wewould like to point out that an improvement of Corollary 2.3would lead to an improvement of Theorem1.1. However,
we believe that new ideas are needed to prove the case when 2k < |G| < 3k.

3. Existence of rainbowmatching covers

Proof of Theorem 1.3. By colouring every missing edge in Gwith a new colour, we may assume that G is an edge-coloured
complete graph on n vertices with ∆mon(G) = t and colours {1, 2, . . . , p}. For i ≤ p, let Gi be the subgraph of G induced by
the edges of colour i. Without loss of generality, we may assume that e(G1) ≥ e(G2) ≥ · · · ≥ e(Gp).

For 1 ≤ i ≤ p, suppose that we have already found a set M = {M1, . . . ,M⌊tn/2⌋} of edge-disjoint (possibly empty)
rainbow matchings such that


1≤j≤⌊tn/2⌋ Mj =


j′<i E(Gj′). We now assign edges of Gi to these matchings so that the

resulting rainbow matchings M ′

1, . . . ,M
′

⌊tn/2⌋ contain all edges of G1
∪ . . . ∪ Gi. Define an auxiliary bipartite graph H as

follows. The vertex classes of H are E(Gi) and M. An edge f ∈ E(Gi) is joined to a rainbow matching Mj ∈ M if and only
if f is vertex-disjoint from Mj. If H contains a matching of size e(Gi), then we assign f ∈ E(Gi) to Mj ∈ M according to the
matching in H . Thus we have obtained the desired rainbow matchings M ′

1, . . . ,M
′

⌊tn/2⌋. Therefore, to prove the theorem, it
is sufficient to show that H satisfies Hall’s conditions.

Let f ∈ E(Gi). Since f is incident to 2(n − 2) edges in G, f is incident to at most 2(n − 2) matchingsMj ∈ M. Thus,

|NH(f )| ≥ |M| − 2(n − 2) ≥ (t − 4)n/2. (5)

We divide the proof into two cases depending on the value of i.

Case 1: i ≤
(t−4)n
4(t+1) . Let S ⊆ E(Gi) with S ≠ ∅. Note that each Mj ∈ M has size at most i − 1. If S contains a matching of

size 2i − 1, then for every Mj ∈ M, there exists an edge f ∈ S vertex-disjoint from Mj. Thus, NH(S) = M and so |NH(S)| =

⌊tn/2⌋ ≥ e(Gi) ≥ |S|.
Therefore, we may assume that S does not contain a matching of size 2i− 1. By Vizing’s theorem, |S| ≤ 2(i− 1)(∆(Gi)+

1) ≤ 2(i − 1)(t + 1). By (5) and the assumption on i, we have

|NH(S)| ≥ (t − 4)n/2 ≥ 2(i − 1)(t + 1) ≥ |S|.

Therefore, Hall’s condition holds for this case.
Case 2: i > (t−4)n

4(t+1) . Since e(G
1) ≥ e(G2) ≥ · · · ≥ e(Gp), we have e(Gi) ≤

n
2


/i < 2(t +1)n/(t −4). Let S ⊆ E(Gi)with S ≠ ∅.

By (5) and the fact that t ≥ 11, we have

|NH(S)| ≥ (t − 4)n/2 ≥ 2(t + 1)n/(t − 4) > e(Gi) ≥ |S|.

Therefore, Hall’s condition also holds for this case. This completes the proof of the theorem. �
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