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ELA

ON THE MAX-ALGEBRAIC CORE OF A NONNEGATIVE MATRIX∗

PETER BUTKOVIČ† , HANS SCHNEIDER‡ , AND SERGĔı SERGEEV§

Abstract. The max-algebraic core of a nonnegative matrix is the intersection of column spans

of all max-algebraic matrix powers. This paper investigates the action of a matrix on its core. Being

closely related to ultimate periodicity of matrix powers, this study leads to new modifications and

geometric characterizations of robust, orbit periodic and weakly stable matrices.

Key words. Max algebra, Ultimate periodicity, Perron-Frobenius, Eigenspace, Core.

AMS subject classifications. 15A80, 15A18, 15A03.

1. Introduction. The concept of matrix core was introduced by Pullman [26]

in the case of nonnegative algebra. Defined as the intersection of nonnegative column

spans of matrix powers

core(A) =

∞
⋂

t=1

span(At),

it was used to derive an alternative geometric proof of the Perron-Frobenius theorem.

Tam and Schneider [31] developed an extension of Pullman’s results to cone-preserving

maps. The core is also related to the limiting sets of Markov chains investigated by

Sierksma [29], or the limiting sets of matrix groups described, e.g., by Seneta [27] and

Hartfiel [19].

In a previous work [11], we investigated two cores of a nonnegative matrix: The

“traditional” core defined by Pullman, and the “new” core defined in max algebra.

Generalizing an argument of Pullman we gave a simultaneous proof that in both alge-

bras, core(A) equals the Minkowski sum of all eigencones (i.e., cones of nonnegative

eigenvectors) of matrix powers. We also proved the periodicity of the sequence of

eigencones of matrix powers and described extremals of the core, in both algebras.

These results can be seen in the framework of unification and parallel development
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of nonnegative linear algebra and max algebra. To this end, let us also mention the

previous works on generators, extremals and bases of max cones [8], and Z-matrix

equations [10].

In the present work, we are interested in the action of a nonnegative matrix on

its max-algebraic core. We observe that while this action is bijective in the usual

(nonnegative) algebra, it is in general only surjective in the case of max algebra. Fur-

ther, Butkovič et al. previously investigated certain classes of matrices related to the

ultimate periodicity, in particular, robust matrices [7] and weakly stable matrices [9].

Following the same ideas, Sergeev and Schneider [28] considered orbit periodic ma-

trices. Here we introduce the core restrictions of these notions. We show that this

leads to a more geometric and in a sense, more transparent characterisation of robust

and orbit periodic matrices. In the case of weakly stable matrices, the core restriction

does not yield any alternative characterization, but it gives a necessary and sufficient

condition for a matrix to be bijective on its core, in max algebra.

The paper is organized as follows. Section 2 is occupied with preliminaries on

max-algebraic cyclicity, Frobenius normal form and reducible spectral theory. Here

we also give a review of the results on access relations between classes of Frobenius

normal form of matrix powers, formulated in [11]. In Section 3, we review the equality

between the core and Minkowski sum of eigencones of matrix powers obtained in [11]

for the case of max algebra, and introduce the classes of matrices mentioned above.

We add here some new observations, on the core of integer matrices in max-plus

algebra, and on the core in max-min algebra. Section 4 contains our main results on

core restrictions of robustness, orbit periodicity and weak stability. Here we develop

a geometric characterization of robust and orbit periodic matrices in terms of the

core, and establish an equivalence between bijectivity and the core restriction of weak

stability.

2. Max-algebraic cyclicity and spectral theory.

2.1. Max algebra: Main objects. By max algebra we understand the set of

nonnegative numbers R+ where the role of addition is played by taking maximum of

two numbers: a⊕b := max(a, b), and the multiplication is as in the usual arithmetics.

This is carried over to matrices and vectors like in the usual linear algebra so that for

two matrices A = (aij) and B = (bij) of appropriate sizes, (A⊕ B)ij = aij ⊕ bij and

(A⊗B)ik =
⊕

k aikbkj . Notation Ak will stand for the kth max-algebraic power.

With a matrix A = (aij) ∈ R
n×n
+ we associate a weighted (di)graph G(A) with

the set of nodes N = {1, . . . , n} and set of edges E ⊆ N ×N containing a pair (i, j)

if and only if aij 6= 0; the weight of an edge (i, j) ∈ E is defined to be w(i, j) := aij .

A graph with just one node and no edge will be called trivial.
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A path P in G(A) is a sequence of nodes i0, i1, . . . , it such that each pair (i0, i1),

(i1, i2), . . . , (it−1, it) is an edge in G(A). It has length l(P ) := t and weight w(P ) :=

w(i0, i1) ·w(i1, i2) · · ·w(it−1, it), and is called an i − j path if i0 = i and it = j. P is

called a cycle if i0 = it, and a cycle is called elementary if all nodes of the cycle are

distinct.

A = (aij) ∈ R
n×n
+ is irreducible if G(A) is trivial or for any i, j ∈ {1, . . . , n} there

is an i − j path. Otherwise A is reducible.

A set V ⊆ R
n
+ will be called a max cone if 1) αv ∈ V for all v ∈ V and α ∈ R+, 2)

u⊕v ∈ V for u, v ∈ V . Max cones are also known as idempotent semimodules, see [22,

23]. A max cone V is said to be generated by S ⊆ R
n
+ if each v ∈ V can be represented

as a max combination v =
⊕

x∈S αxx where only finitely many (nonnegative) αx are

different from zero. When V is generated (we also say “spanned”) by S, this is

denoted V = span(S). When V is generated by the columns of a matrix A, this is

denoted V = span(A). Max cones are max-algebraic analogues of convex cones.

A vector z in a max cone V ⊆ R
n
+ is called an extremal if z = u⊕ v and u, v ∈ V

imply z = u or z = v. Any finitely generated max cone is generated by its extremals,

see Wagneur [32] and [8, 17] for recent extensions.

The maximum cycle geometric mean (m.c.g.m.) of A is defined by

(2.1) ρ(A) = max{w(C)1/l(C); C is a cycle in G(A)}

The critical graph of A, denoted by C(A), consists of all nodes and edges belonging

to the cycles which attain the maximum in (2.1). The set of such nodes will be called

critical and denoted Nc; the set of such edges will be called critical and denoted

Ec. Observe that the critical graph, defined as above, consists of several strongly

connected subgraphs of G(A). Maximal such subgraphs are the strongly connected

components of C(A).

If for A ∈ R
n×n
+ we have A⊗x = ρx with ρ ∈ R+ and a nonzero x ∈ R

n
+, then ρ is

a max(-algebraic) eigenvalue and x is a max(-algebraic) eigenvector associated with ρ.

The set of max eigenvectors x associated with ρ, with the zero vector adjoined to it,

is a max cone further denoted by V (A, ρ). It is called the eigencone of A associated

with ρ.

In general, a matrix A ∈ R
n×n
+ may have several max eigenvalues. The greatest

max eigenvalue is equal to ρ(A) (see [2, 6, 14, 21]), and it is called the principal

eigenvalue. The corresponding eigencone is called the principal eigencone. It is also

known that if A is irreducible, then ρ(A) is the only eigenvalue, which we call the

max-(algebraic) Perron root of A.
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There is an explicit description of V (A, ρ(A)), see Theorem 2.5 below. It uses the

Kleene star

(2.2) A∗ = I ⊕A⊕A2 ⊕A3 ⊕ · · · ,

where I denotes the identity matrix. Series (2.2) converges if and only if ρ(A) ≤ 1,

in which case A∗ = I ⊕ A⊕ · · · ⊕An−1. Note that if ρ(A) 6= 0, then ρ(A/ρ(A)) = 1,

and so (A/ρ(A))∗ always converges.

The path interpretation of max-algebraic matrix powers A⊗l is that each entry

a⊗l
ij is equal to the greatest weight of i − j paths with length l. Consequently, for

i 6= j, the entry a∗ij of A∗ is equal to the greatest weight of i − j paths (with no

length restrictions).

For a strongly connected graph G define its cyclicity σ as the gcd of the lengths

of all elementary cycles and the cyclicity of a trivial graph to be 1. For a (general)

graph containing several maximal strongly connected components (such as the critical

graph C(A)), cyclicity is defined as the lcm of the cyclicities of the strongly connected

components. A graph with cyclicity 1 is called primitive.

The following result demonstrates importance of cyclicity of critical graph in max

algebra.

Theorem 2.1 (Cyclicity Theorem, Cohen et al. [13]). Let A ∈ R
n×n
+ be irre-

ducible and let σ be the cyclicity of C(A). Then σ is the smallest p such that there

exists T (A) with At+p = ρp(A)At for all t ≥ T (A).

This result is closely related to the theory of graph exponents as presented, for

instance, in Brualdi-Ryser [4]. In particular, it exploits the following number-theoretic

lemma due to Schur and Frobenius:

Lemma 2.2 ([4], Lemma 3.4.2). Let n1, . . . , nm be integers and let k = gcd(n1, . . . ,

nm). Then there exists a number T such that for all integers l with kl ≥ T , we have

kl = t1n1 + · · ·+ tmnm for some t1, . . . , tm ≥ 0.

2.2. Ultimate periodicity and immediate periodicity. Theorem 2.1 also

shows that the periodicity of sequences is crucial in max algebra. We will need the

following formal definitions.

A sequence of scalars/vectors/matrices {Xt}t≥1 over R+ is called ultimately peri-

odic with the period τ growth rate r ∈ R+ if τ is the smallest integer p ≥ 1 such that

there exists T with Xt+p = rpXt for all t ≥ T .

A sequence of max cones {Vt}t≥1 in R
n
+ is called ultimately periodic with the

period σ if τ is the smallest integer p ≥ 1 such that there exists T with Vt+p = Vt for

all t ≥ T .
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An ultimately periodic sequence of scalars/vectors/matrices {Xt}t≥1 over R+ or

max cones {Vt}t≥1 in R
n
+ is called immediately periodic or just periodic, if T can be

set to 1 in the definitions above.

In terms of the ultimate periodicity, Theorem 2.1 can be formulated as follows:

For any irreducible nonnegative matrix A ∈ R
n×n
+ , the sequence of matrix powers

{At}t≥1 is ultimately periodic with the period equal to the cyclicity of critical graph,

and with the growth rate equal to the maximal cycle geometric mean of A.

Strictly speaking, the ultimate periodicity is also characterized by the smallest

possible parameter T in the above definitions, which is called the defect of sequence

or its periodicity threshold. The reader is referred to, e.g., Akian, Gaubert, Walsh [1]

and Hartman, Arguelles [20] for various bounds and algorithms estimating the value

of T (A) in Theorem 2.1.

We also note that for a general reducible matrix A ∈ R
n×n
+ , not all the sequences

{a
(t)
ij }t≥1 for i, j ∈ {1, . . . , n}, are ultimately periodic in the sense of the definition

given above. Such sequences can be decomposed into ultimately periodic subsequences

with different growth rates, and the reader is referred to De Schutter [15], Gavalec [18]

and Molnárová [24] for more details. However, we do not need such general results

and details in the present paper.

2.3. Other idempotent algebras. Max-plus algebra Rmax is defined over R∪

{−∞}, the set of real numbers completed with the “least” element −∞. It is equipped

with operations a ⊕ b := max(a, b) and a ⊗ b := a + b, where it is assumed that

a ⊗ −∞ = −∞ ⊗ a = −∞ and a ⊕ −∞ = −∞ ⊕ a = a. When applying the

exponential mapping x 7→ ex, the max-plus algebra is seen to be isomorphic to the

max(-times) algebra.

In the present paper, we still choose to work with the max-times version for its

theoretical convenience. The development of max-plus linear algebra is very similar

to that of max(-times) linear algebra.

However, we will touch upon Zmax: Extended set of integers Z∪{−∞} equipped

with the same max-plus arithmetics. This is a subsemiring of Rmax, whose “dual”

Zmin was treated in a work of Simon [30], with motivations in computer science and

automata theory.

We will also touch upon the max-min algebra: The interval [0, 1] equipped with

“addition” a ⊕ b := max(a, b) and “multiplication” a ⊗ b = min(a, b). For more

information on the linear algebra over this semiring, also known as fuzzy linear algebra,

the reader is referred to, e.g., Gavalec [18]. The only observation that we will later

use, is that unlike in max algebra, the “multiplication” defined as the minimum of
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956 P. Butkovič, H. Schneider, and S. Sergeev

two numbers a, b does not result in any other numbers than a or b. In particular, it

implies that the sequence {At}t≥1 is ultimately periodic for each matrix A with the

growth rate 1.

2.4. Frobenius normal form. Every matrix A = (aij) ∈ R
n×n
+ can be trans-

formed by simultaneous permutations of the rows and columns to a Frobenius Normal

Form (FNF) [3, 4]

(2.3)











A11 0 · · · 0

A21 A22 · · · 0
...

...
. . .

...

Ar1 Ar2 · · · Arr











,

where A11, . . . , Arr are irreducible square submatrices of A, corresponding to the

partition N1 ∪ N2 ∪ · · · ∪ Nr = N . Generally, AKL denotes the submatrix of A

extracted from rows with indices in K ⊆ N and columns with indices in L ⊆ N , and

Aµν is a shortcut for ANµNν
.

Consider the graph associated with Aµµ. It is the same as the graph induced

by Nµ: G(Aµµ) = (Nµ, E ∩ (Nµ × Nµ)). It follows that each of the graphs G(Aµµ)

(µ = 1, . . . , r) is strongly connected and an arc from Nµ to Nν in G(A) may exist only

if µ ≥ ν.

If A is in the Frobenius Normal Form (2.3) then the reduced graph, denoted R(A),

is the (di)graph whose nodes correspond to Nµ, for µ = 1, . . . , r, and the set of arcs

is {(µ, ν); (∃k ∈ Nµ)(∃ℓ ∈ Nν)akℓ > 0}).

The nodes of R(A) are marked by the corresponding max-algebraic eigenvalues

(Perron roots) denoted by ρµ := ρ(Aµµ). These nodes will be called classes of A.

We naturally attribute to a class µ also the graph G(Aµµ) with set of nodes Nµ and

cyclicity σµ.

We say that a class µ is trivial if Aµµ consists of a single diagonal zero entry,

i.e., when G(Aµµ) is trivial. Class µ accesses class ν, denoted µ → ν, if there exists

a µ − ν path in R(A). A class is called initial, resp., final, if it is not accessed by,

resp., if it does not access, any other class. Node i accesses class ν, denoted by i → ν,

if i belongs to a class µ such that µ → ν.

Simultaneous permutations of the rows and columns of A are equivalent to cal-

culating P−1AP, where P is a permutation matrix. Such transformations do not

change the eigenvalues, and the eigenvectors before and after such a transformation

only differ by the order of their components. Hence, we will assume without loss of

generality that A is in FNF (2.3).
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2.5. Reducible spectral theory. A class ν of A is called a spectral class of A

associated with eigenvalue ρ 6= 0, or sometimes (A, ρ)-spectral class for short, if

ρν = ρ, and µ → ν implies ρµ ≤ ρν .

Note that there may be several spectral classes associated with the same eigenvalue.

Denote by Λ(A), the set of nonzero eigenvalues of A ∈ R
n×n
+ . The following

description is standard.

Theorem 2.3 ([6] Th. 4.5.4, [16]). Let A ∈ R
n×n
+ . Then

Λ(A) = {ρν 6= 0; ν is spectral} = {ρν 6= 0; ∀µ, µ → ν implies ρµ ≤ ρν}.

For each ρ ∈ Λ(A) define

Aρ := ρ−1

(

0 0

0 AMρMρ

)

, where

Mρ := {i; i → ν, ν is (A, ρ)-spectral} .

The next proposition allows us to reduce a general eigencone to the case of a

principal eigencone. We will assume an appropriate ordering of indices (i.e., nodes

of the corresponding graph). Such assumptions will sometimes be made also in the

sequel, without special mention of them.

Proposition 2.4 ([6, 16]). For A ∈ R
n×n
+ and each ρ ∈ Λ(A), we have V (A, ρ) =

V (Aρ, 1), where 1 is the principal eigenvalue of Aρ.

Using Proposition 2.4, we define the critical graph associated with ρ ∈ Λ(A) as the

critical graph of Aρ. The strongly connected components of critical graphs associated

with ρ, for all ρ ∈ Λ(A), will be called the critical components of A. These components

will be (similarly as the classes of FNF) denoted by µ̃, with the node set Nµ̃.

We now describe the principal eigencones in max algebra. By means of Proposi-

tion 2.4, this description can be obviously extended to the case of general eigencones.

Recall that support of x ∈ R
n
+, denoted by suppx, is the set of indices i with xi 6= 0.

Theorem 2.5 ([6] Th. 4.3.5, [11] Th. 2.11, [16] ). Let A ∈ R
n×n
+ have ρ(A) = 1.

Then

(i) Each component µ̃ of C(A) corresponds to an eigenvector xµ̃ defined as one

of the columns A∗
·i with i ∈ Nµ̃, all columns with i ∈ Nµ̃ being multiples of

each other.

(i’) Each component µ̃ of C(A) is contained in a (spectral) class µ with ρµ = 1,

and the support of each xµ̃ of (i) consists of all indices in all classes that have

access to µ.
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(ii) V (A, 1) is generated by xµ̃ of (i), for µ̃ ranging over all components of C(A).

(iii) xµ̃ of (i) are extremals in V (A, 1). (Moreover, xµ̃ are strongly linearly inde-

pendent in the sense of [5].)

2.6. Access relations in matrix powers. In [11], it was demonstrated that

access relations and spectral classes of all matrix powers are essentially the same, and

that the case of an arbitrary eigenvalue reduces to the case of the principal eigenvalue.

We start from the following basic result.

Lemma 2.6 ([11], Lemma 5.1). Let A be irreducible with the (unique) eigenvalue

ρ, let G(A) have cyclicity σ and t be a positive integer. Then, At is a direct sum of

gcd(t, σ) irreducible blocks with eigenvalues ρt, and At does not have eigenvalues other

than ρt. The cyclicity of each block is σ/gcd(t, σ). In particular, all blocks of Aσ are

primitive.

Recall that each class µ of A corresponds to an irreducible submatrix Aµµ. It is

easy to see that (At)µµ = (Aµµ)
t for any positive integer t. Suppose that the cyclicity

of G(Aµµ) is σ. Applying Lemma 2.6 to Aµµ we see that µ gives rise to gcd(t, σ)

classes in At, which are said to be derived from their common ancestor µ. The classes

of At and Al derived from the common ancestor will be called related. Note that this

is an equivalence relation on the set of classes of all powers of A.

It can be checked that the same notions can be defined for the components of

critical graphs, see [11].

Let us recall the following results on the similarity of access relations in matrix

powers.

Lemma 2.7 ([11], Lemma 5.3). For all t, l ≥ 1 and ρ > 0, an index i ∈ {1, . . . , n}

accesses (resp., is accessed by) a class with Perron root ρt in At if and only if it

accesses (resp., is accessed by) a related class with Perron root ρl in Al.

A similar result holds for the strongly connected components of the critical graphs

of matrix powers, see [11], Theorem 3.3. We will only need the following observation,

which we formulate for the critical matrix AC = (aC)ij defined by

(aC)ij =

{

1, if (i, j) ∈ Ec,

0, otherwise.

Lemma 2.8. Let A ∈ R
n×n
+ . Then (AC)

t = (At)C .

This observation will allow us to apply Lemma 2.6 to the critical graphs C(At) of

matrix powers, that is, to the critical matrices (At)C .
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All eigenvalues and spectral classes of matrix powers are derived from those of A.

Theorem 2.9 ([11], Th. 5.4, Coro. 5.5). Let A ∈ R
n×n
+ and t ≥ 1.

(i) Λ(At) = {ρt; ρ ∈ Λ(A)}.

(ii) For each spectral class µ of A with cyclicity σ there are gcd(t, σ) spectral

classes of At derived from it. Conversely, each spectral class of At is derived

from a spectral class of A.

As in the case of eigencones of a matrix, when working with V (At, ρt) we can

assume that ρ = 1 is the principal eigenvalue of A, and hence of all At.

Theorem 2.10 ([11], Th. 5.7). Let A ∈ R
n×n
+ , t ≥ 1 and ρ ∈ Λ(A).

(i) (At)MρMρ
= (ρt(Aρ)

t)MρMρ
.

(ii) V (At, ρt) = V ((Aρ)
t, 1).

3. Core and eigenvectors. In this section, we recall the main results of [11]

on the matrix core, and its finite stabilization in special cases. We also consider the

case of integer entries and, briefly, the core in max-min algebra and other algebras

where every sequence of matrix powers {At}t≥1 is ultimately periodic.

3.1. Core in general. The purpose of [11], Section 4 was to show, by adapting

an argument of Pullman [26] to max algebra, that the max-algebraic core can be also

represented as the (Minkowski) sum of the eigencones of matrix powers, that is,

(3.1) core(A) =
⊕

t≥1,ρ∈Λ(A)

V (At, ρt).

By definition, on the right hand side of (3.1) we have a max cone consisting of all

combinations
⊕

t αty
(t) with y(t) ∈ V (At, ρt) and finite number of nonzero αt.

It was also shown in [11], Section 7 that the sequence of eigencones of matrix

powers is periodic. To describe this periodicity, the following notation was introduced:

1. σρ: Cyclicity of the critical graph associated with an eigenvalue ρ ∈ Λ(A),

2. σΛ: The lcm of all σρ, over ρ ∈ Λ(A),

and the Minkowski sums of all eigencones of matrix powers were considered:

V Σ(At) :=
⊕

ρ∈Λ(A)

V (At, ρt).

The periodicity can be described as follows.
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Theorem 3.1 ([11], Main Theorem 2). Let A ∈ R
n×n
+ and ρ ∈ Λ(A). Then the

sequence of max cones {V (At, ρt)}t≥1 is immediately periodic with the period σρ, and

V (At, ρt) ⊆ V (Aσρ , ρσρ) for all t.

Theorem 3.2 ([11], Main Theorem 2). Let A ∈ R
n×n
+ . Then the sequence of

max cones {V Σ(At)}t≥1 is immediately periodic with the period σΛ, and V Σ(At) ⊆

V Σ(AσΛ ) for all t.

In particular, V (At, ρt) ⊆ V (AσΛ , ρσΛ) for all ρ ∈ Λ(A), and hence,

⊕

t≥1,ρ∈Λ(A)

V (At, ρt) =
⊕

ρ∈Λ(A)

V (AσΛ , ρσΛ) = V Σ(AσΛ).

The central result of [11] can be formulated as follows:

Theorem 3.3 ([11], Main Theorem 1). Let A ∈ R
n×n
+ . Then

core(A) =
⊕

ρ∈Λ(A) V (Aσρ , ρσρ) = V Σ(AσΛ).

Note that the inclusion
⊕

ρ∈Λ(A) V (Aσρ , ρσρ) ⊆ core(A) holds since each vector

in V (Aσρ , ρσρ) is in span(Atσρ) for all t ≥ 1, hence in core(A).

The proof of the reverse inclusion relied on the facts collected in Lemma 3.4

below. Here, a vector v ∈ R
n
+ is called scaled if ||v|| :=

n
max
i=1

vi = 1, and A induces a

mapping on the scaled vectors of core(A) by v 7→ Av/||Av||.

Lemma 3.4. Let A ∈ R
n×n
+ , then

(i) core(A) is generated by no more than n vectors,

(ii) the mapping induced by A on core(A) is a surjection,

(iii) the mapping induced by A on the scaled extremals of core(A) is a permutation

(i.e., a bijection).

Note that in nonnegative linear algebra A is always bijective on its core. This

follows since the extreme generators of the nonnegative core are linearly independent

in the usual linear algebra, so A just permutes and rescales the elements of basis of

the linear-algebraic span of the nonnegative core.

In max algebra, A is in general non-bijective on core(A), and we later de-

scribe when A is bijective. Moreover, finite stabilization of the core (when core(A) =

span(At) for all large enough t) is often observed. Note that in this case, Theorem 3.3

follows immediately.

3.2. Ultimate periodicity and finite stabilization. In max algebra, there

are wide classes of matrices A ∈ R
n×n
+ where we have finite stabilization of the core.

We list some of them.
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• S1 : Irreducible matrices.

• S2 : Ultimately periodic matrices. This is when we have At+σ = ρσAt

for all sufficiently large t, with ρ = ρ(A). As shown in [25], this happens if

and only if the Perron roots of all nontrivial classes of A equal ρ(A).

• S3 : Robust matrices. For any nonzero vector x ∈ R
n
+, there exists t ≥ 1

such that Atx is an eigenvector of A. This implies that the whole remaining

part of the orbit of A, that is, {Asx}s≥t, consists of multiples of that eigen-

vector. The notion of robustness was introduced and studied in [7], and it

will be revisited below.

• S4 : Orbit periodic matrices: For any nonzero vector x ∈ R
n
+, there exists

t ≥ 1 such that Atx is an eigenvector of Aσ, implying that the remaining part

of the orbit of A is periodic (with some growth rate). See [28], Section 7 and

below for characterization.

• S5 : Column periodic matrices. This is when for any i = 1, . . . , n we have

(At+σ)·i = ρσi A
t
·i for all large enough t and some ρi.

Observe that S1 ⊆ S2 ⊆ S4 ⊆ S5 and S3 ⊆ S4 (see, e.g., [11], Section 4). To

see that span(At) = core(A) for all large enough t in all these cases, observe that in

the column periodic case all sequences of columns end up with periodically repeating

eigenvectors of Aσ, which implies that span(At) ⊆ core(A) for all large enough t, and

hence also span(At) = core(A). Thus, finite stabilization of the core occurs in all

these classes.

3.3. Integer max-plus case. Let us consider the semiring Zmax defined on the

set Z∪{−∞} with ⊕ = max and⊗ = +. This is a subsemiring of the max-plus algebra

Rmax, which is isomorphic to the max(-times) algebra that we consider. Essentially

this is the case of integer matrices in R
n×n
max . For such integer matrices Theorem 3.3

holds by isomorphism, with max-plus arithmetics. We will show that the generators

of the core of such matrices are in Z
n
max, i.e., that they have integer components. This

implies that Theorem 3.3 is also true in Zmax.

Theorem 3.5. Let A ∈ R
n×n
max have integer entries only. Then core(A) is gener-

ated by integer vectors.

Proof. We show that V (Aσ, ρσ), for any ρ ∈ Λ(A) and σ = σρ, is generated by

integer vectors. For this, we need to show that all ρ ∈ Λ(Aσ), that is, the maximal

cycle means in the spectral blocks of A, are integer. More precisely, each ρ ∈ Λ(Aσ)

can be expressed as

(3.2) ρ =
a
(σ)
i1i2

+ · · ·+ a
(σ)
imi1

m
,

where (i1, . . . , im) is any elementary cycle in a strongly connected component of the

critical graph corresponding to ρ. Eqn. (3.2) implies that ρ = K/M , where M is the

Electronic Journal of Linear Algebra  ISSN 1081-3810 
A publication of the International Linear Algebra Society
Volume 27, pp. 951-972, December 2014

http://math.technion.ac.il/iic/ela



ELA
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lcm of all lengths of elementary cycles (i1, . . . , im), and K is a multiple of M/m for

any such cycle. All strongly connected components of the critical graph of Aσ are

primitive, hence the gcd of all denominators in (3.2), taken over all elementary cycles

(i1, . . . , im) in a critical component, is 1.

Next we use the following observation from the elementary number theory: If the

numbers mi, for i = 1, . . . , ℓ are coprime (i.e., gcd(mi) = 1), and M = lcm(mi), then

lcm(M/mi) = M .

Since K is a multiple of M/mi and lcm(M/mi) = M , we obtain that K is a

multiple of M so ρ in (3.2) is integer. Since all ρ ∈ Λ(Aσ) are integer, and since

extremals of the cone are columns of (Aσ
ρ )

∗ for ρ ∈ Λ(A) (by Theorem 3.3 and

Theorem 2.5), the result follows.

This result can be also deduced from the Cyclicity Theorem 2.1. By that result,

ρσ satisfies At+σ = ρσAt for all large enough t, for A irreducible. If A has only integer

entries then so do all the powers of A, and we deduce that ρσ is integer. In the case

of reducible A, this argument is applied to the powers of each submatrix of A that

corresponds to a spectral class (observe that the cyclicity of the critical graph in each

spectral class divides σ, which is the lcm of all such cyclicities).

3.4. Core in max-min algebra. Max-min algebra gives an example where the

ultimate periodicity of At takes place for all A, with the growth rate 1 [18]. Indeed,

the operations in this semiring are such that all entries of At are among the entries of

A, so they start to repeat after some time, with a period bounded by n2. See [18] for

more information. Hence, in this case, we have an analogue of Theorem 3.3, where
⊕

ρ∈Λ(A) V (At, ρt) must be replaced with V (At, 1). So

core(A) =
⊕

k≥1

V (Ak, 1)

in max-min algebra and in any other algebra where the sequence {At} is ultimately

periodic with growth rate 1 for all A. Note that in max-min algebra each number

is an eigenvalue, however the corresponding eigenvectors do not belong to the core

unless they can also be associated with the eigenvalue 1.

4. Action of a matrix on the core. This section contains the main results

of the present paper. Here we study the mapping induced by a matrix on its core in

max algebra.
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4.1. Finite stabilization. We first extend Cyclicity Theorem (Theorem 2.1)

to the case of a spectral index, i.e., an index that belongs to a spectral class with

ρµ = ρ(A). Note that in the case when A is irreducible there is only one class, which

is spectral, and therefore every index is spectral in this case.

Theorem 4.1. Let A ∈ R
n×n
+ , and let j be an index in a spectral class. Then

the sequence of columns {At
·j}t≥1 is ultimately periodic.

Proof. We can assume without loss of generality that the greatest eigenvalue (i.e.,

the m.c.g.m.) of A is 1. For now we will also assume that the critical graph C(A) is

primitive, and that the spectral class containing j is associated with the eigenvalue 1,

i.e., with the greatest eigenvalue. We will show how to omit these two assumptions

in the end of the proof.

Let i be an index with access to j. We show that a
(t)
ij is constant at all large

enough t. Note that when i does not have access to j, we have a
(t)
ij = 0 for all t.

Denote by Π1 the set of paths that connect i to j via a critical index, with length

bounded by 2(n−1), and denote by w(Π1) the largest weight of paths in Π1. Observe

that since j is in a spectral class, there are paths connecting i to j via a critical

index. Indeed, there are critical nodes in the strongly connected component of G(A)

containing j. Any such critical node can be connected to j by a path, and back. The

resulting cycle can be appended to the access path from i to j, forming a path that

connects i to j via a critical index.

Denote by Π2 the set of paths that connect i to j and do not traverse any critical

index, with length bounded by n, and by w(Π2) the biggest weight of paths in Π2.

Denote by µ the second largest cycle geometric mean in A, taken among the simple

cycles only, then µ < 1.

Let us first prove that

a
(t)
ij ≤ w(Π1)⊕ w(Π2)µ

t−n

for all t.

Case 1. Suppose that a
(t)
ij is the weight of a path P that connects i to j via a

critical index k. Then it can be decomposed as P1 ◦ P2 where P1 connects i to k and

P2 connects k to j. Delete a cycle (if any) from P1, then remove another one (if it

still exists), and so on until no cycle exists as a subpath of P1. Then repeat the same

process with P2. By this we obtain a simple path P ′
1 connecting i to k and a simple

path P ′
2 connecting k to j. We conclude that P ′

1 ◦ P
′
2 ∈ Π1, and

a
(t)
ij = w(P ) = w(P1 ◦ P2) ≤ w(P ′

1 ◦ P
′
2) ≤ w(Π1).
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Note that since there exist paths connecting i to j through a critical index, the cycle

deletion argument above implies that Π1 is non-empty and w(Π1) > 0.

Case 2. Suppose that a
(t)
ij is the weight of a path P̃ that connects i to j not

traversing any critical index. Repeatedly applying the cycle deletion to P̃ we obtain

a simple path or a cycle P̃2 with length bounded by n and weight bounded by w(Π2).

Since we deleted only non-critical cycles with cycle mean not exceeding µ, we obtain

a
(t)
ij = w(P̃ ) ≤ w(P̃2)µ

t−l(P̃2) ≤ w(Π2)µ
t−n.

So in this case we also have a
(t)
ij ≤ w(Π1)⊕ w(Π2)µ

t−n for all t.

We need to show that a
(t)
ij = w(Π1) for all large enough t. The path attaining

w(Π1) (composed of two simple paths) goes through a critical index k, which lies in

a primitive critical component. Then by Lemma 2.2 for all large enough t there exist

critical cycles of length t passing through k, hence for all large enough t there exist

paths connecting i to j via k with weight w(Π1). This shows that a
(t)
ij = w(Π1) for

all large enough t.

As i and j were chosen only with the restriction that j is in a spectral class with

eigenvalue 1, and i has access to j, it follows that all columns of At with indices in

a spectral class with m.c.g.m. 1 are ultimately constant (that is, ultimately periodic

with period 1 and growth rate 1), when the critical graph of A is primitive and

ρ(A) = 1.

Consider the general case, that is, the case of an index j in a general spectral class

with general m.c.g.m. ρ and with general cyclicity σ = σρ of C(Aρ). We first use the

reduction to the powers of Aρ, see Theorem 2.10(i), where 1 is the greatest eigenvalue.

Raising A to the power σ and using Theorem 2.9 (ii), which shows that the set of

indices in spectral classes corresponding to a given eigenvalue does not depend on

power, we reduce to the main case considered above. In particular, by Lemmas 2.6

and 2.8 the critical graph C((Aρ)
σ) is primitive.

We obtain that the sequence of the jth columns of the powers of Aσ is ultimately

periodic with period 1 and growth rate ρσ, which implies that the sequence of the jth

columns of the powers of A is ultimately periodic with growth rate ρ and period at

most σ. Indeed, multiplying the equality A
(l+1)σ
·j = Alσ

·j by As for any s ≥ 1 from the

left, we get A
(l+1)σ+s
·j = Alσ+s

·j for all s ≥ 1. The proof is complete.

We will need the following observation on support of the vectors belonging to the

core.
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Proposition 4.2. Let z ∈ core(A), then

(i) For each class µ of Aσ, either Nµ ⊆ supp z, or Nµ ∩ supp z = ∅.

(ii) Consider the set of classes µ of Aσ such that Nµ ⊆ supp z, and let Rz be the

subgraph of the marked reduced graph R(Aσ) consisting only of such classes

and edges between them. Then in Rz, all final classes are spectral.

Proof. Part (i) holds for each eigenvector of Aσ, and in particular, for every

fundamental eigenvector (Aρ)
∗
·i where ρ ∈ Λ(A) and i belongs to the corresponding

critical graph. Part (ii) also holds for every fundamental eigenvector, since in Rz

there is a unique final class µ with Nµ ⊆ supp z containing i, and it is spectral.

To deduce both claims for general z ∈ core(A), we notice that by Theorem 3.3,

core(A) is generated by such fundamental eigenvectors, and that taking max-linear

combinations corresponds to taking the union of supports.

Proposition 4.3.

(i) If i belongs to a spectral class of A then At
·i ∈ core(A) for all large enough t;

(ii) If i belongs to a non-trivial non-spectral class of A then At
·i /∈ core(A) for any

t.

Proof. (i) Follows by Theorem 4.1.

(ii) We use Proposition 4.2. For any t, either the alternative “Nµ ⊆ supp(At
·i) or

Nµ ∩ supp(At
·i) = ∅” does not hold for some µ, or it holds but if for z = At

·i we take

the subgraph Rz described in Proposition 4.2 part (ii), then the only final class of this

subgraph is the one containing i, and it is not spectral. Thus, we have At
·i /∈ core(A)

for any t.

Theorem 4.4. Finite stabilization of core(A) occurs if and only if all nontrivial

classes of A are spectral.

Proof. The “only if” part: If there is a nontrivial non-spectral class then the

columns At
·i with i in that class do not belong to core(A) by Proposition 4.3.

The “if” part: Assume there are only spectral classes and trivial classes. By

Theorem 4.1, there is an integer T (A) such that all sequences {At
·i}t≥T (A), where i

is an index in a spectral class, are periodic. Now take t ≥ T (A) + n and let i be an

index of a trivial class. Let {Pk, k = 1, . . . , r} be all paths connecting certain indices

jk in spectral classes to i with a property that in these paths jk is not repeated and

no index other than jk can belong to a non-trivial class. Such paths will be called

direct access paths. Their length is bounded by n − 1, for otherwise they contain a

cycle, and any cycle belongs to a non-trivial class. So indeed, there is only a finite

number of such paths. Let l(Pk), w(Pk) denote the length, resp. the weight, of Pk,
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then for all s for which there are no direct access paths with length t connecting s to

i, we can express

a
(t)
si =

r
⊕

k=1

a
(t−l(Pk))
sjk

w(Pk).

Theorem 4.1 implies that {a
(t−l(Pk))
sjk

}t>l(Pk) is periodic at t ≥ T (A) + l(Pk), so every

such sequence is periodic at t ≥ T (A) + n. There are no direct access paths of length

t ≥ n, and hence of length t ≥ T (A)+n. Since for t ≥ T (A)+n, all columns A
t−l(Pk)
·jk

are in core(A). Using (4.1) we see that also At
·i ∈ core(A) for t ≥ T (A) + n.

4.2. Robustness. We characterize the classes of robust and orbit periodic ma-

trices (S3 and S4 of Subsection 3.2) by means of the restriction of these properties to

the core.

Matrix A is called core robust if for any x ∈ core(A)\{0} (instead of any x ∈

R
n
+\{0}) the orbit {Atx, t ≥ 1} hits an eigenvector of A in finite number of steps.

Theorem 4.5. A ∈ R
n×n
+ with no zero columns is robust if and only if it is core

robust and the core finitely stabilizes.

Proof. Evidently, core robustness is necessary. For the finite stabilization observe

that the sequence of columns {At
·i, t ≥ 0} is the orbit of the ith unit vector, and hence,

if A is robust then this orbit converges to an eigenvector of A. So At
·i ∈ core(A) for

all i and sufficiently large t.

The properties are also sufficient. Indeed, any orbit {Atx, t ≥ 0}, for x 6= 0,

first gets to a vector of the core by the finite stabilization property, and this vector is

nonzero since A does not have zero columns. Then the orbit hits an eigenvector of A

in a finite number of steps, by the core robustness.

Theorem 4.6. A is core robust if and only if

(i) the mapping induced by A on the scaled extremals of its core is identity; i.e.,

core(A) is generated by the eigenvectors of A, and

(ii) x ∈ V (A, ρ1)\{0}, y ∈ V (A, ρ2)\{0} and ρ1 < ρ2 imply that supp(x) ⊆

supp(y).

Proof. Both (i) and (ii) are necessary. Indeed, the mapping induced by A on

the scaled extremals of the core is a bijection, so the orbits of all extreme rays are

periodic. If (i) does not hold then there are extreme rays with period greater than

1, and they never stabilize. If (ii) does not hold, then no orbit of any combinations

αx ⊕ βy with α > 0 and β > 0 and x, y as in (ii) ever converges to an eigenvector.
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Indeed, we have

At(αx ⊕ βy) = αAtx⊕ βAty = αρt1x⊕ βρt2y.

For i ∈ suppx\ supp y, we have At(αx ⊕ βy)i = αρt1xi and for i ∈ supp y we have

At(αx ⊕ βy)i = αρt1xi ⊕ βρt2yi = βρt2yi for all large enough t. Hence, an eigenvector

will never be reached, a contradiction.

Let (i) and (ii) hold, then any y ∈ core(A) can be written as y =
⊕

µ αµxµ, where

xµ are eigenvectors corresponding to the eigenvalues

ρ1 ≤ ρ2 ≤ · · · ≤ ρl = · · · = ρm.

It follows that the union of all supports corresponding to the vectors with the largest

eigenvalue contains all other supports. Hence,

Aty =

m
⊕

µ=1

αµρ
t
µxµ = ρtm

m
⊕

µ=l

αµxµ

at all large enough t, hence A is core robust.

Now we deduce the characterization of robust matrices obtained by Butkovič,

Cuninghame-Green, Gaubert [7].

Theorem 4.7 (Butkovič et al. [7]). A ∈ R
n×n
+ with no zero columns is robust if

and only if the following conditions hold:

(i) All nontrivial classes of Frobenius normal form are spectral;

(ii) The critical graphs associated with all ρ ∈ Λ(A) are primitive;

(iii) For any two classes µ and ν, if both µ 6→ ν and ν 6→ µ then ρµ = ρν .

Proof. By Theorem 4.4, part (i) is equivalent to finite stabilization of core(A).

In view of Theorems 4.5 and Theorem 4.6, it is sufficient to show that part (ii) is

equivalent with Theorem 4.6(i), and part (iii) is equivalent with Theorem 4.6(ii).

For the first equivalence, we observe that V (AσΛ) = V (A) if and only if σΛ = 1.

Indeed, the “if” part is trivial, and for the “only if” part recall that V (A) ⊆ V (At) ⊆

V (AσΛ) for all t ≥ 1. So that if V (AσΛ ) = V (A) then the period of the sequence

{V (At)}t≥1 is 1, which equals σΛ by Theorem 3.2.

For the second equivalence, observe using the description of spectral classes of

Theorem 2.3, that part (iii) of the present theorem is equivalent to the following

condition:

(iii’) For any two classes µ and ν, ρµ < ρν implies µ → ν.

It suffices to show that this condition is equivalent to the one of Theorem 4.6(ii).
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For this, applying Theorem 2.5(i’), observe that (iii’) holds if and only if for any

pair of (spectral) classes µ and ν with ρµ < ρν and for any pair of critical components µ̃

in µ and ν̃ in ν, the associated fundamental eigenvectors satisfy supp(xµ̃) ⊆ supp(yν̃).

This already shows that if (iii’) is violated then Theorem 4.6(ii) does not hold.

For the converse, we argue that if x ∈ V (A, ρ1) and y ∈ V (A, ρ2), where x, y 6= 0 and

ρ1 < ρ2, then x, resp., y are combinations of fundamental eigenvectors xµ̃, resp., yν̃
satisfying supp(xµ̃) ⊆ supp(yν̃). As supp(x), resp., supp(y), is the union of supports

of such xµ̃, resp., yν̃ , the inclusion supp(x) ⊆ supp(y) follows.

Recall the notion of orbit periodicity defined in Subsection 3.2: A is called orbit

periodic if the orbit of any vector x ∈ R
n
+\{0} is ultimately periodic, which happens

if and only if it hits an eigenvector of AσΛ . The core restriction of orbit periodicity is

defined as follows: A is called core periodic if the orbit of any vector x ∈ core(A)\{0}

is ultimately periodic, i.e., it hits an eigenvector of AσΛ .

Observe that A is orbit periodic if and only if Aσ is robust, and this also holds

for the core restrictions (more generally, for any restrictions) of both notions. The

next observations are analogous to Theorems 4.5 and 4.6.

Theorem 4.8. A ∈ R
n×n
+ with no zero columns is orbit periodic if and only if it

is core periodic and the core finitely stabilizes.

Proof. Follows the lines of the proof of Theorem 4.5.

Theorem 4.9. A ∈ R
n×n
+ is core periodic if and only if x ∈ V (AσΛ , ρσΛ

1 )\{0},

y ∈ V (AσΛ , ρσΛ

2 )\{0} with ρ1, ρ2 ∈ Λ(A) and ρ1 < ρ2 imply that supp(x) ⊆ supp(y).

Proof. A ∈ R
n×n
+ is core periodic if and only if Aσ is core robust. Observe that Aσ

satisfies condition (i) in Theorem 4.6 since core(A) = core(Aσ), and this is generated

by the eigenvectors of Aσ. Hence, core robustness of Aσ is equivalent to condition (ii)

in Theorem 4.6. As Λ(Aσ) = {ρσ | ρ ∈ Λ(A)}, this condition is identical to the one

of the present proposition.

4.3. Bijection and weak stability. The concept of a weakly stable matrix was

introduced by Butkovič et al. [9]. It requires that the orbit of any vector x does not

hit any eigenvector of A, unless that vector x already is an eigenvector. Equivalently

we can write

(4.1) Ay = z, z ∈ V (A, ρ) ⇒ y = ρ−1z.

Weakly stable matrices can be characterized as follows [9]: Each spectral class is

initial and each critical graph is a Hamiltonian cycle.
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We now study the core weakly stable matrices: Restricting vector x in the above

definition to core(A). Thus, A is core weakly stable if and only if

Ay = z, z ∈ V (A, ρ) and y ∈ core(A) ⇒ y = ρ−1z.

As we will shortly see, the core weak stability is equivalent to the matrix be-

ing bijective on its core. We will need the following corollary of Lemma 2.7 and

Theorem 2.9

Corollary 4.10. Let µ and ν be classes of A with cyclicities σµ and σν , and

let µ(k) for k = 1, . . . , gcd(t, σµ) and ν(l) for l = 1, . . . , gcd(t, σν) be the classes of At

derived from µ and ν respectively. Then the following are equivalent:

(i) µ and ν are spectral and µ → ν (in A);

(ii) All derived classes µ(k) and ν(l) are spectral, and for each k there is an l and

for each l there is a k such that µ(k) → ν(l) (in At);

(iii) There exists a pair of derived classes µ(k) and ν(l) that are spectral, such that

µ(k) → ν(l) (in At).

Let us also recall the following well-known observation, which we briefly prove for

the reader’s convenience.

Lemma 4.11 ([12] Lemma 1.4 part 4). Let x ∈ V (A, ρ), and let xC be the

subvector of x extracted from the node set of the critical graph associated with ρ.

Then x is uniquely determined by xC .

Proof. Using Proposition 2.4, assume without loss of generality that ρ = 1 is the

greatest eigenvalue of A (in other words, the maximum cycle geometric mean). The

set of the critical nodes of A induces the following block decomposition:

A =

(

ACC ACN

ANC ANN

)

with ACC , resp., ANN being the principal submatrices extracted from the set of

critical nodes, resp., its complement (the noncritical nodes). For the subvector xN

extracted from the noncritical nodes, we have

xN = ANCxC ⊕ANNxN .

For a given xC , this is a max-algebraic Z-matrix (or Bellman) equation on xN as

treated, for instance, in [10]. As ANN has ρ(ANN ) < 1, we obtain that

(ANN )∗ANCxC is the only solution, hence xN is uniquely determined by xC .

Theorem 4.12. Let A ∈ R
n×n
+ . The following are equivalent:

(i) The mapping induced by A on its core is a bijection;
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(ii) A is core weakly stable;

(iii) If µ and ν are spectral classes of A and µ → ν, then ρµ = ρν . In other words,

spectral classes with different Perron roots do not access each other.

Moreover, if A satisfies (i),(ii), or (iii) then At satisfies (i),(ii), or (iii), respectively,

for every t ≥ 1. Also if At satisfies (i),(ii), or (iii) for some t ≥ 1 then the same

properties hold for A.

Proof. We show first that each of claims (i) and (iii) holds for A if and only if it

holds for At with an arbitrary t. Then, the implications (i)⇒(ii) and (ii)⇒(iii) will

be shown for arbitrary t ≥ 1, and the implication (iii)⇒(i) will be shown for t = σΛ.

First observe that core(At) = core(A) for all t. Then for (i), the equivalence for

all t is clear.

To show the same equivalence for (iii) we use Corollary 4.10 and argue by con-

tradiction. By that Corollary, if µ and ν are spectral in A with µ → ν but ρµ 6= ρν ,

then for each At there exist derived spectral classes µ′ and ν′ in At such that µ′ → ν′

in At and ρµ′ 6= ρν′ . So if (iii) does not hold for A then it does not hold for At. The

converse implication follows similarly.

Also note that by Lemma 3.4 (ii), we know that A and hence all its powers are

surjective on the core.

(i)⇒ (ii) for every At: Assume by contradiction that the core weak stability (4.1),

formulated for At as

Aty = z, z ∈ V (At, ρt) and y ∈ core(At) ⇒ y = ρ−tz,

is violated. Since y = ρ−tz satisfies Aty = z, this means that there is z ∈ core(At) =

core(A) and y′ ∈ core(A) other than ρ−tz such that Aty′ = z. This means that At

and hence A are not bijective on the core.

(ii)⇒ (iii) for all At, assuming without loss of generality t = 1: If (iii) does not

hold, then there exist µ, ν spectral with µ → ν such that ρµ < ρν . Then by Theo-

rem 2.5(i’) core(A) contains two eigenvectors xµ and xν with supp(xµ) ⊂ supp(xν)

corresponding to the Perron roots ρµ < ρν . Taking β 6= 0 and α sufficiently large, we

make a combination αxµ ⊕ βxν , different from both αxµ and βxν . However,

At(αxµ ⊕ βxν) = αρtµxµ ⊕ βρtνxν = βρtνxν ,

starting from some t, but not for all t. So xν has a preimage in the core which is not

an eigenvector, and A is not core weakly stable.

(iii)⇒ (i) for s = σΛ. Let σ := σΛ, for brevity. We need to show that if that if

Aσz = Aσz′ for z, z′ ∈ core(A) then z = z′. We can write z =
⊕

µ xµ and z′ =
⊕

µ yµ
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where xµ, yµ are eigenvectors of Aσ corresponding to ρσµ or zero vectors, with µ

running over all eigenvalues of A. Then we have

Aσ

(

⊕

µ

xµ

)

=
⊕

µ

ρσµxµ, Aσ

(

⊕

µ

yµ

)

=
⊕

µ

ρσµyµ,

and our goal is to show that

(4.2)
⊕

µ

ρσµxµ =
⊕

µ

ρσµyµ ⇒ xµ = yµ ∀µ,

which implies z = z′. For (4.2), observe that by Theorem 2.5(i’) and the assumed

condition (iii), the support of any vector in V (Aσ, ρσ) contains only indices in spectral

classes with ρσ or indices in non-spectral and trivial classes. Then the spectral part

of support, i.e., the part consisting of all indices in spectral classes, is disjoint from

the spectral part of support of any vector in V (Aσ, ρ̃σ) when ρ̃ 6= ρ. Therefore in any

max-algebraic sum of xµ ∈ V (Aσ, ρσµ) with different ρµ, as in (4.2), the subvectors of

xµ in spectral classes are determined uniquely. This shows that the components of

xµ and yµ in spectral classes associated with ρµ are the same.

By Lemma 4.11 any eigenvector is uniquely determined by its critical components,

and hence, xµ and yµ in (4.2) are uniquely determined by their components in spectral

classes, implying that xµ = yµ for all µ, which is (4.2). Then z = z′, and the proof is

complete.
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[11] P. Butkovič, H. Schneider, S. Sergeev, and B.-S. Tam. Two cores of a nonnegative matrix.

Linear Algebra Appl., 439:1929–1954, 2013.

[12] J. Cochet-Terrasson, S. Gaubert, and J. Gunawardena. A constructive fixed-point theorem for

min-max functions. Dynam. Stability Systems, 14:407–433, 1999.

[13] G. Cohen, D. Dubois, J.P. Quadrat, and M. Viot. Analyse du comportement périodique de
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