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ON THE CHARACTER DEGREES OF SUZUKI p-GROUPS OF
TYPE A AND C

TUNG LE, KAY MAGAARD AND JAMSHID MOORI

Abstract. In this note, we construct the irreducible characters of Suzuki

p-groups of types Ap(m, θ) and Cp(m, θ, ε).

1. Introduction and Preliminary

In 1963, Higman [5] classified all Suzuki 2-groups; i.e., those 2-groups which
possess an automorphism that cyclically permutes all of its involutions. He showed
that they fall into four families which can be explicitly described as families of
matrix groups over finite fields of even order. A few years later, Shult [8] showed
that for odd primes p the hypothesis that the subgroups of order p of a p-group G are
permuted cyclically by some automorphism of G implies that G is abelian. However
the definitions of the families of Suzuki 2-groups also make sense for odd primes.
Using Higman’s terminology we will refer to the groups as Ap(m, θ), Bp(m, θ, ε),
Cp(m, θ, ε), and Dp(m, θ, ε). Here Z(G) is isomorphic to the additive group of the
field Fq := Fpm , θ denotes a Frobenius homomorphism of Fq, and ε a suitably
chosen element from Fq.

Recently Craven and Glesser [4] investigated the fusion systems and automor-
phism groups of Suzuki 2-groups. From the point of view of fusion systems these
groups are minimal. We are interested in the representation theory of Suzuki p-
groups, as they appear as quotients and subgroups of unipotent radicals of twisted
Chevalley groups. The character degrees of the groupsA2(m, θ) respectivelyAp(m, θ)
were determined in 1999 respectively 2003 by Sagirov [6] respectively [7] and again
in 2008 by Berkovich and Janko [2, Chapter 46]. However the character degrees
of the other families of Suzuki p-groups have not yet been determined, even when
p = 2.

Here we reprove Sagirov’s result on Ap(m, θ) using a different technique which
is independent of the prime p. We describe the structure of Ap(m, θ) in more
detail and construct all irreducible characters, see Theorem 2.3. In Theorem 3.2
we extend our method to Suzuki p-groups of type Cp(m, θ, ε). In particular we
show that Suzuki p-groups of types A and C have at most three distinct character
degrees. Also we determine the number of characters of each degree as well as the
character values of group elements for type A. We refer the reader to Remark 3.4
for why we do not consider groups of type B and D in this paper.

We conclude this section with a few more preparatory definitions and remarks.
Let Aut(Fpm) be the automorphism group of the field Fpm , and θ ∈ Aut(Fpm). We
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2 TUNG LE, KAY MAGAARD AND JAMSHID MOORI

recall that Aut(Fpm) is generated by the map a 7→ ap of order m. Thus, the order
of θ is some divisor of m, call it k, and set n := m/k. Throughout this paper, we
suppose that θ(a) = ap

l

for all a ∈ Fpm where gcd(l,m) = n. The fixed point set of
θ is a subfield Fθ of Fpm satisfying ap

l

= a so containing pn elements, i.e., Fθ = Fpn .
Let F× be the (cyclic) multiplicative group of the field F. We denote the irreducible
character set of a group G by Irr(G). Put cd(G) := {χ(1) : χ ∈ Irr(G)}. Next,
Irr(t)(G) denotes the members Irr(G) of degree t, and Irr(G)× := Irr(G) − {1G}.
The other notation is quite standard.

Definition 1.1. A p-group G is called extraspecial if [G,G] = Φ(G) = Z(G) ∼= Ep.

We recall some properties of extraspecial p-groups as follows.

Lemma 1.2. Let G be a p-group of order p1+2m. The following are true.
(i) G is extraspecial iff [x,G] = Z(G) ∼= Ep for all x ∈ G− Z(G).
(ii) If G is extraspecial, then cd(G) = {1, pm} and |Irr(pm)(G)| = p− 1. More-

over, for every λ ∈ Irr(Z(G))× there exists a unique χ ∈ Irr(G) such that

χ(g) =
{
pmλ(g), if g ∈ Z(G)
0, otherwise.

Proof. (i) It suffices to show the converse statement. If [G,G] = Z(G) ∼= Ep, then
[xp, y] = [x, y]p = 1 for all x, y ∈ G, which implies that G/[G,G] is elementary
abelian and [G,G] = Φ(G) = Z(G). From [G,G] = 〈[x,G] : x ∈ G〉 and [x,G] =
Z(G) for all x ∈ G− Z(G) we have [G,G] = Z(G). So G is extraspecial.

(ii) By [1, Theorem 4.7 (d)] and the induction formula of λ ∈ Irr(Z(G)) that

λG(g) =
{
p2mλ(g), if g ∈ Z(G)
0, otherwise ,

the claim is clear.
�

Definition 1.3. Let θ ∈ Aut(Fpm). For each a ∈ F×pm , we define fa,θ(t) := tp
l−apl−1t

for all t ∈ Fpm and Ia := im(fa,θ).

We consider the intersection of two finite fields of characteristic p to be taken in
the algebraic closure of the field Fp.

Proposition 1.4. Let θ ∈ Aut(Fpm). Suppose that o(θ) = k > 1 and m = nk. For
all a, b ∈ F×pm , the following hold.

(i) Ia is an Fθ-hyperplane of Fpm of dimension k − 1.
(ii) F×pm acts on {Ia : a ∈ Fpm} by θ(x)Ia = Iax for all x ∈ F×pm . The stabilizer

StabF×
pm

(Ia) = F×θ and |{Ia : a ∈ F×pm}| = (q − 1)/(pn − 1).
(iii) For each Fp-hyperplane H of Fpm , there is a unique Ia such that Ia ≤ H.

Proof. It is clear that fa,θ is an Fθ-homomorphism. We shall show ker(fa,θ) = aFθ.
We have aFθ ⊂ ker(fa,θ) since θ(au) = θ(a)u for all u ∈ Fθ. As tp

l − apl−1t = 0
for some t 6= 0 implies t ∈ a(F×

pl
∩ F×pm) = aF×θ , fa,θ has at most pn solutions as

needed. Now we show (ii) and (iii).
Let S := {Ia : a ∈ F×pm}. For all a, x ∈ F×pm , θ(x)Ia = Iax since

θ(x)fa,θ(t) = xp
l

(tp
l

−ap
l−1t) = (tx)p

l

−(ax)p
l−1(tx) = fax,θ(tx) ∈ im(fax,θ) = Iax.
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Thus, F×pm acts transitively on S. It is clear that S 6= ∅ and F×θ ≤ StabF×
pm

(Ia). So

0 < |S| ≤ pm−1
pn−1 . We show StabF×

pm
(Ia) = F×θ by computing exactly |S|.

For each Ia, the number of Fp-hyperplanes of Fpm containing Ia equals the num-
ber of Fp-hyperplanes of Fpm/Ia ∼= Fθ, which is pn−1

p−1 . There are no Ia 6= Ib contained
in the same Fp-hyperplane since dimFθ (Ia + Ib) ≥ dimFθ (Ia) + 1 = k = dimFθ (Fpm).
Thus, each Fp-hyperplane of Fpm contains at most one Ia. The transitivity of the
action by left multiplication of F×pm = θ(F×pm) on the Fp-hyperplane set shows that
each hyperplane containing exactly one Ia. Since the number of Fp-hyperplanes of
Fpm is pm−1

p−1 , we obtain |S| = pm−1
p−1 : p

n−1
p−1 = pm−1

pn−1 . �

Corollary 1.5. For a, b ∈ F×pm , aIa = bIb iff a ∈ b(F×pm ∩ Fθ2).

Proof. By Proposition 1.4 (ii), Ia = θ(a)I1 and Ib = θ(b)I1, we obtain aIa = bIb iff
ab−1θ(ab−1) ∈ StabF×

pm
(I1) = F×θ . It suffices to show that xθ(x) ∈ F×θ iff x ∈ F×θ2

which is clear by xθ(x) = θ(xθ(x)) iff x = θ2(x). �

Throughout this paper, we fix φ ∈ Irr(Fpm)×. For each r ∈ Fpm , we define
φr ∈ Irr(Fpm) by φr(s) := φ(rs) for all s ∈ Fpm . Thus, Irr(Fpm) = {φr : r ∈ Fpm}.

For a subgroup P ≤ (Fpm ,+), we define Irr(P )Fpm as the set of all class functions
of Fpm of the form

τ̄(x) :=
{
τ(x), if x ∈ P
0, otherwise

for each τ ∈ Irr(P ).

2. Suzuki p-groups Ap(m, θ)

Definition 2.1. The Suzuki p-group Ap(m, θ) is the set Fpm × Fpm with m ≥ 1 and
θ ∈ Aut(Fpm) with the multiplication defined as follows:

(a, b)(c, d) := (a+ c, b+ d+ aθ(c)).

Let G := Ap(m, θ). So |G| = p2m. It follows from the definition that the
multiplication is associative, the identity element of G is (0, 0), and (a, b)−1 =
(−a,−b+ aθ(a)). So G is a group.

It is easy to prove, by induction that (a, b)i = (ia, ib+
(
i
2

)
aθ(a)). Hence, if p = 2

then exp(G) = 4; otherwise, if p > 2 then exp(G) = p.

Remark 2.2. By [3, Proposition 13.6.4 (vi)], A2(2f+1, θ) where θ(x) = x2f+1
for

all x ∈ F22f+1 is isomorphic to a Sylow 2-subgroup of the Suzuki group 2B2(22f+1).

We have [(a, b), (c, d)] = (0, aθ(c) − cθ(a)). If θ = 1, then G is abelian. So we
assume without loss of generality that θ 6= 1. Thus, 1 < m and n < m. If there is
(c, d) ∈ Z(G) with c 6= 0, then θ(a/c) = a/c for all a ∈ Fpm , which implies a ∈ cFθ
for all a ∈ Fpm , this contradicts |Fθ| = pn < |Fpm |. So Z(G) = {(0, d) : d ∈ Fpm}.

For each a ∈ F×pm , we define

ϕa : Fpm → Fpm , u 7→ aθ(u)− uθ(a) = aup
l

− uap
l

,

and Oa := {(0, t) : t ∈ im(ϕa)}.
It is clear that [(a,−), (t,−)] = (0, ϕa(t)) and im(ϕa) = aIa. Thus, by Proposi-

tion 1.4 (i) we have Oa = [(a,−), G] ≤ Z(G) of order pn(k−1) .
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Theorem 2.3. Let G := Ap(m, θ), where m > 1 and θ ∈ Aut(Fpm) of order k > 1
and n := m/k. One of the following holds:

(i) If k is odd, then [G,G] = Φ(G) = Z(G) and the irreducible characters of G
are parameterized in Table 1. We have

χr,γ
p(m−n)/2((a, b)) = p(m−n)/2φr(b)γ(a), and χr1((a, b)) = φr(a).

(ii) If k = 2, then [G,G] = Φ(G) is a subgroup of Z(G) of index pm/2 and the
irreducible characters are parameterized in Table 2. We have

χβ
p(m−n)/2((a, b)) = δa,0 p

m/2β(b), and χr,γ1 ((a, b)) = φr(a)γ(b).

(iii) If k > 2 is even, let J1 := {φr : Os 6⊂ ker(φr) ∀s ∈ F×pm} and J2 :=
Irr(Fpm)×−J1, then [G,G] = Φ(G) = Z(G), |J1| = pn(pm−1)

pn+1 , |J2| = pm−1
pn+1 ,

and the irreducible characters are parameterized in Table 3. We have

χβ
pm/2

((a, b)) = δa,0 p
m/2β(b),

χβ,γ
p(m−2n)/2((a, b)) = p(m−2n)/2β(b)γ(a), and χr1((a, b)) = φr(a).

Table 1. Irreducible characters of Ap(m, θ) where o(θ) > 2 odd.

Family Notation Parameter set Condition Number Degree

F χr,γ
p(m−n)/2 F×pm × Irr(sFθ)Fpm Os ≤ ker(φr) pn(pm − 1) p(m−n)/2

Flin χr1 Fpm - pm 1

Table 2. Irreducible characters of Ap(m, θ) where o(θ) = 2.

Family Notation Parameter set Condition Number Degree

F χβ
pm/2

Irr(Fpm) D 6⊂ ker(β) pm − pm/2 pm/2

Flin χr,γ1 Fpm × Irr(Fpm) D ⊂ ker(β) p3m/2 1

where D := {u ∈ Fpm : θ(u) = −u}.

Table 3. Irreducible characters of Ap(m, θ) where o(θ) > 2 even.

Family Notation Parameter set Condition Number Degree

F1 χβ
pm/2

J1 - pn(pm−1)
pn+1 pm/2

F2 χβ,γ
p(m−2n)/2 J2 × Irr(sFθ2)Fpm Os ≤ ker(β) p2n(pm−1)

pn+1 p(m−2n)/2

Flin χr1 Fpm - pm 1

Here is a brief explanation how to read these tables. In Table 1, the characters
χr,γ
p(m−n)/2 ∈ F have degree p(m−n)/2 and satisfy that Z(G) 6⊂ ker(χr,γ

p(m−n)/2), where
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r ∈ F×pm and γ ∈ Irr(sFθ)Fpm . The uniqueness of Os and sFθ corresponding to
ker(φr) for the condition Os ≤ ker(φr) is shown in Proposition 2.4 (v) and Lemma
2.7. There are pn(pm− 1) characters of this type. The rest are read in a usual way.
In Table 2, the condition on D comes from the derived subgroup [G,G] in Corollary
2.5. In Table 3, the uniqueness of Os and sFθ2 comes from Proposition 2.4 (vi) and
Lemma 2.9. To prove Theorem 2.3, we need the following proposition.

Proposition 2.4. Let G := Ap(m, θ) where θ has order k > 1, and a, b ∈ F×pm . Set
n := m/k. The following hold.

(i) ϕa is an additive homomorphism, ker(ϕa) = aFθ and im(ϕa) = aIa ≤ Fpm .
(ii) im(ϕa) = im(ϕb) iff Oa = Ob iff a ∈ b(F×pm ∩ Fθ2).
(iii) If Oa 6= Ob, then Z(G) = OaOb and |Oa ∩Ob| = pn(k−2).
(iv) If k = 2 then [G,G] = Oa < Z(G) of index pm/2. Otherwise, if k > 2 then

[G,G] = Z(G).
(v) If k is odd, then for each maximal subgroup H of Z(G), there exists a unique

subgroup Oa such that Oa ≤ H.
(vi) If k > 2 is even, then there are exactly pn(pm−1)

(pn+1)(p−1) maximal subgroups of
Z(G) containing no Oa.

Proof. It is easy to check directly (i) from their definitions. By (i) and Corollary
1.5, it is clear for (ii). Thus, we shall prove (iii) to (vi). Note that Oa has index pn

in Z(G).
(iii) By (i) and the definition of Oa, it suffices to show that if aIa 6= bIb then

aIa + bIb = Fpm and |aIa ∩ bIb| = pn(k−2). By Proposition 1.4 (i) the claim follows
by using the properties of Fθ-hyperplanes of Fpm .

(iv) Suppose that k = 2. So m = 2n and Fpm = Fθ2 . By (ii), im(ϕa) = im(ϕb)
for all b ∈ F×pm . Since [G,G] is generated by all Oa, a ∈ F×pm , we obtain [G,G] =
Oa < Z(G) of index pn = pm/2 for any a ∈ F×pm .

Suppose that k > 2. So m > 2n and |Fpm | > |Fθ2 |. By (iii) it suffices to show
that there are at least two distinct Oa 6= Ob, which is clear by (ii).

(v) If a maximal subgroup of Z(G) contains an Oa, then by (iii) Oa is unique.
Now we prove the existence by counting directly the number of maximal subgroups
of Z(G) containing some Oa. Since Z(G) is elementary abelian, for a fixed subgroup
Oa, the number of maximal subgroups of Z(G) containing Oa equals the number
of maximal subgroups of Z(G)/Oa ∼= Epn , which is pn−1

p−1 . So by the uniqueness of
the property containing Oa, and Fθ2 ∩ Fpm = Fθ by the oddity of k, the number
maximal subgroups of Z(G) containing some Oa is pm−1

pn−1 ·
pn−1
p−1 = pm−1

p−1 which is
known as the number of maximal subgroups of Z(G).

(vi) First, we count the number of maximal subgroups of Z(G) containing some
Oa. With the same argument in (v), the number of maximal subgroups of Z(G)
containing a fixed Oa is pn−1

p−1 . Since k is even, we have Fθ2 = Fp2n ≤ Fpm . Hence,

by (ii) there are pm−1
p2n−1 distinct Oa’s, as sets. So the number of maximal subgroups

of Z(G) containing some Oa is pm−1
(pn+1)(p−1) , and the number of maximal subgroups

of Z(G) containing no Oa is pm−1
p−1 −

pm−1
(pn+1)(p−1) = pn(pm−1)

(pn+1)(p−1) . �

Since G/Z(G) ∼= Epm , we have [G,G] ≤ Φ(G) ≤ Z(G). By Proposition 2.4 (iv),
[G,G] = Φ(G) = Z(G) if the order of θ is greater than two.
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Suppose that θ has order two, then G/[G,G] is abelian of order p3m/2. If p > 2,
from exp(G) = p we have [G,G] = Φ(G) of order pm/2. To obtain a presentation of
[G,G], we set

D := {u ∈ Fpm : θ(u) = −u}.
For each a ∈ Fpm , we have a = 1

2 (a+ θ(a)) + 1
2 (a− θ(a)) ∈ Fθ ⊕D since 2, 1

2 ∈ Fθ.
Thus, Fpm = Fθ ⊕ D. It is clear that D is a one-dimensional Fθ-subspace of Fpm ,
and invariant under θ. From [(a,−), (c,−)] = (0, aθ(c)− cθ(a)), we have

[G,G] = {(0, a) : a ∈ D}.
In the case p = 2 we recall that exp(G) = 4. We choose t ∈ Fpm − Fθ such that

Fpm = Fθ ⊕ tFθ and t2 + t+ c = 0 for some c ∈ Fθ. Suppose that θ(t) = r + st for
some r, s ∈ Fθ. Since θ has order two, it forces s = 1 and θ(t) = r + t. Therefore,
it is easy to check directly that [G,G] = {(0, a) : a ∈ Fθ}. For all a ∈ Fpm , the
fact that (a,−)2 = (0, aθ(a)) ∈ [G,G] implies that G/[G,G] is elementary abelian.
Thus, [G,G] = Φ(G). Note that the presentation of [G,G] when p = 2 also matches
with the one with D when p > 2. This argument provides the proof of the following.

Corollary 2.5. The following hold.
(i) If the order of θ is greater than two, then [G,G] = Φ(G) = Z(G).

(ii) If the order of θ is two, then [G,G] = Φ(G) = {(0, a) : a ∈ D} has index
pm/2 in Z(G).

Remark 2.6. From the above discussion on the decomposition of Fpm into Fθ-
subspaces, using an appropriate basis, we see that when p > 2, θ is the diagonal

matrix
(

1 0
0 −1

)
; when p = 2, θ is an upper triangular

(
1 r
0 1

)
.

For λ ∈ Irr(Z(G))×, Z(G)/ ker(λ) ∼= im(λ) ∼= Ep. The induction formula of λG

implies that ker(λ) ≤ ker(χ) for all constituents χ of λG. Using these properties,
we shall prove Theorem 2.3 by considering all various possible values of k.

Lemma 2.7. Let G := Ap(m, θ) where θ has odd order k > 1. Let n := m/k,

a ∈ F×pm , H a maximal subgroup of Z(G) such that Oa ≤ H, and G := G/H. For
each λ ∈ Irr(Z(G)/H)×, the following hold.

(i) Z(G) = {(au, 0) : u ∈ Fθ}Z(G)/H of order pn+1.
(ii) For each extension η of λ to Z(G), G/ ker(η) is extraspecial of order p1+m−n

and ηG has a unique irreducible constituent of degree p(m−n)/2.

Consequently, Theorem 2.3 (i) holds.

Proof. Since Fp2n ∩ Fpm = Fθ, by Proposition 2.4 (v) the claim in (i) is clear. We
shall prove (ii). Let η ∈ Irr(Z(G)) be an extension of λ. Note that the order of
G/ ker(η) is pm+1/pn = p1+m−n.

For convenience we write elements in G/ ker(η) as (r, s)N . Here Oa ≤ N C G
with |N | = pm+n−1 such that G/N ∼= G/ ker(η). Since λ ∈ Irr(Z(G)/H)×, we
have Z(G) 6⊂ N and ker(λ) ≤ Z(G) ∩ N is a maximal subgroup of Z(G). For
(r,−) ∈ G with r ∈ Fpm − aFθ, we have [(r,−), G] = Or 6⊂ N by Proposition 2.4
(ii) and (iii). Thus, Z(G/N) = Z(G)N/N ∼= Ep, and OrN = OrOaN = Z(G)N.
Therefore, [(r,−)N,G/N ] = [(r,−), G]N/N = OrN/N = Z(G/N) = [G/N,G/N ],
which shows that G/N is extraspecial of order p1+m−n. Hence, ηG has a unique
irreducible constituent of degree p(m−n)/2.



SUZUKI p-GROUPS 7

Since there are pn extensions η of λ to Z(G), λG has pn irreducible constituents.
For each maximal subgroup H of Z(G), there are exactly p − 1 nontrivial linear
characters of Z(G) ∼= Epm whose kernels contain H. By Proposition 2.4 (v) and
Lemma 1.2 (ii) the rest of the statement is clear. �

Lemma 2.8. Let G := Ap(m, θ) where θ has order 2. For all λ ∈ Irr(Z(G))× such
that [G,G] 6⊂ ker(λ), we have G/ ker(λ) is extraspecial of order p1+m and λG has a
unique irreducible constituent of degree pm/2. Consequently, Theorem 2.3 (ii) holds.

Proof. Let H := ker(λ) and G := G/H. By Proposition 2.4 (iv), for all a ∈ F×pm we
have Oa = [(a,−), G] = [G,G]. Thus, if [G,G] 6⊂ H, then Z(G) = Z(G)/H ∼= Ep
and [(a,−)H,G/H] = [(a,−), G]H/H = OaH/H = Z(G). So G is extraspecial of
order p1+m, and λG has only one irreducible constituent of degree pm/2. Since Z(G)
has (pm/2−1)pm/2 non trivial linear characters whose kernels do not contain [G,G],
the rest of the statement is clear by Corollary 2.5 and Lemma 1.2 (ii). �

Lemma 2.9. Let G := Ap(m, θ) where θ has even order k > 2. Let n := m/k,

H a maximal subgroup of Z(G), and G := G/H. For each λ ∈ Irr(Z(G)/H)×, the
following hold.

(i) If there is Oa ≤ H, then Z(G) = {(au, 0) : u ∈ Fp2n}Z(G)/H is of order
p2n+1. For each extension η of λ to Z(G), G/ ker(η) is extraspecial of order
p1+m−2n and ηG has a unique irreducible constituent of degree p(m−2n)/2.

(ii) If there is no Oa ≤ H, then G is extraspecial of order p1+m, and λG has a
unique irreducible constituent of degree pm/2.

Consequently, Theorem 2.3 (iii) holds.

Proof. (i) Suppose that Oa ≤ H for some a ∈ F×pm . By Proposition 2.4 (ii),
[(b,−), G] = Ob ≤ H for all b ∈ aF×p2n , and by Proposition 2.4 (iii), [(r,−), G] =
Or 6⊂ H for all r ∈ Fpm − aFp2n . Hence, Z(G) = {(au,−) : u ∈ Fp2n}Z(G)/H
of order p2n+1. Let η ∈ Irr(Z(G)) be an extension of λ. Since | ker(η)| = p2n, the
quotient group G/ ker(η) is of order p1+m−2n.

As in Lemma 2.7 we write elements in G/ ker(η) as (r, s)N where Oa ≤ N CG
with |N | = pm+2n−1 such that G/N ∼= G/ ker(η). With the same argument we
obtain that G/N is extraspecial. Therefore, ηG has a unique irreducible constituent
of degree p(m−2n)/2.

Since there are p2n extensions η of λ, λG has p2n irreducible constituents. Since
there are exactly p−1 nontrivial linear characters of Z(G) having the same kernel, by
Proposition 2.4 (vi) we obtain p2n(pm−1)

pn+1 irreducible characters of degree p(m−2n)/2.

(ii) Suppose that there is no Oa ≤ H. It is clear that Z(G/H) = [G/H,G/H] =
Z(G)/H ∼= Ep. For each a ∈ F×pm , we have [(a,−)H,G/H] = [(a,−), G]H/H =
OaH/H = Z(G)/H = Z(G/H). Hence, G/H is extraspecial of order p1+m. So λG

has a unique irreducible constituent of degree pm/2. By Proposition 2.4 (vi) we
obtain pn(pm−1)

pn+1 irreducible characters of degree pm/2. Now Theorem 2.3 (iii) holds
by Lemma 1.2. �
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3. Suzuki p-groups Cp(m, θ, ε)

Definition 3.1. The Suzuki p-group Cp(m, θ, ε) is the set Fpm × Fpm × Fpm with
m ≥ 1, θ ∈ Aut(Fpm) and ε ∈ Fpm with the multiplication defined as follows:

(a, b, c)(d, e, f) := (a+ d, b+ e, c+ f + aθ(d) + εa
1
p θ(ep) + be).

Note that the map a 7→ a
1
p is the inverse of the automorphism a 7→ ap, and it

can be written as a 7→ ap
m−1

. Therefore, this map is a field automorphism of Fpm .
Let G := Cp(m, θ, ε). Then |G| = p3m. One can check directly from the definition

that the multiplication is associative, the identity of G is (0, 0, 0), and the inverse
of (a, b, c) is (−a,−b,−c+ aθ(a) + εa

1
p θ(bp) + b2). So G is a group.

It is easy to check that (a, b, c)i = (ia, ib, ic +
(
i
2

)
(aθ(a) + εa

1
p θ(bp) + b2)). If

p = 2, then exp(G) = 4; otherwise, if p ≥ 3, then exp(G) = p. By Higman [5] with
p = 2, the conditions ε 6∈ {a−1 + aθ2(a) : a ∈ F×pm}, and 2θ2 = 1 are needed to
guarantee that all involutions of C2(m, θ, ε) are in its center and to distinguish type
C from the other types. Here, we treat θ and ε as parameters on which we place no
restrictions. For every choice of parameters we find all irreducible character degrees
of the corresponding group.

We have [(a, b, c), (d, e, f)] = (0, 0, aθ(d)−dθ(a)+ε(a
1
p θ(ep)−d

1
p θ(bp))). If θ = 1

and ε = 0 then G is abelian. Hence, we suppose that either θ 6= 1 or ε 6= 0.
For (a, b, c) ∈ Z(G), its commutator with (0, e, 0) equal to 1G implies εa

1
p θ(ep) =

0 for all e ∈ Fpm , so ε = 0 or a = 0. If ε = 0, then Z(G) = {(0, b, c) : b, c ∈ Fpm}.
If ε 6= 0, using (d, 0, 0) ∈ G, we obtain d

1
p θ(bp) = 0 for all d ∈ Fpm , which implies

b = 0. Thus, Z(G) = {(0, 0, c) : c ∈ Fpm}.

Theorem 3.2. Let G := Cp(m, θ, ε) where θ ∈ Aut(Fpm) of order k, ε ∈ Fpm and
n := m/k. One of the following holds:

(i) If ε 6= 0, then cd(G) = {1, pm} and |Irr(pm)(G)| = pm − 1.
(ii) If ε = 0 and k = 2, then cd(G) = {1, pm/2} and
|Irr(pm/2)(G)| = p2m − p3m/2.

(iii) If ε = 0 and k > 2 is odd, then cd(G) = {1, p(m−n)/2} and
|Irr(p(m−n)/2)(G)| = pm+n(pm − 1).

(iv) If ε = 0 and k > 2 is even, then cd(G) = {1, p(m−2n)/2, pm/2}, and
|Irr(p(m−2n)/2)(G)| = pm+2n(pm−1)

pn+1 , |Irr(pm/2)(G)| = pm+n(pm−1)
pn+1 .

To prove Theorem 3.2 we do some investigations first. For all a, b ∈ Fpm , we
define

ϕa,b(d, e) := aθ(d)− dθ(a) + ε(a
1
p θ(ep)− d

1
p θ(bp)),

ψ1
a,b(d) := ϕa,b(d, 0) = aθ(d)− dθ(a)− εd

1
p θ(bp),

ψ2
a,b(e) := ϕa,b(0, e) = εa

1
p θ(ep),

and Oa,b := {(0, 0, c) : c ∈ im(ϕa,b)},
O1
a,b := {(0, 0, c) : c ∈ im(ψ1

a,b)}, O2
a,b := {(0, 0, c) : c ∈ im(ψ2

a,b)}.
Here, [(a, b, c), (d, e, f)] = (0, 0, ϕa,b(d, e)), and ϕa,b(d, e) = ψ1

a,b(d) + ψ2
a,b(e). It is

easy to see that ψ2
a,b is independent of b, so is O2

a,b.

Lemma 3.3. Let G := Cp(m, θ, ε) where θ ∈ Aut(Fpm) of order k, ε ∈ Fpm . The
following hold.
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(i) ϕa,b, ψ
1
a,b, ψ

2
a,b are Fp-homomorphisms and im(ϕa,b) = im(ψ1

a,b)+im(ψ2
a,b).

Moreover, O1
a,b, O

2
a,b, Oa,b ≤ Z(G) and Oa,b = O1

a,bO
2
a,b.

(ii) If ε = 0, then with notations in Section 2, ϕa,b(d, e) = ϕa(d) and Oa,b = Oa.
Moreover, [G,G] ≤ Z(G) has index pm if k > 2, and has index pm+n if
k = 2.

(iii) If ε 6= 0, then Oa,b = Z(G) for all (a, b) 6= (0, 0). Moreover, for all (a, b) 6=
(0, 0), [G,G] = Φ(G) = Z(G) = [(a, b,−), G].

Proof. All statements in part (i) follow directly from the definitions. We shall prove
parts (ii) and (iii).

(ii) With ε = 0, ϕa,b(d, e) = aθ(d) − dθ(a) = ϕa(d). Hence, Oa,b = Oa. Since
Z(G) = {(0, b, c) : b, c ∈ Fpm}, the rest follows by Proposition 2.4.

(iii) Since {up : u ∈ Fpm} = Fpm and θ ∈ Aut(Fpm), ψ2
a,b(Fpm) = εa

1
p θ(Fpm) =

Fpm for all a ∈ F×pm . If a = 0 and b 6= 0, then ψ1
a,b(Fpm) = −εFpmθ(bp) = Fpm by

{u
1
p : u ∈ Fpm} = Fpm . Hence, by (i), im(ϕa,b) = Fpm for all (a, b) 6= (0, 0). Since

Z(G) = {(0, 0, c) : c ∈ Fpm}, all are clear. �

Now we shall prove Theorem 3.2.

Proof of Theorem 3.2. (i) Suppose that ε 6= 0. For λ ∈ Irr(Z(G))×, let H := ker(λ).
We shall show that G/H is extraspecial of order p1+2m. By Lemma 3.3 (iii), for
all H 6= (a, b, c)H ∈ G/H, we have [(a, b, c)H,G/H] = [(a, b, c), G]H/H = Z(G)/H.
Hence, Z(G/H) = [G/H,G/H] ∼= Ep and G/H is extraspecial. Thus, λG has
a unique irreducible constituent of degree pm. Since |Irr(Z(G))×| = pm − 1 and
G/Z(G) ∼= Ep2m , the claim holds.

(ii) Suppose that ε = 0 and k = 2. By Lemma 3.3 (ii), there are p2m − p3m/2

linear characters λ of Z(G) such that [G,G] 6⊂ ker(λ). Set H := ker(λ). Since
[(a,−,−), G] = Oa = [G,G] for all a ∈ F×pm , we obtain Z(G/H) = [G/H,G/H] ∼=
Ep. Thus, G/H is extraspecial of order p1+m and λG has a unique irreducible
constituent of degree pm/2. So cd(G) = {1, pm/2} and |Irr(pm/2)(G)| = p2m−p3m/2.

(iii) Suppose that ε = 0 and k > 2 is odd. By Lemma 3.3 (ii), there are p2m−pm
linear characters λ of Z(G) such that [G,G] 6⊂ ker(λ). Set H := ker(λ). It is easy
to see that G/H is isomorphic to the quotient group Ap(m, θ)/H in Lemma 2.7.
Thus, λ has pn distinct extensions to Z(G/H). Let η be an extension of λ. Then
(G/H)/ ker(η) is extraspecial of order p1+m−n and ηG/H has a unique irreducible
constituent of degree p(m−n)/2. Thus, λG has pn distinct irreducible constituents of
degree p(m−n)/2. So cd(G) = {1, p(m−n)/2} and |Irr(p(m−n)/2)(G)| = pm+n(pm − 1).

(iv) Suppose that ε = 0 and k > 2 is even. By Lemma 3.3 (ii), there are p2m−pm
linear characters λ of Z(G) such that [G,G] 6⊂ ker(λ). Set H := ker(λ). Here, similar
to Lemma 2.9, the proof divides into two cases: where there is some Oa,b ≤ H and
where there is no Oa,b ≤ H for all (a, b) 6= (0, 0). With the same argument used
in Lemma 2.9, we obtain cd(G) = {1, p(m−2n)/2, pm/2}, and |Irr(p(m−2n)/2)(G)| =
pm+2n(pm−1)

pn+1 , |Irr(pm/2)(G)| = pm+n(pm−1)
pn+1 . �

Remark 3.4. Our technique can be applied to the groups of type Bp(m, θ, ε) and
Dp(m, θ, ε) and will yield partial results. In these cases however, control over the
Fθ-hyperplanes in Fpm depends heavily on both parameters θ and ε. This will
require further investigation and will be the subject of a subsequent paper.
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