UNIVERSITYOF
 BIRMINGHAM
 University of Birmingham Research at Birmingham

Groups of even type which are not of even characteristic, II

Magaard, Kay; Stroth, Gernot

DOI:
10.1007/s11856-016-1314-9

License:
Other (please specify with Rights Statement)

Document Version

Peer reviewed version
Citation for published version (Harvard):
Magaard, K \& Stroth, G 2016, 'Groups of even type which are not of even characteristic, II', Israel Journal of Mathematics, vol. 213, no. 1, pp. 279-370. https://doi.org/10.1007/s11856-016-1314-9

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

The final publication is available at Springer via http://dx.doi.org/10.1007/s11856-016-1314-9

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
- Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
\bullet User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
- Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

GROUPS OF EVEN TYPE WHICH ARE NOT OF EVEN CHARACTERISTIC,II

KAY MAGAARD AND GERNOT STROTH

1. Introduction

In this second part of the paper we continue the investigation started in the first part and finish the classification of the groups of even type, which are not of even characteristic. More precisely we prove:

Theorem 1.1. Let G be a simple \mathcal{K}_{2}-group of even type. Then either G is of even characteristic or $G \cong J_{1}, C o_{3}, M(23), A_{12}, \Omega_{7}(3)$ or $\Omega_{8}^{-}(3)$.

Let us recall the notation used in the statement of the theorem.
Definition 1.2. A group G is said to be of even type if the following hold:
(i) $\mathcal{L} \subseteq \mathcal{C}_{2}$, where \mathcal{L} is the set of all components of $C_{G}(x)$ for all involutions $x \in G$.
(ii) $O\left(C_{G}(x)\right)=1$ for every involution $x \in G$.
(iii) G has 2-rank at least 3 .

Here we denote by \mathcal{C}_{2} the following set of components of G :

Definition 1.3. [GoLyS1, Definition (12.1)(1)] The set \mathcal{C}_{2} consists of

 simple and quasisimple groups.- The simple groups in \mathcal{C}_{2} are $K \in \operatorname{Chev}(2), L_{2}(9), L_{2}(p), p$ a Fermat or Mersenne prime, $L_{3}(3), L_{4}(3), U_{4}(3), G_{2}(3), M_{11}, M_{12}$, $M_{22}, M_{23}, M_{24}, J_{2}, J_{3}, J_{4}, H i S, S u z, R u, C_{1}, C o_{2}, M(22)$, $M(23), M(24)^{\prime}, T h, F_{2}, F_{1}$.
- The groups $K \in \mathcal{C}_{2}$ with K not simple are those for which $K / O_{2}(K)$ is a simple group in \mathcal{C}_{2}. But the following quasisimple groups are deleted, i.e. are not in $\mathcal{C}_{2}: S L_{2}(q), q$ odd, $2 A_{8}$, $S L_{4}(3), S U_{4}(3), S p_{4}(3)$, and $[X] L_{3}(4)$, with $X \cong \mathbb{Z}_{4}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}$ or $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$.

[^0]Furthermore we call a group G a \mathcal{K}_{2}-group if any simple factor of any nontrivial 2 -local subgroup of G is either cyclic, a group of Lie type, an alternating group or one of the 26 sporadic groups.

We now define even characteristic.
Definition 1.4. A group G is said to be of even characteristic, if for a Sylow 2-subgroup S and all nontrivial 2-local subgroups H of G with $S \leq H$, we have that $C_{G}\left(O_{2}(H)\right) \subseteq O_{2}(H)$.

The main result of the first part of this paper was:
Theorem 1.5. Let G be a simple \mathcal{K}_{2}-group of even type. Then one of the following holds

- G is of even characteristic; or
- $G \cong \Omega_{7}(3), \Omega_{8}^{-}(3)$ or A_{12}; or
- There is a 2-central involution z such that $C_{G}(z)$ possesses a standard subgroup L. Furthermore $C_{G}(L)$ is cyclic.

In this second part of the paper we start with the statement of Theorem 1.5. We assume that there is some 2-central involution $z \in G$ such that $C_{G}(z)$ possesses a standard subgroup A_{z}. Furthermore we assume that G is not isomorphic to $J_{1}, C o_{3}$ or $M(23)$. We then first show that $Z\left(A_{z}\right)=1$ and then that A_{z} is a group of Lie type in characteristic two or is one out of a small list of sporadic groups (Proposition 5.1 and Proposition 5.2). For this we use some classifications of groups by standard subgroups. At this point our analysis moves away from $C_{G}(z)$ and we construct in Lemma 6.4 and Lemma 6.5 a subgroup N of G such that N and $N_{G}\left(A_{z}\right)$ share a Sylow 2 -subgroup S of G, $C_{N}\left(O_{2}(N)\right) \leq O_{2}(N)$ and $N \not \leq N_{G}\left(A_{z}\right)$. By choosing N minimal with these properties we achieve that N is a minimal parabolic subgroup in the sense that we now describe.

We call a subgroup P of a group X a parabolic (subgroup) of X if $1 \neq|X: P|$ is odd. A maximal parabolic is a parabolic which is maximal in the set of parabolics. In contrast a minimal parabolic P is a parabolic which is not 2-closed such that there is exactly one class of maximal subgroups M of P such that $|P: M|$ is odd.

Now using the action of $O_{2}\left(C_{A_{z}}(x)\right)$ on $\Omega_{1}\left(Z\left(O_{2}(N)\right)\right)$ for some 2central involution $x \neq z$ in A_{z}, we get results about the action of the group $N / C_{N}\left(\Omega_{1}\left(Z\left(O_{2}(N)\right)\right)\right)$ on $\Omega_{1}\left(Z\left(O_{2}(N)\right)\right)$. Using this action we eventually are able to prove that there is some involution t which is central in N (Lemma 6.11, Lemma 6.12). This is the key for the final
contradiction. We are able to prove some similarity between z and t. In particular in Lemma 6.16 we show that $C_{G}(t)$ also has a standard subgroup A_{t} isomorphic to A_{z}, but $t \nsim z$. Then we show that the group N constructed above corresponds to a minimal parabolic in A_{z} and A_{t} as well. This at the end shows that $A_{z}=A_{t}$ is centralized by a unique involution, which would give $z=t$, the final contradiction. Hence for all 2-central involutions z we have that $F^{*}\left(C_{G}(z)\right)=O_{2}\left(C_{G}(z)\right)$. The theorem then follows from the following fact ([MaStr, Lemma 2.1]): Let G be a group and S be a Sylow 2-subgroup. Then G is of even characteristic if and only if $C_{G}\left(O_{2}\left(C_{G}(x)\right)\right) \leq O_{2}\left(C_{G}(x)\right)$ for all involutions $x \in Z(S)$.

2. Preliminaries

In this chapter we collect some results in group theory of general nature and some properties of the groups involved in the proof of the main theorem. For convenience of the reader we will also state some of the preliminary lemmas from the first part, which are used quite frequently in this second part.

Lemma 2.1. [Glau] Let G be a nonabelian simple group, z an involution and $z \in S \in \operatorname{Syl}_{2}(G)$. Then $z^{G} \cap S \neq\{z\}$.

Lemma 2.2. (Thompson transfer)[GoLyS2, Lemma 15.16]. Let G be a group, $S \in \operatorname{Syl}_{2}(G), T \unlhd S$ with $S=T A, A \cap T=1$, A cyclic. If G has no subgroup of index two and u is the involution in A, then there is some $g \in G$ with $u^{g} \in T$ and $C_{S}\left(u^{g}\right) \in \operatorname{Syl}_{2}\left(C_{G}\left(u^{g}\right)\right)$. In particular $\left|C_{S}(u)\right| \leq\left|C_{S}\left(u^{g}\right)\right|$.

Lemma 2.3. [GoLyS2, Lemma 24.1] Let R be a $p-$ group, p odd, and E be an elementary abelian 2-group, acting faithfully on R. Then there is a subgroup U in $R E$, such that U is a direct product of dihedral groups of order $2 p$ and E is a Sylow 2-subgroup of U.
Lemma 2.4. Let Q be an extraspecial subgroup of a group G, which is normalized by some element $t \in G$. If $\left|Q: C_{Q}(t)\right|=2$, then either $t \in Q C_{G}(Q)$ or $[t, Q]$ is cyclic.

Proof. Assume $t \notin Q C_{G}(Q)$. Let $[t, Q]=\langle s, Z(Q)\rangle$ be elementary abelian. In particular $Q \not \approx Q_{8}$ and so Q is generated by involutions. Let s_{1} be some involution in $Q \backslash C_{Q}(s)$. Assume $t^{s_{1}}=t s$. Then $t=t^{s_{1}^{2}}=$ $t s s^{s_{1}}$ and so $\left[s, s_{1}\right]=1$, a contradiction. So t centralizes modulo $Z(Q)$ any involution in $Q \backslash C_{Q}(s)$. As Q is generated by such involutions, together with s, we get that $[Q, t] \leq Z(Q)$. Then t induces an inner automorphism and so $t \in Q C_{G}(Q)$, a contradiction.

Lemma 2.5. Let $G \cong L_{2}(p), p=2^{n} \pm 1>5$ a prime, $A_{6}, L_{3}(3)$ or M_{11}. Then a Sylow 2-subgroup of G is dihedral of order at least 8 or semidihedral of order 16.

Proof. This is [GoLyS3, Lemma 4.10.5] and [GoLyS3, Table 5.3a] for M_{11}.

Lemma 2.6. [MaStr, Lemma 2.19] Let $L=L_{4}(3), U_{4}(3)$ or $2 U_{4}(3)$. Then the following holds:
(i) If $z \in L \backslash Z(L)$ is a 2-central involution, then $O_{2}\left(C_{L}(z)\right) \cong$ $Q_{8} * Q_{8}$ or $O_{2}\left(C_{L}(z)\right) \cong \mathbb{Z}_{2} \times Q_{8} * Q_{8}$ in case of $L \cong 2 U_{4}(3)$. In all cases $O_{3}\left(C_{L}(z) / O_{2}\left(C_{L}(z)\right)\right)$ is elementary abelian of order 9 and $C_{L}(z) / O_{2}\left(C_{L}(z)\right)$ acts faithfully on $O_{2}\left(C_{L}(z)\right)$.
(ii) $\operatorname{Out}\left(U_{4}(3)\right) \cong D_{8}$ and $\operatorname{Out}\left(L_{4}(3)\right)$ is elementary abelian of order 4.
(iii) If $G \cong \operatorname{Aut}(L), L \cong U_{4}(3)$ and x is an involution in G such that $2^{6} \cdot 3^{2}$ divides $\left|C_{L}(x)\right|$ then one of the following holds:
(α) x is contained in L and 2-central,
$(\beta) C_{L}(x) \cong P S p_{4}(3)$, or
$(\gamma) O_{2}\left(C_{L}(x)\right)$ is elementary abelian and $\left|C_{L}(x) / O_{2}\left(C_{L}(x)\right)\right|=$ 36 and $C_{L}(x) / O_{2}\left(C_{L}(x)\right)$ acts faithfully on $O_{2}\left(C_{L}(x)\right)$.
(iv) Let $L \cong L_{4}(3)$ or $U_{4}(3)$. Then $|Z(T)|=2$ for T a Sylow 2subgroup of L. Let G be a subgroup of $\operatorname{Aut}(L)$ containing L and T_{1} be a Sylow 2-subgroup of G. If $\left|\Omega_{1}\left(Z\left(T_{1}\right)\right)\right|>2$, then $L \cong L_{4}(3)$ and $|G: L|=2$. Furthermore some element $t \in$ $\Omega_{1}\left(Z\left(T_{1}\right)\right) \backslash L$ centralizes $P S p_{4}(3): 2$ in L.
Lemma 2.7. Let $G \cong G_{2}(2)^{\prime}, G_{2}(3)$ or M_{22}. Then G has exactly one conjugacy class or involutions with representative t and we have:
(i) $O^{2}\left(C_{G}(t)\right) \cong S L_{2}(3)$ for $G \cong G_{2}(2)^{\prime}$;
(ii) $O^{2}\left(C_{G}(t)\right) \cong S L_{2}(3) * S L_{2}(3)$ for $G \cong G_{2}(3)$ and
(iii) $O^{2}\left(C_{G}(t)\right) \cong 2^{1+4} \mathbb{Z}_{3}$ for $G \cong M_{22}$.
(iv) If i is an outer automorphism of G, then $C_{G}(i) \cong S L_{2}(3)$ in case of $G \cong G_{2}(2)^{\prime}$ and $L_{2}(8): 3$ in case of $G_{2}(3)$.
(v) If i is an outer automorphism of $G=M_{22}$, then $C_{G}(i) \cong$ $2^{3} L_{3}(2)$ or $2^{4} F_{20}$.
Proof. As $G_{2}(2)^{\prime} \cong U_{3}(3)$, we get (i), (ii) and (iv) from [GoLyS3, Table 4.5.1]. The assertions (iii) and (v) follow from [GoLyS3, Table 5.3c].

Lemma 2.8. Let $G=M_{12}$. Then the following holds:
(i) G possesses two conjugacy classes of involutions with representatives t and u.
(ii) $O^{2}\left(C_{G}(t)\right) \cong 2^{1+4} \mathbb{Z}_{3}, C_{G}(u) \cong \mathbb{Z}_{2} \times \Sigma_{5}$.
(iii) $E\left(C_{G}(u)\right)$ contains conjugates of t.
(iv) If i is an outer automorphism of G, then $C_{G}(i) \cong \mathbb{Z}_{2} \times A_{5}$.

Proof. (i), (ii), (iv) follow from [GoLyS3, Table 5.3b]. To prove (iii) let T be a Sylow 2-subgroup of $C_{G}(u)$ and $T_{1} \leq G$ with $\left|T_{1}: T\right|=2$. As $T^{\prime} \leq E\left(C_{G}(u)\right)$, we get that $Z\left(T_{1}\right) \cap E\left(C_{G}(u)\right) \neq 1$ and so $E\left(C_{G}(u)\right)$ contains a 2 -central involution.
Lemma 2.9. Let $G={ }^{2} F_{4}(2)$ and i be an involution of G which is not 2 -central. Then $C_{G}(i)$ is of order $2^{10} \cdot 3$. If T is a Sylow 2-subgroup of $C_{G}(i)$, then $\left|\Omega_{1}(Z(T))\right|=4$.

Proof. By [Shi, Corollary 2] we just have two classes of involutions in G and so i is uniquely determined. By [Shi, Theorem 2.1] we see that $\left|C_{F_{4}(2)}(i)\right|=2^{20} \cdot 3^{2}$ and so $\left|C_{G}(i)\right|=2^{10} \cdot 3$. By the Borel-Tits-Theorem [MaStr, Lemma 2.15] we have that $C_{G}(i)$ is contained in the parabolic P_{1} of G, with $P_{1} / O_{2}\left(P_{1}\right) \cong \Sigma_{3}$. Application of [MaStr, Lemma 2.31] shows that $i \in Z_{3}(S)$, where S is a Sylow 2-subgroup of P_{1} and so $\left|C_{O_{2}\left(P_{1}\right)}(i)\right|=2^{9}$. Furthermore $Z_{3}(S)=Z\left(O_{2}\left(C_{G}(i)\right)\right)$. As by [MaStr, Lemma 2.31] $C_{G}(i)$ induces Σ_{3} on $Z_{3}(S)$, we see that $\left|\Omega_{1}(Z(T))\right|=4$.

Lemma 2.10. Let $K \in \mathcal{C}_{2}$ be a sporadic simple group and N be a subgroup of $K, N \cong L_{2}(p)$, p a Fermat or Mersenne prime, $p>5$, $L_{2}(9), L_{3}(3)$ or $L_{4}(3)$. Suppose that for a Sylow 2-subgroup S of K we have $S \leq M<K$ such that $F^{*}(M)=N$, then $N \cong L_{2}(9)$ and $K \cong M_{11}$.
Proof. If $N \cong L_{2}(p)$, then as M is an automorphism group of N, we have that S is dihedral. But there is no such sporadic group. Let $N \cong$ $L_{4}(3)$. Then Lemma 2.6 implies $2^{6} \leq|S| \leq 2^{8}$. Furthermore 3^{6} divides the order of K. Inspection of the list in [GoLyS3, Table 5.3] gives a contradiction. So we have $N \cong L_{2}(9)$ or $L_{3}(3)$ and then $|S| \leq 2^{5}$. As $K \in \mathcal{C}_{2}$, we see $K \cong M_{11}$. As 13 does not divide $\left|M_{11}\right|$, we get $N \cong L_{2}(9)$.

Lemma 2.11. Let $F^{*}(G) \cong M(22)$ and $t \in F^{*}(G)$ be a 2 -central involution. Set $Q_{t}=O_{2}\left(C_{F^{*}(G)}(t)\right)$. Then $C_{G}\left(Q_{t}\right)=Z\left(Q_{t}\right)$. Furthermore $O_{2}\left(C_{G}\left(Z\left(Q_{t}\right)\right)\right)=Q_{t}$.
Proof. This follows from [GoLyS3, Table 5.3t].
Lemma 2.12. Let $G \cong M_{11}, M_{23}, J_{3}, T h, R u, M_{24}, J_{4}, C o_{1}, C o_{2}, F_{2}$ or F_{1}, then $G=\operatorname{Aut}(G)$.

Proof. This can be found in [GoLyS3, Table 5.3].

Lemma 2.13. If $G \cong L_{2}(p)$, p a Fermat or Mersenne prime, $p \neq 5$, $G \cong A_{6}, L_{3}(3)$ or $L_{4}(3)$ and T is a Sylow 2-subgroup of G, then $\left|\Omega_{1}(Z(T))\right|=2$.

Proof. For $G \cong L_{4}(3)$ this follows by Lemma 2.6. For the remaining groups it follows by Lemma 2.5

Lemma 2.14. Suppose that either $G \cong J_{2}$ or $G \cong M(24)^{\prime}$. Let S be a Sylow 2-subgroup of G. Then $N_{G}\left(Z_{2}(S)\right)$ induces Σ_{3} on $Z_{2}(S)$.
Proof. For $G \cong J_{2}$ the statement can be found in [GoLyS3, Table 5.3g]. So we assume $G \cong M(24)^{\prime}$. Then by [Asch, chapter 19] there is a 2 local subgroup $P \cong 2^{11} M_{24}$ of G, where $O_{2}(P)$ is the irreducible part of the Todd-module. We may assume that $S \leq P$. Let r be a 2 -central involution in S, then by [GoLyS3, Table 5.3 v$] C_{G}(r) \cong 2^{1+12} 3 U_{4}(3): 2$. In particular by $\left[\right.$ Asch, (19.10)] we have that $C_{P}(r) \cong 2^{11} 2^{6} 3 \Sigma_{6}$. According to [GoLyS3, Table 5.3e] there is some parabolic P_{1} of P containing S with $P_{1} \cong 2{ }^{11} 2^{1+6} L_{3}(2)$. Hence there is some minimal parabolic $P_{2} \leq P_{1}$ such that $P_{2} / O_{2}\left(P_{2}\right) \cong \Sigma_{3}$ and $P_{2} \not \leq C_{G}(r)$. Now $\left|\Omega_{1}\left(Z\left(O_{2}\left(P_{2}\right)\right)\right)\right|=4$, as $\left|\Omega_{1}(Z(S))\right|=2$ by [MaStr, Lemma 2.33]. Hence $\Omega_{1}\left(Z\left(O_{2}\left(P_{2}\right)\right)\right)=Z_{2}(S)$ by [MaStr, Lemma 2.35], the assertion follows.

Let us repeat the definition of a group of Lie type.
Definition 2.15. A genuine group of Lie type in characteristic p is a group isomorphic to $O^{p^{\prime}}\left(C_{\bar{K}}(\sigma)\right)$, where \bar{K} is a semisimple $\overline{\operatorname{GF}(p)}$ algebraic group, $\overline{\mathrm{GF}(p)}$ is the algebraic closure of $\operatorname{GF}(p)$, and σ is the Steinberg endomorphism of \bar{K}, see [GoLyS3, Definition 2.2.2] for details. A simple group of Lie type in characteristic p is a non-abelian composition factor of a genuine group of Lie type in characteristic p.

Hypothesis 2.16. [MaStr, Hypothesis 2.27] Let $G=G(q), q=2^{n}$, be a simple group of Lie type, $G \neq S z(q), L_{2}(q)$ or ${ }^{2} F_{4}(q)^{\prime}$. Let R be a long root subgroup of G if $G \not \equiv S p_{2 n}(q)$, and a short root subgroup if $G \cong S p_{2 n}(q)$. Set $X_{R}=C_{G}(R)$ and $Q_{R}=O_{2}\left(X_{R}\right)$.

Lemma 2.17. [MaStr, Lemma 2.28] Assume Hypothesis 2.16 with $G \not \approx$ $L_{3}(q), U_{3}(q), S p_{4}(2)^{\prime}$ or $G_{2}(2)^{\prime}$. Let L be a Levi complement in $N_{G}(R)$. Then Q_{R} / R has the following L-module structure:
(i) $G \cong L_{n}(q), O^{2^{\prime}}(L) \cong S L_{n-2}(q), Q_{R} / R=V_{1} \oplus V_{2}, V_{1}$ is the natural L-module and V_{2} its dual.
(ii) $G \cong \Omega_{2 n}^{ \pm}(q), O^{2^{\prime}}(L) \cong \Omega_{2 n-4}^{ \pm}(q) \times L_{2}(q)=L_{1} \times L_{2}, Q_{R} / R=$ $V_{1} \oplus V_{2}, V_{i}, i=1,2$, are natural L_{1}-modules and $\left[Q_{R}, L_{2}\right]=Q_{R}$.
(iii) $G \cong U_{n}(q), O^{2^{\prime}}(L) \cong S U_{n-2}(q), Q_{R} / R$ is the natural module.
(iv) $G \cong E_{6}(q), O^{2^{\prime}}(L) \cong L_{6}(q), Q_{R} / R$ is an irreducible module with $\left|Q_{R} / R\right|=q^{20}$.
(v) $G \cong{ }^{2} E_{6}(q), O^{2^{\prime}}(L) \cong U_{6}(q), Q_{R} / R$ is an irreducible module with $\left|Q_{R} / R\right|=q^{20}$.
(vi) $G \cong E_{7}(q), O^{2^{\prime}}(L) \cong \Omega_{12}^{+}(q), Q_{R} / R$ is an irreducible module with $\left|Q_{R} / R\right|=q^{32}$.
(vii) $G \cong E_{8}(q), O^{2^{\prime}}(L) \cong E_{7}(q), Q_{R} / R$ is an irreducible module with $\left|Q_{R} / R\right|=q^{56}$.
(viii) $G \cong F_{4}(q), O^{2^{\prime}}(L) \cong S p_{6}(q), Q_{R} / R$ is an extension of the natural module by a spin module, where the natural module is contained in $Z\left(Q_{R}\right)$, where the natural module is contained in $Z\left(Q_{R}\right)$. Finally $Z\left(Q_{R}\right)$ does not split over R.
(ix) $G \cong{ }^{3} D_{4}(q), O^{2^{\prime}}(L) \cong L_{2}\left(q^{3}\right), Q_{R} / R$ is the 8 -dimensional $\mathrm{GF}(q)$-module for L.

Lemma 2.18. [MaStr, Lemma 2.29] Let $K \cong S p_{2 n}(q), n \geq 3, q=2^{m}$. We have two root groups R_{1} and R_{2}, with
(1) The Levi factor of $N_{K}\left(R_{1}\right)$ is $S p_{2 n-2}(q), O_{2}\left(N_{K}\left(R_{1}\right)\right)$ is elementary abelian and $O_{2}\left(N_{K}\left(R_{1}\right)\right) / R_{1}$ is the natural module.
(2) The Levi factor L of $N_{K}\left(R_{2}\right)$ is $S p_{2 n-4}(q) \times L_{2}(q)$, furthermore $Z\left(O_{2}\left(N_{K}\left(R_{2}\right)\right)\right) / R_{2}$ is the natural $L_{2}(q)$-module, and for $n>$ 2, $O_{2}\left(N_{K}\left(R_{2}\right)\right)^{\prime}=R_{2}$, and $O_{2}\left(N_{K}\left(R_{2}\right)\right) / Z\left(O_{2}\left(N_{K}\left(R_{2}\right)\right)\right)$ is a tensor product of the two natural modules for the two factors of L. If $q>2$, then $Z\left(O_{2}\left(N_{K}\left(R_{2}\right)\right)\right)$ does not split over R_{2} as an $N_{K}\left(R_{2}\right)$-module.

Lemma 2.19. [DeSte, 10.10 and page 238] Assume Hypothesis 2.16 with $K \cong G_{2}\left(2^{e}\right)$, $e \neq 1$. Let P be the normalizer of the root group R. Then $O^{\prime}(P) \cong\left(2^{e}\right)^{1+4}: S L_{2}\left(2^{e}\right)$. If $e \neq 2$, then $O^{\prime}(P) / Q_{R}$ acts irreducibly on Q_{R} / R. If $e=2$, then P acts irreducibly on Q_{R} / R but $O^{\prime}(P) / Q_{R}$ induces a direct sum of two permutation modules for A_{5} on Q_{R} / R.
Let S be a Sylow 2 subgroup of P, then $Z_{2}(S) \leq Q_{R}$ and K induces the natural $L_{2}(q)$-module on $Z_{2}(S)$.

Lemma 2.20. [MaStr, Lemma 2.40] Let $G=L_{3}(q), q=2^{n}$, and T be a Sylow 2-subgroup of G. Then G possesses two parabolics P_{1}, P_{2} which contain T, such that $U_{i}=O_{2}\left(P_{i}\right)$ is elementary abelian of order q^{2} and $O^{2^{\prime}}\left(P_{i} / U_{i}\right) \cong L_{2}(q)$, for $i=1,2$. Furthermore P_{i} induces the natural module on $U_{i}, i=1,2, T=U_{1} U_{2}$ and any involution of T is contained in $U_{1} \cup U_{2}$. Finally there is an automorphism α of G, which normalizes T with $P_{1}^{\alpha}=P_{2}$.

Lemma 2.21. [MaStr, Lemma 2.48] Let $G=S p_{4}(q), q=2^{n}>2$, and T be a Sylow 2-subgroup of G. Then G possesses two parbolics P_{1}, P_{2} which contain T, such that $U_{i}=O_{2}\left(P_{i}\right)$ is elementary abelian of order q^{3} and $P_{i} / U_{i} \cong G L_{2}(q)$, for $i=1,2$. We have that U_{i} is an indecomposable module for P_{i} an $Z\left(O^{2^{\prime}}\left(P_{i}\right)\right)=R_{i}$ is a root group. Furthermore $Z(T)=R_{1} R_{2}=T^{\prime}, T=U_{1} U_{2}$ and any involution in T is contained in $U_{1} \cup U_{2}$. There is an automorphism α of G with $R_{1}^{\alpha}=R_{2}$ and $P_{1}^{\alpha}=P_{2}$.

Lemma 2.22. [GoLyS3, Theorem 2.5.1.] Let K be a group of Lie type over $\mathrm{GF}\left(p^{e}\right)$ and $x \in \operatorname{Out}(K)$. Then $x=d f g$ with:
(a) d is a diagonal automorphism. In particular $p \nmid o(d)$.
(b) f is a field automorphism. In particular if S is a Sylow psubgroup of K normalized by f, then $X(t)^{f}=X\left(t^{\sigma}\right)$, where σ is a field automorphism of $\mathrm{GF}\left(p^{e}\right)$ and $X(t)$ is a root group in S. This implies that f also induces a field automorphism on any parabolic containing S and any Levi complement. Recall that twisted groups are not defined over $\mathrm{GF}\left(p^{e}\right)$ but over $\mathrm{GF}\left(p^{2 e}\right)$ or $\mathrm{GF}\left(p^{3 e}\right)$ and σ is an automorphism of this larger field, in particular f might be trivial on Levi factors, which are defined over $\mathrm{GF}\left(p^{e}\right)$.
(c) g is a graph automorphism, which comes from a symmetry of the corresponding Dynkin diagram. We have $o(g)=2$ or 3 . The case $o(g)=3$ just occurs for $K \cong \Omega_{8}^{+}\left(p^{e}\right)$. Further $g=1$, if K is twisted.

Lemma 2.23. [MaStr, Lemma 2.25] Let G be a group and $L=F^{*}(G)$ be a group of Lie type in characteristic two.
(1) If there is an outer automorphism of order 2 of L, which centralizes a Sylow 2-subgroup of L, then $L \cong S p_{4}(2)^{\prime}$.
(2) Assume that L is a central extension of $S p_{2 n}(q), F_{4}(q),{ }^{2} F_{4}(q)^{\prime}$ or $S z(q), q=2^{n}$, and t is an involution in $G \backslash Z(L)$.
(i) If $C_{L}(t) / O\left(C_{L}(t)\right)$ has a component K, then K is a central extension of $S p_{2 n}(s), F_{4}(s),{ }^{2} F_{4}(s)^{\prime}, s=2^{b}$, or in case of $S p_{4}(q)$ also $S z(q)$ is possible. Further $F^{*}(L) \not \not 二 S z(q)$ or ${ }^{2} F_{4}(2)$.
(ii) A Sylow 2-subgroup T of $C_{F^{*}(G)}(t)$ is not abelian.
(3) Let $L \cong P S L_{3}(4)$ and $t \in G$ be an involution, which induces an outer automorphism on L. Then $C_{L}(t) \cong 3^{2}: Q_{8}, P S L_{2}(7)$ or A_{5}.

Lemma 2.24. Let G be an automorphism group of a group $H=G(q)$ of Lie type in characteristic two, $G \not \neq L_{2}(q), S p_{2 n}(q), F_{4}(q),{ }^{2} F_{4}(q)^{\prime}$ or
$G_{2}(2)^{\prime}$. Let S be a Sylow 2-subgroup of G. If $O_{2}\left(C_{G}\left(\Omega_{1}(Z(S))\right)\right) \not \leq H$, then $H \cong L_{3}(q)$ or $L_{4}(q)$.

Proof. We assume $H \not \approx L_{3}(q)$. Set $R=\Omega_{1}(Z(S \cap H))$. Then we have that $|R|=q$. By Lemma 2.23 we have $\Omega_{1}(Z(S)) \leq R$. Let now $t \in$ $O_{2}\left(C_{G}\left(\Omega_{1}(Z(S))\right)\right)$. Then we have that $\left[C_{H}(R), t\right] \leq O_{2}\left(C_{H}(R)\right)=Q_{R}$. If $H \cong U_{3}(q)$, then there is some element ω of order $q+1$ in H, which centralizes R and so also $\Omega_{1}(Z(S))$. As by Lemma 2.22 a Sylow 2subgroup of the outer automorphism group of H is cyclic and induces just field automorphism, we see that no such automorphism would centralize ω and so $S \cap H=O_{2}\left(C_{G}\left(\Omega_{1}(Z(S))\right)\right)$. So we may assume that $H \not \approx U_{3}(q)$. Suppose that also $H \not \approx L_{n}(q)$. Then $N_{H}(R)$ is a maximal parabolic in H, whose structure is given by Lemma 2.17 or Lemma 2.19 in case of $H \cong G_{2}(q)$. Again by Lemma 2.22 we see that field automorphisms induce nontrivial automorphisms on the Levi factor of $N_{H}(R)$. As no graph automorphism can centralize the Levi factor, we have the assertion.

So we are left with $H \cong L_{n}(q)$. We now must have a graph automorphism, which centralizes the Levi factor, i.e. the Levi factor admits no nontrivial graph automorphism, which gives that it has to be $L_{2}(q)$ and so $H=L_{4}(q)$, the assertion.

Lemma 2.25. [MaStr, Lemma 2.45] Assume Hypothesis 2.16 with $G \neq$ $G_{2}(2)^{\prime}$. Let t be a 2-element which induces an automorphism of G such that $\left[t, Q_{R}\right] \leq Z\left(Q_{R}\right)$, then t is induced by some element from Q_{R}, or $G \cong S p_{4}(q)^{\prime}$.
Lemma 2.26. Suppose Hypothesis 2.16 with $G \cong S p_{4}(q)$ or $F_{4}(q)$, $q=2^{n}$. Let S be a Sylow 2-subgroup of G with $R \leq Z(S)$. If t is an automorphism of G which normalizes S with $R^{t} \neq R$ then $\left[Q_{R}, t\right]$ is not elementary abelian.

Proof. If $G \cong S p_{4}(q)$, then by Lemma $2.21 Q_{R}$ and $Q_{R^{t}}$ are the only maximal elementary abelian subgroups of S, so we are done.

Assume $G \cong F_{4}(q)$. Then t normalizes $N_{G}\left(R R^{t}\right)$. We have that $Q_{R} Q_{R^{t}}=$ $O_{2}\left(N_{G}\left(R R^{t}\right)\right)$. Further $Q_{R} \cap Q_{R^{t}}$ is elementary abelian and $Q_{R} Q_{R^{t}} / Q_{R} \cap$ $Q_{R^{t}}$ is a direct sum of two $S p_{4}(q)-$ modules which are both extensions of the trivial module by a natural module. Take the preimage U of the two trivial modules. Then we have that $U=\left(Q_{R} \cap Q_{R^{t}}\right) Z\left(Q_{R}\right) Z\left(Q_{R^{t}}\right)$ and $Z(U)=Q_{R} \cap Q_{R^{t}}$. Further $Z\left(Q_{R^{t}}\right)$ induces a group of $\mathrm{GF}(q)-$ transvections on $Z(U) Z\left(Q_{R}\right)$. This shows that $C_{Z(U) Z\left(Q_{R}\right)}(t)=Z(U)$ for all $t \in Z\left(Q_{R^{t}}\right) \backslash Z(U)$. In particular all involution are either in
$Z(U) Z\left(Q_{R}\right)$ or $Z(U) Z\left(Q_{R^{t}}\right)$. But then $\left(Q_{R} \cap Q_{R^{t}}\right) Z\left(Q_{R}\right)$ and $\left(Q_{R} \cap\right.$ $\left.Q_{R^{t}}\right) Z\left(Q_{R^{t}}\right)$ are the only maximal elementary abelian subgroups in U, which again gives that $\left[Q_{R}, t\right]$ is not elementary abelian.
Lemma 2.27. Assume Hypothesis 2.16. Assume further that $G \not \approx$ $G_{2}(2)^{\prime}, L_{3}(2), L_{3}(4), L_{3}(16)$ or $L_{4}(2)$. If $t \in \operatorname{Aut}(G)$ is an involution with $\left[t, X_{R}\right] \leq Q_{R}$, then $t \in G$.

Proof. Suppose that t induces an outer automorphism on G. Suppose further that X_{R} / Q_{R} has a normal subgroup L_{R}, which is a group of Lie type in characteristic 2 . Then t cannot induce a field automorphism or a graph/field automorphism, as this has to be nontrivial on L_{R}. If t induces a graph automorphism, L_{R} must be of Lie rank at most 1 . So we have that $G \cong L_{4}(q), L_{3}(q)$ or $U_{3}(q)$. In case of $L_{4}(q)$ we have a cyclic group of order $q-1$, which is normal in X_{R} / Q_{R}. As $q>2$ by assumption, we have that graph automorphisms act nontrivially on this group. So assume $G \cong L_{3}(q)$. Now X_{R} / Q_{R} is cyclic of order $(q-1) / d$, where $d=\operatorname{gcd}(3, q-1)$. Suppose $d \neq q-1$. Then both field- and graph automorphisms act nontrivially on X_{R} / Q_{R}. By [AschSe, (19.1)] graph automorphisms t invert X_{R} / Q_{R} and field automorphisms t centralize a subgroup of order $r-1$ for $r^{2}=q$. Hence we see that t must be a graph/field automorphism. Then t centralizes a group of order $r+1$ and inverts a group of order $r-1 / d$. In particular we must have $d=r-1$, which is $r=4$, so $q=16$, a contradiction as $G \not \not L_{3}(4)$ or $L_{3}(16)$. Assume now $G=U_{3}(q)$. Then X_{R} / Q_{R} is cyclic of order $q+1 / d$, where $d=\operatorname{gcd}(3, q+1)$. As we now have $q>2$, we have that X_{R} / Q_{R} is nontrivial. Further by [AschSe, (19.8)] we see that $\left[t, X_{R}\right] \not \leq Q_{R}$.
Lemma 2.28. Let $G=L_{n}(q)$ or $U_{n}(q), S$ a Sylow 2-subgroup of G, with center R. Let V be normal in S with $\left|V \cap O_{2}\left(C_{G}(R)\right)\right|=q^{3}$. If $\left|S: C_{S}(V)\right| \leq q^{2}$ then $V=Z\left(C_{S}\left(C_{Q}\left(Z_{2}(S)\right)\right)\right)$, where $Q=O_{2}\left(C_{G}(R)\right)$.
Proof. We start to prove that $V=Z\left(C_{S}\left(C_{Q}\left(Z_{2}(S)\right)\right)\right)$. If $G \cong U_{n}(q)$, then by Lemma $2.17 Q / Z(Q)$ is a module over $\operatorname{GF}\left(q^{2}\right)$. In particular $|[V, Q] / Z(Q)| \geq q^{2}$. This shows $[V, Q]=V \cap Q$. If $G \cong L_{n}(q)$, then again by Lemma 2.17 we have that Q / R is a direct sum of two irreducible modules over $\mathrm{GF}(q)$ and so again $[V, Q]=V \cap Q$. Hence in both cases we have that $\left|Q: C_{Q}(V)\right|=q^{2}$. Furthermore as $V Q / Q$ is normal in S / Q, we see that S acts on $[V, Q] / R$ and so $[S,[V, Q]] \leq R$. This shows $V \cap Q=Z_{2}(S)$. In particular $V \leq C_{S}\left(Z_{2}(S)\right)$. As $C_{Q}\left(Z_{2}(S)\right) / Z_{2}(S)$ is irreducible respectively the direct sum of two irreducible modules for $N_{N_{G}(Q) / Q}(V Q / Q)$, we see that $\left[V, C_{Q}\left(Z_{2}(S)\right)\right] \leq R$. But as $\mid Q$: $C_{Q}(V) \mid=q^{2}$, we get that $\left[C_{Q}\left(Z_{2}(S)\right), V\right]=1$. So $V \leq C_{S}\left(C_{Q}\left(Z_{2}(S)\right)\right)$. Let now $t \in S$, with $\left[t, C_{Q}\left(Z_{2}(S)\right)\right]=1$. If $t \notin Q$, then t induces a
transvection to $Z_{2}(S) / R$. But this group of transvections in $U_{n-2}(q)$ and $L_{n-2}(q)$ is of order q and so $t \in V Q$. Hence $V=Z\left(C_{S}\left(C_{Q}\left(Z_{2}(S)\right)\right)\right)$, the assertion.

A 2-local N can fail to be of characteristic 2 in one of two ways. Either $E(N) \neq 1$ or $O(N) \neq 1$. The next lemma will become important when we show in Chapter 6 that $O(N)=1$ for all 2-locals containing a Sylow 2-subgroup.

Lemma 2.29. Let $F^{*}(G)$ be a simple group, $F^{*}(G) \in \mathcal{C}_{2}$ and let T be a Sylow 2-subgroup of G. Assume that T normalizes a non-trivial subgroup U of G of odd order. Then $G \cong L_{3}(3)$ or M_{11} and $|U|=9$.

Proof. We always have that T contains a fours group V. Then by coprime action we have that

$$
\begin{equation*}
U=\left\langle C_{U}(v) \mid 1 \neq v \in V\right\rangle . \tag{1}
\end{equation*}
$$

This we will use in what follows.
If $F^{*}(G)$ is a sporadic simple group we see that $F^{*}(G) \cong M_{11}$ by going over the groups in [GoLyS3, Table 5.3]. Suppose now that $F^{*}(G)$ is a group of Lie type in odd characteristic. If $F^{*}(G) \cong L_{2}(p)$, p a Fermat or Mersenne prime, or $L_{2}(9)$, we have that the centralizer of an involution is a 2-group, and so by (1) T cannot act on U. If $F^{*}(G) \cong L_{4}(3), U_{4}(3)$ or $G_{2}(3)$, then by Lemma 2.6 and Lemma 2.7 centralizer of involutions are $\{2,3\}$-groups. So by (1) U is a 3 -group. Then the Borel-TitsTheorem [MaStr, Lemma 2.15] implies that $U T$ is contained in some parabolic subgroup. But obviously none of them contains a full Sylow 2-subgroup. Hence as $F^{*}(G) \in \mathcal{C}_{2}$ we are left with $F^{*}(H) \cong L_{3}(3)$.

So it remains to deal with groups of Lie type in characteristic 2. Then the assertion follows with [GoLyS3, Corollary 3.1.4].

Lemma 2.30. Let $G \cong L_{4}(3)$ or $U_{4}(3)$ and t be a 2 -central involution in G. Then $C_{G}(t)$ has no normal subgroup $Q \cong Q_{8}$.

Proof. For both groups the structure of $C_{G}(t)$ is described in Lemma 2.6. Hence we have that $O_{2}\left(C_{G}(t)\right) \cong Q_{8} * Q_{8}$. Furthermore there is a subgroup $U \cong S L_{2}(3) * S L_{2}(3)=S_{1} * S_{2}$ normal in $C_{G}(t)$, with $O_{2}(U)=$ $O_{2}\left(C_{G}(r)\right)$. Suppose Q is normal in $C_{G}(r)$, then $Q \leq O_{2}\left(C_{G}(r)\right)$ and is normal in U. So Q is one of the two normal quaternion subgroups $O_{2}\left(S_{i}\right), i=1,2$, of $O_{2}(U)$. But $C_{G}(t)$ contains some element u with $S_{1}^{u}=S_{2}$, in particular $O_{2}\left(S_{i}\right), i=1,2$, both are not normal in $C_{G}(t)$.

Lemma 2.31. Let $G / Z(G) \in \mathcal{M}$ (see [MaStr, Definition 2.51]) with $Z(G) \neq 1$, and assume that G has a 2 -central involution z such that $\left|C_{G}(z)\right|=2^{a} \cdot 3^{b}$, with $b \leq 2$. Then $G \cong 2 L_{3}(4), 2^{2} L_{3}(4), 2 S p_{6}(2)$, $2 U_{4}(3), 2 M_{12}, 2 M_{22}, 4 M_{22}, 2 S z(8)$ or $2^{2} S z(8)$.
Proof. We have $z \notin Z(G)$. Hence also $C_{G / Z(G)}(z)$ is a $\{2,3\}$-group. Now we just go over the groups in \mathcal{M}. Let us assume that G is not one of the groups listed in the conclusion of the lemma. By inspection of [GoLyS3, Table 5.3] and Lemma 2.17 we see that $5 \| C_{G / Z(G)}(z) \mid$, or $G \cong \Omega_{8}^{+}(2)$ and $\left|C_{G / Z(G)}(z)\right|=2^{12} \cdot 3^{3}$, which contradicts $b \leq 2$. Hence, $G / Z(G)$ is as claimed.

Lemma 2.32. Let $G \cong L_{2}(p)$, p an odd prime, $A_{6}, L_{3}(3), M_{11}, L_{3}(4)$ or $S z(q), q=2^{m}$. Then G possesses exactly one conjugacy class of involutions.
Proof. If G is isomorphic to $L_{2}(p), A_{6}, L_{3}(3)$ or M_{11}, then by Lemma 2.5 a Sylow 2-subgroup of G is dihedral or semidihedral. Now it is an easy application of Lemma 2.2 to see that these groups have precisely one class of involutions. For $G \cong L_{3}(4)$ the assertion follows from Lemma 2.20. For $G \cong S z(q)$, we get the assertion with [GoLyS4, Lemma 4.3.4].
Lemma 2.33. Let $G \cong 2 L_{3}(4), 2^{2} L_{3}(4), 2 S p_{6}(2), 2 U_{4}(3), 2 M_{12}, 2 M_{22}$, $4 M_{22}, 2 S z(8)$ or $2^{2} S z(8)$. If there is an element x of order four in G such that $x^{2} \in Z(G)$, then $G \cong 2 S p_{6}(2), 2 M_{12}$ or $4 M_{22}$.
Proof. Let S be a Sylow 2 -subgroup of G. Suppose $G \not \approx 4 M_{22}$. Then $Z(G)$ is elementary abelian. Further it is enough to deal with the case of $|Z(G)|=2$. As S is not a quaternion group, there are involutions in $S \backslash Z(G)$. Hence $G / Z(G)$ has more than one conjugacy class of involutions. But $U_{4}(3), L_{3}(4), M_{22}$ and $S z(8)$ have just one class of involutions. So $G / Z(G) \cong S p_{6}(2)$ or M_{12}.
Lemma 2.34. Let G be a group, $L \unlhd G, L \cong L_{4}(3)$. Assume that $C_{G}(L)$ is a cyclic 2-group. Let S be a Sylow 2 -subgroup of G and $\left|\Omega_{1}(Z(S))\right|=$ 8. Then $C_{G}(L) \leq Z(S)$ and $S=C_{S}(L) \times((S \cap L)\langle d\rangle)$ with $d \in Z(S)$.

Proof. By Lemma 2.6 we have that $Z(L \cap S)=\langle t\rangle$ and we may assume that there is $d \in S$, which centralizes in L a group $P S p_{4}(3): 2$. Furthermore $\left|G: L C_{G}(L)\right|=2$ and $t d \nsim d$, as $N_{G}(S)$ normalizes $S \cap L$ and so centralizes $Z(S)$. Then we have that $S=C_{S}(L) \times((S \cap L)\langle d\rangle)$ and so $C_{G}(L) \leq Z(S)$.

Lemma 2.35. Let $G \cong M_{12}$ or M_{22} and let x be a 2 -central involution in G. Then $\left|C_{G}(x)\right|$ is divisible by 3 but not by 9. Furthermore $\operatorname{Out}(G)$ is of order 2 .

Proof. This follows from [GoLyS3, Table 5.3b] and [GoLyS3, Table 5.3c].

Lemma 2.36. Let $G=S p_{6}(2)$ and x be a 2-central involution, which is centralized by an elementary abelian group U of order 9 . If there is an elementary abelian subgroup E of order 32 in $C_{G}(x)$, which is normalized by U, then x is a transvection on the natural module.

Proof. By the Borel-Tits-Theorem [MaStr, Lemma 2.15] $C_{G}(x)$ is contained in one of the parabolics $2^{5} S p_{4}(2),\left(2^{2} Q_{8} * Q_{8}\right)\left(\Sigma_{3} \times \Sigma_{3}\right)$, or $2^{6} L_{3}(2)$. As $|U|=9$, we have that $C_{G}(x)$ is contained in one of the first two parabolics. By Lemma 2.18 we see that the centralizer of a group U of order 9 in both case is $U\langle x\rangle$. So we just have to eliminate the second case. Here U normalizes $Q=Q_{8} * Q_{8}$ and so it induces orbits of length 9 on the involutions in $Q \backslash Z(Q)$. In particular U cannot normalize an elementary abelian group of order 32 , as this group must contain all involutions of $O_{2}\left(C_{G}(x)\right)$ and so equals to $O_{2}\left(C_{G}(x)\right)$.

Lemma 2.37. Let $G=L_{2}(p)$, p an odd prime, $A_{6}, L_{3}(3), M_{11}, S z(q)$ or $L_{3}(4)$. Let furthermore t be an involution in $G\langle t\rangle$, which induces an outer automorphism on G and S be a Sylow 2-subgroup of $G\langle t\rangle$. Then $t \sim t x$ for all $x \in \Omega_{1}\left(Z\left(C_{S}(t)\right)\right)$, or $G \cong A_{6}$ and t induces the Σ_{6}-automorphism.

Proof. If $G \cong M_{11}$, then by Lemma 2.12 there is no such automorphism t. The same is true for $G \cong S z(q)$ by Lemma 2.23(2). If $G \cong$ $L_{2}(p)$ then $\operatorname{Aut}(G) \cong P G L_{2}(p)$ by [GoLyS3, Table 4.5.3]. Now Aut (G) has a dihedral Sylow 2-subgroup and so all involutions in $\operatorname{Aut}(G) \backslash G$ are conjugate anyway. If $G \cong L_{3}(3)$, then by [GoLyS3, Table 4.5.1], we see that $C_{G}(t) \cong \Sigma_{4}$ and so $C_{S}(t)=\langle t\rangle \times D$, where $D \cong D_{8}$. As t obviously is not 2-central in S, we see that $t \sim t x$ with $\langle x\rangle=Z(D)$.

Let $G \cong L_{3}(4)$. Then by Lemma 2.23(3), $C_{G}(t) \cong L_{2}(4), L_{2}(7)$ or $3^{2} Q_{8}$. In all cases $C_{G}(t)$ has just one class of involutions and as t is not 2-central, the assertion follows.

So let finally $G \cong A_{6}$. As t is an involution we get with [GoLyS4, Lemma 4.4.2] that $G\langle t\rangle$ is isomorphic to $P G L_{2}(9)$ or Σ_{6}. In the former the assertion follows with [GoLyS4, Lemma 4.4.1].

Lemma 2.38. Let $G=A_{8}$. There is no subgroup H of G, such that H has abelian Sylow 2-subgroup and $|H|$ is divisible by $3 \cdot 5 \cdot 7$.

Proof. Assume false. Let L be a Sylow 7 -subgroup of H. The normalizer of L in G is of order 21. If $N_{H}(L)=L$, we have a normal 7 -complement in H. But then L centralizes a Sylow 5 -subgroup, a contradiction. So we have $\left|N_{H}(L)\right|=21$. We get with Sylow's theorem that $|H|=3^{2} \cdot 5 \cdot 7$
or $2^{3} \cdot 3^{2} \cdot 5 \cdot 7$. In the latter $|G: H|=8$ and so $H \cong A_{7}$, which does not possess an abelian Sylow 2-subgroup. So we have $|H|=3^{2} \cdot 5 \cdot 7$. Let T be a Sylow 5 -subgroup of H, then $N_{H}(T)=C_{H}(T)$, as $|H|$ is odd. Hence now H has a normal 5 -complement and so again T centralizes a Sylow 7-subgroup, a contradiction.

Lemma 2.39. [Asch1, Theorem A] Let G be a finite group with $F^{*}(G)=$ L a simple group, T a Sylow 2-subgroup of G and $z \in Z(T)$ be an involution. Assume that $M=C_{G}(z)$ is the unique maximal subgroup of G which contains T. Then one of the following holds:
(1) $L \cong L_{2}(q), q>5$ odd.
(2) $q \equiv-1(\bmod 4)$ and $L \cong L_{2^{n}+1}(q)$, or $q \equiv 1(\bmod 4)$ and $L \cong U_{2^{n}+1}(q)$, and M contains a normal subgroup $S L_{2^{n}}(q)$, $S U_{2^{n}}(q)$, respectively. In the first case S acts nontrivially on the Dynkin diagram.l
(3) $L \cong \Omega_{2^{n}+1}(q)$, q odd, $n>2$, and M contains a normal subgroup $S O_{2^{n}}(q)$.
(4) $q \equiv-1(\bmod 4)$ and $L \cong \Omega_{2^{n}+2}^{+}(q)$, or $q \equiv 1(\bmod 4)$ and $L \cong \Omega_{2^{n}+2}^{-}(q)$, and M contains a normal subgroup $S_{2^{n}}^{+}(q)$. Further T is not contained in the group $O_{2^{n}+2}(q)$ extended by the group of field automorphisms.

3. Small Modules

In Chapter 6 we will construct a 2-local subgroup N of G, which is not contained in $C_{G}(z)$ (with $z 2$-central), such that $N \cap C_{G}(z)$ contains a Sylow 2-subgroup S of $C_{G}(z)$ and $N \cap C_{G}(z)$ is the only maximal subgroup of N which contains S. Finally we will have $F^{*}(N)=O_{2}(N)$.

Then we will determine the action of $N / O_{2}(N)$ on $\Omega_{1}\left(Z\left(O_{2}(N)\right)\right)$. This will be a so called small module for $N / O_{2}(N)$. In this chapter we investigate small modules in generality. The results obtained will be applied to determine the acton of N on $\Omega_{1}\left(Z\left(O_{2}(N)\right)\right)$.

Definition 3.1. Let X be a group, V be a faithful module over $\operatorname{GF}(p)$. We call V an
(i) F-module if there is some nontrivial elementary abelian p-subgroup A of X such that $\left|V: C_{V}(A)\right| \leq|A|$;
(ii) $F+1$-module if there is some nontrivial elementary abelian p-subgroup A of X such that $\left|V: C_{V}(A)\right| \leq 2|A|$;
(iii) $2 F$-module if there is some nontrivial elementary abelian p subgroup A of X such that $\left|V: C_{V}(A)\right| \leq|A|^{2}$.

In all cases the group A is called an offender. We call the module V a sharp F-module, if for any offender A we have that $\left|V: C_{V}(A)\right|=|A|$.

We will call the modules defined in Definition 3.1 small modules. Here is a typical situation in which F-modules show up.
Lemma 3.2. Let G be a group which acts on a p-group X and S be a Sylow p-subgroup of $X G$. Assume that G acts faithfully on $W=$ $\Omega_{1}(Z(X)) \neq \Omega_{1}(Z(S))$. Then either $J(S) \leq X$, and so $J(S)$ is normal in $X G$, or W is an F-module for G.

Proof. We may assume that $J(S) \not \leq X$. Then there is a maximal elementary abelian subgroup A of S, with $A \not \leq X$. Now $|A \cap X||W| / \mid W \cap$ $A|=|(A \cap X) W| \leq|A|$. This implies that $| W / W \cap A|\leq|A / A \cap X|$. As $W \cap A \leq C_{W}(A)$, we get that W is an F-module with offender $A / A \cap X$.

In the next two lemmas we give a classification of some of the small modules for simple groups using the classification of the finite simple groups. By a full transvection group we mean the unipotent radical of the stabilizer of a point or hyperplane of the natural module for $S L_{n}(q)$. Let $X=A_{n}$ and V be the permutation module over $\operatorname{GF}(2)$. We call the non trivial irreducible module involved in V of dimension $n-2$ for n even and dimension $n-1$ for n odd, the reduced permutation module.

Lemma 3.3. Let X be a group such that $F^{*}(X)$ is quasisimple and let V be an irreducible $F^{*}(X)$-module over $\mathrm{GF}(2)$ which is an F-module for X. Then $F^{*}(X)$ is classical, $G_{2}(q), A_{n}$, or $3 A_{6}$ and one of the following holds
(1) $F^{*}(X)$ is classical and V is the natural module, or A_{n} and V is the irreducible reduced permutation module.
(2) $F^{*}(X) \cong S L_{n}(q)$ and V is the exterior square of the natural module or its dual. Further this module is sharp.
(3) $F^{*}(X) \cong S p_{6}(q)$ or $\Omega_{10}^{+}(q)$ and V is the spin module or half spin module, respectively. If $F^{*}(X) \cong \Omega_{10}^{+}(q)$, then this module is sharp.
(4) $F^{*}(X) \cong G_{2}(q)$ and V is the natural module or $F^{*}(X) \cong 3 A_{6}$ and V is the 6-dimensional module. In both cases this is sharp.
(5) $X \cong A_{7}$ and V is the 4-dimensional module over $\mathrm{GF}(2)$.

Proof. [GM], [GM1], [GLM].
Lemma 3.4. Let X be a group such that $F^{*}(X)$ is quasisimple and let V be a faithful irreducible X-module over GF(2). Suppose that X is a minimal parabolic (i.e. a Sylow 2-subgroup of X is not normal in
X but contained in a unique maximal subgroup of X) and V is a $2 F-$ module with offender A such that $\left|V: C_{V}(A)\right|<|A|^{2}$. Then one of the following holds
(a) V is an F-module, $F^{*}(X) \cong L_{2}\left(2^{n}\right)$ and V is the natural module, or $F^{*}(X) \cong A_{2^{n}+1}$ and V is the irreducible section of the permutation module.
(b) V is not an F-module and one of the following holds
(1) $F^{*}(X) \cong S L_{3}\left(2^{n}\right)$ and V is the direct sum of the natural module and its dual. Furthermore X contains some element, which induces a graph or graph/field automorphism on $F^{*}(X)$.
(2) $F^{*}(X) \cong L_{2}\left(2^{2 n}\right) \cong \Omega_{4}^{-}\left(2^{n}\right)$ and V is the orthogonal module.
(3) $F^{*}(X) \cong S p_{4}\left(2^{n}\right)$ and V is a direct sum of the two 4dimensional modules. Furthermore X contains some element, which induces a graph automorphism on $F^{*}(X)$.
(4) $F^{*}(X) \cong A_{9}$ and $|V|=2^{8}$, V is the spin module.

Proof. If V is irreducible for $F^{*}(X)$ then we get (a), (b)(2) or (b)(4) by [GM], [GM1], [GLM]. If V is not irreducible for $F^{*}(X)$, then there is a submodule V_{1} such that $V=V_{1} \oplus \cdots \oplus V_{r}, r>1$ and V_{i} are X-conjugate irreducible $F^{*}(X)$-modules.

We will show:
V_{1} is an F - module for $F^{*}(X) \tilde{A}$, where
\tilde{A} is an offender with $\left|V_{1}: C_{V_{1}}(\tilde{A})\right|<|\tilde{A}|$.

For this assume first that A acts on each V_{i}. Then we see that it induces on at least one V_{i} an F-module offender $A / C_{A}\left(V_{i}\right)$ such that $\left|V_{i}: C_{V_{i}}(A)\right|<\left|A / C_{A}\left(V_{i}\right)\right|$. We may assume $i=1$. So we can set $\tilde{A}=A / C_{A}\left(V_{1}\right)$ to get $(*)$. Now let $W=V_{1}^{A}=V_{1} \oplus \cdots \oplus V_{t}, t>1$. Then we have that $|A|^{2}>\left|W: C_{W}(A)\right|=\left|V_{1}: C_{V_{1}}(B)\right|\left|V_{1}\right|^{t}$, where $B=N_{A}\left(V_{1}\right)$. Assume that $\left|V_{1}: C_{V_{1}}(B)\right| \geq|B|$. Then $t^{2}|B|>\left|V_{1}\right|^{t-1} \geq$ $(2|B|)^{t-1}$. This shows $t=2, B \neq 1$ and $\left|V_{1}\right|=2|B|$. In particular B induces the full transvection group to a point on V_{1}. As $A \neq B$ and there is no outer automorphism of $L_{n}(2)$ centralizing a full transvection group this is not possible. Hence we have $\left|V_{1}: C_{V_{1}}(B)\right|<|B|$. Now with $\tilde{A}=B$, we again have ($*$). This finally proves $(*)$.

Using $(*)$ an application of Lemma 3.3 shows that we have (b)(1) or (3) or $F^{*}(X) \cong A_{n}$. In case of A_{n}, as X is a minimal parabolic, we have n odd. Offenders are transvection groups and so they are sharp. Hence $F^{*}(X) \not \neq A_{n}$.

By Thompson replacement [GoLyS2, Theorem 25.2] F-modules are also quadratic modules. Hence we now turn to quadratic modules.

Lemma 3.5. [Cher, Theorem 3] Let K be a component of a group X, $O_{2}(K)=1$ and V be a GF(2)-module for X with $[V, K] \neq 1$. Suppose that $A \leq X$ and $[V, a, A]=1$ for some $1 \neq a \in A$, then one of the following holds:
(i) $[K, A] \leq K$,
(ii) $K \cong S L_{2}\left(2^{k}\right),\left|A / N_{A}(K)\right|=2$ and $\left|A / C_{A}(K)\right|>2$. Further $\left[V,\left\langle K^{A}\right\rangle\right]$ is a direct sum of natural $\Omega_{4}^{+}\left(2^{k}\right)$-modules, or
(iii) $A \neq N_{A}(K),\left|A / C_{A}(K)\right|=2$.

If $[K, A] \not \leq K$, then A does not act as a quadratic F-module offender on $\left[V,\left\langle K^{A}\right\rangle\right]$.

Lemma 3.6. [Str2] Let $X \cong S p_{4}(q)^{\prime}$ or ${ }^{2} F_{4}(q)^{\prime}, q=2^{n}$, and V be an irreducible GF(2)-module. Suppose there is a fours group A in X with $[V, A, A]=1$. If A intersects some root group R nontrivially but $A \notin R$, then $X \cong S p_{4}(q)^{\prime}$ and V is a natural module.

Lemma 3.7. Let X be a group such that $F^{*}(X)$ is a perfect central extension of a finite simple group. Suppose there is some elementary abelian 2-subgroup A of $X,|A| \geq 4$, such that for some irreducible nontrivial faithful module V over $\mathrm{GF}(2)$ we have $[V, A, A]=1$. Then:
(i) If $F^{*}(X) / Z\left(F^{*}(X)\right)$ is sporadic, then $F^{*}(X) / Z\left(F^{*}(X)\right) \cong M_{12}$, $M_{22}, M_{24}, J_{2}, C o_{1}, C o_{2}$ or $S z . I f|A| \geq 8$, then $F^{*}(X) \cong 3 \cdot M_{22}$.
(ii) If $F^{*}(X) / Z\left(F^{*}(X)\right)$ is a group of Lie type in odd characteristic which is not also a group of Lie type in even characteristic, then $F^{*}(X) \cong 3 \cdot U_{4}(3)$. Furthermore V is the 12 -dimensional module.
(iii) If $F^{*}(X) / Z\left(F^{*}(X)\right)$ is alternating, then either V is the reduced permutation module, a spin module or $F^{*}(X) \cong 3$. A_{6} and V is the 6-dimensional module or $F^{*}(X) \cong 3 \cdot A_{7}$ and V is the 12 -dimensional module. If $|A|>8$, then V is natural or $X \cong A_{8}$ and $|V|=16$. If V is the spinmodule and $|A|=4$, then A is conjugate to $\langle(12)(34),(13)(24)\rangle$ or $\langle(12)(34)(56)(78),(13)(24)(57)(68)\rangle$. If $|A|=8$ then A is conjugate to $\langle(12)(34)(56)(78),(13)(24)(57)(68),(14)(26)(37)(48)\rangle$ in Σ_{n}.

Proof. (i) This is [MeiStr2].
(ii) This is [MeiStr1].
(iii) The first assertion is [MeiStr2]. There the group $3 \cdot A_{7}$ was forgotten. But as J. Hall pointed out there is an embedding $3 \cdot A_{7} \leq$
$3 \cdot M_{22} \leq S U_{6}(2)$, which gives a 6 -dimensional module over $\mathrm{GF}(4)$ on which a fours group in $3 \cdot A_{7}$ acts quadratically.
For the proof of the second assertion suppose $|A| \geq 4$. Let $a \in A^{\sharp}$ and k be the number of fixed points of a. Then there is $K \leq C_{X}(a), K \cong \Sigma_{k}$. Furthermore $C_{C_{X}(a)}\left(K^{\prime}\right)^{\prime}$ is an extension of a 2 -group by $A_{m}, m=$ $(n-k) / 2$. Now choose $a \in A$ with m as big as possible. Suppose first $m>2$. By [MeiStr1, (4.3)] there is no $x \sim(12)(34)$ such that $[[V, a], x]=1$. In particular $\left\langle A^{C_{X}(a)}\right\rangle$ does not contain such an element x.

Suppose first $\left[A, C_{C_{X}(a)}\left(K^{\prime}\right)\right] \neq 1$. If $m \geq 5$, then A_{m} is nonsolvable and so $C_{C_{X}(a)}([V, a])$ contains an elementary abelian subgroup of $O_{2}\left(C_{X}(a)\right)$ of order 2^{m-1}. But then this group contains a conjugate t of $(12)(34)$. Now $\langle a, t\rangle$ acts quadratically, a contradiction.

Let $m=4$. Then $a \sim(12)(34)(56)(78)$. Furthermore as we may assume that no $x \sim(12)(34)$ is contained in $\left\langle A^{C_{X}(a)}\right\rangle$ we see that A is conjugate to a subgroup of $\langle(12)(34)(56)(78),(13)(24)(57)(68),(15)(26)(37)(48)\rangle$.

Let $m=3$. Then $C_{X}\left(K^{\prime}\right) \leq \Sigma_{6}$ and $a \sim(12)(34)(56)$. We see that $\left\langle A^{C_{X}(a)}\right\rangle$ has to contain some $x \sim(12)(34)$, a contradiction.

So let $\left[A, O^{2^{\prime}}\left(C_{C_{X}(a)}\left(K^{\prime}\right)\right)\right]=1$. If $\left[A, K^{\prime}\right] \neq 1$, then $\left[K^{\prime},[V, a]\right]=1$. If $k \geq 4$, then K^{\prime} contains some $x \sim(12)(34)$, a contradiction. Let $k \leq 3$. As $\left[A, O^{2^{\prime}}\left(C_{C_{X}(a)}\left(K^{\prime}\right)\right)\right]=1$ and $m>2$, there is $x \sim(12)$ in A. But then $x a$ has fewer fixed points than a, a contradiction. So we are left with $\left[A, K^{\prime}\right]=1=\left[A, C_{C_{X}(a)}\left(K^{\prime}\right)\right]$. But this is impossible with $m>2$.

So we have $m \leq 2$ for all $a \in A^{\sharp}$. As there is no fours group of transpositions we may assume $a=(12)(34) \in A$. Now $A \geq\langle a, b\rangle$, $b=(13)(24),(12)(56)$ or (34). Let $b=(12)(56)$. If $\left[b, K^{\prime}\right] \neq 1$ then K^{\prime} contains no involutions by [MeiStr1, (4.3)]. This shows $k \leq 3$ and so $A \leq \Sigma_{7}$. If $\left[b, K^{\prime}\right]=1$, then even $k \leq 2$ and so $A \leq \Sigma_{6}$. But for this group $A=\langle(12)(34),(12)(56)\rangle$ does not act quadratically on the four dimensional spin module. Recall that in case of Σ_{6} the natural module is defined as the module on which $\langle(12)(34),(12)(56)\rangle$ acts quadratically.

Assume now $b=(34)$. Then $C_{X}(b) \cong \mathbb{Z}_{2} \times \Sigma_{n-2}$. If $n-2>3$, then $(12)(56) \in\left[a, C_{X}(b)\right]$. But then $\langle(34),(12)(56)\rangle$ acts quadratically, a
contradiction. So $n=5$. But $\langle(12),(34)\rangle$ does not act quadratically on the natural $L_{2}(4)$-module. Hence $b=(13)(24)$, which proves (iii).

Lemma 3.8. Let $A \leq \Sigma_{6}$ be an elementary abelian subgroup of order 8. Then A does not act quadratically on both of the two 4-dimensional modules for Σ_{6}.

Proof. As the two 4-dimensional modules are interchanged by an outer automorphism of Σ_{6}, which also interchanges the two elementary abelian subgroups of order 8 , it is enough to show that not both act quadratically on the irreducible part of the permutation module. But the fours group $\langle(12)(34),(13)(24)\rangle$ does not act quadratically on the irreducible permutation module, as the commutator of $(12)(34)$ with the permutation module, which is $\left\langle v_{1}+v_{2}, v_{3}+v_{4}\right\rangle$, is not centralized by (13)(24).

For later applications we need some information about central extensions of some of the small modules.

Lemma 3.9. Let $X=A_{n}, n \geq 5, V$ be a GF(2) X-module with $[V, X]$ the natural irreducible permutation module. Assume $C_{V}(X)=1$. Then $|V:[V, X]| \leq 2$, and $V=[V, X]$ if n is odd. Furthermore V is a factor of the reduced permutation module. In particular V is of dimension $n-1$ or $n-2$.

Proof. This will be proved by induction on n. For $n=5$ this is well known as the permutation module is injective. So let $n>5, K \cong$ $A_{n-1}, K \leq X$. If $n-1$ is odd, then $[V, X]=[V, K]$ is the permutation module for K. By induction $V=[V, K] \bigoplus T$. Hence there is $v \in V \backslash$ $[V, X],[v, K]=1$, i.e. $\left\langle v^{X}\right\rangle=V_{1}$ is a factor of the permutation module. Let $K_{1} \leq K$ such that $K_{1} \cong A_{n-2}$. Then $\left|C_{V}\left(K_{1}\right): T\right|=2$. Now there is an involution $t \in X$ such that $t \notin K$ but t normalizes K_{1}. As $\langle K, t\rangle=X$, we get $C_{T}(t)=1$ and so $T=\langle v\rangle$, i.e. $V_{1}=V$.

Let $n-1$ be even. Then we have a K-chain. $1<T<T_{1}<[V, X]<V$, with $|T|=2, T_{1} / T$ the irreducible permutation module for K and $\left|[V, X] / T_{1}\right|=2$. Now by induction $C_{V / T}(K) \neq 1$. As $C_{V / T}(K) \not \leq$ $[V, X] / T$, we again get some $v \in V \backslash[V, X],[v, K]=1$, and so V is a factor of the permutation module.

Lemma 3.10. Let $F^{*}(G)=L_{2}\left(2^{n}\right)$ and V be a faithful F-module over $\mathrm{GF}(2)$ for G such that $C_{V}(G)=1$. Then V is irreducible.

Proof. If $n=1$, then $V=\left[V, G^{\prime}\right] \oplus C_{V}\left(G^{\prime}\right)$. As $C_{V}(G)=1$ also $C_{V}\left(G^{\prime}\right)=1$ and so $V=\left[G^{\prime}, V\right]$ is of order 4 . So let $n>1$. By Lemma 3.3 we have that there is an irreducible submodule V_{1} in V which is the natural $L_{2}\left(2^{n}\right)$-module or $n=2$ and it is the permutation
module for A_{5}. In both cases we get $\left|V_{1}: C_{V_{1}}(A)\right|=|A|$ for an offender A. Hence we see that $V=C_{V}(A) V_{1}$. In particular V / V_{1} is a trivial $L_{2}\left(2^{n}\right)$-module. By Lemma 3.9 we may assume that V_{1} is the natural $L_{2}\left(2^{n}\right)$-modules. Now A is a Sylow $2-$ subgroup of $L_{2}\left(2^{n}\right)$. Application of [Hu, (I.17.4)] gives $V=V_{1}$.

Lemma 3.11. Let $X=\Omega_{4}^{+}(q), q$ even, and V be a module over $\operatorname{GF}(2)$ with $[V, X]$ the natural module and $C_{V}(X)=1$. Then $[V, X]=V$.

Proof. We have $X=X_{1} X_{2}, X_{i} \cong L_{2}(q), i=1,2$. We may assume that $q>2$, as the assertion is obvious for $q=2$. There are $\omega_{i} \in X_{i}$ with $o\left(\omega_{i}\right)=q+1$. If $C_{[V, X]}\left(\omega_{1}\right) \neq 1$, then as X_{2} acts nontrivially on $C_{[V, X]}\left(\omega_{1}\right)$ we get $\left|C_{[V, X]}\left(\omega_{1}\right)\right|=q^{2}$ and so $\left|\left[[V, X], \omega_{1}\right]\right|=q^{2}$. By Schur's Lemma $\left[[V, X], \omega_{1}\right]$ is a 1-dimensional module over $\operatorname{GF}\left(q^{2}\right)$ for X_{2} and so $X_{2} \leq G L_{1}\left(q^{2}\right)$, a contradiction. Hence ω_{i} act fixed point freely on $[V, X]$ for both $i=1,2$. Now choose $v_{1} \in V \backslash[V, X]$ with $\left[v_{1}, \omega_{1}\right]=1$. Then v_{1} is uniquely determined in the coset $[V, X] v_{1}$. Since ω_{1} and ω_{2} commute, we have v_{1} is centralized by ω_{2}. So $C_{V}\left(\omega_{1}\right)=C_{V}\left(\omega_{2}\right)$ is normalized by $\left\langle C_{X}\left(\omega_{1}\right), C_{X}\left(\omega_{2}\right)\right\rangle \geq\left\langle X_{2}, X_{1}\right\rangle=X$, which is a contradiction.

Lemma 3.12. Let $F^{*}(G)=A_{2^{n}+1}$ and V be a module over $\operatorname{GF}(2)$, which is an $2 F$-module, with offender A such that $\left|V: C_{V}(A)\right|<$ $|A|^{2}$. Assume $C_{V}(G)=1$ and V involves just trivial and nontrivial irreducible parts of the permutation module. Then we have that V is the irreducible part of the permutation module.

Proof. If we have just one irreducible part of the permutation module in V, the assertion follows by Lemma 3.9. So we may assume that we have at least two such modules involved. Let W be the irreducible part of the permutation module. Then we have that A is an F-module offender on W with $\left|W: C_{W}(A)\right|<|A|$. Then by Thompson replacement [GoLyS1, Theorem 25.1] there is also a quadratic F-module offender with this property. Take an involution $x \in G$. On W we have that $|[W, x]|=2^{u}$, where u is the number of transpositions in the cycle decomposition of x. We may assume that $\{1,2, \ldots, m\}$ is the support of A. Then there is a subgroup B of A such that $\left|W: C_{W}(B)\right|=\left|W: C_{W}(R)\right|$, where $R=\langle(1,2),(3,4), \ldots,(m-1, m)\rangle$. But then $\left|W: C_{W}(R)\right|=|R|$, a contradiction.

Lemma 3.13. Let $G=A_{2^{n}+1}$ and S be a Sylow 2-subgroup of G. Let V be the irreducible part of the permutation module over $\mathrm{GF}(2)$ for G. Then $\left|C_{V}(S)\right|=2$.

Proof. Let W be the module with basis $v_{i}, i=1, \ldots, 2^{n}+1$ with natural G-action on W. Then $W=V \oplus W_{1}, W_{1}$ the trivial module.

Choose $S \leq X \cong A_{2^{n}}$, where X is the stabilizer of 1 . Then we calculate immediately that $C_{W}(S)=\left\langle v_{1}, v_{2}+\cdots+v_{2^{n}+1}\right\rangle$. As $v_{1} \notin V$, we get the assertion.

Lemma 3.14. Let $G=L_{2}\left(2^{n}\right)$ or $A_{2^{n}+1}, n \geq 2$. Let H be a Borel subgroup in the first case and a subgroup isomorphic to $A_{2^{n}}$ in the second case. Let V be a $\mathrm{GF}(2)$-module for G such that $[V, G]$ is the natural module, or $G \cong A_{9}$ and $[V, G]$ is the 8 -dimensional spin module. Then one of the following holds:
(i) $G=L_{2}\left(2^{n}\right)$ and $C_{V}(H)=C_{V}(G)$.
(ii) $G=A_{2^{n}+1}$ and $C_{V}(H)=C_{V}(S)$, S a Sylow 2-subgroup of H.
(iii) $G=A_{9},[V, G]$ is the 8-dimensional spin module and $C_{V}(H)=$ $C_{V}(G)$.

Proof. We may assume that in all cases $V=[V, G] C_{V}(H)$. As H contains a Sylow 2-subgroup of G we get that $V=[V, G] C_{V}(S)$. Now application of $[\mathrm{Hu},(\mathrm{I} .17 .4)]$ shows that $V=[V, G] \oplus C_{V}(G)$. In case (i) and (iii) we have that $C_{[V, G]}(H)=1$, so we have that $C_{V}(G)=C_{V}(H)$. In case (ii) by Lemma 3.13 we have that $C_{[V, G]}(H)=C_{[V, G]}(S)$, so we get $C_{V}(H)=C_{V}(S)$.

Lemma 3.15. Let $G=E(G) T$, T a Sylow 2-subgroup of $G, E(G)=$ $G_{1} \cdots G_{r}, G_{1} \cong L_{2}(q), q$ even, or $A_{2^{n}+1}$. Assume that T acts transitively on the G_{i} and $C_{G}(E(G))=1$. Let V be an irreducible faithful F-module over $\operatorname{GF}(2)$ for G. Then $V=V_{1} \oplus \cdots \oplus V_{r}, V_{i}$ the natural module for $G_{i}, i=1, \ldots, r$, and $\left[V_{j}, G_{i}\right]=1$ for $i \neq j$.

Proof. Let A be an offender. We may assume $[V, A, A]=1$ by Thompson replacement. Now choose A with $|A|$ minimal. Set $A_{1}=C_{A}\left(G_{1}\right)$. Then we may assume $A_{1}=1$ or $\left|V: C_{V}\left(A_{1}\right)\right|>\left|A_{1}\right|$. If $\left[G_{1}, A\right] \notin G_{1}$ we get with Lemma 3.5 that $G_{1}^{A}=G_{1} G_{1}^{a}$ and $\left|A / C_{A}\left(G_{1}\right)\right|=2$. In any case $\langle a\rangle$ has to be an F-module offender on $C_{V}\left(A_{1}\right)$. This shows $A_{1}=1$ and $\langle a\rangle=A$. But now a inverts some element of prime order $p>3$ in $E(G)$ and so cannot induce a transvection on V. So we have that $\left[G_{1}, A\right] \leq G_{1}$. Then G_{1} induces an F-module in $C_{V}\left(A_{1}\right)$. By Lemma 3.3 we have that there is exactly one nontrivial module W involved in $C_{V}\left(A_{1}\right)$, the natural one.

Assume that $A_{1} \neq 1$. Let $B \leq A$ be a complement to A_{1} and let $1 \neq a \in A_{1}$. As A acts quadratically, we see that $\left[V, a, G_{1}\right]=1$. This implies $\left[V, G_{1}\right] \leq C_{V}\left(A_{1}\right)$. If $A_{1}=1$, then also $\left[V, G_{1}\right] \leq C_{V}\left(A_{1}\right)$. Hence in any case $\left[V, G_{1}\right]$ involves just one nontrivial irreducible module. Now we have that $\left[V, G_{1}\right]$ is centralized by $G_{2} \times \cdots \times G_{r}$. As $C_{V}(E(G))=1$, we get that $W=\left[V, G_{1}\right]$ is the natural module. But now $\left[V, G_{i}\right]$ is the
natural module for all i, as T acts transitively. Hence $V=V_{1} \oplus \cdots \oplus V_{r}$ with $\left[V_{i}, G_{j}\right]=1$ for $i \neq j$ and V_{i} the natural G_{i}-module, the assertion.

The next two lemmas deal with solvable groups having F or $2 F$ modules.

Lemma 3.16. Let G be a solvable group with Sylow 2 -subgroup S and $O_{2}(G)=1$. Assume that S is contained in a unique maximal subgroup of G. Let V be a faithful $\mathrm{GF}(2)$-module for G. If V is an F-module, then $G=O_{3}(G) S$.

Proof. If $G \neq F(G) S$, then there are maximal subgroups containing $F(G) S$ and $N_{G}\left(S \cap O_{2^{\prime}, 2}(G)\right)$, which are different. Hence $G=F(G) S$. Further again by minimality $F(G)=O_{p}(G)$ for some prime p. By Lemma 2.3 we have a subgroup $D=D_{1} \times \cdots \times D_{r}$ of G such that the D_{i} are dihedral of order $2 p$ and a Sylow $2-$ subgroup A of D is an F-module offender. Hence we have that $\left|V / C_{V}(D)\right| \leq|A|^{2}$, as D is generated by two conjugates of A. Now $O_{p}(D)$ acts faithfully on $V / C_{V}(D)$ and so $p=3$.

Lemma 3.17. Let G be a group and V be a faithful $2 F$-module over $\operatorname{GF}(2)$ with offender A. Suppose $G=O_{p}(G) A$ with $O_{p}(G)=F(G)$ for some odd prime p. Then $p \leq 5$ and in case of $p=5$, we have that $\left|V: C_{V}(A)\right|=|A|^{2}$. If A is an F-module offender, then $p=3$ and $\left|V: C_{V}(A)\right|=|A|$.

Proof. By the Dihedral Lemma 2.3, we may assume that

$$
G=D_{1} \times \cdots \times D_{r},
$$

D_{i} dihedral of order $2 p$. Now as $\left|V: C_{V}(A)\right| \leq|A|^{2}$ or $|A|$ we have that

$$
\left|V: C_{V}(G)\right| \leq|A|^{4},|A|^{2} \text { respectively. }
$$

Hence $\left|\left[V, O_{p}(G)\right]\right| \leq|A|^{4} \leq 2^{4 r}$, or $\left|\left[V, O_{p}(G)\right]\right| \leq 2^{2 r}$. In $G L_{4 r}(2)$ elementary abelian subgroups of order p^{r} just exist for $p=3$ and $p=5$, while in $G L_{2 r}(2)$ they just exist for $p=3$. This shows that $p \leq 5$. If $p=5$, then we must have that $\left|V: C_{V}(G)\right|=2^{4 r}$ and so $\left|V: C_{V}(A)\right|=|A|^{2}$. If $p=3$ and A is an F-module offender then $\left|V: C_{V}(G)\right|=2^{2 r}$ and so $\left|V: C_{V}(A)\right|=|A|$.

Lemma 3.18. Let $X=S z(q)$ or $L_{2}(q), q>2$ even. Suppose that X acts on a 2-group U. Let V be a normal subgroup of U of order 2 and U / V be the natural module for X. In case of $X \cong S z(q)$ assume additionally that U contains an elementary abelian subgroup U_{1} with $\left|U_{1}\right|^{2}=2|U|$. Then U is abelian.

Proof. If $X \cong L_{2}(q)$, then X acts transitively on $(U / V)^{\sharp}$. As $q>2$ we see that U is not a quaternion group and so there are involutions in $U \backslash V$, so all elements in U are involutions, the assertion.

So let $X \cong S z(q)$. We may assume that U is extraspecial. Now elements of order 5 act fixed point freely on U / V. The existence of U_{1} guarantees that U is extraspecial of + type. As $q=2^{2 n+1}$, we get $|U / V|=2^{8 n+4}$ and so U is a central product of $4 n+2$ dihedral groups. But as an element of order 5 acts fixed point freely on U / V the number of dihedral groups must be divisible by four by [MaStr, Lemma 2.9], a contradiction.

Lemma 3.19. Let $X=L_{2}(q)$ or $S z(q), q \geq 4$, q even. Let $S \in S y l_{2}(X)$ and $A \leq \Omega_{1}(S),|A| \geq 4$. Then there is some $g \in X$ with $X=\left\langle A, A^{g}\right\rangle$.

Proof. We have that X acts 2-transitively on a set Ω with $|\Omega|=q+1$, $q^{2}+1$, respectively. For $1 \in \Omega$ we have that $X_{1}=S K$, where K is cyclic of order $q-1$ and acts transitively on $\Omega_{1}(S)$. Further $K=X_{1,2}$, the stabilizer of two points. Finally the stabilizer of any three points is trivial.

This has the following consequences. Choose $1 \neq \rho \in K$. Then $\{1,2\}$ are the two fixed points of ρ. Hence $N_{X}(\langle\rho\rangle)$ contains K as a subgroup of index two. This shows that $K=C_{X}(\rho)$. Let $a \in S$ be an involution. Then a has just one fixed point. This shows that $C_{X}(a)=S$, a 2-group.

Now choose $\langle t, a\rangle \leq A \leq \Omega_{1}(S),|A| \geq 4$. Choose $g \in X$ such that $N_{X}\left(K^{g}\right)=\langle a, b\rangle$ for some involution b. Then set $U=\langle a, b, t\rangle$. Let T be a Sylow 2 -subgroup of U with $\langle a, t\rangle \leq T$. Then $T \leq C_{X}(a)=S$, so $T=U \cap S$. If $T=N_{U}(T)$, we get a normal 2-complement W in U. But then one of $C_{W}(a), C_{W}(t), C_{W}(a t)$ must be nontrivial, which contradicts the fact that centralizers of involutions are 2-groups. Hence we have that $K \cap U \neq 1$. Now choose $\rho \in K \cap U$ of prime order p. As $|K|$ is coprime to $|X: K|$ and $K^{g} \leq U$, there is some $x \in U$ with $\rho^{x} \in K^{g}$. Then $K^{g}=C_{U}\left(\rho^{x}\right)$. Now $K=C_{X}(\rho)=K^{g x^{-1}} \leq U$. This shows that $\left\langle\Omega_{1}(S), \Omega_{1}(S)^{x}\right\rangle \leq U$. Thus it is enough to show $\left\langle\Omega_{1}(S), \Omega_{1}(S)^{x}\right\rangle=X$.

We have that $Y=\left\langle\Omega_{1}(S), \Omega_{1}(S)^{g}\right\rangle$ contains at least $q+1$ conjugates of $\Omega_{1}(S)$. Thus we are done if $X \cong L_{2}(q)$, as $\left\langle\Omega_{1}(S), \Omega_{1}(S)^{b}\right\rangle$ contains all conjugates.

So let $X \cong S z(q)$. The number of conjugates of $\Omega_{1}(S)$ in Y is $n q+1$. But then $n q+1 \mid q\left(q^{2}+1\right)$. Which gives $n=q$ and so $\left\langle\Omega_{1}(S)^{X}\right\rangle \leq Y$, hence $X=Y$.

The next two lemmas show how the $2 F$-modules will appear later on.

Lemma 3.20. Let G be a \mathcal{K}_{2}-group with $F^{*}(G)=O_{2}(G) \neq 1, A \leq G$ be elementary abelian with $A \not \leq O_{2}(G)$ and $A \unlhd S$ for some Sylow 2 -subgroup S of G. Then there is some $g \in G$ such that one of the following holds:
(i) $g^{2} \in N_{G}(A), A^{g} \leq S, 1 \neq\left[A^{g}, A\right] \leq A \cap A^{g}$ and $\left|A: C_{A}\left(A^{g}\right)\right|=$ $\left|A^{g}: C_{A^{g}}(A)\right|$.
(ii) With $X=\left\langle A, A^{g}\right\rangle$ the following hold:
(1) $X / O_{2}(X) \cong L_{2}(q), S z(q)$ or $X / O_{2}(X)$ is a dihedral group of order $2 u, u$ odd.
(2) $S \cap X$ is a Sylow 2-subgroup of X.
(3) $Y=\left(A \cap O_{2}(X)\right)\left(A^{g} \cap O_{2}(X)\right) \unlhd X$.
(4) $Y \neq A \cap O_{2}(X)$.
(5) $\left|A: C_{A}(Y)\right| \leq\left|Y: C_{Y}(A)\right| q \leq\left|Y: C_{Y}(A)\right|^{2}$, where $q=2$ if $X / O_{2}(X)$ is dihedral. Further $[Y, a]\left(A \cap A^{g}\right)=[Y, A](A \cap$ A^{g}) for all $a \in A \backslash O_{2}(X)$.
(6) If $X / O_{2}(X)$ is not dihedral, then $Y /\left(A \cap A^{g}\right)$ is a direct sum of natural modules for $X / O_{2}(X)$.

Proof. We start the proof with some general remarks. Let X be as in (ii) (1) and (2). Then obviously (3) follows. If (4) would be false, then as $\left[O_{2}(G), A\right] \leq O_{2}(G) \cap A \leq O_{2}(X) \cap A$, we get that $\left[O_{2}(G), X, X\right]=1$ and so $\left[O^{2}(X), O_{2}(G)\right]=1$, which contradicts $C_{G}\left(O_{2}(G)\right) \leq O_{2}(G)$. Hence also (4) holds. Next we see that $C_{Y}(A)=A \cap Y$ and so we see that $C_{Y /\left(A \cap A^{g}\right)}(A)=(A \cap Y) /\left(A \cap A^{g}\right)$ and $Y /\left(A \cap A^{g}\right)=(Y \cap A) /(A \cap$ $\left.A^{g}\right) \oplus\left(Y \cap A^{g}\right) /\left(A \cap A^{g}\right)$. So the first assertion in (5) follows. Further we see that elements of odd order in X act fixed point freely on $Y /\left(A \cap A^{g}\right)$. Hence [Hi] and [Mar] yield (6) and the second assertion in (5). So to prove the lemma we may assume that (i) dos not hold. Then to prove (ii) we just have to prove (1) and (2). In fact when constructing X such that (1) holds, we immediately will see from this construction that also (2) holds.

Set $\bar{G}=G / O_{2}(G)$. We first prove
(*) Suppose there is a subgroup L of \bar{G} such that $\left|\bar{A}: C_{\bar{A}}(L)\right|=2$ and $\bar{A} \not \leq O_{2}(\langle L, \bar{A}\rangle)$ then (ii) holds. In particular (ii) holds if $|\bar{A}|=2$.
As $\bar{A} \not \leq O_{2}(\langle L, \bar{A}\rangle)$ there is some $\omega \in\langle L, \bar{A}\rangle$, o(ω) odd, which is inverted by some $\bar{a} \in \bar{A} \backslash C_{\bar{A}}(L)$. Then $\langle\bar{A}, \omega\rangle / O_{2}(\langle\bar{A}, \omega\rangle) \cong D_{2 u}$, u odd. Set $X=\langle A, \omega\rangle$. Then X satisfies (ii)(1). Of course $S \cap X$ is a Sylow 2-subgroup of X. So (ii)(2) is satisfied. Hence ($*$) is proved.

If $[F(\bar{G}), \bar{A}] \neq 1$ then $\left.F(\bar{G})=\left\langle C_{F(\bar{G})}(\bar{B})\right||\bar{A}: \bar{B}|=2\right\rangle$. Hence there is
some \bar{B} with $C_{F(\bar{G})}(\bar{B}) \neq 1$ and $\left[C_{F(\bar{G})}(\bar{B}), \bar{A}\right] \neq 1$. So by (*) (ii) holds.
For the remainder of this proof we will assume that $F^{*}(\bar{G})=E(\bar{G})$, $\bar{G}=E(\bar{G}) \bar{A}$ and $\left|\bar{A}: C_{\bar{A}}(L)\right| \geq 4$ for all components L. As $[S, A] \leq A$, we have that A acts quadratically on $O_{2}(G)$. Hence by Lemma 3.5 we have $[L, \bar{A}] \leq L$ or $L \cong S L_{2}(q), q$ even. In the latter there is some $a \in \bar{A}$ such that $C_{\left\langle L^{A}\right\rangle}(a)=L_{1} \cong L_{2}(q)$ and as \bar{A} is normal in a Sylow 2-subgroup of $\langle L, \bar{A}\rangle$, we have that $A_{1}=L_{1} \cap \bar{A}$ is a Sylow 2-subgroup of L_{1}. So $L_{1}=\left\langle A_{1}, A_{1}^{g}\right\rangle$ for suitable $g \in L_{1}$. Hence $X=\left\langle A, A^{g}\right\rangle$ satisfies (ii)(1) and (2). So from now on we assume that $[L, \bar{A}] \leq L$. We collect this in
(**) $L=F^{*}(\bar{G})$ is a component, $|\bar{A}| \geq 4$ and if $\bar{A} \leq \bar{U}<\bar{G}$, with $S \cap \bar{U}$ a Sylow 2-subgroup of \bar{U}, then $\bar{A} \leq O_{2}(\bar{U})$.

Assume first that L is of Lie type in odd characteristic, which is not also of Lie type in even characteristic. Then by Lemma 3.7 we have that $L / Z(L) \cong U_{4}(3)$. As $A \unlhd S$, there is some 2 -central involution s in \bar{A}. By $(* *)$ we have $\bar{A} \leq O_{2}\left(C_{L \bar{A}}(s)\right)$. As we may generate $C_{L \bar{A}}(s)$ by elements g with $g^{2} \in O_{2}\left(C_{L \bar{A}}(s)\right)$, then if \bar{A} is not normal in $C_{L \bar{A}}(s)$ there is such a g with $\bar{A}^{g} \leq O_{2}\left(C_{L}(s)\right)$ and $1 \neq\left[\bar{A}, \bar{A}^{g}\right] \leq \bar{A} \cap \bar{A}^{g}$. Then also $1 \neq\left[A, A^{g}\right] \leq A \cap A^{g}$ and $A^{g^{2}}=A$. Obviously $\left|A: C_{A}\left(A^{g}\right)\right|=\mid A^{g}$: $C_{A^{g}}\left(A^{g^{2}}\right)\left|=\left|A^{g}: C_{A^{g}}(A)\right|\right.$. So we may assume $\bar{A} \unlhd C_{L \bar{A}}(s)$. As $C_{L}(s)$ contains a normal subgroup $U=S L_{2}(3) * S L_{2}(3)$ by Lemma 2.6(i) and $O_{2}(U)=O_{2}\left(C_{L}(s)\right)$, we see that $O_{2}\left(C_{L}(s)\right)$ cannot contain an elementary abelian subgroup of order at least four which is normal in U. So $\bar{A} \not \leq L$. In particular there is some $t \in \bar{A}$ such that $[U, t] \leq O_{2}(U)$. As $\langle s, t\rangle$ is normal in $C_{L \bar{A}}(s)$, we get that $\left|C_{L}(t)\right|$ is divisible by $2^{6} \cdot 3$. Then by Lemma 2.6 we get $C_{L}(t) \cong P S p_{4}(3)$, contradicting $(* *)$.

Next let $L \cong G(r)$ be a group of Lie type in even characteristic. Suppose first that \bar{A} acts nontrivially on the Dynkin diagram. If the rank is greater than two, then there is a parabolic U of rank two of L such that \bar{A} acts nontrivially on $F^{*}\left(U / O_{2}(U)\right)$. But this contradicts $(* *)$. So we may assume that $L / Z(L) \cong L_{3}(q)$ or $S p_{4}(q)^{\prime}$. Let B be a Borel subgroup of L, which is normalized by \bar{A}, then by $(* *)$ we have that $[B, \bar{A}] \leq O_{2}(B)$. This now gives $q=2$. But then we easily see that [$S \cap L, \bar{A}$] is not abelian, contradicting $\bar{A} \unlhd \bar{S}$. So we have that \bar{A} acts trivially on the Dynkin diagram.

Let R be a root subgroup in $Z(\bar{S} \cap L)$. By (**) we have that $\bar{A} \leq$ $O_{2}\left(N_{\bar{G}}(R)\right)$. If $C_{L}(R)$ is generated by elements g with $g^{2} \in O_{2}\left(N_{L}(R)\right)$, then we either get (i), or $\left\langle\bar{A}^{N_{L}(R)}\right\rangle$ is abelian.

If even $\bar{A} \leq R$, then $\bar{A} \leq \tilde{L} \leq L$, with $\tilde{L} \cong L_{2}(r)$ or $S z(r)$ and $S \cap \tilde{L}$ is a Sylow $2-$ subgroup of \tilde{L}.

Now we just have to handle rank 1 groups or groups L in which $N_{L}(R)$ contains a normal elementary abelian subgroup different from R, in particular $N_{L}(R)$ does not act irreducibly on $O_{2}\left(N_{L}(R)\right) / R$. Application of Lemma 2.17 shows $L / Z(L) \cong L_{n}(r), S p_{2 n}(r)^{\prime}, F_{4}(r)$ or ${ }^{2} F_{4}(r)$.

Suppose L is a rank 1 group. We have that $\bar{A} \leq O_{2}(B \bar{A})$ for some Borel subgroup B of L. Hence we have that $\bar{A} \leq L$. Then as $|\bar{A}| \geq 4$, by Lemma 3.19 we get some $g \in L$ such that for $X=\left\langle A, A^{g}\right\rangle$. We have $X / O_{2}(X) \cong L_{2}(q)$ or $S z(q)$ and a Sylow 2-subgroup of X is contained in \bar{S} and we are done. In particular from now on we may assume that $\bar{A} \not \subset R$.

Now assume that $L / Z(L) \cong L_{n}(r), n \geq 3$. Let P_{1}, P_{n-1} be the two parabolic subgroups of $L \bar{A}$ containing $\bar{S} \cap L$ which involve $L_{n-1}(r)$. We have that $\bar{A} \leq O_{2}\left(P_{i}\right)$ for both i. So we have $\bar{A} \leq O_{2}\left(P_{1}\right) \cap O_{2}\left(P_{n-1}\right)=R$, a contradiction.

Next let $L / Z(L) \cong S p_{2 n}(r)^{\prime}, n \geq 2$. Now $C_{L}(\underline{R})$ is generated by elements g with $g^{2} \in O_{2}\left(C_{L}(R)\right)$. By $(* *)$ we have $A \leq Z\left(O_{2}\left(N_{\bar{G}}(R)\right)\right)$. We now may embed \bar{A} into some $\tilde{L} \cong S p_{4}(r)^{\prime}$ with $S \cap \tilde{L}$ a Sylow 2 -subgroup of \tilde{L}. Hence we may assume $L \cong S p_{4}(r)^{\prime}$. We apply Lemma 2.21. So we have two parabolics P_{1}, P_{2} of $L \bar{A}$ containing $\bar{S} \cap L$. By ($* *$) we have $\bar{A} \leq O_{2}\left(P_{1}\right) \cap O_{2}\left(P_{2}\right)$. As \bar{A} is not contained in a root subgroup we see that $\left\langle\bar{A}^{P_{i}}\right\rangle=O_{2}\left(P_{i}\right)$ for $i=1,2$. Even in case of $r=2$ this is true as $|\bar{A}|>2$. Let H_{i} be the preimage of P_{i}, i.e. $H_{i} / O_{2}(G)=P_{i}$. Now suppose that $\left\langle A^{O^{2}\left(H_{1}\right)}\right\rangle$ is not abelian. Then there is some conjugate A^{h}, $h \in O^{2^{\prime}}\left(H_{1}\right)$, with $1 \neq\left[A, A^{h}\right] \leq A \cap A^{h}$. As $O^{2^{\prime}}\left(H_{1}\right)$ is generated by elements h with $h^{2} \in N_{H_{1}}(A)$, we may even choose h such that $A^{h^{2}}=A$, so (i) holds. Hence we may suppose that $\left\langle A^{O^{2^{\prime}}\left(H_{i}\right)}\right\rangle$ is abelian for both $i=1,2$. Then we see that $O_{2}\left(H_{i}\right) \leq C_{S}(A) O_{2}(G)$. As this is true for both i, we get $S \cap L=C_{S}(A) O_{2}(G) / O_{2}(G)$. As A acts quadratically on $O_{2}(G)$ we may apply Lemma 3.6. Suppose there is a chief factor V in $O_{2}(G)$ which is the natural module. We have $|[V, \bar{A}]|=r^{2}$, while $\left|C_{V}(S \cap L)\right|=r$. As $[V, \bar{A}]$ is covered by A this is a contradiction. So we have that $Z(L)$ is nontrivial and acts faithfully on V. This gives $q=2$. By Lemma 3.7 we must have $L \cong 3 \cdot A_{6}$ and the 6 -dimensional module is involved in $O_{2}(G)$. Then by quadratic action we get $\bar{A} \leq L$.

As $\bar{A} \leq O_{2}\left(P_{1}\right) \cap O_{2}\left(P_{2}\right)$ and $P_{i} \cap L \cong \Sigma_{4}$, this implies $|\bar{A}|=2$, a contradiction.

Next let $L \cong F_{4}(r)$. We have two root groups R_{1} and R_{2} in $Z(\bar{S} \cap L)$ and by $(* *) \bar{A} \leq Z\left(O_{2}\left(N_{L}\left(R_{1}\right)\right)\right) \cap Z\left(O_{2}\left(N_{L}\left(R_{2}\right)\right)\right)$. But this group is contained in some $S p_{4}(r)$ as can be seen in [Shi, (1.5), Proposition 2.2 and Theorem 2.1] and we get the assertion by induction.

Next let $L \cong{ }^{2} F_{4}(r)^{\prime}$. As \bar{A} acts quadratically we get by Lemma 3.6 that $\bar{A} \leq R$, a contradiction.

Now let $L \cong A_{n}, n \geq 5$. So we may assume $n=7$ or $n \geq 9$. We have $L \bar{A} \leq \Sigma_{n}$. If n is odd, then there is $\tilde{L} \leq L, \tilde{L} \cong A_{n-1}$, which is normalized by \bar{S}. Hence we may assume n to be even right from the beginning. So $n \geq 10$. Let first $n=2^{m}$. Then there is a subgroup $\tilde{L} \leq L$ normalized by \bar{A} with $\bar{S} \cap L \leq \tilde{L}$ and \tilde{L} is a subgroup of index at most two in $\Sigma_{\frac{n}{2}} \backslash \mathbb{Z}_{2}$. As $n \geq 16$ we have $O_{2}(\tilde{L})=1$ and so we get a contradiction with $(* *)$. Let m_{1}, \ldots, m_{r} be the dyadic decomposition of n. Let \tilde{L} be the subgroup of L with $S \cap L \leq \tilde{L}=L \cap \Sigma_{m_{1}} \times \cdots \times \Sigma_{m_{r}}$. By $(* *) \bar{A}$ centralizes any component X_{1} of \tilde{L}. So as $|\bar{A}|>2$ by (*) and \bar{A} acts nontrivially on \tilde{L}, we see that $\bar{A} \leq \Sigma_{4} \times \mathbb{Z}_{2}$. Now we can embed \bar{A} into some $X_{2} \cong \Sigma_{6}$ or Σ_{5}, which contradicts $(* *)$.

Finally let L be sporadic. By Lemma 3.7 we get that $L / Z(L) \cong M_{12}$, $M_{22}, M_{24}, J_{2}, C o_{1}, C o_{2}$, or Suz, recall that by $(*)|\bar{A}|>2$. Now we choose $s \in Z(\bar{S} \cap L \cap \bar{A})$. By $(* *)$ we have $\bar{A} \leq O_{2}\left(C_{\bar{G}}(s)\right)$. If there is some involution g in $C_{L}(s)$ with $\left[\bar{A}, \bar{A}^{g}\right] \neq 1$, we have (i). So we may assume that $\left\langle\bar{A}^{C_{L}(s)}\right\rangle$ is abelian. This gives $L / Z(L) \cong M_{i}, i=12,22,24$. If $L \cong M_{24}$ there is a subgroup $\tilde{L} \leq L$ with $S \cap L \leq \tilde{L}$ and $\tilde{L} \cong 2^{4} A_{8}$. Now by $(* *)$ we have $\bar{A} \leq O_{2}(\tilde{L})$. But there is no quadratic foursgroup in $O_{2}(\tilde{L})$ according to [MeiStr2].

Next let $L / Z(L) \cong M_{22}$. Then \bar{A} normalizes a subgroup P of $\bar{G} / Z(L)$ with $2^{4} A_{6} \leq P \leq 2^{4} \Sigma_{6}$. By $(* *)$ we have that $\bar{A} \leq O_{2}(P)$. Hence we may embed \bar{A} into a subgroup $(S) L_{3}(4)$. But then $(* *)$ gives a contradiction.

So we are left with $L \cong M_{12}$. If $\bar{A} \nsubseteq L$, then with [MeiStr2] we see that \bar{A} cannot be normalized by $S \cap L$, so we have $\bar{A} \leq L$. Now in L there are two parabolics P_{1}, P_{2} such that $P_{i} / O_{2}\left(P_{i}\right) \cong \Sigma_{3}$. By ($* *$) we have that $\bar{A} \leq O_{2}\left(P_{1}\right) \cap O_{2}\left(P_{2}\right)$ and so $\left\langle\bar{A}^{C_{L}(s)}\right\rangle$ is elementary abelian
of order 8. Then this group contains an involution i which acts fixed point freely on the 12 points moved by L. So $C_{L}(i) \cong \mathbb{Z}_{2} \times \Sigma_{5}$. Further S contains a Sylow 2 -subgroup of $C_{L}(i)$. As $\bar{A} \leq C_{L}(i)$, we get a contradiction by ($* *$).

Lemma 3.21. Suppose M and H are \mathcal{K}_{2} - groups with $F^{*}(M)=$ $O_{2}(M)$ and $F^{*}(H)=O_{2}(H)$, which are subgroups of some group X. Assume further that M contains a Sylow 2-subgroup S of H and $O_{2}(M) \leq$ H. Finally we assume that there is $Z \unlhd M, Z \leq \Omega_{1}\left(Z\left(O_{2}(M)\right)\right)$ and $Z \not \leq O_{2}(H)$. Then one of the following holds.
(1) There is some $g \in H, g^{2} \in N_{H}(Z)$ with $Z^{g} \leq S \leq M, Z \leq$ M^{g}. Further $1 \neq\left|Z: C_{Z}\left(Z^{g}\right)\right|=\left|Z^{g}: C_{Z^{g}}(Z)\right|$. In particular Z is an F-module.
(2) There is some $g \in H$ such that for $L=\left\langle Z, Z^{g}\right\rangle$ we have
(i) $L / O_{2}(L) \cong L_{2}(q), S z(q), q$ even, or $D_{2 u}$, a dihedral group of order $2 u, u$ odd. Set $q=2$ in the latter.
(ii) Set $B=Z^{g} \cap O_{2}(L) \leq S \leq M$. Then
(α) For the action of B on Z we have $[Z, B, B, B]=1$. If $x \in Z \backslash O_{2}(L)$, then $C_{B}(x)=B \cap Z,[x, B]\left(Z \cap Z^{g}\right)=$ $[Z, B]\left(Z \cap Z^{g}\right)$ and $\left|Z: C_{Z}(B)\right| \leq q|B /(B \cap Z)|$.
(β) In particular Z is a $2 F$-module with offender $B /(B \cap$ $Z)$ and an $F+1$-module in case of $q=2$. In all cases we have $\left|Z: C_{Z}(B)\right|<|B /(B \cap Z)|^{2}$. Moreover if B acts quadratically on Z, then Z is an F-module.

Proof. Up to the last assertion that $\left|Z: C_{Z}(B)\right|<|B /(B \cap Z)|^{2}$, we find everything for (1) and (2) in Lemma 3.20 where $G=H$ and $A=Z$.

So assume $\left|Z: C_{Z}(B)\right|=|B /(B \cap Z)|^{2}$. Then $\mid\left(Z \cap O_{2}(L)\right)\left(Z^{g} \cap\right.$ $\left.O_{2}(L)\right) / Z \cap Z^{g} \mid=q^{2}$. Hence we have that $L / O_{2}(L) \cong L_{2}(q)$ or L induces Σ_{3} on $\left(Z \cap O_{2}(L)\right)\left(Z^{g} \cap O_{2}(L)\right) / Z \cap Z^{g}$. In both cases L acts transitively on $\left(\left(Z \cap O_{2}(L)\right)\left(Z^{g} \cap O_{2}(L)\right) / Z \cap Z^{g}\right)^{\sharp}$ and so $\left(Z \cap O_{2}(L)\right)\left(Z^{g} \cap O_{2}(L)\right)$ is abelian. But then $\left|Z: C_{Z}(B)\right|=|B /(B \cap Z)|$, a contradiction.

If B acts quadratically we have that $\left[B, Z \cap O_{2}(L)\right]=1$. If $L / O_{2}(L)$ is dihedral, we get that B induces transvections. In the other case we see by Lemma $3.20(\mathrm{ii})(6)$ that $\left|B: B \cap O_{2}(H)\right| \geq q$. Then Z is an F-module with offender B.

The last lemma of this chapter is a generalization of Lemma 3.5 to $2 F$-modules.

Lemma 3.22. Let the notation be as in Lemma 3.21. Suppose we have the situation of Lemma 3.21(2). Set $\bar{B}=B / C_{B}(Z)$ and suppose there is a component K of $M / C_{M}(Z)$ with $[K, \bar{B}] \not \leq K$. Then $|\bar{B}|>4$ and $K \cong L_{n}(2)$ for some n. If $a \in \bar{B}$ with $K^{a} \neq K$, then $|[Z, a]|=2^{n}$ and \bar{B} induces the full transvection group on $[Z, a]$. In particular $\left|Z^{g}: B\right|=2$. Further $K K^{a}=K^{\bar{B}}$ and \bar{B} acts faithfully on $K K^{a}$.

Proof. First we show

$$
\begin{equation*}
|\bar{B}|>q . \tag{*}
\end{equation*}
$$

For this assume $|\bar{B}| \leq q$. Then $\left|\left(O_{2}(L) \cap Z\right)\left(O_{2}(L) \cap Z^{g}\right) / Z \cap Z^{g}\right| \leq q^{2}$. In particular $\left\langle Z, Z^{g}\right\rangle$ induces $L_{2}(q)$ on this group, which gives that all elements in the factor group are conjugate. As $\left(O_{2}(L) \cap Z\right)\left(O_{2}(L) \cap Z^{g}\right)$ is generated by involutions, we get that this group is abelian. Furthermore $|\bar{B}|=q$ and so \bar{B} is a quadratic F-module offender on Z. By Lemma 3.5 we get the contradiction that \bar{B} has to normalize K. This proves (*).

For $b \in \bar{B}$ set $K_{b}=K$ if $[K, b]=1$. If $K^{b} \neq K$ set $K_{b}=C_{K \times K^{b}}(b)$. Recall that there is always some K_{b} as $K=K_{b}$ for $b=1$. Hence this notation makes sense.

Suppose first $q>2$. By Lemma 3.20 we know that $Y:=\left(Z \cap O_{2}(L)\right)\left(Z^{g} \cap\right.$ $\left.O_{2}(L)\right) /\left(Z \cap Z^{g}\right)$ is a direct sum of natural modules. So let $A_{1} \leq Z^{g}$ such that $A_{1} \geq Z \cap Z^{g},\left|A_{1}: Z \cap Z^{g}\right|=q$ and $A_{1} / Z \cap Z^{g}$ is contained in one of these modules V_{1}, say. We have $\left[Z, A_{1}, A_{1}\right] \leq Z \cap Z^{g}$.

Let $Z \cap Z^{g} \leq V_{2} \leq O_{2}(L)$ with $V_{2} / Z \cap Z^{g}=V_{1}$. Let R be any hyperplane in $Z \cap Z^{g}$. As $\left|\left(Z \cap V_{2}\right) / R\right|^{2}=2\left|V_{2} / R\right|$, we have the assumptions of Lemma 3.18, and so V_{2} / R is abelian. Hence as $\left[A_{1}, Z\right] \leq V_{2}$, $\left[Z, A_{1}, A_{1}\right] \leq R$. As this is true for any hyperplane, we have that A_{1} acts quadratically on Z. Note that $\left|\bar{A}_{1}\right|=q>2$, so by Lemma 3.5 we have three possibilities
(1) $\left[K, \bar{A}_{1}\right] \leq K$.
(2) $\left|\bar{A}_{1}: C_{\bar{A}_{1}}(K)\right|>2,\left[K, \bar{A}_{1}\right] \not \leq K$ and $K \cong L_{2}\left(2^{n}\right)$. Further $\left[Z,\left\langle K^{\bar{A}_{1}}\right\rangle\right]$ is a direct sum of natural $\Omega_{4}^{+}\left(2^{n}\right)$-modules.
(3) $\left|\bar{A}_{1}: C_{\bar{A}_{1}}(K)\right|=2$ and $\left[K, \bar{A}_{1}\right] \not \leq K$.

We first show
(4) $\left[K_{b}, \bar{A}_{1}\right] \leq K_{b}$ for all $b \in \bar{B}$. In particular, taking $b=1$, we have that K is normalized by \bar{A}_{1}.

This will be done in several steps. We fix notation such that $\left[K_{b}, \bar{A}_{1}\right] \not \leq$ K_{b} for a certain b. In particular $\left[K_{b}, \bar{B}\right] \not \subset K_{b}$.
(4.1) $\left[Z, K_{b}\right] \not \leq O_{2}(L)$.

By way of contradiction assume that $\left[Z, K_{b}\right] \leq O_{2}(L) \cap Z$. Then \bar{B} acts quadratically on $\left[Z,\left\langle K_{b}^{\bar{B}}\right\rangle\right]$. Hence we may apply Lemma 3.5 to K_{b} and \bar{B}. Assume first $\left|\bar{B}: C_{\bar{B}}\left(K_{b}\right)\right|=2$. As $q>2$, we have $C_{\bar{B}}\left(K_{b}\right) \neq 1$ and $\left|Z: Z \cap O_{2}(L)\right| \geq 4$. Then by Lemma $3.21(2)$ we see that $Z \cap$ $O_{2}(L)=[Z, B]\left(Z \cap Z^{g}\right)=\left[Z, C_{\bar{B}}\left(K_{b}\right)\right]\left(Z \cap Z^{g}\right)$. We have that K_{b} acts on $\left[Z, C_{\bar{B}}\left(K_{b}\right)\right]$. By quadratic action we have that $\left[\left[Z, K_{b}\right], C_{\bar{B}}\left(K_{b}\right), \bar{B}\right]=1$. As $K_{b} \leq\left\langle\bar{B}^{K_{b}}\right\rangle$, we get $\left[\left[Z, K_{b}\right], C_{\bar{B}}\left(K_{b}\right), K_{b}\right]=1$. Obviously we have $\left[C_{\bar{B}}\left(K_{b}\right), K_{b},\left[Z, K_{b}\right]\right]=1$. So by the Three-Subgroups-Lemma we obtain $\left[\left[K_{b}, Z, K_{b}\right], C_{\bar{B}}\left(K_{b}\right)\right]=1$ and then also $\left[Z, K_{b}, C_{\bar{B}}\left(K_{b}\right)\right]=1$, which again with the Three-Subgroups-Lemma implies $\left[Z, C_{\bar{B}}\left(K_{b}\right), K_{b}\right]=1$. As $\left[B, O_{2}(L) \cap Z\right]=\left[Z, C_{\bar{B}}\left(K_{b}\right)\right]$, we get $\left[Z \cap O_{2}(L), K_{b}\right]=1$. Now $\left[Z, K_{b}, K_{b}\right]=1$ and so $\left[Z, K_{b}\right]=1$, a contradiction.

So we have $\left\langle K_{b}^{\bar{B}}\right\rangle \cong \Omega_{4}^{+}\left(2^{n}\right)$. As $\left[Z, K_{b}\right] \leq O_{2}(L)$ by assumption, we get by Lemma 3.5 and Lemma 3.11 that $Z=\left[Z, K_{b}\right] C_{Z}\left(K_{b}\right)$. Hence there is some $y \in C_{Z}\left(K_{b}\right) \backslash O_{2}(L)$. For this y we see $[y, B](Z \cap B)=Z \cap O_{2}(L)$. Then $\left[Z, K_{b}, B\right] \leq\left[Z \cap O_{2}(L), B\right]=[y, B, B]$. But as $\left[y, K_{b}\right]=1$, also $\left[y, B, K_{b}\right]=1$ Hence $\left[Z, K_{b}, B, K_{b}\right]=1$, a contradiction as $\left[Z, K_{b}\right]$ contains natural $\left\langle K_{b}^{\bar{B}}\right\rangle$-modules. So we have shown (4.1).

$$
\begin{equation*}
C_{\bar{A}_{1}}\left(K_{b}\right)=1 \tag{4.2}
\end{equation*}
$$

Assume there is $1 \neq a \in C_{\bar{A}_{1}}\left(K_{b}\right)$. Then $\left\langle K_{b}^{\bar{A}_{1}}\right\rangle$ acts on $[Z, a]$. By quadratic action of \bar{A}_{1} we have $\left[Z, a, K_{b}\right]=1$. By the Three-SubgroupsLemma we get that $\left[Z, K_{b}\right]$ is centralized by a and so by Lemma 3.21 as $C_{Z}(a) \leq O_{2}(L),\left[Z, K_{b}\right] \leq O_{2}(L)$, a contradiction to (4.1). This proves (4.2).

Now as $\left|\bar{A}_{1}\right|>2$ we get with (4.2) that we have (2), so $\left\langle K_{b}^{\bar{A}_{1}}\right\rangle \cong \Omega_{4}^{+}\left(2^{n}\right)$. In particular by Lemma $3.5\left[Z,\left\langle K_{b}^{\bar{A}_{1}}\right\rangle\right]$ is a direct sum of natural modules for $\Omega_{4}^{+}\left(2^{n}\right)$. Let W be the sum of all such modules which are in $O_{2}(L)$. Then W is a $\left\langle K_{b}, \bar{A}_{1}\right\rangle$-module. As $\left[Z, K_{b}\right] \not \leq O_{2}(L)$ by (4.1) there is some module V for $\left\langle K_{b}, \bar{A}_{1}\right\rangle$ in Z such that $V \not \leq O_{2}(L)$ and V / W is the natural $\Omega_{4}^{+}\left(2^{n}\right)$-module. Choose $y \in V \backslash O_{2}(L)$. We have $\left[y, A_{1}\right]\left(Z \cap Z^{g}\right)=\left[Z, A_{1}\right]\left(Z \cap Z^{g}\right)$. As $\left|\left[V / W, \bar{A}_{1}\right]\right|>\left|\bar{A}_{1}\right|$ by Lemma 3.5, we see that $V \cap B \not \leq W$.
(4.3) $b=1$ and $C_{\bar{B}}\left(K_{b}\right)=1$. In particular $K_{b}=K$.

Suppose there is some $1 \neq a \in C_{\bar{B}}\left(K_{b}\right)$. Then $[a, V \cap B]=1$. Hence a centralizes some element in $V \backslash W$. As a normalizes $O_{2}(L)$ and $\left\langle K_{b}, \bar{A}_{1}\right\rangle$,
we see that a normalizes also $\left\langle K_{b}, \bar{A}_{1}\right\rangle$-submodules of V, which are in $O_{2}(L)$. Hence a normalizes W. So we get $[V, a] \leq V$. But now $[V / W, a]<V / W$, and so $[V, a] \leq W$. As $[W, a] \leq Z \cap Z^{g},[W, a]$ is a sum of natural modules for $\left\langle K_{b}^{\bar{A}_{1}}\right\rangle$ and $\left[Z \cap Z^{g}, A_{1}\right]=1$, we see that $[W, a]=1$. As $V \not \leq O_{2}(L)$ and so $V / C_{V}(a) \cong[V, a]$, we have that $[V, a]$ is a natural module for $\left\langle K_{b}^{\bar{A}_{1}}\right\rangle$. This gives that $\left|[V, a]:\left[[V, a], A_{1}\right]\right|=2^{2 n}$. As $\left[[V, a], A_{1}\right]=[V, a] \cap Z^{g}$, we see that $\left|V: V \cap O_{2}(L)\right|=2^{2 n}$. In particular $q \geq 2^{2 n}$. But as $C_{\bar{A}_{1}}\left(K_{b}\right)=1$, we have that $q=\left|\bar{A}_{1}\right| \leq 2^{n+1}$. As $n \geq 2$, this is a contradiction. This proves (4.3).
(4.4) $\left\langle K^{\bar{B}}\right\rangle=\left\langle K^{\bar{A}_{1}}\right\rangle$.

Let $B_{1} \leq Z, Z \cap Z^{g} \leq B_{1}$ such that B_{1} covers another natural module in $Y / Z \cap Z^{g}$. Let $b \in \bar{B}_{1}$. If $K^{b} \neq K$, then \bar{A}_{1} normalizes K_{b} by (4.3) and so $K_{b} \leq\left\langle K^{\bar{A}_{1}}\right\rangle$. Hence \bar{B}_{1} normalizes $\left\langle K^{\bar{A}_{1}}\right\rangle$. As \bar{B} is generated by such groups, we get (4.4).

Define W and V as above. If $W \neq 1$, then $\left|W / C_{W}\left(A_{1}\right)\right| \geq 2^{2 n}$. So $\left|Y: C_{Y}\left(Z^{g} \cap Y\right)\right| \geq 2^{2 n}$ and then also $\left|Y: C_{Y}(Z \cap Y)\right| \geq 2^{2 n}$, hence $|\bar{B}| \geq 2^{2 n}$. As $C_{\bar{B}}(K)=1$ by (4.3) we have $|\bar{B}| \leq 2^{n+1}$ and $n>1$, which is not possible. So we have that $W=1$. Hence V is the natural $\Omega_{4}^{+}\left(2^{n}\right)-$ module. Let $a \in \bar{A}_{1}$ such that $K^{a} \neq K$. Then $C_{K \times K^{a}}(a)=K_{a} \cong K$. Further a Sylow 2-subgroup of K_{a} together with a acts quadratically on V. As \bar{A}_{1} acts quadratically we have that \bar{A}_{1} projects onto $K_{a} \times\langle a\rangle$. So we have that \bar{B} centralizes a and then acts on K_{a}. As $C_{\bar{B}}(K)=1$ by (4.3), we see that \bar{B} contains a subgroup \tilde{B} of index two containing \bar{A}_{1}, which acts quadratically on V. As $V \not \leq O_{2}(L)$, we have that $\left|Y: \tilde{B}[\tilde{B}, V]\left(Z \cap Z^{g}\right)\right| \leq 4$. As $[[\tilde{B}, V] \tilde{B}, \tilde{B}]=1$, we see that \tilde{B} centralizes a subgroup of index at most $2 q$ in V. Now as V is not an F-module for \tilde{B} by Lemma 3.5, we get $|\tilde{B}| \leq q$, which gives $|\bar{B}| \leq 2 q$. But as $q>2$, and $|\bar{B}|$ is a power of q, we would get $\bar{A}_{1}=\bar{B}$ and then B acts quadratically on Z, which by Lemma $3.21(2)$ gives that \bar{B} is an $F-$ module offender on V, contradicting Lemma 3.5. So we have proved (4).

From (4) we now get that $\left\langle K^{\bar{A}_{1}}\right\rangle=K$. As \bar{B} is generated by such subgroups \bar{A}_{1}, we have the contradiction $[K, \bar{B}] \leq K$. This shows

$$
\text { (5) } q=2 \text {. }
$$

(5.1) There is some K_{b} such that $\left[K_{b}, \bar{B}\right] \not \leq K_{b}$.

Otherwise, if there is no such K_{b} then for $b=1$ we have $K_{b}=K$ and so $[K, \bar{B}] \leq K$, a contradiction.

For the remainder of the proof we fix K_{b} such that it satisfies (5.1).
(5.2) $\left[Z, K_{b}\right] \not \subset O_{2}(L)$.

If $\left[Z, K_{b}\right] \leq O_{2}(L)$, then again B acts quadratically on $\left[Z, K_{b}\right]$. Hence by Lemma 3.5 we have one of the cases (2) or (3) above with \bar{A}_{1} replaced by \bar{B}. Assume $\left|\bar{B}: C_{\bar{B}}\left(K_{b}\right)\right|=2$. As $|\bar{B}|>q=2$ by $(*)$ we can choose $1 \neq a \in C_{\bar{B}}\left(K_{b}\right)$. Then $\left\langle K_{b}^{\bar{B}}\right\rangle$ acts on $[Z, a]$. As $\left|Z: Z \cap O_{2}(L)\right|=2$, we have that $\left|[Z, a]:[Z, a] \cap Z^{g}\right|=2$. Therefore $\left|[Z, a]: C_{[Z, a]}(B)\right| \leq 2$. If \bar{B} does not centralize $[Z, a]$, then \bar{B} induces transvections on $[Z, a]$. As B does not normalize K_{b} this is impossible by Lemma 3.5. Hence \bar{B} centralizes $[Z, a]$ and so $\left[[Z, a], K_{b}\right]=1$ for all $a \in C_{\bar{B}}\left(K_{b}\right)$. We have that $\left[Z, C_{\bar{B}}\left(K_{b}\right)\right]\left(Z \cap Z^{g}\right) \cap\left[Z, K_{b}\right]$ is a subgroup of index at most four in $\left[Z, K_{b}\right]$. So \bar{B} centralizes a subgroup of index two in $\left[Z, K_{b}\right] /\left[Z, K_{b}\right] \cap\left[Z, C_{\bar{B}}\left(K_{b}\right)\right]$, which gives $\left[K_{b}, Z\right] \leq\left[Z, C_{\bar{B}}\left(K_{b}\right)\right]$ and then $\left[Z, K_{b}\right]=1$, a contradiction.

Hence we are in case (2), i.e. $\left|\bar{B}: C_{\bar{B}}\left(K_{b}\right)\right|>2$. As before by Lemma 3.5 and Lemma 3.11 there is some $y \in C_{Z}\left(K_{b}\right) \backslash O_{2}(L)$. This shows $[y, B](Z \cap$ $B)=Z \cap O_{2}(L)$. Now $\left[Z, K_{b}, B\right] \leq\left[Z \cap O_{2}(L), B\right]=[y, B, B]$. But as $\left[y, K_{b}\right]=1$, also $\left[y, B, K_{b}\right]=1$. In particular $\left[Z, K_{b}, B, K_{b}\right]=1$, a contradiction. So we have (5.2).

Fix $a \in \bar{B}$ with $K_{b}^{a} \neq K_{b}$.
(5.3) $[Z, a, \bar{B}] \neq 1$.

Assume $[Z, a, \bar{B}]=1$. Then by Lemma 3.5 either $\left|\bar{B}: C_{\bar{B}}\left(K_{b}\right)\right|=2$, or $K_{b} \cong L_{2}(r)$ and $\left[Z, K_{b}\right]$ is a direct sum of orthogonal $\Omega_{4}^{+}(r)$-modules, $r=2^{n}$.

Suppose the latter. As before let W be the sum of all natural modules in $\left[Z, K_{b}\right]$, which are contained in $O_{2}(L)$ and V / W be a natural $\Omega_{4}^{+}(r)-$ module. Then there is $y \in V \backslash O_{2}(L)$ and $[B, y](B \cap Z)=[Z, B](B \cap Z)$. In particular as $\left|V: V \cap O_{2}(L)\right|=2$, we see that $V \cap B \not \leq W$. This shows that B normalizes V. Now let $c \in C_{\bar{B}}\left(K_{b}\right)$. Then we have that $[V, c] \leq W$. As $[W, c] \leq Z \cap Z^{g}$ and $\left[B, Z \cap Z^{g}\right]=1$, we get that $[W, c]=1$ or $[W, c]$ is the natural module. But $[\bar{B},[W, c]]=1$ and so $\left[K_{b},[W, c]\right]=1$, hence $[W, c]=1$. If $c \neq 1$, then $[V, c]$ is the natural module. But we have that $\left|[V, c]:[V, c] \cap Z^{g}\right|=2$ and so B induces transvections on $[V, c]$, a contradiction. So we have that $C_{\bar{B}}\left(K_{b}\right)=1$, i.e. $b=1$ and $K_{b}=K$. Assume $W \neq 1$. In the natural module the centralizer of a quadratic fours group is just the commutator of this fours group. Hence we have that $C_{W}(B)=W \cap Z^{g}$. So $\left|W: W \cap Z^{g}\right|=\left|W \cap Z^{g}\right|=|W \cap Z|$ and then $|\bar{B}| \geq|W / W \cap Z| \geq r^{2}$. As the largest quadratic group
in $\mathrm{O}_{4}^{+}(r)$ is of order $2 r$ we have $|\bar{B}| \leq 2 r$, a contradiction. This implies $W=1$. So we have V is the natural module and then B acts quadratically on V. But $[y, B]\left(Z \cap Z^{g}\right)=Z \cap O_{2}(L)$. As $[y, B] \leq[V, B]$, $\left[B, Z \cap O_{2}(L)\right]=1$, and so B induces transvections on Z, a contradiction as \bar{B} does not normalizes K.

So we have $\left|\bar{B}: C_{\bar{B}}\left(K_{b}\right)\right|=2$. As $[Z, a, B]=1=[Z, B, a]$ by the Three-Subgroups-Lemma, we see that $\left[Z, C_{\bar{B}}\left(K_{b}\right), K_{b}\right]=1$. By the Three-Subgroups-Lemma again we get $\left[K_{b}, Z, C_{\bar{B}}\left(K_{b}\right)\right]=1$. But as $\left[Z, K_{b}\right] \not Z$ $O_{2}(L)$ by (5.2) this shows $C_{\bar{B}}\left(K_{b}\right)=1$ and then $|B: B \cap Z|=2$. Now B induces transvections on Z and so by Lemma 3.5 B has to normalize K_{b}, a contradiction. This proves (5.3).
(5.4) We have that $C_{\bar{B}}\left(K_{b}\right)=1$ and then $b=1$ and $K_{b}=K$.

By (5.3) $|\bar{B}| \geq 4$. As $\left|[Z, a]:[Z, a] \cap Z^{g}\right|=2, \bar{B}$ induces transvections on $[Z, a]$ to a hyperplane. Choose $1 \neq c \in C_{\bar{B}}\left(K_{b}\right)$ and assume that $\left[Z, c, K_{b}\right]=1$. Then also $\left[Z, K_{b}, c\right]=1$ and so $\left[Z, K_{b}\right] \leq O_{2}(L)$, a contradiction. Hence K_{b} acts nontrivially on $[Z, c]$. But a induces a transvection on $[Z, c]$, a contradiction as $K_{b}^{a} \neq K_{b}$. This proves (5.4). In particular we get
(5.5) If $b \neq 1$, then $\left[K_{b}, \bar{B}\right] \leq K_{b}$.

Let $b \in \bar{B}$ with $\left(K K^{a}\right)^{b} \neq K K^{a}$. Then a does not normalize K_{b}, a contradiction to (5.5). So we have that $K K^{a}=\left\langle K^{\bar{B}}\right\rangle$. As $[Z, a, \bar{B}] \neq 1$ by (5.3), we see that $K_{a}=C_{K \times K^{a}}(a) \cong K$ acts faithfully on $[Z, a]$, and so, as \bar{B} induces transvections to a hyperplane, we get by Lemma 3.3 that $K \cong L_{n}(2), S p_{2 n}(2), \Omega_{2 n}^{ \pm}(2)$ or A_{n}. We further have that $C_{\bar{B}}\left(K_{a}\right)=\langle a\rangle$ as $C_{\bar{B}}(K)=1$ by (5.4).
(5.6) $|\bar{B}|>4$.

Assume $|\bar{B}| \leq 4$. Then $|[Z, a]| \leq 4$, but K_{a} has to act nontrivially on $[Z, a]$, a contradiction.

By (5.6) $|\bar{B}|>4$ and \bar{B} induces at least a fours group of transvections on $[Z, a]$. This gives
(5.7) $K \cong L_{n}(2)$.

It remains to prove that $[Z, a]$ is the natural module. In fact we know that $[Z, a] / C_{[Z, a]}\left(K_{a}\right)$ is the natural module. We have that $|\bar{B}| \leq 2^{n}$. Then as $[Z, a, a]=1$ and $\left|Z: Z \cap O_{2}(L)\right|=2$ we see that $\mid[Z, a] \leq$ $|\bar{B} /\langle a\rangle|=|\bar{B}| \leq 2^{n}$. This shows that $|[Z, a]|=2^{n}$ and \bar{B} induces the full transvection group on $[Z, a]$.

4. Examples

In this chapter we show under which circumstances the examples $M(23), C o_{3}, \Omega_{7}(3), \Omega_{8}^{-}(3)$ and J_{1} in the main theorem appear. The group A_{12} already appeared in [MaStr, Theorem 1.4].

Lemma 4.1. [MaStr, Lemma 4.15] Let G be a group of even type, which is not of even characteristic. If G has standard subgroup with $L \cong 2 M(22)$, then $G \cong M(23)$.

Lemma 4.2. [Se] Let G be a group of even type, which is not of even characteristic. Let furthermore $L \in \mathcal{L}$ be a standard subgroup with $L \cong$ $2 S p_{6}(2)$. If $C_{G}(L)$ has cyclic Sylow 2 -subgroups, then $G \cong C o_{3}$.

Lemma 4.3. Let G be a group of even type, which is not of even characteristic. Let furthermore L be a standard subgroup of G. Assume that the following hold:
(1) $L \cong L_{4}(3), U_{4}(3)$ or $2 U_{4}(3)$ and $C_{G}(L)$ is a cyclic 2-group.
(2) $N_{G}(L)$ contains a Sylow 2-subgroup S of G.

Then $G \cong \Omega_{7}(3)$ or $\Omega_{8}^{-}(3)$.
Proof. Suppose false. We have that $C_{G}(L)$ is normal in S, S as in (2), and so contains a 2 -central involution z. By Lemma 2.6 we have that for an involution t in $L \backslash Z(L)$ we get $O_{2}\left(C_{L\langle z\rangle}(t)\right) \cong \mathbb{Z}_{2} \times Q_{8} * Q_{8}$. Now we choose t such that $t \in O_{2}\left(C_{L}(t)\right)^{\prime}$. Again by Lemma 2.6 we see that $\left.O_{3}\left(N_{L}\left(O_{2}\left(C_{L}(t)\right)\right) / O_{2}\left(C_{L}(t)\right)\right)\right)$ is elementary abelian of order 9 . Let U be the full preimage. Then $\left[U, O_{2}\left(C_{L}(t)\right)\right]=Q \cong Q_{8} * Q_{8}$. In particular $Q \unlhd C_{C_{G}(z)}(t)$ and so we may assume that $[S, t]=1$, i.e. $t \in Z(S)$.

We have that S centralizes $\langle z, t\rangle$ and so normalizes U. Now the Frattini argument provides us with a Sylow 3 -subgroup U_{1} of U such that

$$
\begin{equation*}
S=Q N_{S}\left(U_{1}\right) \tag{*}
\end{equation*}
$$

Next we try to determine $O_{2}\left(C_{G}(t)\right)$. For this we assume that $C_{G}(t) \not \leq$ $N_{G}(L)$. Furthermore we first assume that $C_{C_{G}(t)}\left(O_{2}\left(C_{G}(t)\right)\right) \leq O_{2}\left(C_{G}(t)\right)$. Suppose additionally that there is some $1 \neq u \in U_{1}$, with $[u, Q \cap$ $\left.O_{2}\left(C_{G}(t)\right)\right]=1$. We have that $O_{2}\left(C_{G}(t)\right) \leq S$, so $\left[U_{1} Q, O_{2}\left(C_{G}(t)\right)\right] \leq$ $O_{2}\left(C_{G}(t)\right) \cap U_{1} Q \leq Q$. Hence $\left[u, O_{2}\left(C_{G}(t)\right)\right] \leq Q$ and we get

$$
\left[O_{2}\left(C_{G}(t)\right), u\right]=\left[O_{2}\left(C_{G}(t)\right), u, u\right] \leq\left[Q \cap O_{2}\left(C_{G}(t)\right), u\right]=1,
$$

contradicting $C_{C_{G}(t)}\left(O_{2}\left(C_{G}(t)\right)\right) \leq O_{2}\left(C_{G}(t)\right)$.
This shows that U_{1} acts faithfully on $Q \cap O_{2}\left(C_{G}(t)\right)$. Then $Q \leq$ $O_{2}\left(C_{G}(t)\right)$. By Lemma 2.6 we have $\left|C_{L\langle z\rangle}(Q)\right|=4$. Furthermore we
have that $\operatorname{Out}(L)$ does not contain an elementary abelian group of order 8 by Lemma 2.6. Hence we see that

$$
\left|\Omega_{1}\left(Z\left(O_{2}\left(C_{G}(t)\right)\right)\right)\right| \leq 16 .
$$

We set $Z=\Omega_{1}\left(Z\left(O_{2}\left(C_{G}(t)\right)\right)\right)$. If $\langle z, t\rangle=Z$, we get $N_{G}(\langle z, t\rangle)=$ $C_{G}(\langle z, t\rangle)$ and then the contradiction $C_{G}(t) \leq C_{G}(z) \leq N_{G}(L)$. So we conclude that $|Z| \geq 8$. Then $\left[Z, U_{1}\right] \leq Z$. As $Z \leq S$ we see $\left[Z, U_{1}\right] \leq Q$ and so $\left[Z, U_{1}\right] \leq Q \cap Z$. As $\left[Q \cap Z, U_{1}\right]=1$, we have $\left[Z, U_{1}\right]=1$. Furthermore $\left[O_{2}\left(C_{G}(t)\right), U_{1}\right] \leq Q$. As $C_{G}(Z) \leq N_{G}(L)$, we now see that $U_{1} O_{2}\left(C_{G}(t)\right) / O_{2}\left(C_{G}(t)\right) \unlhd C_{G}(t) / O_{2}\left(C_{G}(t)\right)$. Hence

$$
U_{1} O_{2}\left(C_{G}(t)\right) \unlhd C_{G}(t) .
$$

Let $U_{2} \leq U_{1},\left|U_{2}\right|=3$, with $\left[U_{2}, Q\right] \cong Q_{8}$. Then $\left\langle\left[Q, U_{2}\right], U_{2}\right\rangle=$ $X \cong S L_{2}(3)$. Further $t \in Z(X)$. As $\left[O_{2}\left(C_{G}(t)\right), U_{2}\right]=\left[U_{2}, Q\right]$, we see $X \unlhd U_{1} O_{2}\left(C_{G}(t)\right) \unlhd C_{G}(t)$ and so $X \unlhd \unlhd C_{G}(t)$ and for $g \in C_{G}(t)$ we have either $X^{g} \cap X=\langle t\rangle$ or $X=X^{g}$. The assertion now follows with [MaStr, Lemma 3.2].

So we may assume that $C_{G}\left(O_{2}\left(C_{G}(t)\right)\right) \not \leq O_{2}\left(C_{G}(t)\right)$. Then

$$
F=E\left(C_{G}(t)\right) \neq 1
$$

as $O\left(C_{G}(t)\right)=1$ by the general assumption. Set $T=S \cap F$. Assume there is $1 \neq u \in U_{1}$ with $[F \cap Q, u]=1$. Then $Q \neq F \cap Q$ and $F \cap Q$ is normal in $C_{L}(t)$. By Lemma $2.30 T \cap Q \leq\langle t\rangle$. We also have $[T, Q] \leq T \cap Q \leq\langle t\rangle$. So $\left[U_{1}, S\right] \leq U_{1} Q$ and then $\left[T, U_{1}\right] \leq$ $U_{1}(Q \cap T) \leq U_{1}\langle t\rangle$. This shows $\left[T, U_{1}\right]=\left[T, U_{1}, U_{1}\right] \leq\left[U_{1}, U_{1}\langle t\rangle\right]=1$. Now $T \leq C_{G}\left(\left\langle U_{1}^{S}\right\rangle\right) \leq C_{G}(Q)$ and then again $T / T \cap\langle t\rangle$ has a cyclic normal subgroup $C_{L}(t) \cap T /\langle t\rangle$ of index at most 4 . This shows that F is quasisimple.

Assume first $\left[C_{C_{G}(t)}(F), U_{1}\right]=1$. As $C_{C_{G}(t)}(F)$ is normal in $C_{G}(t)$, we get that $\left[Q, C_{C_{G}(t)}(F)\right]=1$. Hence $Q U_{1}$ induces an outer automorphism group on F, which centralizes a Sylow 2-subgroup, contradicting [GoLyS4, Lemma 4.1.1]. So we have that $\left[C_{C_{G}(t)}(F), U_{1}\right] \neq 1$. If $[Q, F] \neq 1$ then we get by Lemma 2.30 that $C_{Q}(F) \leq\langle t\rangle$ and then $Q \cap C_{C_{G}(t)}(F) F=\langle t\rangle$. But then we have the same contradiction as before. So we have that $[Q, F]=1$. The Frattini argument now implies that $C_{G}(t)=F N_{C_{G}(t)}(T)$. Further we have $\left(C_{S}(Q) /\langle t\rangle\right)^{\prime} \leq$ $C_{S}(L)\langle t\rangle /\langle t\rangle$ as $N_{S}(L) / S \cap L$ is abelian. So if $F\langle t\rangle /\langle t\rangle$ has nonabelian Sylow 2-subgroups, we get that $\langle z, t\rangle \leq F\langle t\rangle$ is centralized by $N_{C_{G}(t)}(T)$ and so

$$
C_{G}(t)=C_{N_{G}(L)}(t) F .
$$

We are going to prove the same result if $F\langle t\rangle /\langle t\rangle$ has abelian Sylow 2 -subgroups. As $F \in \mathcal{C}_{2}$ we have, that F itself has abelian Sylow 2subgroups. In particular $t \notin F$. If $\left|\Omega_{1}(Z(S))\right|=4$, then again $z \in F\langle t\rangle$ and so $N_{C_{G}(t)}(T) \leq C_{G}(z)$, as all involutions in F are conjugate. If $\left|\Omega_{1}(Z(S))\right|>4$, then by application of Lemma 2.6 we see $L \cong L_{4}(3)$ and $\left|\Omega_{1}(Z(S))\right|=8$. By Lemma 2.34 we have that $S \cap C_{G}(L) \leq Z(S)$ and $S=C_{S}(L) \times((S \cap L)\langle u\rangle)$. Hence $C_{S}(Q)=\left(S \cap C_{G}(L)\right)\langle t, u\rangle$. If $C_{C_{G}(L)}(z) \neq\langle z\rangle$, then $z \in Z\left(N_{G}(Z(S))\right)$ and so $z^{G} \cap Z(S)=\{z\}$, contradicting Lemma 2.1 and Lemma 2.2. So $Z(S)=\langle z, t, u\rangle=C_{S}(Q)$. Hence a Sylow 2-subgroup of F is contained in $Z(S)$. Now we have that $N_{C_{G}(t)}(T)=N_{F}(T) C_{C_{G}(t)}(T)$, which gives again

$$
\begin{equation*}
C_{G}(t)=C_{N_{G}(L)}(t) F . \tag{**}
\end{equation*}
$$

As $Q \not \leq F$ and $\left[U_{1}, S\right] \leq Q U_{1}$ we have $U_{1} \cap F=1$ and then $C_{F}(z)=$ $S \cap F$. Hence U_{1} cannot induce nontrivial inner automorphisms on F, so $\left[F, U_{1}\right]=1$. This now gives $[F, U]=1$. As $C_{G}(t)=C_{N_{G}(L)}(t) F$ by $(* *)$, we see that $Q \leq O_{2}\left(C_{C_{G}(t)}(F)\right)$ and then U is normal in $C_{C_{G}(t)}(F)$. Hence as above we construct a subgroup $X \cong S L_{2}(3)$ in U, with $X \unlhd \unlhd C_{G}(t)$. Again the assertion follows with [MaStr, Lemma 3.2].

So we may assume

$$
Q \leq F
$$

Let first N be a component with $N \cap Q=1$, then $[S \cap N, Q] \leq$ $S \cap N \cap Q=1$. As $[S \cap F, Q] \neq 1$, there is at least one component N with $Q \cap N \neq 1$. We now fix such a component N and set $F_{1}=\left\langle N^{U_{1}}\right\rangle$. As Q normalizes N we have $F_{1}=N_{1} * N_{2} * \cdots N_{x}$, where x divides $\left|U_{1}\right|=9$. If $x=9$, then, as any N_{i} has an elementary abelian section of order 4 , we have an elementary abelian section of order 2^{18} in F_{1}, which contradicts the structure of S. Let $x=3$. As U_{1} acts on $S \cap F_{1}$ and $\left[S \cap F_{1}, U_{1}\right] \leq\left[Q, U_{1}\right]=Q$, we see by Lemma 2.30 that $Q \leq F_{1}$. As $x=3$ there is $1 \neq u \in U_{1}$, with $\left[N_{i}, u\right] \leq N_{i}$ for all i. Furthermore we have some element $u_{1} \in U_{1}$, which acts transitively on the N_{i} and normalizes $S \cap F_{1}$. As $Q \leq F_{1}$ we see $\left[u, N_{i} \cap S\right] \neq 1$. As $\left(S \cap N_{i}\right)\left\langle u_{1}\right\rangle$ is a subgroup, we get that $1 \neq\left[S \cap N_{i}, u_{1}\right] \leq Q$. But then $\left|\left\langle\left(Q \cap N_{1}\right)^{\left\langle u_{1}\right\rangle}\right\rangle\right| \geq 2^{6}$, a contradiction. So we have $x=1$ and then U_{1} normalizes $N_{1}=N$. Then $(S \cap N) U_{1}$ is a subgroup of G. As U_{1} cannot centralizes all components N with $N \cap Q \neq 1$, we get that there is a component N with $N \cap Q>\langle t\rangle$.

The action of U_{1} on Q shows that either $Q \cap N=Q$ or $Q \cap N$ is a quaternion group. Suppose first that $Q \cap N$ is a quaternion group.

Then by Lemma 2.30 there is some $s \in S \cap L$ such that $N^{s} \neq N$ and $N^{s} \cap Q$ also is a quaternion group. As $Z(N) \geq\langle t\rangle$ [MaStr, Lemma 2.53] implies that $N \in \mathcal{M}$. In particular the same lemma implies that $|N / Z(N)|_{2} \geq 2^{6}$, and hence $|[s, T]| \geq 2^{6}$. As $\left|S \cap L: O_{2}\left(C_{L}(t)\right)\right| \leq 4$, we now see that $\left|[T, s] \cap O_{2}\left(C_{L}(t)\right)\right| \geq 2^{5}$ and then $|[T, s] \cap Q| \geq 2^{4}$. Now $Q \cap N$ is a quaternion group, which implies that $[T, s] \cap N>\langle t\rangle$, a contradiction. So we have $Q \leq N$ for some component N. Further $C_{C_{G}(z)}(t)$ normalizes N as it normalizes Q. Now z induces some automorphism on N, which centralizes a Sylow 2 -subgroup and has a solvable centralizer in N of order $2^{a} \cdot 3^{b}, b \leq 2$. As $N \in \mathcal{M}$ Lemma 2.31 implies that $N \cong 2 L_{3}(4), 2^{2} L_{3}(4), 2 S p_{6}(2), 2 U_{4}(3), 2 M_{12}, 2 M_{22}, 4 M_{22}, 2 S z(8)$ or $2^{2} S z(8)$. As $Q \leq N$, there are involutions in $N / Z(N)$ which become elements of order 4 in N. So by Lemma 2.33 we are left with $2 S p_{6}(2)$, $2 M_{12}$ or $4 M_{22}$. If $N \cong 2 M_{12}$ or $4 M_{22}$, then by Lemma $2.35\left|U_{1}\right|$ induces an inner automorphism of order at most three. On the other hand by the same lemma N has no outer automorphism of order three, so $C_{U_{1}}(N) \neq 1$, which contradicts $C_{U_{1}}(Q)=1$. So we have $N \cong 2 S p_{6}(2)$. Now U_{1} has to induce a group of inner automorphisms of order 9 . We have that $\left[Q, U_{1}\right] /\langle t\rangle$ is elementary abelian of order 16. Hence let \tilde{z} be the inner automorphism induced by z, then we see that $\left\langle\left[Q, U_{1}\right], \tilde{z}\right\rangle /\langle t\rangle$ is elementary abelian of order 32 . By Lemma 2.36 we have that \tilde{z} corresponds to a transvection in $S p_{6}(2)$. But then a group isomorphic to Σ_{6} would be in $C_{G}(\langle z, t\rangle)$, a contradiction to $C_{G}(z) \leq N_{G}(L)$.

So we have shown that $C_{G}(t) \leq N_{G}(L)$. But then $C_{G}(t)$ has a subnormal subgroup $S L_{2}(3)$. [MaStr, Lemma 3.2] now yields the assertion.

Lemma 4.4. Let G be of even type but not of even characteristic. Let $L \cong L_{2}(q), q$ even, be a standard subgroup with $C_{G}(L)$ cyclic. Assume that $C_{G}(L)$ contains a 2-central involution z. Then $q=4$ and $G \cong J_{1}$.

Proof. Let S be a Sylow 2-subgroup of $N_{G}(L)$ containing z. In $\Omega_{1}(Z(S))$ there are three $N_{G}(L)$-classes of involutions, $\{z\},\left(\Omega_{1}(Z(S)) \cap L\right)^{\sharp}$ and $z\left(\Omega_{1}(Z(S)) \cap L\right)^{\sharp}$. Hence either $z^{G} \cap \Omega_{1}(Z(S))=\Omega_{1}(Z(S))^{\sharp}$ or $z^{G} \cap \Omega_{1}(Z(S))=\{z\}$. Set $U=L \cap S$. Then there are at most two abelian subgroups of S which have the same order as $E=C_{C_{G}(L) \cap S}(z) \times U$. In particular conjugacy takes place in $N_{G}(E)$.

Assume first that $z^{G} \cap \Omega_{1}(Z(S)) \neq\{z\}$. Then in particular $C_{C_{G}(L) \cap S}(z)=$ $\langle z\rangle$. As $\operatorname{Out}(L)$ is cyclic, we have that $z \notin S^{\prime}$. So we conclude $\Omega_{1}(Z(S)) \cap$ $S^{\prime}=1$ and then $C_{G}(z) \cong\langle z\rangle \times L_{2}(q)$. By O'Nan's lemma [MaStr, Lemma 2.6] we obtain $q=4$ and so $G \cong J_{1}$ by [Ja].

So we may assume that $z^{G} \cap \Omega_{1}(Z(S))=\{z\}$. As L has just one class of involutions, we have that $z^{G} \cap\left(L \times C_{C_{G}(L) \cap S}(z)\right)=\{z\}$. By Lemma 2.1 L must possess some outer automorphism u with $u \sim z$ in G. Obviously $u \notin C_{S}(u)^{\prime}$. In particular also $z \notin C_{S}(u)^{\prime}$. Hence $C_{C_{G}(L) \cap S}(u) \leq Z\left(C_{S}(u)\right)$. As u is not a square in $Z\left(C_{S}(u)\right)$, we get that the same holds for z. In particular $C_{C_{C_{G}(L) \cap S}(z)}(u)=\langle z\rangle$. If $z \notin S^{\prime}$, then in particular $S \cap C_{G}(L)=\langle z\rangle$ and we get a contradiction by Lemma 2.2. So we may assume that $z \in S^{\prime}$. Then $u \sim z u$ by some element in $C_{S}(L)$. As $C_{S \cap C_{G}(L)}(u) \leq Z\left(C_{S}(u)\right)$, we see that $C_{S}(u)=\left\langle u, z, C_{U}(u)\right\rangle$. Further $u\left\langle z, C_{U}(u)\right\rangle \subseteq u^{G}$. Now we may assume that $u \sim z$ in $N_{G}\left(C_{S}(u)\right)$. In particular $C_{S}(u)$ contains a hyperplane H with $z \notin H$ but $z H \subseteq z^{G}$. Choose $u_{1} \in C_{U}(u)^{\sharp}$. Then neither u_{1} nor $z u_{1}$ are in $z H$, so both are in H and so $z \in H$, a contradiction.

5. The central case

In this chapter we fix a Sylow 2-subgroup S of G and assume that G is of even type but not of even characteristic. Furthermore we assume that G is not one of the exceptional groups in the main theorem, i.e.

$$
G \not \approx \Omega_{7}(3), \Omega_{8}^{-}(3), A_{12}, C o_{3}, M(23) \text { or } J_{1} .
$$

This means by [MaStr, Theorem 1.4] that there is some $1 \neq z \in$ $\Omega_{1}(Z(S))^{\sharp}$, which possesses a standard component A_{z}. Furthermore $C_{G}\left(A_{z}\right)$ has cyclic Sylow 2-subgroups.

We will prove:
Proposition 5.1. $z \notin A_{z}$.
and
Proposition 5.2. A_{z} is a simple group of Lie type in characteristic two or isomorphic to J_{2} or $M(24)^{\prime}$. Further A_{z} is not isomorphic to $L_{2}(q), S z(q),{ }^{2} F_{4}(q)^{\prime}, q$ even, $L_{3}(4), S p_{2 n}(2), G_{2}(2)^{\prime}, L_{4}(2), U_{4}(2), A_{6}$ or $L_{3}(2)$.

We first are going to prove Proposition 5.1. For this until further notice we assume $z \in A_{z}$ and aim for a contradiction. By [MaStr, Lemma 2.53] we have that $A_{z} / Z\left(A_{z}\right) \in \mathcal{M}$. For the proof we consider the various groups in \mathcal{M}.
Lemma 5.3. $A_{z} / Z\left(A_{z}\right) \not \neq S z(8)$.
Proof. Assume $A_{z} / Z\left(A_{z}\right) \cong S z(8)$. Let $1 \neq x \in S, x^{2}=1$. Then, as $C_{S}\left(A_{z}\right) \cap A_{z}=\langle z\rangle$, we see that $x=a b, a \in C_{S}\left(A_{z}\right)$ and $b \in A_{z}$, where
$a^{2}, b^{2} \in\langle z\rangle$. By Lemma $2.33 z$ is not a square in $S \cap A_{z}$. In particular $b^{2}=1$. But then also $a^{2}=1$, which shows that $\Omega_{1}(S)=\Omega_{1}\left(S \cap A_{z}\right)$. Hence $\Omega_{1}(S)$ is elementary abelian of order 16. Furthermore $\Omega_{1}(S)=$ $J(S)$. So $N_{G}(J(S))$ controls G-fusion of involutions in S.
If $z^{G} \cap S \neq\{z\}$, then all involutions in S are conjugate. But then $\left|N_{G}(J(S)): N_{C_{G}(z)}(J(S))\right|=15$, and $N_{G}(J(S)) / C_{G}(J(S))$ is a subgroup of $G L_{4}(2) \cong A_{8}$ of order divisible by $3 \cdot 5 \cdot 7$. As $S / C_{S}(J(S))$ is abelian, we get a contradiction by Lemma 2.38. So $z^{G} \cap S=\{z\}$ which contradicts Lemma 2.1.

Lemma 5.4. [Se] $A_{z} / Z\left(A_{z}\right) \neq F_{4}(2)$ or $G_{2}(4)$.
Lemma 5.5. [EgaYo] $A_{z} / Z\left(A_{z}\right) \neq \Omega_{8}^{+}(2)$.
Lemma 5.6. $A_{z} / Z\left(A_{z}\right) \not \neq U_{6}(2)$.
Proof. [DaSo, Theorem 3.1]. In fact there is shown that $G \cong M(22)$. But then $z \notin Z(S)$.

Lemma 5.7. $A_{z} / Z\left(A_{z}\right) \not{ }^{2} E_{6}(2)$.
Proof. [Str1]. In fact in [Str1, (2.2)] it is shown that $z \notin Z(S)$.
Lemma 5.8. $A_{z} / Z\left(A_{z}\right) \not \neq H i S, M_{12}, M_{22}, J_{2}, S u z, C o_{1}$ or $R u$,
Proof. Suppose false. Application of [So] shows $A_{z} / Z\left(A_{z}\right) \not \equiv H i S$. In the cases of $A_{z} / Z\left(A_{z}\right) \cong M_{12}$ or M_{22} we get a contradiction with [HaSo]. The remaining cases are treated in [Fin1] and [Fin2].

Lemma 5.9. $A_{z} / Z\left(A_{z}\right) \not \not F_{2}$.
Proof. If $A_{z} \cong 2 F_{2}$ then by [DaSo, (5.5)] we get $z \notin Z(S)$.
Lemma 5.10. $A_{z} / Z\left(A_{z}\right) \not \not L_{3}(4)$.
Proof. Suppose $A_{z} / Z\left(A_{z}\right) \cong L_{3}(4)$. As $A_{z} \in \mathcal{C}_{2}$ we have by [MaStr, Definition 1.1] that $Z\left(A_{z}\right)=\langle z\rangle$. According to Lemma 2.20 there are exactly two elementary abelian groups of order 16 in $\left(S \cap A_{z}\right) /\langle z\rangle$. Let E be the preimage of such a group. Again by Lemma $2.20 A_{5}$ acts transitively on $(E /\langle z\rangle)^{\sharp}$. So we see that E is elementary abelian of order 32 . Let $C_{S}\left(A_{z}\right)$ be cyclic of order 2^{n}, then by Lemma 2.20 there are exactly two abelian subgroups of type $\left(2,2,2,2,2^{n}\right)$ in $S \cap A_{z} C\left(A_{z}\right)$. Let F be an elementary abelian group of order 32 in S. Assume there is some $t \in F \backslash A_{z} C\left(A_{z}\right)$. As $m_{2}\left(C_{A_{z} /\langle z\rangle}(t)\right) \leq 2$ by Lemma 2.23(3), we get that $\left|F \cap A_{z} C\left(A_{z}\right)\right| \leq 8$. But then F has to induce a fours group of outer automorphisms on $A_{z} /\langle z\rangle$. Choose $f_{1} \in F$ such that f_{1} centralizes A_{5} in $A_{z} /\langle z\rangle$. Then F induces an outer automorphism on A_{5}, which gives the contradiction $m_{2}\left(C_{A_{z} /\langle z\rangle}(F)\right) \leq 1$. Hence any elementary abelian
subgroup of order 32 in S is contained in $A_{z} C_{G}\left(A_{z}\right)$. By Lemma 2.20 there are exactly two abelian groups E_{1}, E_{2} of type $\left(2,2,2,2,2^{n}\right)$ contained in S. Set $E_{3}=\Omega_{1}\left(E_{1} \cap E_{2}\right)$. As again by Lemma $2.20 E_{1} E_{2}$ is a Sylow 2-subgroup of $A_{z} C_{G}\left(A_{z}\right)$, we have $E_{3}=Z\left(S \cap A_{z}\right)$ and $\left|E_{3}\right|=8$.

Suppose $z^{G} \cap A_{z} C\left(A_{z}\right) \neq\{z\}$. Let $t \in A_{z} C\left(A_{z}\right), t \neq 1, t \sim z$ in G. By Lemma 2.20 any involution in $A_{z} C_{G}\left(A_{z}\right)$ is conjugate in A_{z} to some involution in $E_{i}, i=1,2$. On $\Omega_{1}\left(E_{i}\right)$ we have that $N_{C_{G}(z)}\left(E_{i}\right)$ induces orbits of length 1,15 and 15 . Hence we see that $z^{N_{G}\left(E_{i}\right)} \neq\{z\}$. This implies that $C_{S}\left(A_{z}\right)$ is of order two and so both E_{i} are elementary abelian. We have that $N_{G}\left(E_{1}\right) \nsubseteq C_{G}(z)$. As $\left|z^{N_{G}\left(E_{i}\right)}\right|$ is odd, this shows that $\left|N_{G}\left(E_{1}\right): N_{C_{G}(z)}\left(E_{1}\right)\right|=31$. Now all involutions in A_{z} are conjugate in G. As $N_{C_{G}(z)}\left(E_{1}\right) / E_{1} \cong A_{5}, A_{5} \times \mathbb{Z}_{3}, \Sigma_{5}$ or $\left(A_{5} \times \mathbb{Z}_{3}\right): 2$, we get that $N_{G}\left(E_{1}\right) / E_{1}$ has the order $2^{2} \cdot 3 \cdot 5 \cdot 31,2^{3} \cdot 3 \cdot 5 \cdot 31,2^{2} \cdot 3^{2} \cdot 5 \cdot 31$ or $2^{3} \cdot 3^{2} \cdot 5 \cdot 31$, respectively. As the normalizer of a Sylow 31-subgroup in $G L_{5}(2)$ has order $31 \cdot 5$ we get a contradiction with Sylow's theorem. So we have shown

$$
\begin{equation*}
z^{G} \cap A_{z} C\left(A_{z}\right)=\{z\} \tag{1}
\end{equation*}
$$

Again let $t \in z^{G} \cap S, z \neq t$ and E_{1}, E_{2} as above. By Lemma 2.20 we have that $N_{A_{z}}\left(E_{1} E_{2}\right)=E_{1} E_{2}\langle\rho\rangle$, where $o(\rho)=3$ and ρ acts fixed point freely on $E_{i} / C_{S}\left(A_{z}\right)$ for $i=1,2$. By Lemma 2.20 we have that t normalizes $E_{1} E_{2}$. By (1) and the Frattini argument we may assume that t normalizes $\langle\rho\rangle$.

Suppose first $\rho^{t}=\rho^{-1}$. Assume further that $\left[E_{i}, t\right] \leq E_{i}$ for both $i=$ 1,2 . As ρ acts fixed point freely on $E_{i} / E_{1} \cap E_{2}$ for both i, there is $e_{i} \in E_{i}$ with $t^{e_{i}}=f_{i} t, f_{i} \in \Omega_{1}\left(E_{i}\right) \backslash E_{3}, i=1,2$. So we have that $\left[f_{1} f_{2}, t\right]=1$. Now $t^{e_{1} e_{2}}=f_{1}^{e_{2}} f_{2} t$. Further $f_{1}^{e_{2}}=f_{1} r$, with $1 \neq r \in E_{3} \backslash\langle z\rangle$. By Lemma $2.20 f_{1} f_{2}$ is of order four. So $1 \neq u=\left(f_{1} f_{2}\right)^{2}=\left(f_{1}^{e_{2}} f_{2}\right)^{2}$. Hence $t \sim u t$. This shows that

$$
\begin{align*}
& \text { If } \rho^{t}=\rho^{-1} \text { and } E_{i}^{t}=E_{i}, i=1,2 \text {, then } \Omega_{1}\left(Z\left(C_{S}(t)\right)\right)=\langle z, t, u\rangle \tag{2}\\
& \text { with } t \sim t u, u \in \Phi\left(C_{S}(t)\right) \text {. }
\end{align*}
$$

By Lemma 2.22 we see $\Phi(S) \leq S \cap A_{z} C_{G}\left(A_{z}\right)$. So we have that $t, z t \notin$ $\Phi\left(C_{S}(t)\right)$. As $z^{G} \cap \Phi(S) \subseteq\{z\}$ by (1), we see that $z \notin \Phi\left(C_{S}(t)\right)$, which shows that

$$
\begin{equation*}
\langle z, t, u\rangle \cap \Phi\left(C_{S}(t)\right)=\langle u\rangle . \tag{3}
\end{equation*}
$$

Assume now that $E_{1}^{t}=E_{2}$. We will show that also in this case (2) and (3) hold. Choose $e_{1} \in E_{1} \backslash E_{3}$. Then $e_{2}=e_{1}^{t} \in E_{2}$. Now $t \sim\left(e_{1} e_{2}\right)^{2} t$. This shows that $E_{3}=\left\langle z,\left(e_{1} e_{2}\right)^{2}, r\right\rangle$, with $x=[t, r] \neq 1$, as $[\rho, t] \neq 1$
and $C_{E}(\rho)=\langle z\rangle$. In particular $x \neq z$.
Suppose that $\left\langle x,\left(e_{1} e_{2}\right)^{2}\right\rangle=\left\langle z,\left(e_{1} e_{2}\right)^{2}\right\rangle$. Then $t \sim z t$. Again we have that $\Omega_{1}\left(Z\left(C_{S}(t)\right)\right)=\left\langle z, t,\left(e_{1} e_{2}\right)^{2}\right\rangle$. In G we have that $t \sim t z \sim$ $t\left(e_{1} e_{2}\right)^{2} \sim t z\left(e_{1} e_{2}\right)^{2} \sim z$. Further neither $\left(e_{1} e_{2}\right)^{2}$ nor $z\left(e_{1} e_{2}\right)$ are conjugate to z in G. This shows that $N_{G}\left(C_{S}(t)\right)$ normalizes $\left\langle\left(e_{1} e_{2}\right)^{2}, z\left(e_{1} e_{2}\right)^{2}\right\rangle$. But as $z^{G} \cap\left\langle\left(e_{1} e_{2}\right)^{2}, z\right\rangle=\{z\}$, we have that $N_{G}\left(C_{S}(t)\right) \leq C_{G}(z)$, and so $C_{S}(t)$ is a Sylow 2-subgroup of $C_{G}(t)$. As $C_{S}(t) \neq S, t$ cannot be conjugate to z in G, a contradiction.

So we have that $\left(e_{1} e_{2}\right)^{2}=x$. Hence $e_{1} e_{2} r \in C_{S}(t)$. As $\left(e_{1} e_{2}\right)^{2}=$ $\left(e_{1} e_{2} r\right)^{2}$, we again get (2) and (3) with $u=\left(e_{1} e_{2} r\right)^{2}$.

Now we show that $[\rho, t]=1$. Otherwise (2) and (3) hold. We have that $\langle u\rangle$ is normalized by $N_{G}\left(C_{S}(t)\right)$. Let $T \leq C_{G}(t)$ with $\left|T: C_{S}(t)\right|=2$. Then we obtain for $g \in T \backslash C_{S}(t)$ that $[g,\langle u, t\rangle]=1$ and so $z^{g}=z t$ or $z t u$. But in G we have $z t \sim z t u$. Now $z^{G} \cap\langle z, u, t\rangle=\{z, t, t u, z t, z t u\}$ and so $\langle u, z u\rangle$ is normal in T, which shows $z \in Z(T)$, a contradiction.

So we have shown that

$$
[\rho, t]=1
$$

Set $E_{3}=\langle z, r, s\rangle$, where we choose notation such that $\left[E_{3}, \rho\right]=\langle r, s\rangle$. As t and ρ normalize E_{3} and $[t, \rho]=1$ we force $\left[E_{3}, t\right]=1$. Set $F=$ $\left\langle E_{3}, t\right\rangle$. Then F is elementary abelian of order 16. Further we have that $N_{A_{z} \cap S}(F)$ is the preimage of $C_{\left(S \cap A_{z}\right) / E_{3}}(t)$. Hence $N_{A_{z}}(F)$ induces A_{4} on F. We first show

$$
\begin{equation*}
z^{N_{G}(F)}=\{z\} . \tag{4}
\end{equation*}
$$

Suppose false. We have that $N_{A_{z}}(F)$ induces orbits of length $1(z), 3$ (r and $z r$) and length $4(t, z t)$. As z is not conjugate to r or $z r$ by (1), we see that z has 5 or 9 conjugates under $N_{G}(F)$. If z has 9 conjugates, then all the other elements generate $\langle z, s, r\rangle$, a contradiction. So we see that z has 5 conjugates. In particular all $N_{G}(F)$-orbits have a length divisible by 5 , so we must have an orbit of length 10 . This shows that $r \sim z r$ in G. As $z, r \in \Omega_{1}(Z(S))$, we have that $z r \sim r$ in $N_{G}(S)$. But $\Omega_{1}(Z(S)) \leq A_{z}$ and so $z^{G} \cap \Omega_{1}(Z(S))=\{z\}$ by (1). Hence $N_{G}(S) \leq C_{G}(z)$, contradicting $z r \nsim r$ in $C_{G}(z)$. So we proved (4).

We have that $F \cap A_{z}=C_{S \cap A_{z}}(t)$ and so $F \cap A_{z}=\Omega_{1}\left(C_{S \cap A_{z} C_{G}\left(A_{z}\right)}(t)\right)$. As $N_{G}\left(C_{S}(t)\right) \not \leq C_{G}(z)$, we conclude from (4) that $N_{G}\left(C_{S}(t)\right) \not \leq N_{G}(F)$. Hence we get that $\left|C_{S}(t): C_{S}(F)\right|=2$ and $C_{S}(t)=C_{S}(F) F^{g}$, for
some $g \in N_{G}\left(C_{S}(t)\right)$. So we have that $\Omega_{1}\left(Z\left(C_{S}(t)\right)\right)=\langle t, z, u\rangle$, where $\langle u\rangle=\Omega_{1}\left(Z\left(C_{S}(t)\right)\right) \cap \Phi\left(C_{S}(t)\right)$. Further it shows that there are exactly two conjugates of F in $C_{S}(t)$. In particular $O^{2}\left(N_{G}\left(C_{S}(t)\right)\right)$ normalizes F and so is contained in $C_{G}(z)$. Hence $\left|z^{N_{G}\left(C_{S}(t)\right)}\right|$ is a power of two. Now we may assume that $z \sim t$ in $N_{G}\left(C_{S}(t)\right)$. As $z \nsim z u$ in G by (1), we have that also $t \nsim t u$ in $N_{G}\left(C_{S}(t)\right) \leq C_{G}(u)$. As $N_{C_{G}(z)}\left(C_{S}(t)\right) \not \pm C_{G}(t)$, we obtain that $t \sim t z$ or $t z u$ in $N_{C_{G}(z)}\left(C_{S}(t)\right)$. So as $\left|z^{N_{G}\left(C_{S}(t)\right)}\right|$ is even and $z \nsim u$, we get that both $z t$ and $z t u$ have to be conjugate to z in $N_{G}\left(C_{S}(t)\right) \leq C_{G}(u)$, but this again would imply $z \sim z u$, a contradiction to (1). This final contradiction proves the lemma.

We are going to prove Proposition 5.1. By [MaStr, Lemma 2.53] we have that $A_{z} / Z\left(A_{z}\right) \in \mathcal{M}$. The groups in \mathcal{M} are given in [MaStr, Definition 2.51(a)]. According to Lemma 5.3 through Lemma 5.10 we are left with $A_{z} / Z\left(A_{z}\right) \cong S p_{6}(2), M(22)$ or $U_{4}(3)$. By Lemma 4.2 $A_{z} / Z\left(A_{z}\right) \not \neq S p_{6}(2)$, by Lemma $4.1 A_{z} / Z\left(A_{z}\right) \not \neq M(22)$ and finally by Lemma 4.3 $A_{z} / Z\left(A_{z}\right) \not \not U_{4}(3)$. This proves Proposition 5.1.

Next we will prove Proposition 5.2. For this we first go over all components A_{z}, which are not of Lie type in characteristic two or J_{2} or $M(24)^{\prime}$. We furthermore show that the groups of Lie type in characteristic two, which were excluded in Proposition 5.2 also do not appear. The main ingredient of the proof is the interplay between Glauberman's Z^{*}-theorem and Thompson's transfer lemma.

We begin by eliminating the sporadic groups and some groups in characteristic three.

Lemma 5.11. $A_{z} \not \approx M_{23}, J_{3}, T h, R u, M_{24}, J_{4}, C o_{1}, C o_{2}, F_{2}$ or F_{1}.
Proof. By Lemma 2.12 in all cases we have $\operatorname{Out}\left(A_{z}\right)=A_{z}$. So $C_{G}(z)=$ $C_{C_{G}\left(A_{z}\right)}(z) \times A_{z}$. Further by [MaStr, Lemma 2.34] $\left|Z\left(S \cap A_{z}\right)\right|=2$. Hence either $z^{G} \cap Z(S)=\{z\}$ or all involutions in $Z(S)$ are conjugate in G. But $z \notin S^{\prime}$ and as S is not abelian, we have $Z(S) \cap S^{\prime} \neq 1$. So we get $z^{G} \cap Z(S)=\{z\}$. As $S=\left(S \cap A_{z}\right) C_{S}\left(A_{z}\right)$ this by Lemma 2.2 contradicts the simplicity of G.

Lemma 5.12. $A_{z} \not \neq H i S$, Suz or $M(22)$.
Proof. Suppose false. Let S be a Sylow 2-subgroup of $N_{G}\left(A_{z}\right)$. Then we have by [MaStr, Lemma 2.34] $\Omega_{1}(Z(S))=\langle z, t\rangle$, with $t \in A_{z}$. Further by [GoLyS3, Table $5.3 \mathrm{~m}, 5.3 \mathrm{o}, 5.3 \mathrm{t}]$ we see that

$$
C_{G}\left(\Omega_{1}(Z(S))\right) / O_{2}\left(C_{G}\left(\Omega_{1}(Z(S))\right)\right) \cong \Sigma_{5}, U_{4}(2) \text { or } U_{4}(2): 2 .
$$

So $\langle t\rangle=C_{G}\left(\Omega_{1}(Z(S))\right)^{(\infty)} \cap \Omega_{1}(Z(S))$. In particular

$$
\begin{equation*}
z^{G} \cap \Omega_{1}(Z(S))=\{z\} . \tag{*}
\end{equation*}
$$

Next we show that

$$
\begin{equation*}
z^{G} \cap A_{z} C_{G}\left(A_{z}\right)=\{z\} . \tag{1}
\end{equation*}
$$

Let first $A_{z} \cong H i S$ or Suz. Choose $u \in A_{z}, u \nsim t$. Then by [GoLyS3, Table 5.3m], [GoLyS3, Table 5.3o] we have that $C_{A_{z}}(u)=\langle u\rangle \times P \Gamma L_{2}(9)$ or $\left(V_{4} \times L_{3}(4)\right): 2$, respectively. As again by [GoLyS3, Table 5.3 m] or [GoLyS3, Table 5.3o] no outer automorphism of HiS centralizes $P \Gamma L_{2}(9)$ and no outer automorphism of $S u z$ centralizes $L_{3}(4)$ we see that $\Omega_{1}\left(Z\left(C_{S}(u)\right)\right)=\langle z, t, u\rangle$. Assume that z is conjugate to u or $z u$ in G. We will denote this element by v. So let $g \in G$ with $z^{g}=v$. Then obviously z centralizes in A_{v} a subgroup $P \Gamma L_{2}(9), L_{3}(4)$, respectively. So $z \in A_{v} C\left(A_{v}\right)$. Hence $E\left(C_{G}(z) \cap C_{G}(v)\right)=F$ is normalized by g. We now show that we may assume $t \in F$. For this we choose a Sylow 2-subgroup T of $C_{A_{z}}(v)$ and $T_{1} \leq A_{z}$ with $\left|T_{1}: T\right|=2$. In the first case, $A_{z} \cong H i S$, we have that $T^{\prime} \leq F$, and so we have a 2 -central involution in F, in particular we can assume that $t \in F$. In the second case, $A_{z} \cong S u z$, we have by Lemma 2.20 exactly two elementary abelian subgroups F_{1}, F_{2} of order 64 in T and $\left[F_{1}, F_{2}\right] \leq F$. Hence again F contains a 2-central involution and we may assume $t \in F$. As all involutions in A_{6} and $L_{3}(4)$ are conjugate, we may assume that $t^{g}=t$. But in $C_{G}(z)$ we have that $u \sim u t$ and so $v \sim v t$, while $z \nsim z t$ by $(*)$, a contradiction. This proves (1) in these cases.

Assume finally $A_{z} \cong M(22)$. By [GoLyS3, Table 5.3t] we have a subgroup $H \cong 2{ }^{10} M_{22}$ in A_{z}. By Lemma 3.3 the group M_{22} does not possess an F-module. Hence $O_{2}(H)=J\left(S \cap A_{z}\right)$ and so $J\left(S \cap A_{z}\right)$ is the only elementary abelian subgroup of order 2^{10} in $S \cap A_{z}$. In particular in S there is exactly one abelian subgroup E, which is a direct product of an elementary abelian group of order 2^{10} and a cyclic group of order 2^{n}, where $\left|C_{S}\left(A_{z}\right)\right|=2^{n}$. We see from [GoLyS3, Table 5.3t] that involutions of type $2 A$ of A_{z} are centralized by $L_{3}(4)$ in the group M_{22} in H above. Hence H induces one orbits of length 22. The product of two involutions in this orbit gives an orbit of length 231 . As A_{z} has exactly three classes of involutions and H controls fusion in $J\left(A_{z} \cap S\right)$, we have a third orbit of length 770 . Further any involution of $A_{z} C_{G}\left(A_{z}\right)$ is conjugate to one inside of E. So we get that $N_{G}(E)$ controls fusion in $A_{z} C_{G}\left(A_{z}\right)$. In particular if $\langle z\rangle \neq C_{S}\left(A_{z}\right)$ then $\Phi(E)=\langle z\rangle$ and we have (1). So we may assume that $\langle z\rangle=C_{S}\left(A_{z}\right)$. By Lemma 2.2 and $(*)$ we have that $C_{G}(z) /\langle z\rangle \cong \operatorname{Aut}(M(22))$. We now obtain that $z \notin C_{G}(z)^{\prime}$
and so $z \nsim u \in A_{z}$ with $C_{A_{z}}(u) \cong 2 U_{6}(2)$. In particular there is at least one orbit of length 22 , which cannot be fused with z. As $\left|z^{N_{G}(E)}\right|$ is odd, we get, just by checking all possibilities, that $\left|z^{N_{G}(E)}\right|=23,771$, 793, 1541 or 1563 . As $N_{G}(E) / E$ is a subgroup of $G L_{11}(2)$ and 771 , 7793,1541 and 1563 do not divide the order of $G L_{11}(2)$, we conclude $\left|z^{N_{G}(E)}\right|=23$. As $N_{N_{G}\left(A_{z}\right)}(E) / E \cong \operatorname{Aut}\left(M_{22}\right)$ and $\left|z^{N_{G}(E)}\right|=23$, we obtain $\left|N_{G}(E) / E\right|=2^{8} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23$. As $2^{11}-1=23 \cdot 89$, we see that a Sylow 23 subgroup of $N_{G}(E) / E$ is just centralized by itself. Now with Sylow's theorem we receive that a Sylow 23-subgroup is normalized by a cyclic group of order 22 . Hence this group acts on $z^{N_{G}(E)}$ by fixing a point. In particular $N_{N_{G}\left(A_{z}\right)}(E) / E$ contains a cyclic group of order 22 . Then $\operatorname{Aut}\left(M_{22}\right)$ contains a cyclic group of order 22 , which contradicts [GoLyS3, Table 5.3c]. Hence (1) holds.

By Lemma 2.1 there is some involution $u \sim z$, which induces an outer automorphism on A_{z}. If $C_{S}\left(A_{z}\right)=\langle z\rangle$ we get a contradiction with Lemma 2.2. Hence

$$
\begin{equation*}
C_{S}\left(A_{z}\right)>\langle z\rangle . \tag{2}
\end{equation*}
$$

As $\left|\operatorname{Aut}\left(A_{z}\right)\right|=2$, we have that $\Phi\left(C_{S}(u)\right) \leq A_{z} C_{S}\left(A_{z}\right)$ and $u \notin$ $\Phi\left(C_{S}(u)\right)$. As $N_{G}\left(C_{S}(u)\right) \not \leq C_{G}(z)$, we see by (1) that $z \notin \Phi\left(C_{S}(u)\right)$. This implies $C_{C_{S}\left(A_{z}\right)}(u)=\langle z\rangle$. In particular $u \sim u z$ by (2). Now there is a fours group $V=\langle z, s\rangle \leq C_{S}(u), s \in A_{z}$, not containing u such that $u V \subseteq u^{G}$. Hence there must be another fours group W such that $z \notin W$ and all involutions in $z W$ are conjugate. We see that $W \cap C_{G}\left(A_{z}\right) A_{z} \neq 1$, which contradicts $z^{G} \cap A_{z} C_{G}\left(A_{z}\right)=\{z\}$. This contradiction combined with Lemma 2.1 proves the lemma.

Lemma 5.13. $A_{z} \not \neq G_{2}(3), G_{2}(2)^{\prime}, M_{12}$ or M_{22}.
Proof. By [MaStr, Lemma 2.35] we have $\Omega_{1}(Z(S))=\langle z, t\rangle$, with $t \in A_{z}$. We first show that

$$
\begin{equation*}
z^{G} \cap \Omega_{1}(Z(S))=\{z\} \tag{1}
\end{equation*}
$$

Otherwise under $N_{G}\left(C_{G}\left(\Omega_{1}(Z(S))\right)\right)$ all elements in $\Omega_{1}(Z(S))^{\sharp}$ are conjugate. Let P be a Sylow 3-subgroup of $C_{G}\left(\Omega_{1}(Z(S))\right)$. By Lemma 2.7 and Lemma 2.8 we have that $t \in W=\left[O_{2}\left(C_{G}\left(\Omega_{1}(Z(S))\right)\right), P\right]$ while $z \notin W$ as $W \leq A_{z}$, a contradiction. This proves (1).

Next we show

$$
\begin{equation*}
z^{G} \cap\left(A_{z} C_{C_{G}\left(A_{z}\right)}(z)\right)=\{z\} . \tag{2}
\end{equation*}
$$

Assume false. If $A_{z} \not \not M_{12}$ then by Lemma 2.7 all involutions in $C_{G}\left(A_{z}\right) \times A_{z}$ are conjugate to $z, t \in A_{z}$ or $z t$ and so are conjugate into $\Omega_{1}(Z(S))$. Hence (2) follows from (1). So we may assume $A_{z} \cong M_{12}$. Let $i \in C_{S}\left(A_{z}\right) A_{z}, i \neq z$ and $i \sim z$ in G. We have $\Omega_{1}\left(Z\left(C_{S}(i)\right)\right)=\langle z, i, t\rangle$. By (1) and Lemma 2.8(ii) we see $C_{A_{z}}(i) \cong \mathbb{Z}_{2} \times \Sigma_{5}$. Let $z^{g}=i$. Then z is some involution in $C_{G}(i)$ which centralizes Σ_{5} there. By Lemma 2.8iv) this shows that $z \in\left\langle i, A_{i}\right\rangle$. And so $i \sim z$ in $N_{G}\left(E\left(C_{G}(\langle i, z\rangle)\right)\right)$, i.e. g normalizes $E\left(C_{G}(\langle i, z\rangle)\right)$. By Lemma 2.8(iii) we may assume $t^{g}=t$. Further $i \sim i t$ under the action of S, while $z \nsim z t$ by (1), a contradiction.

Suppose now that there is some outer automorphism i of A_{z} with $i \sim z$ in G. As $i \notin \Phi\left(C_{S}(i)\right)$, we get by (2) that also $z \notin \Phi\left(C_{S}(i)\right)$, which implies that $\langle z\rangle=C_{C_{S}\left(A_{z}\right)}(i)$. Further by Lemma $2.2 C_{C_{S}\left(A_{z}\right)}(z)>\langle z\rangle$. Hence $i \sim i z$.

Let now first $A_{z} \cong G_{2}(2)^{\prime}$ or M_{22}. Then application of Lemma 2.7 shows $C_{A_{z}}(i) \cong S L_{2}(3), E_{8} L_{3}(2)$, or $2^{4} F_{20}$. So in all cases we see $\Omega_{1}\left(Z\left(C_{S}(i)\right)\right)=\langle i, z, t\rangle$. Furthermore we notice that $i \sim i z \sim i t \sim i t z$. Now $\langle t, z t\rangle$ is generated by the involutions in $\Omega_{1}\left(Z\left(C_{S}(i)\right)\right)$ which are not conjugate to z in G. Then $\langle z, t\rangle \unlhd N_{G}\left(C_{S}(i)\right)$. By application of (1) we get $N_{G}\left(C_{S}(i)\right) \leq C_{G}(z)$ but $C_{S}(i) \neq S$, contradicting $i \sim z$.

So we have $A_{z} \cong G_{2}(3)$ or M_{12}. By Lemma 2.7 and Lemma 2.8 we get $C_{A_{z}}(i) \cong L_{2}(8): 3$ or $\mathbb{Z}_{2} \times A_{5}$, respectively. In both cases $C_{S}(i)$ is elementary abelian and all involutions in $i\left(C_{S}(i) \cap\left(C_{G}\left(A_{z}\right) A_{z}\right)\right)$ are conjugate to i in $C_{G}(z)$. As $z \sim i$ in $N_{G}\left(C_{S}(i)\right)$ there is some elementary abelian group $E \leq C_{S}(i)$ of order 8 with $z^{G} \cap z E=z E, z \notin E$. Hence we have that $\left|E \cap A_{z}\right| \geq 2$. But this contradicts $z^{G} \cap z A_{z}=\{z\}$ by (2). This final contradiction by Lemma 2.1 proves the lemma.

We now start to exclude the exceptional cases in Proposition 5.2.
Lemma 5.14. $A_{z} \not ¥^{2} F_{4}(q)^{\prime}$.
Proof. Suppose false and assume first $O^{2^{\prime}}\left(C_{G}(z)\right)=A_{z} \times C_{G}\left(A_{z}\right)$. By [MaStr, Lemma 2.31] we see that $Z(S) \cap A_{z} \leq S^{\prime}$. In particular $z^{G} \cap \Omega_{1}(Z(S))=\{z\}$ as $z \notin S^{\prime}$. But then by Lemma 2.2 we get $z \notin G^{\prime}$, a contradiction.

So we have $O^{2^{\prime}}\left(C_{G}(z)\right) \neq A_{z} \times C_{G}\left(A_{z}\right)$. If $q \neq 2$ then by [MaStr, Lemma 2.24] A_{z} has just outer automorphisms of odd order. Hence we have $q=2$. Further we have that $N_{G}\left(A_{z}\right) / C_{G}\left(A_{z}\right) \cong{ }^{2} F_{4}(2)$. By [MaStr,

Lemma 2.24] we know that there are no involutions in ${ }^{2} F_{4}(2) \backslash{ }^{2} F_{4}(2)^{\prime}$. In particular $Z(S) \cap A_{z} \leq \Omega_{1}(S)^{\prime}$, while $z \notin \Omega_{1}(S)^{\prime}$. Hence again

$$
\begin{equation*}
z^{G} \cap \Omega_{1}(Z / S)=\{z\} \tag{*}
\end{equation*}
$$

As $\left|\Omega_{1}(Z(S))\right|=4$ and fusion in this group is controlled by $N_{G}\left(\Omega_{1}(Z(S))\right)$, we get with $(*)$
(1) No two involutions in $\Omega_{1}(Z(S))$ are conjugate in G.

Let $i \in C_{G}(z) \backslash\langle z\rangle, i \sim z$ in G. Then $i \in C_{G}\left(A_{z}\right) A_{z}$. Furthermore by Lemma $2.9 \Omega_{1}\left(Z\left(C_{S}(i)\right)\right)=\langle z, i, r\rangle$, where r is 2 -central in A_{z}. In the notation of [MaStr, Lemma 2.31] we have that $C_{A_{z}}(i) \leq P_{1}$. This shows

$$
\Omega_{1}\left(Z\left(O_{2}\left(C_{G}(i)\right)\right)\right)=\left\langle z, i, r, r_{1}\right\rangle, \text { where }\left\langle r, r_{1}\right\rangle=Z_{2}\left(S \cap A_{z}\right)
$$

Thus

$$
\begin{equation*}
r \sim r_{1} \sim r r_{1} \text { in } A_{z} \tag{2}
\end{equation*}
$$

Additionally

$$
\begin{equation*}
i \sim i r \sim i r_{1} \sim i r r_{1} \text { and } z i \sim z i r \sim z i r_{1} \sim z i r_{1} \tag{3}
\end{equation*}
$$

Let now $g \in G$ with $z^{g}=i$. We have that z is an involution in $C_{G}\left(A_{i}\right) A_{i}$, which is centralized by $C_{C_{G}(z)}(i)$. Furthermore i^{g} also is contained in $C_{G}\left(A_{z}\right) A_{z}$ and centralized by $C_{C_{G}(z)}(i)^{g}$. As all involutions in A_{i} centralizing a subgroup isomorphic to $C_{A_{i}}(z)$ are conjugate, we may choose g such that

$$
C_{G}(\langle i, z\rangle)^{g}=C_{G}(\langle i, z\rangle)
$$

Hence we have that $i \sim z$ in $H=N_{G}\left(\left\langle i, z, r, r_{1}\right\rangle\right)$. Application of (1), (2) and (3) show that $\left|z^{H}\right|=5$ or 9 . In the latter case $\left\langle z r, r, r_{1}\right\rangle$ is the subgroup generated by all those involutions, which are not conjugate to z. But then $(*)$ implies $H \leq C_{G}(z)$, a contradiction.

Thus $\left|z^{H}\right|=5$. Let ω be an element of order 5 in H. Then ω acts fixed point freely on $\left\langle z, r, r_{1}, i\right\rangle$. Hence all orbits have a length divisible by 5 . Now by (2) and (3) there are $H \cap C_{G}(z)$-orbits of length $3,3,4$ left. This shows that we must have an orbit of length 10 . But then $r \sim r z$ in G, which contradicts (1).

So we have shown that $z^{G} \cap C_{G}(z)=\{z\}$, which contradicts Lemma 2.2. This proves the lemma.

Lemma 5.15. $A_{z} \not \neq \operatorname{Sp} p_{2 n}(2), n \geq 3$.

Proof. Suppose $A_{z} \cong S p_{2 n}(2)$. Then by [MaStr, Lemma 2.21] and Lemma 2.22 we see that $C_{G}(z)=C_{S}\left(A_{z}\right) \times A_{z}$. By Lemma 2.18 we see that $\Omega_{1}(Z(S)) \cap A_{z} \leq S^{\prime}$. As $z \notin S^{\prime}$, we have that $z^{G} \cap \Omega_{1}(Z(S)) \cap A_{z}=$ \emptyset. Application of Thompson transfer Lemma 2.2, now yields the contradiction $z \notin G^{\prime}$.
Lemma 5.16. $A_{z} \not \neq A_{8}$ or $U_{4}(2)$.
Proof. Suppose false. As a Sylow 2-subgroup of $\operatorname{Aut}\left(U_{4}(2)\right)$ is isomorphic to one of Σ_{8}, treat A_{8} and $U_{4}(2)$ using similar argument. Set $\langle t\rangle=Z\left(S \cap A_{z}\right)$, then $\Omega_{1}(Z(S))=\langle z, t\rangle$. We have that $C_{G}\left(\Omega_{1}(Z(S))\right) \cong$ $\left(S \cap C_{G}\left(A_{z}\right)\right) \times\left(\left(Q_{8} * Q_{8}\right) \Sigma_{3}\right)$ or $\left(\left(S \cap C_{G}\left(A_{z}\right)\right) \times\left(\left(Q_{8} * Q_{8}\right) \Sigma_{3}\right)\right) \cdot 2$ depending on whether $C_{G}(z) / C_{S}\left(A_{z}\right) \cong A_{8}$ or Σ_{8} and $C_{G}\left(\Omega_{1}(Z(S))\right) \cong$ $\left(S \cap C_{G}\left(A_{z}\right)\right) \times\left(\left(Q_{8} * Q_{8}\right)\left(\Sigma_{3} \times \mathbb{Z}_{3}\right)\right)$ or $\left(\left(S \cap C_{G}\left(A_{z}\right)\right) \times\left(\left(Q_{8} * Q_{8}\right)\right)\left(\Sigma_{3} \times\right.\right.$ $\left.\left.\mathbb{Z}_{3}\right)\right) \cdot 2$ depending on whether $C_{G}(z) / C_{S}\left(A_{z}\right) \cong U_{4}(2)$ or $U_{4}(2): 2$. Now $z \notin\left[C_{G}\left(\Omega_{1}(Z(S))\right), O_{2}\left(C_{G}\left(\Omega_{1}(Z(S))\right)\right)\right]^{\prime}$ while t is. This shows

$$
\begin{equation*}
z^{G} \cap \Omega_{1}(Z(S))=\{z\} . \tag{*}
\end{equation*}
$$

If $C_{G}(z) \cong C_{G}\left(A_{z}\right) \times A_{z}$ or $C_{G}\left(A_{z}\right) \times A_{z}: 2$, we get a contradiction by application of Lemma 2.2. So we have

$$
\begin{equation*}
C_{G}(z) / C_{G}\left(A_{z}\right) \cong \Sigma_{8} \text { or } U_{4}(2): 2 \text {. Furthermore there is no } \tag{1}
\end{equation*}
$$ involution in $C_{G}(z) \backslash A_{z} C_{G}\left(A_{z}\right)$, which centralizes $C_{G}\left(A_{z}\right)$.

Let F be the elementary abelian subgroup of $S \cap A_{z}$ corresponding to $\langle(12)(34),(13)(24),(56)(78),(57)(68)\rangle$. Then this is the only elementary abelian subgroup of order 16 in $S \cap A_{z}$. Set $E=\left(S \cap C_{G}\left(A_{z}\right)\right) \times F$, then E is an abelian subgroup of S of type $\left(2^{n}, 2,2,2,2\right)$, where $2^{n}=\left|C_{S}\left(A_{z}\right)\right|$. As Σ_{8} and $U_{4}(2): 2$ possess no elementary abelian subgroups of order 32 , and no involution in $C_{G}(z) \backslash A_{z} C_{G}\left(A_{z}\right)$ centralizes $C_{S}\left(A_{z}\right)$, we see that E is the only abelian subgroup of this type in S. Hence $N_{G}(E)$ controls fusion in E. As all involution in $A_{z} C_{G}\left(A_{z}\right)$ are conjugate into E in $C_{G}(z)$, we see that $N_{G}(E)$ controls fusion of involutions in $A_{z} C_{G}\left(A_{z}\right)$. We are going to show

$$
\begin{equation*}
z^{G} \cap C_{S}\left(A_{z}\right) A_{z}=\{z\} . \tag{2}
\end{equation*}
$$

If $n>1$, then we have that $\langle z\rangle=\Phi(E)$ and so $N_{G}(E) \leq C_{G}(z)$, which implies (2). So we may assume that $C_{S}\left(A_{z}\right)=\langle z\rangle$ and so E is elementary abelian. We have that $N_{A_{z}}(F)$ induces two orbits on F^{\sharp} of length 6 and 9 in case of A_{8} and of length 5 and 10 in case of $U_{4}(2)$. Hence $N_{A_{z}}(E)$ induces orbits of length $1,6,6,9,9$ or $1,5,5,10,10$ on E^{\sharp}. As $N_{G}(E) / E$ is a subgroup of $G L_{5}(2)$ and neither 11 nor 13 divides the order of $G L_{5}(2)$, we see from $(*)$ that z has one or seven conjugates under $N_{G}(E)$ in the case of A_{8} and one or 21 conjugates in the case of $U_{4}(2)$. So assume first that z has 7 conjugates. Then $\left|N_{G}(E) / E\right|=2^{3} \cdot 3^{2} \cdot 7$.

As this is a subgroup of $G L_{5}(2)$, and as the normalizer of a Sylow 7 subgroup in $G L_{5}(2)$ is isomorphic to $\Sigma_{3} \times F_{21}$, we see that a Sylow 7 -subgroup of $N_{G}(E)$ is centralized by some element of order three in $N_{G}(E)$. As $\left|z^{N_{G}(E)}\right|=7$, we see that this 3-element has to centralize $z^{N_{G}(E)}$. But this orbit generates E, a contradiction. So we have again $N_{G}(E) \leq C_{G}(z)$, which proves (2). If z has 21 conjugates, then by (*) we have two orbits of length 5 under $N_{G}(E)$. But one of theses orbits generates F and so F is normal in $N_{G}(E)$. This contradicts the fact that z is conjugate to elements in the orbit of length 10 in F. Hence also in this case we have (2).

Suppose now that $z^{G} \cap S \neq\{z\}$. Then there is some $i, i \sim z$ which induces an outer automorphism on A_{z}. From (1) we get that $C_{S}\left(A_{z}\right)>$ $\langle z\rangle$ and so $i \sim i z$. Now conjugacy happens in $N_{G}\left(E_{1}\right)$, where $E_{1}=$ $\langle z\rangle \times\langle(1,2),(3,4),(5,6),(7,8)\rangle$. In both case A_{z} induces a group of order $2^{b} \cdot 3$ on E_{1}. We have that $N_{C_{G}(z)}\left(E_{1}\right)$ induces two orbits of length 8 on $E_{1} \backslash A_{z} C_{G}\left(A_{z}\right)$. Hence by (2) we get that $\left|z^{N_{G}\left(E_{1}\right)}\right|=9$. Then $\left|N_{G}\left(E_{1}\right) / C_{G}\left(E_{1}\right)\right|=2^{a} \cdot 3^{3}$, but 3^{3} does not divide the order of $G L_{5}(2)$. This shows $z^{G} \cap S=\{z\}$, contradicting Lemma 2.1, which proves the lemma.

Lemma 5.17. We have $A_{z} \neq L_{2}(p)$, p a prime, $p>5, A_{6}, S z(q), q$ even, $L_{3}(4), L_{3}(3)$ or M_{11}.

Proof. Suppose false. If $\Omega_{1}(Z(S)) \leq C_{S}\left(A_{z}\right) A_{z}$, then $\left\langle z, \Omega_{1}(Z(S)) \cap\right.$ $\left.A_{z}\right\rangle=\Omega_{1}(Z(S))$. If $\Omega_{1}(Z(S)) \not \leq C_{S}\left(A_{z}\right) A_{z}$, then A_{z} possesses an involutory outer automorpism, which centralizes a Sylow 2-subgroup of A_{z}. Application of [MaStr, Lemma 2.26] shows $C_{G}(z) \cong C_{G}\left(A_{z}\right) \times \Sigma_{6}$. In this case we have $\Omega_{1}(Z(S))=\langle z, x, t\rangle$, with $x \in A_{z}$, where t induces the Σ_{6}-automorphism.

First we show

$$
\begin{equation*}
z^{G} \cap\left(\Omega_{1}(Z(S)) \cap A_{z} C_{G}\left(A_{z}\right)\right)=\{z\} . \tag{1}
\end{equation*}
$$

If $\Omega_{1}(Z(S))=\langle z, x, t\rangle$, then $C_{G}(z) \cong C_{C_{G}(z)}\left(A_{z}\right) \times \Sigma_{6}$ and so $\langle x\rangle=$ $S^{\prime} \cap \Omega_{1}(Z(S))$. In particular $z \nsim x$ in $N_{G}(S)$, as $z \notin S^{\prime}$. This shows that $\left|z^{G} \cap \Omega_{1}(Z(S))\right|=1$ or 3 , as $\left|z^{N_{G}\left(\Omega_{1}(Z(S))\right)}\right|$ has to be odd. Suppose that we have three conjugates. Let ρ be some element in $N_{G}(\langle z, t, x\rangle)$ which induces an element of order three. Then $\langle x\rangle$ is fixed by ρ and so ρ acts fixed point freely on $\langle z, x, t\rangle /\langle x\rangle$. This implies that $z \nsim z x$. In particular $z^{G} \cap\langle z, x\rangle=\{z\}$, which is (1). Of course (1) also holds if $z^{G} \cap \Omega_{1}(Z(S))=\{z\}$.

So we may assume that $\Omega_{1}(Z(S))=\left\langle z, \Omega_{1}(Z(S)) \cap A_{z}\right\rangle$. By Lemma 2.32
all involutions in $\Omega_{1}(Z(S)) \cap A_{z}$ are conjugate in A_{z}. Hence we may assume that $z^{G} \cap \Omega_{1}(Z(S))=\Omega_{1}(Z(S))^{\sharp}$.

First let $A_{z} \cong L_{2}(p), A_{6}, L_{3}(3)$, or M_{11}. Lemma 2.5 implies that $\Omega_{1}(Z(S))=\langle x, z\rangle$. Suppose that there is some automorphism g of S of order three, with $z^{g} \in A_{z}$. We have $S \cap A_{z} \unlhd S$. Hence $(S \cap$ $\left.A_{z}\right)^{g} \cap\left(S \cap A_{z}\right) \unlhd S \cap A_{z}$. Assume that $\left(S \cap A_{z}\right)^{g} \cap\left(S \cap A_{z}\right) \neq 1$. Then $\Omega_{1}(Z(S)) \cap A_{z}=\langle x\rangle \leq\left(S \cap A_{z}\right)^{g}$ and the same applies to x^{g}. In particular $\Omega_{1}(Z(S)) \leq S \cap A_{z}$, a contradiction. So we have that $\left(S \cap A_{z}\right)^{g} \cap\left(S \cap A_{z}\right)=1$. Now we get $\left(S \cap A_{z}\right)^{g} \leq C_{G}\left(S \cap A_{z}\right)$. As there is no subgroup isomorphic to $\left(S \cap A_{z}\right) \times\left(S \cap A_{z}\right)^{g}$ in $A_{z} C_{G}\left(A_{z}\right)$, recall that $C_{S}\left(A_{z}\right)$ is cyclic, we have that $\left(S \cap A_{z}\right)^{g}$ contains some outer automorphism of A_{z} which centralizes $S \cap A_{z}$. By [MaStr, Lemma 2.26] we get $A_{z} \cong A_{6}$ and this automorphism is a Σ_{6}-automorphism. As $S \cap A_{z} \cong D_{8}$, we now get that $C_{S}\left(A_{z}\right) \cong \mathbb{Z}_{4}$ and then $S \cong D_{8} \times D_{8}$, but this group has no automorphism of order three and the order of g was three.

Let now $A_{z} \cong S z(q), q=2^{2 n+1}$. Then by Lemma 2.22 we get $S=$ $\left(S \cap A_{z}\right) \times C_{S}\left(A_{z}\right)$. But $\Omega_{1}(Z(S)) \cap A_{z} \leq S^{\prime}$, as S is not abelian. As $z \notin S^{\prime}$ we get (1).

Let now finally $A_{z} \cong L_{3}(4)$. By Lemma 2.23(3) any elementary abelian subgroup of order 16 in $\operatorname{Aut}\left(L_{3}(4)\right)$ is contained in $L_{3}(4)$. According to Lemma 2.20 there are exactly two elementary abelian subgroups U_{1}, U_{2} of order 16 in $S \cap A_{z}$. Hence in S there are exactly two abelian subgroups of type ($2^{n}, 2,2,2,2$), where $\left|C_{S}\left(A_{z}\right)\right|=2^{n}$. Then the conjugacy in $\Omega_{1}(Z(S))$ takes place in the normalizer of $C_{S}\left(A_{z}\right) \times U_{1}$. As A_{z} induces an orbit of length 15 on the involutions of U_{1} and $\left|z^{N_{G}\left(C_{S}\left(A_{z}\right) \times U_{1}\right)}\right|$ is odd, we may assume that z possesses 31 conjugates. This then would imply that $\left|N_{G}\left(\left\langle z, U_{1}\right\rangle\right) / C_{G}\left(\left\langle z, U_{1}\right\rangle\right)\right|=2^{a} \cdot 3 \cdot 5 \cdot 31$, where $a=2$ or 3. So by Sylow's theorem $N_{G}\left(\left\langle z, U_{1}\right\rangle\right) / C_{G}\left(\left\langle z, U_{1}\right\rangle\right)$ must have a normal subgroup of order 31, a contradiction to the structure of $G L_{5}(2)$. So we have proved we have that $z^{G} \cap C_{S}\left(A_{z}\right) \times U_{1}=\{z\}$, which is (1). In particular (1) holds in all cases.

As A_{z} has just one class of involutions, we have that

$$
\begin{equation*}
z^{G} \cap\left(A_{z} \times C_{C_{G}\left(A_{z}\right)}(z)\right)=\{z\} . \tag{2}
\end{equation*}
$$

By Lemma 2.1 we get some $t \in S, t \neq z$ with $t \sim z$ in G. So by (2) t has to induce an outer automorphism on A_{z}. By Lemma 2.22 and Lemma 2.12 we see that $A_{z} \neq M_{11}$ or $S z(q)$.

Let first t induces the Σ_{6}-automorphism on A_{z}. Then we have that

$$
C_{S}(t)=C_{C_{S}\left(A_{z}\right)}(t) \times\left(S \cap A_{z}\right) \times\langle t\rangle .
$$

As $z \sim t$ and $t \notin \Phi\left(C_{S}(t)\right)$, we see that $z \notin \Phi\left(C_{S}(t)\right)$, so

$$
\begin{equation*}
C_{C_{S}\left(A_{z}\right)}(t)=\langle z\rangle . \tag{*}
\end{equation*}
$$

This now shows that $C_{S}(t)=E_{1} E_{2}$, where E_{i} are elementary abelian of order $16, i=1,2$, and $C_{A_{z}}(t) \cong \Sigma_{4}$. We choose notation such that

$$
E_{1}=\langle z, t, r, s\rangle,\langle r, s\rangle=E_{1} \cap A_{z}, E_{1} \nexists C_{C_{G}(z)}(t)
$$

Then $N_{A_{z}}\left(E_{1}\right)$ induces in E_{1}^{\sharp} orbits of length $1,3,3,3,3,1,1$ with representatives $z, t, z t, r, z r, t r, z t r$, respectively.

Suppose first that $z^{N_{G}\left(E_{1}\right)} \neq\{z\}$. Assume further that $t \sim z t$ in $C_{G}(z) \cap N_{G}\left(E_{1}\right)$. As $N_{A u t\left(A_{z}\right)}\left(E_{1}\right) \leq \Sigma_{6}$, there is some $u \in C_{S}\left(A_{z}\right)$ with $t^{u}=t z$. This shows that $N_{C_{G}(z)}\left(E_{1}\right)$ induces on E_{1} orbits of length $1,2,3,3,6$, with representatives $z, t, r, z r, t r$, respectively. By (2) we have that $z \nsim r$ and $z \nsim z r$. Hence $\langle z, r, s\rangle$ is generated by involutions which are not conjugate to z in G. As $z^{G} \cap\langle z, r, s\rangle=\{z\}$, we see that $\langle z, r, s\rangle$ must not be $N_{G}\left(E_{1}\right)$-invariant. In particular $\operatorname{tr} \nsim z$, too. Now z has seven conjugates under $N_{G}\left(E_{1}\right)$. As this number is odd, we have that $N_{S}\left(E_{1}\right)$ is a Sylow 2 -subgroup of $N_{G}\left(E_{1}\right)$. In particular as $r \in Z\left(N_{S}\left(E_{1}\right)\right)$, we have that both $\left|r^{N_{G}\left(E_{1}\right)}\right|$ and $\left|(z r)^{N_{G}\left(E_{1}\right)}\right|$ are odd. As $z \in\langle z r, z s, z r s\rangle$, we see that $\left|r^{N_{G}\left(E_{1}\right)}\right|=3$ and so $\langle r, s\rangle$ is normal in $N_{G}\left(E_{1}\right)$. Let ν be an element of order 7 in $N_{G}\left(E_{1}\right)$. Then $[\nu,\langle r, s\rangle]=1$. Furthermore also $\left[E_{1} /\langle r, s\rangle, \nu\right]=1$, which gives the contradiction $\left[E_{1}, \nu\right]=1$, but $z^{\nu} \neq z$. But as $z^{G} \cap z\langle r, s\rangle=\{z\}$ and $t^{G} \cap t\langle r, s\rangle$ contains t and $t s$, we get a contradiction.

So we have that $t \nsim t z$ in $N_{C_{G}(z)}\left(E_{1}\right)$. In particular $\left[t, C_{S}\left(A_{z}\right)\right]=1$ and so $C_{S}\left(A_{z}\right)=\langle z\rangle$ by $(*)$. This again shows that $C_{G}(z)$ contains a Sylow 2-subgroup of $N_{G}\left(E_{1}\right)$, i.e. $\left|z^{N_{G}\left(E_{1}\right)}\right|,\left|r^{N_{G}\left(E_{1}\right)}\right|$ and $\left|(z r)^{N_{G}\left(E_{1}\right)}\right|$ are all odd. Further $z \nsim r \nsim z r \nsim z$ by (2). In particular t is not conjugate to r or $z r$. Counting orbits we see again that either $\left|r^{N_{G}\left(E_{1}\right)}\right|=3$ or $\left|(z r)^{N_{G}\left(E_{1}\right)}\right|=3$. As above we see the later is not possible, so $z r$ has 5 or 7 conjugates and $\langle r, s\rangle \unlhd N_{G}\left(E_{1}\right)$. But then p-elements, $p=5$ or 7 , have to centralize E_{1}, a contradiction.

So we have shown that

$$
z^{N_{G}\left(E_{1}\right)}=\{z\} .
$$

Assume now that $N_{G}\left(C_{S}(t)\right) \not \leq C_{G}(z)$. Then we have that $N_{G}\left(C_{S}(t)\right) \not \leq$ $N_{G}\left(E_{1}\right)$. This means that there is some $g \in N_{G}\left(C_{S}(t)\right)$ with $E_{1}^{g}=E_{2}$. In particular $\left(z^{g}\right)^{N_{G}\left(E_{2}\right)}=\left\{z^{g}\right\}$. We have that E_{2} is normal in $C_{C_{G}(z)}(t)$. So $N_{A_{z}}\left(E_{2}\right)$ induces orbits of length three and exactly three orbits of length 1 with representatives z, t and $z t$. If $t \sim z t$ in $N_{C_{G}(z)}(t)$, then there is exactly one $N_{G}\left(E_{2}\right)$-orbit of length 1 , which is $\{z\}$. But then $z^{g}=z$, a contradiction. This again shows that $\left[t, C_{S}\left(A_{z}\right)\right]=1$ and then $C_{S}\left(A_{z}\right)=\langle z\rangle$. As there are exactly two elementary abelian subgroups of order 16 in S, we see that $o(g)$ cannot be odd. This implies $t \notin Z(S)$. Hence we get that there is some $u \in C_{G}(z)$, which induces an additional outer automorphism on A_{6}, in particular we may assume that $E_{2}^{u}=E_{1}$. Now $g u \in N_{G}\left(E_{1}\right) \leq C_{G}(z)$. But then $g \in C_{G}(z)$, a contradiction. So we have shown
(3) If $A_{z} \cong A_{6}$, then t does not induce a Σ_{6} - automorphism.

Now (3) together with (1) imply that

$$
\begin{equation*}
z^{G} \cap \Omega_{1}(Z(S))=\{z\} \tag{4}
\end{equation*}
$$

Again by Lemma 2.1 we get

$$
\begin{equation*}
z \in S^{\prime} \tag{5}
\end{equation*}
$$

By Lemma 2.22 or Lemma 2.12 we have that t is not a square in $C_{S}(t)$. Hence we also have that z is not a square in $C_{S}(t)$. This gives that

$$
\begin{equation*}
C_{C_{S}\left(A_{z}\right)}(t)=\langle z\rangle . \tag{6}
\end{equation*}
$$

We next show

$$
\begin{equation*}
t \sim t z \text { in } C_{G}(z) \tag{7}
\end{equation*}
$$

This is true if $C_{S}\left(A_{z}\right)>\langle z\rangle=C_{C_{S}\left(A_{z}\right)}(t)$ by (6). So we may assume that $C_{S}\left(A_{z}\right)=\langle z\rangle$. By (5) we have $z \in S^{\prime}$. In particular there is some $s \in S$ with $t^{s}=t z j$, where $j \in A_{z} \cap S$. As by (3) all involutions in $A_{z} t$ are conjugate to t, there is some $g \in A_{z}$ with $(t j)^{g}=t$. Hence (7) holds.

We now come to the final contradiction. We have that $\Omega_{1}\left(Z\left(C_{S}(t)\right)\right)=$ $\langle z, t, X\rangle=F$, where $X \leq A_{z}$. Assume first that $z^{N_{G}(F)}=\{z\}$. Then $C_{S}(t)$ is a Sylow 2-subgroup of $C_{G}(t)$ and so $t \in Z(S)$, as $t \sim z$ in G. But then $A_{z} \cong A_{6}$ and t induces a Σ_{6}-automorphism, contradicting (3).

So we have $z^{N_{G}(F)} \neq\{z\}$. By (2) we have that $\langle z, X\rangle$ is generated by involutions which are not conjugate to z in G. Hence $t\langle z, X\rangle$ must also contain such involutions, as $z^{G} \cap\langle z, X\rangle=\{z\}$. But by (3) and

Lemma 2.37 all involutions in $t X$ are conjugate and by (7) $t \sim t z$ in $C_{G}(z)$, so all involutions in $t\langle z, X\rangle$ are conjugate to t and thus to z, a contradiction. This final contradiction proves the lemma.

Now we are going to prove Proposition 5.2. Besides the groups we have excluded in Lemma 5.14 through Lemma 5.17 we just have to exclude the groups $A_{z} \cong L_{4}(3), U_{4}(3), L_{2}(q), q$ even and $M(23)$. The first three cases have been handled in Lemma 4.3 and Lemma 4.4 where groups show up which are in the statement of our theorem, so G is not a counterexample. The last has been handled in [MaStr, Lemma 4.14].

6. Some 2-local subgroups

We continue with the assumption that G is a counterexample to the main theorem. Hence there is some $z \in \Omega_{1}(Z(S))$ such that A_{z} is standard. By Proposition 5.1 we have that A_{z} is simple. Furthermore by Proposition 5.2 we have that A_{z} is a group of Lie type of characteristic two or J_{2} or $M(24)^{\prime}$. Remember that among the groups of Lie type in characteristic two the group A_{z} is not isomorphic to one of $L_{2}(q)$, $S z(q),{ }^{2} F_{4}(q)^{\prime}, q$ even, $L_{3}(4), G_{2}(2)^{\prime}, L_{4}(2), A_{6}$ or $L_{3}(2)$. The aim of this chapter is to derive a contradiction, which then proves the main theorem.

For this chapter we fix the following notation. We denote by S a Sylow 2 -subgroup of G with $z \in Z(S)$. By R we denote a fixed root group in $\Omega_{1}\left(Z\left(S \cap A_{z}\right)\right)$ if A_{z} is of Lie type and just $\Omega_{1}\left(Z\left(S \cap A_{z}\right)\right)$ if A_{z} is sporadic. By Q_{R} we denote $O_{2}\left(C_{A_{z}}(R)\right)$. As A_{z} is normal in $C_{G}(z)$ we see that

Lemma 6.1. $\left|\Omega_{1}(Z(S))\right| \geq 4$.
The first step towards deriving a contradiction it to show the existence of a group N such that $S \leq N, N \not \leq C_{G}(z)$ and $F^{*}(N)=O_{2}(N)$ (Lemma 6.5 and Lemma 6.6). Among these groups we choose N minimal with this property. In Lemma 6.11 and Lemma 6.12 we determine the structure of N. Here Lemma 3.20 and Lemma 3.21 come into the game. The key fact for us will be to show that there is some $t \in Z(N)$, $t \neq z$ and $t \notin A_{z}$. Furthermore we will see that A_{z} is one of the two sporadic groups or defined over $\mathrm{GF}(2)$. In particular we get that Q_{R} is extraspecial.

At this point we turn our attention to $C_{G}(t)$. We show that also $C_{G}(t)$ has a standard component A_{t}. Then we can show that $Q_{R} \leq A_{z} \cap A_{t}$.

This is sufficient to show that eventually A_{t} will be isomorphic to A_{z}. With this information we get that N is isomorphic to a minimal parabolic in A_{z} and A_{t} as well. Now both of these groups induce some action on $\Omega_{1}\left(Z\left(O_{2}(N)\right)\right)$. This together with the fact that $t \nsim z$ in G eventually yields the desired contradiction.

Now we are going to show the existence of a suitable N. But first a technical lemma.

Lemma 6.2. Let $x \in \Omega_{1}(Z(S)) \backslash C_{S}\left(A_{z}\right)$ and $K \leq C_{C_{G}(z)}(x)$ such that $K=D_{1} \times D_{2} \times \cdots \times D_{m}, m \geq 1, D_{1}$ dihedral of order 2^{n}, quaternion of order 8 or isomorphic to $S L_{2}(3) * S L_{2}(3)$ and there are $s_{2}, \ldots s_{m} \in S$ such that $D_{i}=D_{1}^{s_{i}}, i=2, \ldots, m$. Then K is not normal in $C_{C_{G}(z)}(x)$.
Proof. Suppose false. We first will treat the case of $A_{z} \cong S p_{4}(q), q>2$, as in this group there is some x such that $C_{A_{z}}(x)$ is a 2-group. We fix the following notation. According to Lemma 2.21 there are two elementary abelian subgroups E_{1}, E_{2} in $A_{z} \cap S$ of order q^{3} such that $E_{1} E_{2}=S \cap A_{z}$ and $E_{1} \cup E_{2}=\Omega_{1}\left(S \cap A_{z}\right)$. Furthermore $E_{1} \cap E_{2}=R_{1} R_{2}$, where R_{1}, R_{2} are the two root subgroups such that $R_{1} R_{2}=\Omega_{1}\left(Z\left(S \cap A_{z}\right)\right)$. We now set

$$
F_{i}=\left\langle z, E_{i}\right\rangle, i=1,2, \text { and } S_{1}=S \cap A_{z} C_{S}\left(A_{z}\right) .
$$

We first show

$$
D_{1} \text { is dihedral. }
$$

Obviously $D_{1} \not \approx S L_{2}(3) * S L_{2}(3)$. So let D_{1} be quaternion. Then $\Omega_{1}(K)=Z(K)$. Assume $D_{1} \leq S_{1}$. Then $\left[E_{1}, D_{1}\right] \leq E_{1}$ and so $\left[D_{1}, E_{1}\right] \leq$ $Z(K)$. As $\left|D_{1}: D_{1} \cap E_{1}\right| \geq 4$, we see with [MaStr, Lemma 2.67] that $Z\left(S \cap A_{z}\right) \leq\left[D_{1}, E_{1}\right]$. As $|K|=|Z(K)|^{3}$, we now get $|K| \geq q^{6}$. But $\left|\Omega_{2}\left(S_{1}\right)\right| \leq 4 q^{4}$, a contradiction. So we have that $D_{1} \not \leq S_{1}$. Choose $u \in D_{1} \backslash S_{1}$. If $\left[u, E_{1}\right] \leq E_{1}$, then by Lemma 2.21 and Lemma 2.22 we see that u induces a field automorphism on A_{z} and so $\left|\left[E_{1}, u\right]\right|=r^{3}$, where $q=r^{2}$. Again $\left[E_{1}, u\right] \leq Z(K)$ and so $K \cap A_{z} \leq C_{A_{z}}\left(\left[E_{1}, u\right]\right)$. As $\left[E_{1}, u\right] \not \leq Z\left(A_{z} \cap S\right)$, we see that $C_{S \cap A_{z}}\left(\left[E_{1}, u\right]\right)=E_{1}$. Hence we have that $\left[E_{1}, u\right]=K \cap A_{z}$. But the same applies to E_{2}. So $\left[E_{1}, u\right]=\left[E_{2}, u\right]$, which is impossible as $E_{1} \cap E_{2}=Z\left(S \cap A_{z}\right)$. This shows that $E_{1}^{u}=E_{2}$. Then $\left|\left[E_{1}, u\right]:\left[E_{1}, u\right] \cap Z\left(S \cap A_{z}\right)\right|=q$. Again by [MaStr, Lemma 2.67] we get that $Z\left(S \cap A_{z}\right) \leq\left[\left[E_{1}, u\right], S \cap A_{z}\right]$ and so $Z\left(S \cap A_{z}\right) \leq Z(K)$. But then $\left[R_{1}, u\right]=1$, while we have $R_{1}^{u}=R_{2}$, a contradiction.

So we have shown that D_{1} is dihedral. We fix the following notation:

$$
D_{1}=\left\langle x_{1}, x_{2}\right\rangle, \text { where } x_{1}^{2}=x_{2}^{2}=1 .
$$

Let first $m=1$. We may assume that $\left[E_{1}, x_{1}\right] \neq 1$. In particular $x_{1} \notin E_{1}$. If $\left[E_{1}, x_{1}\right] \leq E_{1}$. then $\left|\left\langle\left[E_{1}, x_{1}\right], x_{1}\right\rangle\right| \geq 2 q \geq 8$. But there are no elementary abelian subgroups of order 8 in D_{1}. So we have that $R_{1}^{x_{1}}=R_{2}$ and again $\left|\left\langle\left[R_{1} R_{2}, x_{1}\right], x_{1}\right\rangle\right| \geq 2 q$ and this group is elementary abelian.

So we have ptoved that $m>1$. Now we set
$D_{2}=\left\langle y_{1}, y_{2}\right\rangle$, where we choose notation such that $x_{i}^{s_{2}}=y_{i}, i=1,2$.
Suppose first that $D_{1} \leq S_{1}$. Then as S_{1} is normal in S, we have $K \leq S_{1}$. As $\Omega_{1}\left(S_{1}\right)=F_{1} \cup F_{2}$, we may assume that $x_{1} y_{1} \in F_{1}$. As $\left[x_{1}, x_{2}\right] \neq 1$, we get $x_{2} y_{2} \in F_{2}$. Now we consider the involution $x_{2} y_{1} \in K$. We have $\left[x_{1} y_{1}, x_{2} y_{1}\right] \neq 1 \neq\left[x_{2} y_{2}, x_{2} y_{1}\right]$, so $x_{2} y_{1} \notin F_{1} \cup F_{2}$, a contradiction.

So we may assume that $x_{1} \notin S_{1}$. By Lemma 2.22 we have that S / S_{1} is abelian. Hence $x_{1} x_{1}^{s_{2}}=x_{1} y_{1} \in S_{1}$. Furthermore also $x_{2} y_{2} \in S_{1}$. So we may assume that $x_{1} y_{1} \in F_{1}$ and $x_{2} y_{2} \in F_{2}$. As $\left[x_{1} y_{1}, x_{2} y_{2}\right] \neq 1$, we see that $x_{1} y_{1}, x_{2} y_{2}$ both are not in $Z\left(S_{1}\right)$. As $\left[x_{1}, x_{1} y_{1}\right]=1$, we see that x_{1} normalizes E_{1} and induces a field automorphism on A_{z}. In particular it also normalizes E_{2} and so we get that K normalizes $E_{i}, i=1,2$. As the group of field automorphisms is cyclic, we get $\left|K: K \cap S_{1}\right|=2$. We consider the involution $x_{1} y_{2}$. As above we get that $x_{1} y_{2} \notin S_{1}$. But then $y_{2}=x_{1} x_{1} y_{2} \in S_{1}$ and so also $x_{2} \in S_{1}$. In particular $\left\langle x_{2}, Z\left(D_{2}\right)\right\rangle$ is normal in D_{2}, which shows that D_{1} is dihedral of order 8 . As $\left[x_{2}, x_{2} y_{2}\right]=1$, we have $x_{2}, y_{2} \in E_{2}$. As $\left[x_{1} y_{1}, x_{2}\right] \neq\left[x_{1} y_{1}, y_{2}\right]$, we see that $\left|\left\langle x_{2}, y_{2}, Z\left(S_{1}\right)\right\rangle / Z\left(S_{1}\right)\right|=4$. Now application of [MaStr, Lemma 2.67] shows that $\left[\left\langle x_{2}, y_{2}\right\rangle, E_{1}\right]=R_{1} R_{2}$ and so $R_{1} R_{2} \leq K$. As x_{1} induces a field automorphism on A_{z}, we have that $\left|R_{1} R_{2}: C_{R_{1} R_{2}}\left(x_{1}\right)\right|=q>2$. On the other hand $\left|K: C_{K}\left(x_{1}\right)\right|=2$, a contradiction. So we have shown

$$
\begin{equation*}
A_{z} \not \approx S p_{4}(q) . \tag{1}
\end{equation*}
$$

By Lemma 2.23 we have that $x \in C_{S}\left(A_{z}\right) \times A_{z}$. Hence $x=z^{i} r$ where $1 \neq r \in Z\left(S \cap A_{z}\right)$ and $i=0,1$.

We assume first that $r \in R$ and show

$$
\begin{equation*}
O_{2}(K) \leq A_{z} C_{S}\left(A_{z}\right) \tag{*}
\end{equation*}
$$

Suppose false. As $\left[O_{2}(K), C_{A_{z}}(r)\right] \leq Q_{R}$, we see from [GoLyS3, Table 5.3] for the two sporadic groups and by application of Lemma 2.27 in the case A_{z} a group of Lie type that $A_{z} \cong L_{3}(16)$ and some element $k \in K$ induces a graph/field automorphism on A_{z}. In particular $K=O_{2}(K)$. So $C_{A_{z}}(k) \cong U_{3}(4)$. As $Z(K) \leq K^{\prime}$, we have
$Z(K) \leq C_{S}\left(A_{z}\right) A_{z}$ and $Z(K) \leq C(k)$. Hence $|Z(K)| \leq 8$. In $C_{A_{z}}(k)$ we have some element ω of order 5 , which centralizes $Z(K)$ and x. Hence this element has to normalize any quaternion group or dihedral group in K modulo $Z(K)$ and so it has to centralize K. As ω acts fixed point freely on Q_{R} / R, we see that $K \cap A_{z} C_{S}\left(A_{z}\right) \leq Z(K) C_{S}\left(A_{z}\right)$. But then K cannot be normal in S. So we have ($*$).

As $Z(K) \leq K^{\prime}$ and $C_{S}\left(A_{z}\right)$ is cyclic, we get by $(*)$ that $K \cap C_{S}\left(A_{z}\right)=1$. As $C_{S}\left(A_{z}\right) A_{z} / C_{S}\left(A_{z}\right) \cong A_{z}$, we may assume $x=r$ and $O_{2}(K)$ is a subgroup of A_{z}. Now $O_{2}(K) \leq O_{2}\left(C_{A_{z}}(r)\right)$, as K is normal in $C_{A_{z}}(R)$, which gives that $O_{2}(K)$ is of class two and $Z(K) \leq O_{2}\left(C_{A_{z}}(r)\right)^{\prime}=R$. But then any $O_{2}\left(D_{i}\right)$ has to be normal modulo R, which gives that $C_{A_{z}}(r)$ has a normal dihedral group, quaternion group or $Q_{8} * Q_{8}$. For $A_{z} \neq L_{3}(q)$ we receive from Lemma 2.17, Lemma 2.18, Lemma 2.19 or [MaStr, Lemma 2.10] that $C_{A_{z}}(r)$ induces at most two nontrivial modules on $O_{2}\left(C_{A_{z}}(r)\right) / Z\left(O_{2}\left(C_{A_{z}}(r)\right)\right)$. We conclude that we must have exactly two such modules and $C_{A_{z}}(r)$ induces \mathbb{Z}_{3} or Σ_{3}, or $m=1$ and $O_{2}\left(C_{A_{z}}(r)\right)$ is dihedral of order eight or isomorphic to $Q_{8} * Q_{8}$. This then implies that we are over $\mathrm{GF}(2)$. Hence we just have the groups excluded by Proposition 5.2. In case of $A_{z} \cong L_{3}(q), q>2$, by [MaStr, Lemma 2.39], we have that $R=Z(K)$ and so as $\left|O_{2}(K)\right| \geq|Z(K)|^{3}$, we see $K=Q_{R}$. As $q>2$, we have $m>1$. But Q_{R} is not a direct product of m dihedral groups.

So we may assume that r is not a root element. In particular $A_{z} \cong$ $F_{4}(q)$ or $S p_{2 n}(q)$. In the latter by (1) we have $n>2$. We first show that $(*)$ holds again. Set $X_{z}=C_{A_{z}}\left(Z\left(S \cap A_{z}\right)\right)$. Then we have that $\left[O_{2}(K), X_{z}\right] \leq O_{2}\left(X_{z}\right)$. Assume that there is some $t \in O_{2}(K)$ such that t induces an outer automorphism on A_{z}. As $A_{z} \not \approx S p_{4}(q)$, we have that $E\left(X_{z} / O_{2}\left(X_{z}\right)\right)$ is a nonsolvable group and by Lemma 2.22 any outer automorphism of A_{z} induces a nontrivial automorphism on this group. Hence ($*$) holds. So as above we may assume that $\langle x, K\rangle \leq A_{z}$. As $O_{2}\left(X_{z}\right) / O_{2}\left(C_{A_{z}}(R)\right)$ is elementary abelian, we see that $Z(K) \leq O_{2}\left(C_{A_{z}}(R)\right)$.

Let first $A_{z} \cong S p_{2 n}(q)$. Assume furthermore $Z(K) \not 又 Z\left(O_{2}\left(C_{A_{z}}(R)\right)\right)$. Then $Z(K) / Z(K) \cap Z\left(O_{2}\left(C_{A_{z}}(R)\right)\right)$ is a natural $S p_{2 n-4}(q)$-module. We have that $C_{O_{2}\left(C_{A_{z}}(R)\right)}(Z(K))=Z(K) Z\left(O_{2}\left(C_{A_{z}}(R)\right)\right) \geq K \cap O_{2}\left(C_{A_{z}}(R)\right)$. Hence

$$
\begin{aligned}
& \left|O_{2}(K) Z\left(O_{2}\left(C_{A_{z}}(R)\right)\right): Z(K) Z\left(O_{2}\left(C_{A_{z}}(R)\right)\right)\right| \\
& \leq\left|O_{2}\left(X_{z}\right): O_{2}\left(C_{A_{z}}(R)\right)\right|=q=2^{t} .
\end{aligned}
$$

This shows that $m \leq t$. As $\left|Z(K) Z\left(O_{2}\left(C_{A_{z}}(R)\right)\right) / Z\left(O_{2}\left(C_{A_{z}}(R)\right)\right)\right|=$ $2^{t(2 n-4)} \geq 2^{2 t}$, as $n>2$, and $2^{2 t}>2^{m}$, we get a contradiction to $|Z(K)|=2^{m}$. Hence $Z(K) \leq Z\left(O_{2}\left(C_{A_{z}}(R)\right)\right)$. But now $O^{2}\left(X_{z}\right)$ centralizes $Z(K)$, i.e. $O_{2}(K) \leq C_{O_{2}\left(X_{z}\right)}\left(O^{2}\left(X_{z}\right)\right.$), or $O^{2}\left(X_{z}\right)$ induces a 3 -group on $O_{2}\left(X_{z}\right)$.

Assume first that $\left[O^{2}\left(X_{z}\right), O_{2}(K)\right]=1$. Then $K \not \leq O_{2}\left(C_{A_{z}}(R)\right)$, as $C_{O_{2}\left(C_{A_{z}}(R)\right)}\left(O^{2}\left(X_{z}\right)\right)=Z\left(O_{2}\left(C_{A_{z}}(R)\right)\right)$. Take $u \in K \backslash O_{2}\left(C_{A_{z}}(R)\right)$. Then $\left[u, O_{2}\left(C_{A_{z}}(R)\right)\right] \leq O_{2}\left(C_{A_{z}}(R)\right) \cap K \leq Z\left(O_{2}\left(C_{A_{z}}(R)\right)\right)$. But this contradicts Lemma 2.18.

So assume that $O^{2}\left(X_{z}\right)$ induces a 3 -group on $O_{2}\left(X_{z}\right)$. Then application of Lemma 2.18 yields $A_{z} \cong S p_{6}(2)$. But this contradicts Proposition 5.2.

So we are left with $A_{z} \cong F_{4}(q)$. As there is no 3-group, which centralizes $C_{A_{z}}\left(Z\left(S \cap A_{z}\right)\right) / O_{2}\left(C_{A_{z}}\left(Z\left(S \cap A_{z}\right)\right)\right)$, we see that $K=O_{2}(K)$. By Lemma $\left.2.17 C_{A_{z}}\left(O_{2}\left(C_{A_{z}}(R)\right)\right) / Z\left(O_{2}\left(C_{A_{z}}(R)\right)\right)\right) \leq O_{2}\left(C_{A_{z}}(R)\right)$. Now assume that $O_{2}\left(C_{A_{z}}(R)\right) \cap K \leq Z\left(O_{2}\left(C_{A_{z}}(R)\right)\right)$. As $\left[K, O_{2}\left(C_{A_{z}}(R)\right)\right] \leq$ $K \cap O_{2}\left(C_{A_{z}}(R)\right)$, we get $K \leq O_{2}\left(C_{A_{z}}(R)\right)$. But then K would be elementary abelian, a contradiction. Hence

$$
\begin{equation*}
O_{2}\left(C_{A_{z}}(R)\right) \cap K \not \leq Z\left(O_{2}\left(C_{A_{z}}(R)\right)\right) \tag{**}
\end{equation*}
$$

and so as $O_{2}\left(C_{A_{z}}(R)\right) \cap K$ is normal in $O_{2}\left(C_{A_{z}}(R)\right)$ we get $R \leq K$. But in case of $F_{4}(q)$ we have two roots with isomorphic centralizers. Then a similar argument shows that $Z\left(S \cap A_{z}\right) \leq K$. As $O_{2}\left(X_{z}\right) / O_{2}\left(C_{A_{z}}(R)\right)$ is elementary abelian and $Z(K) \leq K^{\prime}$, we have $Z(K) \leq O_{2}\left(C_{A_{z}}(R)\right)$. Assume first $Z(K)=Z\left(S \cap A_{z}\right)$. Then $O^{2}\left(X_{z}\right)$ centralizes K. But by Lemma 2.17 we have that $O_{2}\left(X_{z}\right) / Z\left(S \cap A_{z}\right)$ has a normal subgroup which is a direct sum of two natural $S p_{4}(q)$-modules whose factor group is a direct sum of two natural $\Omega_{5}(q)$-modules. This implies that $C_{O_{2}\left(C_{A_{z}}(R)\right) / Z\left(C_{A_{z}}(R)\right)}\left(O^{2}\left(X_{z}\right)\right)=1$, which contradicts $(* *)$. So we have that $Z(K)>Z\left(A_{z} \cap S\right)$. Hence by Lemma 2.17 we have that either $\left|Z(K) / Z(K) \cap Z\left(O_{2}\left(C_{A_{z}}(R)\right)\right)\right|=q^{4}$ or $\left|Z(K) \cap Z\left(O_{2}\left(C_{A_{z}}(R)\right)\right)\right| \geq q^{6}$. In both cases we have that $|Z(K)| \geq q^{6}$ and so as $|K| \geq|Z(K)|^{3}$, we get $|K| \geq q^{18}$. In particular there is some proper normal subgroup of order at least q^{18}. But now the structure of X_{z} as described before shows that $K=O_{2}\left(X_{z}\right)$. Then $Z(K) \leq Z\left(O_{2}\left(X_{z}\right)\right)=Z\left(A_{z} \cap S\right)$, a contradiction.

Next we set

$$
\mathcal{N}=\left\{N \mid N \leq G, \Omega_{1}(Z(S)) \leq N \not \leq C_{G}(z), 1 \neq O_{2}(N) \leq S\right\} .
$$

The group N we are looking for will be in this set \mathcal{N}. So we first show that \mathcal{N} is not empty.
Lemma 6.3. There exists $1 \neq S_{1} \leq S$ such that $N_{G}\left(S_{1}\right) \nsubseteq C_{G}(z)$. Among those choose S_{1} such that $\left|N_{G}\left(S_{1}\right) \cap C_{G}(z)\right|_{2}$ is maximal. Then
(i) $N_{G}\left(S_{1}\right) \in \mathcal{N}$, in particular $\mathcal{N} \neq \emptyset$.
(ii) $N_{G}\left(S_{1}\right) \cap S \in S y l_{2}\left(C_{N_{G}\left(S_{1}\right)}(z)\right) \subseteq \operatorname{Syl}_{2}\left(N_{G}\left(S_{1}\right)\right)$.
(iii) If $N_{G}\left(S_{1}\right) \cap S$ is not a Sylow 2-subgroup of G, then $N_{G}(S \cap$ $\left.N_{G}\left(S_{1}\right)\right) \leq C_{G}(z)$.
Proof. As $C_{G}(z)$ cannot control fusion in $C_{G}(z)$ by Lemma 2.1 we have that $C_{G}(z)$ is not strongly 2 -embedded in G. Hence there is some $1 \neq$ $S_{1} \leq S$ with $N_{G}\left(S_{1}\right) \nsubseteq C_{G}(z)$. Now we choose S_{1} such that $\mid N_{G}\left(S_{1}\right) \cap$ $\left.C_{G}(z)\right|_{2}$ is maximal. Obviously $\Omega_{1}(Z(S)) \leq N_{G}\left(S_{1}\right)$. Set $T=N_{S}\left(S_{1}\right)$. Then $S_{1} \leq T$. Let T_{1} be a Sylow 2-subgroup of $C_{N_{G}\left(S_{1}\right)}(z)$, which contains T. Then there is some $g \in C_{G}(z)$ with $T_{1}^{g} \leq S$. We have $\left|S \cap N_{G}\left(S_{1}\right)^{g}\right| \geq\left|S \cap N_{G}\left(S_{1}\right)\right|$. As $S_{1}^{g} \leq S$ and $N_{G}\left(S_{1}\right)^{g} \not \leq C_{G}(z)$, we have by the choice of $N_{G}\left(S_{1}\right)$ that $T=T_{1}$ is a Sylow 2-subgroup of $C_{N_{G}\left(S_{1}\right)}(z)$. If $T=S$, we have the assertion (ii). So assume $T \neq S$. In particular $N_{S}(T)>T$. Hence by the choice of S_{1} we have that $N_{G}(T) \leq$ $C_{G}(z)$, which is (iii). As T is a Sylow 2-subgroup of $C_{N_{G}\left(S_{1}\right)}(z)$, this shows that T is a Sylow 2 -subgroup of $N_{G}\left(S_{1}\right)$, which finishes the proof of (ii). In particular $O_{2}\left(N_{G}\left(S_{1}\right)\right) \leq T \leq S$, which shows that $\mathcal{N} \neq \emptyset$, which proves (i).

Lemma 6.4. Set $\mathcal{N}_{1}=\{U \mid U \in \mathcal{N}$ with $|U \cap S|$ maximal $\}$. Choose $N \in \mathcal{N}_{1}$ minimal by inclusion. Then N is a minimal parabolic where $C_{N}(z)$ is the unique maximal subgroup of N containing $N \cap S$. Furthermore we have:
(i) If E is normal in N and $E \leq C_{G}(z)$, then $S \cap E$ is also normal in N.
(ii) $E(N)=1$.
(iii) $O(N) \leq C_{G}(z)$ and $O_{2^{\prime}, 2}(N)=O_{2}(N) O(N)$.

Proof. Recall that by Lemma 6.3 there is such an $N \in \mathcal{N}$. Further we have that $T=S \cap N$ is a Sylow 2-subgroup of N.

The minimality of N then shows, that for $M<N$ and $T \leq M$ we have $M \leq C_{G}(z)$. Therefore $N \cap C_{G}(z)$ is the only maximal subgroup of N containing T, which means that
N is a minimal parabolic with respect to T.
Let now E be normal in N. Then we have that $N=N_{N}(E \cap T) E$. If $E \leq C_{G}(z)$, then $N_{N}(E \cap T) \not \leq C_{G}(z)$ and so by minimality we have
that $N=N_{N}(E \cap T)$, which is (i).
Assume there is some involution $x \in Z(N)$. Then $C_{G}(x) \not \leq C_{G}(z)$. Let $T_{1} \leq C_{G}(x)$ with $\left|T_{1}: T\right|=2$. Then as $N_{G}(T) \leq C_{G}(z)$ by Lemma 6.3, we see $T_{1} \leq C_{G}(z)$. This implies that there is some $g \in C_{G}(z)$ with $T_{1}^{g} \leq S$. In particular $\left|S \cap C_{G}\left(x^{g}\right)\right|>|S \cap N|$. So we may apply Lemma 6.3 with $\left\langle x^{g}\right\rangle$. This implies the existence of some $S_{1} \leq S$ such that $N_{G}\left(S_{1}\right) \in \mathcal{N}$ and $\left|N_{G}\left(S_{1}\right) \cap C_{G}(z)\right|_{2} \geq\left|C_{S}\left(x^{g}\right)\right|>|N \cap S|$, which contradicts the choice of N. So we have that T is a Sylow 2-subgroup of $C_{G}(x)$, in particular $O_{2}\left(C_{G}(x)\right) \leq O_{2}(N)$. We collect:

If $1 \neq x \in Z(N)$ is an involution then T is a Sylow 2-subgroup of $C_{G}(x)$.

Assume now $E(N) \neq 1$. Then by (i) we have $E(N) \not 又 C_{G}(z)$ and so $N=E(N) T$. Let $E(N)=N_{1} \cdots N_{r}$. As $E(N) T$ is a minimal parabolic we have that $N_{1} N_{T}\left(N_{1}\right)$ is a minimal parabolic with respect to $N_{T}\left(N_{1}\right)$. As $\left[O_{2}(N), E(N)\right]=1$, we have $z \notin O_{2}(N)$. So the maximal subgroup containing the Sylow 2-subgroup is $C_{N_{1}}(z) N_{T}\left(N_{1}\right)$, the centralizer of an involution. Hence by Lemma 2.39 we get that

$$
\begin{equation*}
N_{1} \text { is a group of Lie type in odd characteristic. } \tag{2}
\end{equation*}
$$

Choose $x \in Z(N)$ an involution, which exists as $O_{2}(N) \neq 1$. By (1) we have that T is a Sylow 2 -subgroup of $C_{G}(x)$, in particular $O_{2}\left(C_{G}(x)\right) \leq O_{2}(N)$ and then $\left[E(N), O_{2}\left(C_{G}(x)\right)\right]=1$. This shows that $E(N) \leq E\left(C_{G}(x)\right)$ (recall that $O\left(C_{G}(x)\right)=1$ by the general assumption).

Assume first that N_{1} is not conjugate to $L_{2}(p), L_{2}(9), L_{3}(3), L_{4}(3)$, $U_{4}(3)$ or $P S p p_{4}(3)$. It follows that N_{1} is not a component of $C_{G}(x)$, as now by (2) $N_{1} \notin \mathcal{C}_{2}$. Furthermore from Lemma 2.39 we get that $C_{N_{1}}(z)$ has a component K_{1}, which is a group of Lie type in odd characteristic. Let K be some component of $C_{G}(x)$ with $N_{1} \leq K$. As by (*) we see that N contains a Sylow 2-subgroup of $C_{G}(x)$, we have that $\left[K_{1}, O_{2}\left(C_{C_{G}(x)}(z)\right)\right]=1$. This shows that also $C_{K}(z)$ has a component. As $K \in \mathcal{C}_{2}$ and z centralizes a Sylow 2-subgroup of K, we get with [MaStr, Lemma 2.26] that either z induces an inner automorphism on K or $K \cong L_{4}(3)$ and then z has to induce an outer automorphism, which then is a graph automorphism, which centralizes $L \cong P S p_{4}(3)$ in K. Now $K_{1} \leq L$. But as $P S p_{4}(3) \cong \Omega^{-} 6(2)$ we get with the Borel-Tits-Theorem, that all subgroups of L containing a Sylow 2 -subgroup of L are constrained, in particular do not have components, a contradiction. So we may assume that z induces an inner automorphism on
K. With [MaStr, Lemma 2.22] we see that K cannot be a group of Lie type in characteristic two. Further as centralizers of involutions in $L_{3}(3), G_{2}(3), U_{4}(3)$ are solvable by [MaStr, Lemma 2.20], Lemma 2.7, Lemma 2.6 respectively, these groups are also not possible. The centralizers of 2 -central involutions in the sporadic groups are given by [GoLyS3, Table 5.3]. From there we see that only $M(23)$ possesses a 2-central involution, whose centralizer has a component. In $M(23)$ this component would be $2 M(22)$, which is not a group of Lie type in odd characteristic. Hence $K_{1} \neq 2 M(22)$. But then $M(22)$ must contain a subgroup L, which contains a Sylow 2-subgroup and a normal subgroup which is a product of groups of Lie type in odd characteristic, contradicting [GoLyS3, Table 5.3].

Hence we have that

$$
\begin{equation*}
N_{1} / Z\left(N_{1}\right) \cong L_{2}(p), p>5, L_{2}(9), L_{3}(3), L_{4}(3), U_{4}(3) \text { or } P S p_{4}(3) . \tag{3}
\end{equation*}
$$

In particular $N_{1} \in \mathcal{C}_{2}$. By Lemma 2.39 we get that $N_{1} / Z\left(N_{1}\right) \not \not 二$ $U_{4}(3)$ or $P S p_{4}(3)$. If $N_{1} / Z\left(N_{1}\right)$ is isomorphic to $L_{2}(p)$ or $L_{3}(3)$, then $\Omega_{1}\left(Z\left(N_{T}\left(N_{1}\right) / C_{T}\left(N_{1}\right)\right)\right) \leq N_{1}$. If $N_{1} \cong A_{6}$, then as $N_{T}\left(N_{1}\right) N_{1}$ is a minimal parabolic there is some element in $N_{T}\left(N_{1}\right)$, which interchanges the two subgroups isomorphic of Σ_{4}. So also $\Omega_{1}\left(Z\left(N_{T}\left(N_{1}\right) / C_{T}\left(N_{1}\right)\right)\right) \leq N_{1}$. In case of $N_{1} / Z\left(N_{1}\right) \cong L_{4}(3) \cong \Omega_{6}^{+}(3)$, we see from Lemma 2.39 that also a graph automorphism is induced by T. This then again implies $\Omega_{1}\left(Z\left(N_{T}\left(N_{1}\right) / C_{T}\left(N_{1}\right)\right)\right) \leq N_{1}$. As $N_{1} \neq L_{2}(5)$, we have by Lemma 2.13 that $\left|\Omega_{1}\left(Z\left(N_{T}\left(N_{1}\right) / C_{T}\left(N_{1}\right)\right)\right)\right|=2$.

We have $\Omega_{1}(Z(S)) \leq N$ by the definition of \mathcal{N}. Further we have $\left|\Omega_{1}(Z(S))\right| \geq 4$ by Lemma 6.1. As $Z(S)$ centralizes $T \cap N_{1}$ it normalizes N_{1}, we get that $\Omega_{1}(Z(S)) \cap C\left(N_{1}\right) \neq 1$. As T acts transitively on the components of N, we get that $\Omega_{1}(Z(S)) \cap C(E(N)) \neq 1$.

So we may assume

$$
\begin{align*}
& x \in Z(S) \text { and then } T=S \text {. Further } N_{1} \leq K \\
& \text { for } K \text { some component of } C_{G}(x) . \tag{4}
\end{align*}
$$

Now we show that

$$
\begin{equation*}
K=N_{1} \text { or } K \cong M_{11} . \tag{5}
\end{equation*}
$$

There is $T_{1} \leq T$ such that $M_{1}=\left\langle N_{1}^{T_{1}}\right\rangle T_{1} \leq K$ and M_{1} contains a Sylow 2-subgroup of K. If K is a group of Lie type in characteristic 2, then by [MaStr, Lemma 2.15] we have that $K=N_{1}$, as M_{1} would be a parabolic subgroup. This proves (5). If K is a group of Lie type in odd
characteristic, the list \mathcal{C}_{2} shows that $K / Z(K) \cong L_{2}(p), L_{2}(9), L_{3}(3)$, $L_{4}(3), U_{4}(3)$ or $G_{2}(3)$. As the centralizer of a 2-central involution in K is solvable ([MaStr, Lemma 2.20], Lemma 2.7, Lemma 2.6), we see that $O_{2}\left(M_{1}\right)=1$. Now the order of $L_{4}(3)$ is divisible by $3^{6} \cdot 5 \cdot 13$, so we get $N_{1}=K$ in case of $N_{1} \cong L_{4}(3)$ or $G_{2}(3)$. Also the order of $L_{3}(3)$ is divisible by 13 , which shows $N_{1}=K$ or $M_{1} \leq L_{4}(3)$ in case of $N_{1} \cong L_{3}(3)$. Suppose the latter. By [MaStr, Lemma 2.21] and Lemma 2.22 we have that $\mid \operatorname{Aut}\left(L_{3}(3) \mid=2^{5} \cdot 3^{3} \cdot 13\right.$, which contradicts $|K|_{2}=2^{6}$ and $O_{2}\left(M_{1}\right)=1$. So it remains $N_{1} \cong L_{2}(q)$. If $N_{1} \neq K_{1}$, we see that $K \cong L_{3}(3), L_{4}(3), U_{4}(3)$ or $G_{2}(3)$. As p is a Fermat or Mersenne prime and $p>5$, we see that $N_{1} \cong L_{2}(7)$ or $L_{2}(9)$. As neither 5 nor 7 divides the order of $L_{3}(3)$, we get $K \neq L_{3}(3)$. As 2^{6} does not divide $\left|\operatorname{Aut}\left(N_{1}\right)\right|$, we get that $N_{1} \times N_{1}^{t} \leq K$. But then 5^{2} or 7^{2} has to divide $|K|$, which is not the case. This proves (5) in case of K a group of Lie type in odd characteristic.

So we are left with K a sporadic simple group. Suppose first that $C_{M_{1}}\left(N_{1}\right)=1$. Then by Lemma 2.10 we get $M_{1} \cong M_{10}$ and $K \cong M_{11}$, which is (5). So assume $K \not \approx M_{11}$. Then $C_{M_{1}}\left(N_{1}\right) \neq 1$. If $M_{1}=\left\langle N_{1}^{T_{1}}\right\rangle T_{1}$ has $2^{n}, n \geq 1$, many components isomorphic to N_{1}, there is some involution $y \in M_{1}$, which centralizes in T_{1} a subgroup of index two and 2^{n-1} of these components. In particular in both cases $C_{K}(y)$ possesses a component \tilde{K}. By [GoLyS3, Table 5.3] we see that $K \cong M(22)$ or $M(23)$. The same is true if $O_{2}\left(M_{1}\right) \neq 1$, where $y \in Z\left(M_{1}\right)$. Now the situation in \tilde{K} is the same as in K and so $\tilde{K} / Z(\tilde{K})$ cannot be a group of Lie type in characteristic 2 . As $\tilde{K} / Z(\tilde{K}) \cong U_{6}(2)$ for $K \cong M(22)$, we get $K \cong M(23)$ and $\tilde{K} / Z(\tilde{K}) \cong M(22)$. The odd part of the order of $M(23)$ implies that there are at most two components N_{1}, N_{1}^{g} in M_{1}. If there are two of them, we have with [GoLyS3, Table 5.3u] and (1) that $N_{1} \cong L_{2}(9)$. Now in any case we see that $\left|M_{1} / O_{2}\left(M_{1}\right)\right|_{2} \leq 2^{11}$. Hence $\left|O_{2}\left(M_{1}\right)\right| \geq 4$. So we may choose $y \in Z\left(T_{1}\right)$ and then we have the same situation in $C_{K}(y) /\langle y\rangle \cong M(22)$. Now we get a contradiction with the same arguments as for $K \cong M(22)$.

So we have shown that either $K=N_{1}$ or $K \cong M_{11}$ In any case we have that $C_{K}(z)$ is dihedral or isomorphic to $G L_{2}(3)$ or in case of $L_{4}(3)$ contains a normal subgroup $S L_{2}(3) * S L_{2}(3)$. This shows that $C_{G}(z) \cap C_{G}(x)$ has a normal subgroup which is a direct product of dihedral, quaternion groups or groups isomorphic to $S L_{2}(3) * S L_{2}(3)$, which are permuted by S. This now contradicts Lemma 6.2 and so we have (ii).

Assume now $O(N) \neq 1$. We first show $O(N) \leq C_{G}(z)$. So assume false. Then by the minimality of N we have that $N=O(N) T$. Again there is some involution $x \in Z(N)$. By $(*) T$ is a Sylow 2-subgroup of $C_{G}(x)$. As $\left[O_{2}\left(C_{G}(x)\right), O(N)\right]=1$ and $O\left(C_{G}(x)\right)=1$, we must have that $E\left(C_{G}(x)\right) \neq 1$. As $[T, O(N)] \leq O(N)$, we see that $O(N)$ normalizes any component K of $C_{G}(x)$. Further a Sylow 2-subgroup of K has to normalize some nontrivial group of odd order of its automorphism group. As $K \in \mathcal{C}_{2}$ we get by Lemma 2.29 that $K \cong L_{3}(3)$ or M_{11}. Set $K_{1}=\left\langle K^{T}\right\rangle$ and $K_{2}=K_{1} T$. Then by Lemma 2.29 we have that $\Omega_{1}(Z(T))=\Omega_{1}(Z(T)) \cap C_{T}\left(K_{1}\right) \times \Omega_{1}(Z(T)) \cap K_{1}$. Further $\mid \Omega_{1}(Z(T)) \cap$ $K_{1} \mid=2$. As $\left|\Omega_{1}(Z(S))\right| \geq 4$, we see that $\Omega_{1}(Z(S)) \cap C_{T}\left(K_{1}\right) \neq 1$. Hence we have that $\Omega_{1}(Z(S)) \cap O_{2}(N) \neq 1$, and so we may choose $x \in \Omega_{1}(Z(S))$, which gives $S=T$. As $C_{K_{1}}(z)$ is a direct product of groups isomorphic to $G L_{2}(3)$, we see that $C_{C_{G}(z)}(x)$ contains a normal subgroup, which is a direct product of quaternion groups, contradicting Lemma 6.2.

So we have that $O(N) \leq C_{G}(z)$. Further by (i) we get that $T \cap O_{2^{\prime}, 2}(N)$ must be normal in N, so we have (iii).

Lemma 6.5. There is some subgroup $N \in \mathcal{N}$ with $S \leq N$.
Proof. Assume false. Then in particular by Lemma 6.3 we see $C_{G}(x) \leq$ $C_{G}(z)$ for all $x \in Z(S)^{\sharp}$. By Lemma 6.3 we can pick some $N \in \mathcal{N}$ with $|N \cap S|$ maximal. Among all such N choose N minimal. Set $T=S \cap N$. By Lemma 6.3 T is a Sylow 2-subgroup of N. As $S \neq T$ and by the maximal choice of $N \cap S$ we see $N_{G}(T) \leq C_{G}(z)$ and then that no nontrivial characteristic subgroup of T is normal in N. Set $W=\Omega_{1}\left(Z\left(O_{2}(N)\right)\right)$. By Lemma 6.4 we have $C_{N}\left(O_{2}(N)\right) \leq O_{2}(N) O(N)$, and so $\Omega_{1}(Z(T)) \leq$ W. Hence $W \neq \Omega_{1}(Z(T))$ and then as $J(T) \not \leq O_{2}(N)$, we have by Lemma 3.2 that W is an $F-$ module for N. As by Lemma $6.4 N$ is a minimal parabolic with respect to T, this now gives with Lemma 3.4 that any component of $N / C_{N}(W)$ is isomorphic to $L_{2}\left(2^{n}\right)$ or $A_{2^{n}+1}$, for suitable n, or $N / C_{N}(W)$ is solvable.

First assume that $N / C_{N}(W)$ is not solvable, i.e. $1 \neq E\left(N / C_{N}(W)\right)=$ $N_{1} * \cdots * N_{r}$. Then by Lemma $3.15 W / C_{W}\left(E\left(N / C_{N}(W)\right)\right)=V_{1} \oplus \cdots \oplus$ V_{r}, where each V_{i} is a natural N_{i}-module. By the choice of $N \in \mathcal{N}$, we have that the maximal subgroup M in $E\left(N / C_{N}(W)\right)$ containing $T C_{N}(W) / C_{N}(W)$ centralizes z. If $N_{i} \cong L_{2}\left(2^{u}\right)$, then M is the normalizer of a Sylow 2-subgroup in $E\left(N / C_{N}(W)\right)$ and so has no fixed point in $V_{1} \oplus \cdots \oplus V_{r}$. This shows $\left[z, E\left(N / C_{N}(W)\right)\right]=1$, which contradicts

Lemma 6.4(i).
So let $N_{i} \cong A_{2^{n}+1}$. We have that in each module V_{i}, which is the irreducible part of the permutation module, a Sylow 2-subgroup of N_{i} just centralizes a 1 -space. As T acts transitively on the components N_{i}, since N is a minimal parabolic, we get that $\left|C_{W / C_{W}(N)}(T)\right|=2$. As $\left|\Omega_{1}(Z(S))\right| \geq 4$, we must have some $1 \neq t \in \Omega_{1}(Z(S))$ with $\left[E\left(N / C_{N}(W)\right), t\right]=1$. But for any such t we know that $C_{G}(t) \leq C_{G}(z)$ and so again $\left[E\left(N / C_{N}(W)\right), z\right]=1$, a contradiction to Lemma 6.4(i).

So we have that $N / C_{N}(W)$ is solvable. As $C_{N}(W) \leq C_{G}(z)$, we get by application of Lemma 6.4(i) that $T \cap C_{N}(W)$ is normal in N, so N is solvable. Set $\tilde{N}=N / O(N)$. As $W=\Omega_{1}\left(Z\left(O_{2}(\tilde{N})\right)\right)$ is an F-module, we have by Lemma 3.16 that $\tilde{N} / C_{\tilde{N}}(W)=O_{3,2}(\tilde{N})$. As $C_{\tilde{N}}(W)$ is 2closed and \tilde{N} is a minimal parabolic we get that $\tilde{N}=O_{2,3,2}(\tilde{N})$. Let P be a Sylow 3 -subgroup of \tilde{N}. Then obviously P is not contained in $C_{N}(z) / O(N)$. If C is a proper characteristic subgroup of P, then $C T<\tilde{N}$ and so by minimality of N, we have that $[C, z]=1$. In particular $[\Phi(P), z]=1$. Set $W_{1}=\left\langle z^{N}\right\rangle$. Then $\left[W_{1}, \Phi(P)\right]=1$. As T acts irreducibly on $P / \Phi(P)$ we see that $P / \Phi(P)$ acts faithfully on W_{1} and so also on $W_{2}=\left[C_{W}(\Phi(P)), P\right]$. Let A be an $F-$ module offender on W. As A acts faithfully on $P / \Phi(P)$, we see that A also acts faithfully on W_{2} and induces an F-module offender there. Then by the Dihedral Lemma 2.3 we get some $\rho \in P \backslash \Phi(P)$ with $\left|\left[W_{2}, \rho\right]\right|=4$. Further $\left|W_{2}: C_{W_{2}}(A)\right|=|A|$. So let $|P / \Phi(P)|=3^{n}$, then $\left|W_{2}\right|=4^{n}$. We also have that $W_{2}=U_{1} \oplus \cdots \oplus U_{n}$, where $\left|U_{i}\right|=4$ and T acts transitively on the U_{i}. As we may choose $U_{1}=\left[W_{2}, \rho\right]$, where ρ is inverted by some element in A, we see that $\left|C_{W_{2}}(T)\right|=2$. We have $\Omega_{1}(Z(S)) \leq W$ and $\left|\Omega_{1}(Z(S))\right| \geq 4$ by Lemma 6.1. Further as $C_{G}(t) \leq C_{G}(z)$ for all involutions $t \in \Omega_{1}(Z(S))$ and $P \not \leq C_{G}(z)$, we have $\Omega_{1}(Z(S)) \cap C_{N}(P)=1$. Assume $[W, \Phi(P)]=1$. Then $W=W_{2} \oplus C_{W}(P)$. As $\left|\Omega_{1}(Z(S)) \cap W_{2}\right| \leq 2$ and $\left|\Omega_{1}(Z(S))\right| \geq 4$, we get $C_{\Omega_{1}(Z(S))}(P) \neq 1$. But as $C_{G}(x) \leq C_{G}(z)$ for all $1 \neq x \in \Omega_{1}(Z(S))$, we now get $N \leq C_{G}(z)$, a contradiction. Therefore $W=[W, \Phi(P)] \oplus C_{W}(\Phi(P))$, with $W_{3}=[W, \Phi(P)] \neq 1$. As A is an F-module offender and $\left|W_{2}: C_{W_{2}}(A)\right|=|A|$, we must have that $\left[A, W_{3}\right]=1$. Now $[A, P] \leq C_{N}\left(W_{3}\right)$. But as $A \not \leq O_{2}(N)$, we have that $[A, P] \not \leq O_{2}(N) \Phi(P)$. Hence by the irreducible action of T on $P / \Phi(P)$ we get $P=C_{P}\left(W_{3}\right) \Phi(P)=C_{P}\left(W_{3}\right)$, which contradicts $\left[W_{3}, \Phi(P)\right] \neq 1$.

We now set
$\mathcal{N}_{S}=\left\{N \in \mathcal{N}\right.$ with N is minimal with respect to $\left.S \leq N \not \leq C_{G}(z)\right\}$
By Lemma $6.5 \mathcal{N}_{S}$ is not empty.
Lemma 6.6. For $N \in \mathcal{N}_{S}$ we have $C_{N}\left(O_{2}(N)\right) \leq O_{2}(N)$.
Proof. By Lemma 6.4(iii) $O(N) \leq C_{G}(z)$ and is normalized by S. As $O\left(C_{G}(z)\right)=1$, we get the assertion from Lemma 2.29 as $A_{z} \neq L_{3}(3)$ or M_{11} by Proposition 5.2.

We recall some notation which will be maintained until the end of this chapter.
Notation 6.7. If $A_{z}=G(q), q=2^{f}$, is a group of Lie type not isomorphic to $S p_{2 n}(q)$, we denote by R a long root group in $Z\left(S \cap A_{z}\right)$. In the case of $A_{z} \cong S p_{2 n}(q)$ we take a short root group. If A_{z} is a sporadic simple group we choose $R=Z\left(S \cap A_{z}\right)$. Further we denote the group $O_{2}\left(C_{A_{z}}(R)\right)$ by Q_{R}. The structure of Q_{R} is given in Lemma 2.17 and Lemma 2.19. In all cases but $A_{z} \cong S p_{2 n}(q)$ or $F_{4}(q)$ we have that $R=\Omega_{1}\left(Z\left(Q_{R}\right)\right)$. If A_{z} is a sporadic simple group we have by [MaStr, Lemma 2.10] that Q_{R} is extraspecial. If $A_{z} \not \neq S p_{4}(q)$ then $R=Q_{R}^{\prime}$. Finally we always have that $C_{A_{z}}\left(Q_{R}\right)=Z\left(Q_{R}\right)$ by Lemma 2.11.
Lemma 6.8. Let $A_{z} \cong S p_{4}(q)$ or $F_{4}(q)$ and assume that S induces a graph automorphism on A_{z}. Set $X=\left\langle z, R_{1}, R_{2}\right\rangle$, where $R_{1} R_{2}=$ $Z\left(S \cap A_{z}\right)$. Then $N_{G}(X) \leq C_{G}(z)$.
Proof. We have $O_{2}\left(C_{G}(X)\right)=C_{S}\left(A_{z}\right) Q_{R_{1}} Q_{R_{2}}$, so $Z\left(O_{2}\left(C_{G}(X)\right)\right)=$ $R_{1} R_{2} C_{S}\left(A_{z}\right)$. In particular $\Phi\left(C_{S}\left(A_{z}\right)\right)$ is invariant under $N_{G}(X)$. So if $C_{S}\left(A_{z}\right)>\langle z\rangle$, we get that $N_{G}(X) \leq C_{G}(z)$, the assertion.

Assume now $C_{S}\left(A_{z}\right)=\langle z\rangle$. As $Z\left(Q_{R_{1}} Q_{R_{2}}\right)=X \cap\left(\langle z\rangle Q_{R_{1}} Q_{R_{2}}\right)^{\prime}$, we have that $N_{G}(X)$ acts on $Z\left(Q_{R_{1}} Q_{R_{2}}\right)$. We have that $N_{C_{G}(z)}(X)$ induces two orbits of length $2(q-1)$ and $(q-1)^{2}$ in $\left(R_{1} R_{2}\right)^{\sharp}$ (recall that there is a graph automorphism in S, so R_{1} is conjugate to R_{2} in S). Further $\emptyset=z^{N_{G}(X)} \cap Z\left(Q_{R_{1}} Q_{R_{2}}\right)$. As the $\left|z^{N_{G}(X)}\right|$ is odd, we get that either $N_{G}(X) \leq C_{G}(z)$ or z has precisely $2 q-1$ conjugates under $N_{G}(X)$, which are $z R_{1} \cup z R_{2}$.

By way of contradiction we assume that z has precisely $2 q-1$ conjugates. Then $N_{G}(X)$ acts 2-transitively on $z^{N_{G}(X)}$. In particular all $z^{g} z^{h}$, $g, h \in N_{G}(X), z^{g} \neq z^{h}$, are conjugate. Choose $r_{1}, \tilde{r}_{1} \in R_{1}, r_{2}, \tilde{r}_{2} \in R_{2}$ with $r_{1} r_{2} \neq 1 \neq \tilde{r}_{1} \tilde{r}_{2}$. Then $\left(z r_{1}\right)\left(z r_{2}\right)$ is conjugate to $\left(z \tilde{r}_{1}\right)\left(z \tilde{r}_{2}\right)$. This shows that all elements in $Z\left(Q_{R_{1}} Q_{R_{2}}\right)^{\sharp}$ are conjugate in $N_{G}(X)$. As
$Z\left(Q_{R_{1}} Q_{R_{2}}\right)$ contains involutions x which are centralized by S, we see that $\left|x^{N_{G}(X)}\right|$ is odd. Hence x has exactly $q^{2}-1$ conjugates. This gives that $q^{2}-1$ divides $\left|N_{G}(X) / C_{G}(X)\right|$.

Assume there is a Zsigmondy prime p dividing $q^{2}-1$ and let ω be some element in $N_{G}(X)$ with $\omega \notin C_{G}(X)$ but $\omega^{p} \in C_{G}(X)$. Suppose first that p does not also divide $2 q-1$, then we may assume that $[\omega, z]=1$. But $\left|N_{C_{G}(z)}(X) / C_{C_{G}(z)}(X)\right|_{2^{\prime}}$ divides $(q-1)^{2} u$, where $q=2^{u}$. As p is a Zsigmondy prime, it does not divide $(q-1)$. Hence p divides u. By the little Fermat Theorem we have that p divides $2^{p-1}-1$ which is smaller than $q-1=2^{u}-1$, but this contradicts p being a Zsigmondy prime. Hence we may assume that p divides $2 q-1$ which gives $q=2$ and $p=3$. By Proposition 5.2 we have $A_{z} \cong F_{4}(2)$. As $Q_{R_{1}} \cap Q_{R_{2}}=\left(Q_{R_{1}} Q_{R_{2}}\right)^{\prime}$, we have that ω normalizes $Q_{R_{1}} \cap Q_{R_{2}}$ Further it acts on $C_{Q_{R_{1}} Q_{R_{2}}}\left(Q_{R_{1}} \cap Q_{R_{2}}\right)=\left(Q_{R_{1}} \cap Q_{R_{2}}\right) Z\left(Q_{R_{1}}\right) Z\left(Q_{R_{2}}\right)=Y$. As $q=2$ and $Z\left(Q_{R_{1}}\right)$ induces a transvection on $Z\left(Q_{R_{2}}\right)$, we see $\left|Y^{\prime}\right|=2$, and so $C_{R_{1} R_{2}}(\omega) \neq 1$. As $\left|R_{1} R_{2}\right|=4$, we get $\left[\omega, R_{1} R_{2}\right]=1$, which then gives the contradiction $[X, \omega]=1$.

So we have that there is no Zsigmondy prime which divides $q^{2}-1$. Hence $q=8$. By Lemma 2.22 we see $\left|\operatorname{Out}\left(F_{4}(8)\right)\right|=\left|\operatorname{Out}\left(S p_{4}(8)\right)\right|=2 \cdot 3$. This implies $\left|S: C_{S}(X)\right|=2$. In particular $N_{G}(X) / C_{G}(X)$ has a normal 2-complement K. As $\left|z^{N_{G}(X)}\right|=15$, we get that $|K|=3 \cdot 5 \cdot 7^{2}$ or $3^{2} \cdot 5 \cdot 7^{2}$, as $7^{2}=\left|N_{A_{z}}(X) / C_{A_{z}}(X)\right|$. In both cases with the Burnside lemma we get a normal 5 -complement in K. Hence a Sylow 5 -subgroup centralizes a Sylow 7 -subgroup and then we have a normal Sylow 7 subgroup P in K. As 7^{2} divides $\left|N_{A_{z}}(X)\right|$, we have $P \leq C_{G}(z)$ and P acts as the Borel subgroup on X. This gives $C_{X}(P)=\langle z\rangle$. But then $\langle z\rangle \unlhd N_{G}(X)$, a contradiction.

Lemma 6.9. $N_{G}(S) \leq C_{G}(z)$. In particular $z^{G} \cap \Omega_{1}(Z(S))=\{z\}$.
Proof. Set $N=N_{G}(S)$ and assume that $N \not \leq C_{G}(z)$. We first show that

$$
\begin{equation*}
Z\left(Q_{R}\right) \neq R . \tag{1}
\end{equation*}
$$

Suppose false. Assume first that $O_{2}\left(C_{G}\left(\Omega_{1}(Z(S))\right)\right)=Q_{R} \times C_{S}\left(A_{z}\right)$. Set $M=N_{G}\left(Q_{R} \times C_{S}\left(A_{z}\right)\right)$. Then $N \leq M$. If $Z\left(Q_{R}\right)=R$, then M acts on $\langle z, R\rangle$. As all elements in R^{\sharp} are conjugate in M, and $\left|z^{M}\right|$ is odd, we would get that $z^{M}=\langle z, R\rangle^{\sharp}$. But $R \leq\left(C_{S}\left(A_{z}\right) \times Q_{R}\right)^{\prime}$, while z is not, a contradiction. So we have that $O_{2}\left(C_{G}\left(\Omega_{1}(Z(S))\right)\right) \neq Q_{R} \times C_{S}\left(A_{z}\right)$. By Lemma 2.24 we get that $A_{z} \cong L_{3}(q)$ or $L_{4}(q)$. By Proposition 5.2 we have $q>2$. If $A_{z} \cong L_{3}(q)$, then by Lemma $2.20 S$ contains exactly
two abelian groups isomorphic to $\mathbb{Z}_{2^{n}} \times E_{q^{2}}$, where $\left|C_{S}\left(A_{z}\right)\right|=2^{n}$. If $A_{z} \cong L_{4}(q)$, then S contains exactly one abelian group isomorphic to $\mathbb{Z}_{2^{n}} \times E_{q^{4}}$. This shows that elements of odd order in N normalize these groups. As $N \not \leq C_{G}(z)$, we see that $n=1$. If $A_{z} \cong L_{3}(q)$, then the product of these two elementary groups is just $\langle z\rangle Q_{R}$, which now is normal in N. But $z \notin\left(\langle z\rangle Q_{R}\right)^{\prime}$, a contradiction as before. So assume $A_{z} \cong L_{4}(q)$. Then some graph automorphism is contained in $O_{2}\left(C_{G}\left(\Omega_{1}(Z(S))\right)\right)$. In particular this group contains $\langle z\rangle \times Q_{R}$ of index two. Then again $z \notin O_{2}\left(C_{G}\left(\Omega_{1}(Z(S))\right)\right)^{\prime}$ but R is, a contradiction as before. This proves (1)

With [MaStr, Definition 2.32] and (1) we now have that $A_{z} \cong S p_{2 n}(q)$ or $F_{4}(q)$. We next show

$$
\begin{equation*}
R \cap \Omega_{1}(Z(S))=1 \tag{2}
\end{equation*}
$$

Suppose false and let first $A_{z} \not \not S p_{4}(q)$, i.e. Q_{R} is not abelian. Set $X_{z}=O_{2}\left(C_{G}\left(\Omega_{1}(Z(S))\right)\right)$. Then $X_{z}=C_{S}\left(A_{z}\right) \times\left(X_{z} \cap A_{z}\right)$. Further $Z\left(X_{z} \cap A_{z}\right)$ is elementary abelian. As N normalizes X_{z}, we get $C_{S}\left(A_{z}\right)=\langle z\rangle$ again. We see that $\left|X_{z} \cap A_{z}: Q_{R}\right|=q$ in case of $S p_{2 n}(q)$ and $X_{z} \cap A_{z}=Q_{R_{1}} Q_{R_{2}}$ in case of $F_{4}(q)$, where R_{1}, R_{2} are the two root groups in $Z\left(S \cap A_{z}\right)$. Now in both cases $Z\left(X_{z} \cap A_{z}\right) \leq X_{z}^{\prime}$, while $z \notin X_{z}^{\prime}$. Let K be a 2 -complement of S in $N_{G}(S)$. Then K acts on $\Omega_{1}(Z(S)) \cap A_{z}$ and $\Omega_{1}(Z(S)) / \Omega_{1}(Z(S)) \cap A_{z}$. If $\mid \Omega_{1}(Z(S)) \cap$ $A_{z} \mid>4$, then $q>2$, and so $\Omega_{1}(Z(S)) \cap A_{z}=\left[\Omega_{1}(Z(S)), N_{N_{G}\left(A_{z}\right)}(S)\right]$. Hence $\Omega_{1}(Z(S)) \cap A_{z}=\left[\Omega_{1}(Z(S)), K\right]$ and we see that $\Omega_{1}(Z(S))=$ $\left(\Omega_{1}(Z(S)) \cap A_{z}\right) \times C_{\Omega_{1}(Z(S))}(K)$. As $C_{\Omega_{1}(Z(S))}\left(N_{N_{G}\left(A_{z}\right)}(S)\right)=\langle z\rangle$, we get $[z, K]=1$, a contradiction.

So we have $\left|\Omega_{1}(Z(S)) \cap A_{z}\right|=4$. If $A_{z} \cong S p_{2 n}(q)$, then $q>2$ by Proposition 5.2. So we receive $O_{2}\left(C_{G}\left(\Omega_{1}(Z(S))\right)^{(\infty)}\right) \leq Q_{R}$ is nonabelian. Hence $R=O_{2}\left(C_{G}\left(\Omega_{1}(Z(S))\right)^{(\infty)}\right)^{\prime}$ and $\left|R \cap \Omega_{1}(Z(S))\right|=2$. But then $\left[K, R \cap \Omega_{1}(Z(S))\right]=1$ and so $\left[K, \Omega_{1}(Z(S))\right]=1$. So we are left with $A_{z} \cong F_{4}(q)$. Now with [MaStr, Definition 2.32] and Lemma 2.17 we receive $O_{2}\left(C_{G}\left(\Omega_{1}(Z(S))\right)^{\prime}\right)=Q_{R_{1}} Q_{R_{2}}$. We further have that $Q_{R_{1}} \cap$ $Q_{R_{2}} / R_{1} R_{2}$ just involves two natural $S p_{4}(q)$-modules and $Q_{R_{1}} Q_{R_{2}} / Q_{R_{1}} \cap$ $Q_{R_{2}}$ is a direct sum of two modules which are non split extensions of the trivial module by the natural module. As $Q_{R_{1}} \cap Q_{R_{2}}=\left(Q_{R_{1}} Q_{R_{2}}\right)^{\prime}$, we have that K normalizes $Q_{R_{1}} \cap Q_{R_{2}}$ and then Y_{z}, where $Y_{z} /\left(Q_{R_{1}} \cap Q_{R_{2}}\right)$ is the sum of the trivial modules in $Q_{R_{1}} Q_{R_{2}} /\left(Q_{R_{1}} \cap Q_{R_{2}}\right)$, i.e. $Y_{z}=$ $\left(Q_{R_{1}} \cap Q_{R_{2}}\right) Z\left(Q_{R_{1}}\right) Z\left(Q_{R_{2}}\right)$. Hence $Y_{z}^{\prime}=\left[Z\left(Q_{R_{1}}\right), Z\left(Q_{R_{2}}\right)\right]$. We have $\left[K, \Omega_{1}(Z(S))\right] \leq A_{z}$. As $\left|\Omega_{1}(Z(S)) \cap A_{z}\right|=4$, there is a field automorphism ν of A_{z} possibly trivial, such that $\bar{Z}_{z}=C_{Y_{z} / Q_{R_{1}} \cap Q_{R_{2}}}(\nu)$ is
of order 4. As then $\bar{Z}_{z}=C_{Y_{z} / Q_{R_{1}} \cap Q_{R_{2}}}(S)$, we have that K normalizes \bar{Z}_{z}. For the preimage Z_{z} we have $\left|Z_{z}^{\prime}\right|=2$. Hence $\left[K, Z_{z}^{\prime}\right]=1$. As $\left|\Omega_{1}(Z(S)) \cap A_{z}\right|=4$, this yields $\left[K, \Omega_{1}(Z(S)) \cap A_{z}\right]=1$ and so as $\left|\Omega_{1}(Z(S)): \Omega_{1}(Z(S)) \cap A_{z}\right|=2$, the contradiction $\left[K, \Omega_{1}(Z(S))\right]=1$.

To complete the proof of (2) we have to treat $A_{z} \cong S p_{4}(q)$. Then by Proposition $5.2 q>2$. We have two root groups R_{1}, R_{2} in $Z\left(S \cap A_{z}\right)$. Let $\left|C_{S}\left(A_{z}\right)\right|=2^{n}$. By Lemma 2.21 we have exactly two abelian subgroups $C_{S}\left(A_{z}\right) \times Q_{R_{1}}$ and $C_{S}\left(A_{z}\right) \times Q_{R_{2}}$ of type $\mathbb{Z}_{2^{n}} \times E_{q^{3}}$ in S. Hence N normalizes both and so $C_{S}\left(A_{z}\right)=\langle z\rangle$. Now N normalizes a Sylow 2-subgroup of $A_{z} \times\langle z\rangle$, which is $\langle z\rangle \times Q_{R_{1}} Q_{R_{2}}$.

We have $\left(Q_{R_{1}} Q_{R_{2}}\right)^{\prime}=R_{1} R_{2}$. Let K be as before a 2 -complement in N. Then K acts on $R_{1} R_{2}$. If $\left|Z(S) \cap R_{1} R_{2}\right|>4$, we may argue as before. So we may assume that $\left|Z(S) \cap R_{1}\right|=\left|Z(S) \cap R_{2}\right|=2$. Then again we must have some element $\nu \in S$, which induces a field automorphism on A_{z} such that $\left|C_{R}(\nu)\right|=2$. By Lemma 2.22ν acts in the same way on $Q_{R_{i}} / R_{1} R_{2}, i=1,2$. Hence $\bar{Z}_{z}=C_{Q_{R_{1}} Q_{R_{2}} / R_{1} R_{2}}(\nu)$ is of order 4. This shows $\left|Z_{z}^{\prime}\right|=2$, and so $\left[N, Z_{z}\right]=1$. But then also $\left[N, Z(S) \cap R_{1} R_{2}\right]=1$ and so $\left[\Omega_{1}(Z(S)), K\right]=1$, a contradiction. This proves (2).

By (2) we have that R does not contain 2-central elements of $C_{G}(z)$. Then A_{z} admits a graph automorphism in $C_{G}(z)$. So $A_{z} \cong S p_{4}(q)$ or $F_{4}(q)$. Set $X=\langle z\rangle Z\left(Q_{R_{1}} Q_{R_{2}}\right), R_{i}$ as above. Now $\Omega_{1}(Z(S)) \leq X$. As before we see that $\langle z\rangle=C_{S}\left(A_{z}\right)$. Now by Lemma $2.21\langle z\rangle \times Q_{R_{1}} Q_{R_{2}}$ is the group generated by the elementary abelian subgroups of $O_{2}(N)$ of order $2 q^{3}$ for $A_{z} \cong S p_{4}(q)$ and $\langle z\rangle \times Q_{R_{1}} Q_{R_{2}}=O_{2}\left(C_{G}\left(\Omega_{1}(Z(S))\right)\right)$ if $A_{z} \cong F_{4}(q)$. Hence N normalizes $\langle z\rangle Q_{R_{1}} Q_{R_{2}}$ in both cases. So $N \leq$ $N_{G}(X)$. By Lemma 6.8 we have $N_{G}(X) \leq C_{G}(z)$ and so also $N_{G}(S) \leq$ $C_{G}(z)$, the assertion.

Lemma 6.10. If $N \in \mathcal{N}_{S}$, then $Q_{R} \not \leq O_{2}(N)$.
Proof. Suppose $Q_{R} \leq O_{2}(N)$. Assume first that we have $\Omega_{1}\left(Z\left(Q_{R}\right)\right)=$ R. Then we have that $\Omega_{1}\left(Z\left(O_{2}(N)\right)\right)=\left\langle z, R_{1}\right\rangle$ with $R_{1} \leq R$. But then all elements in $\Omega_{1}\left(Z\left(O_{2}(N)\right)\right)$ are 2-central in G. By Lemma 6.9 we then have $z^{N} \cap Z\left(O_{2}(N)\right)=\{z\}$ and so the contraction $N \leq C_{G}(z)$.

By [MaStr, Definition 2.32] we are left with $A_{z} \cong S p_{2 n}(q)$ or $F_{4}(q)$. Then all involutions in $Z\left(Q_{R}\right)$ are 2-central in A_{z}. If this is also true in $C_{G}(z)$, then again all involutions in $\Omega_{1}\left(Z\left(O_{2}(N)\right)\right)$ are 2-central and so again $N \leq C_{G}(z)$.

So S must contain some element which induces a graph automorphism on A_{z}. This implies $A_{z} \cong S p_{4}(q)$ or $F_{4}(q)$. In both cases we have that $Q_{R_{1}}$ and $Q_{R_{2}}$ both are contained in $O_{2}(N)$, where R_{1}, R_{2} are the two root subgroups with $R_{1} R_{2}=Z\left(A_{z} \cap S\right)$. Set $X=\langle z\rangle Z\left(Q_{R_{1}} Q_{R_{2}}\right)$, $\Omega_{1}\left(Z\left(O_{2}(N)\right)\right) \leq X$. If $A_{z} \cong F_{4}(q)$, we see that $C_{S}\left(A_{z}\right) \times Q_{R_{1}} Q_{R_{2}}=$ $O_{2}\left(C_{G}(X)\right)$. If $A_{z} \cong S p_{4}(q)$, we see by Lemma 2.22 and Lemma 2.21 that $\left\langle C_{S}\left(A_{z}\right), Q_{R_{1}}\right\rangle,\left\langle C_{S}\left(A_{z}\right), Q_{R_{2}}\right\rangle$ are the only two abelian subgroups of order $2^{n} q^{3},\left|C_{S}\left(A_{z}\right)\right|=2^{n}$, in S. Hence in any case we see that $C_{S}\left(A_{z}\right) \times Q_{R_{1}} Q_{R_{2}}$ is normal in N. As $N \not \leq C_{G}(z)$, we get $C_{S}\left(A_{z}\right)=$ $\langle z\rangle$. Now N normalizes $Z\left(\left\langle z, Q_{R_{1}}, Q_{R_{2}}\right\rangle\right)=\left\langle z, R_{1}, R_{2}\right\rangle$. Application of Lemma 6.8 gives the final contradiction.

The next two lemmas are of central importance for the proof of the main theorem. These describe the structure of $N \in \mathcal{N}_{S}$. Moreover we show that $q=2$, if A_{z} is a group of Lie type over $\mathrm{GF}(q)$, and finally that there is some involution $t \in Z(N)$. In what follows we then determine the centralizer of this involution t, which eventually will yield the final contradiction.

Lemma 6.11. Let $N \in \mathcal{N}_{S}$ with $U=\Omega_{1}\left(Z\left(O_{2}(N)\right)\right) \leq C_{G}\left(A_{z}\right) \times Q_{R}$, then $\left|\Omega_{1}(Z(S)) \cap\left(A_{z} \times C_{G}\left(A_{z}\right)\right)\right|=4,|R|=2$ and there is some $t \in \Omega_{1}(Z(S)) \backslash\langle z\rangle$ such that $t \notin A_{z}$ and $t \in Z(N)$. Further one of the following holds:
(i) $N / C_{N}(U) \cong \Sigma_{3}$ and $Q_{R} \unlhd S$; or
(ii) $N / C_{N}(U) \cong \Sigma_{3}$ 2 $\mathbb{Z}_{2}, A_{z} \cong F_{4}(2)$ and Q_{R} 太 S

Proof. By Lemma $6.6 z \in U$, so $C_{G}(U) \leq C_{G}(z)$. We have

$$
\begin{equation*}
U \not \leq Z\left(Q_{R}\right) \times C_{G}\left(A_{z}\right) \tag{1}
\end{equation*}
$$

Otherwise $\left\langle Q_{R}^{N}\right\rangle \leq C_{N}(U)$, so $\left\langle Q_{R}^{N}\right\rangle \leq C_{G}(z)$. By Lemma 6.4(i) we have $N=N_{N}\left(S \cap\left\langle Q_{R}^{N}\right\rangle\right)$. Hence $\left\langle Q_{R}^{N}\right\rangle \leq O_{2}(N)$, contradicting Lemma 6.10.

In particular by (1) Q_{R} is not abelian, hence $A_{z} \not \neq S p_{4}(q)$. As by (1) $\left[U, Q_{R}\right]=R \leq U$, we have that Q_{R} induces an elementary abelian group $Q_{R} / Q_{R} \cap O_{2}(N)$ on U.

Let H be a hyperplane in $Z\left(Q_{R}\right)$ not containing Q_{R}^{\prime}. Then by [MaStr, Lemma 2.36] Q_{R} / H is extraspecial. Hence we receive that $\mid Q_{R} / H$: $C_{Q_{R} / H}(U H /(\langle z\rangle H))\left|\geq|U H /(\langle z\rangle H)| /\left|U \cap Z\left(Q_{R}\right) / H\right|\right.$. So we have that $\left|Q_{R}: C_{Q_{R}}(U)\right| \geq\left|U: C_{U}\left(Q_{R}\right)\right|$. In particular U is an F-module with quadratic offender $A=Q_{R} / C_{Q_{R}}(U)$.

Suppose that $N / C_{N}(U)$ is nonsolvable. We have that $O^{2}\left(N / C_{N}(U)\right)=$ $N_{1} * \cdots * N_{r}, S$ acts transitively on the N_{i} and by Lemma 6.4 induces
on each a minimal parabolic. By Lemma 3.5 A normalizes each N_{i} and so induces with some N_{i} an F-module on U. Hence by Lemma 3.3 and [Asch1, Theorem A] we have that $N_{i} \cong S L_{2}\left(2^{n}\right)$ or $A_{2^{n}+1}$. Let $V_{i}=\left[U, N_{i}\right]$, then also $\left[V_{i}, Q_{R}\right] \leq V_{i}$ and then we may assume that $R \leq V_{1}$. But as S acts transitively on the N_{i}, we get $r=1$ if R is normalized by S. If there is $t \in S$ with $R^{t}=\tilde{R} R$, then $\tilde{R} \leq V_{2}$ and we have $r \leq 2$. If $r=2$ then $\left[Q_{R}, V_{2}\right]=1=\left[Q_{\tilde{R}}, V_{1}\right]$. In any case we have that $V_{1} / C_{V_{1}}\left(N_{1}\right)$ is the natural module by Lemma 3.3, Lemma 3.9 and Lemma 3.10. As $\left[N_{1}, V_{2}\right]=1$, we get in any case that $U / C_{U}\left(N_{1}\right)$ is the natural module.

Let $N_{1} \cong S L_{2}\left(2^{n}\right)$. Then first of all, as $\left|Q_{R}: C_{Q_{R}}(U)\right| \geq q$ and $\left|\left[U, Q_{R}\right]\right|=q$, we have $2^{n}=q$. Then as N is a minimal parabolic such that the unique maximal subgroup containing S is $C_{N}(z)$, we have that a Borel subgroup B of N_{1} centralizes z. But we have that $U / C_{U}\left(N_{1}\right)$ is the natural module. Now $C_{U}(B)=C_{U}\left(N_{1}\right)$ by Lemma 3.14, and so $z \in Z(N)$, a contradiction.

Let $N_{1} \cong A_{2^{n}+1}, n>1$. Then $U / C_{U}\left(N_{1}\right)$ is the permutation module. We have again that z is centralized by some subgroup $L \cong A_{2^{n}}$ in N_{1}. By Lemma 3.13 we see that $\Omega_{1}(Z(S)) \leq C_{U}\left(C_{N_{1}}(z)\right)$. Hence $\left[C_{N}(z), \Omega_{1}(Z(S))\right]=1$. So $C_{N}(z) \leq C_{N}\left(\Omega_{1}(Z(S))\right)$ and then $O_{2}\left(C_{N}(z)\right) \leq$ $O_{2}\left(C_{N}\left(\Omega_{1}(Z(S))\right)\right)$. In particular we have that $Q_{R} \leq O_{2}\left(C_{N}(z)\right)$. As $Q_{R} \not \leq C_{N}(U)$, so $O_{2}(L) \neq 1$, we get that $2^{n}=4$. So we have that $N_{1} / C_{N_{1}}(U) \cong A_{5}$ and Q_{R} projects onto a subgroup of a Sylow 2subgroup of N_{1}. As $\left[N_{1}, U\right]$ is the permutation module now Q_{R} cannot be an offender.

Assume next that $N / C_{N}(U)$ is solvable. Set $U_{1}=\left\langle z^{N}\right\rangle$. By Lemma 3.16 we have that $C_{N}\left(U_{1}\right)$ is 2-closed and $N / C_{N}\left(U_{1}\right)=O_{3,2}\left(N / C_{N}\left(U_{1}\right)\right)$. Hence as N is a minimal parabolic, we receive $N=S P$, where P is a Sylow 3-subgroup of N. Further by the minimal choice of N we have that $\Phi(P)$ centralizes z, so $\left[\Phi(P), U_{1}\right]=1$. Let A be an $F-$ module offender, which normalizes P. As $O_{2}(N)$ is a Sylow 2-subgroup of $C_{N}\left(U_{1}\right)$, we have that A exists and $[a, P] \not \leq \Phi(P)$ for $a \in A^{\sharp}$. Hence A induces an F-module offender on U_{1} too. By Lemma 3.17 we get that $\left|U_{1}: C_{U_{1}}(A)\right|=|A|$. As $\left|U: C_{U}(A)\right| \leq|A|$, we see that $[U, A] \leq U_{1}$. As S acts irreducibly on $P / \Phi(P)$, we see that $[U, P] \leq U_{1}$ and so $[U, \Phi(P)] \leq C_{U}(\Phi(P))$. Hence $[U, \Phi(P)]=1$. This shows that $C_{N}\left(U_{1}\right)=C_{N}(U)$ and so P induces an elementary abelian group on U.

By Lemma 2.3 we get a direct product $M=M_{1} \times \cdots \times M_{r}$ of dihedral groups M_{i} of order 6 contained in $N / C_{N}(U)$ with $Q_{R} / C_{Q_{R}}(U)$ as a Sylow 2-subgroup. As $U \leq Q_{R} \times C_{S}\left(A_{z}\right)$ we see $\left[U, Q_{R}\right] \leq R$ and so Q_{R} acts quadratically on U. We get that $\left[U, O_{3}(M)\right]=V_{1} \oplus \cdots \oplus V_{r}$, with $\left[O_{3}\left(M_{i}\right), V_{i}\right]=V_{i}$ and $\left[O_{3}\left(M_{i}\right), V_{j}\right]=1, i, j=1, \ldots, r, i \neq j$. As $\left[Q_{R}, V_{i}\right] \leq R$ and $\left[V_{1}, Q_{R}\right]=R$, we get $r=1$ and $\left|Q_{R} / C_{Q_{R}}(U)\right|=2$. Then also $\left|\left[U, Q_{R}\right]\right|=2$. If R is normalized by S, Q_{R} must invert $\left.P / C_{P}(U)\right)$, so $\left|\left[P / \Phi(P), Q_{R}\right]\right|=3$ and $N / C_{N}(U) \cong \Sigma_{3}$, which is (i). In the other case $P / C_{P}(U)=\left[P / C_{P}(U), Q_{R} Q_{R}^{t}\right]$ for some t in $S \backslash N_{S}\left(Q_{R}\right)$. Hence $\left|P / C_{P}(U)\right|=9$. We have a fours group acting on P and $U / C_{U}(P)$ is the natural $O_{4}^{-}(2)-$ module. In both cases $\left|Q_{R}: C_{Q_{R}}(U)\right|=2$. This shows that Q_{R} is extraspecial or isomorphic to $E \times Q$, with Q extraspecial and $E \leq Z\left(Q_{R}\right)$. In particular if $Q_{R} \nexists S$, we get that $A_{z} \cong F_{4}(2)$, which is (ii).

Suppose that $|Z(S) \cap E \times Q|>2$. Then by Proposition 5.2 we have that $A_{z} \cong F_{4}(2)$. Further Q_{R} is normal in S and so $C_{G}(z)=A_{z} \times C_{G}\left(A_{z}\right)$. As $z \notin Z(N)$, we have $C_{S}\left(A_{z}\right)=\langle z\rangle$. Then Lemma 2.2 and Lemma 6.9 give a contradiction. So we have

$$
\left|\Omega_{1}(Z(S)) \cap A_{z} \times C_{S}\left(A_{z}\right)\right|=4
$$

To prove the lemma, we just have to show the existence of the involution t.

In any case we have that $U=\left[O_{2,3}(N), U\right] \times C_{U}\left(O_{2,3}(N)\right)$. Furthermore $\left|\Omega_{1}(Z(S))\right|=4$ and $\left|C_{\left[O_{2,3}(N), U\right]}(S)\right|=2$. This implies $C_{U}\left(O_{2,3}(N)\right) \neq 1$. Hence there is some $t \in \Omega_{1}(Z(S)) \backslash\langle z\rangle$ with $[t, N]=1$. We have that $\left[\left[O_{2,3}(N), U\right], Q_{R}\right] \neq 1$. In particular we have that $R \leq\left[O_{2,3}(N), U\right]$. Hence $\Omega_{1}(Z(S)) \cap A_{z} \leq\left[O_{2,3}(N), U\right]$. As $t \notin\left[O_{2,3}(N), U\right]$ we get $t \notin A_{z}$.

Lemma 6.12. Let $N \in \mathcal{N}_{S}$ with $U=\Omega_{1}\left(Z\left(O_{2}(N)\right)\right) \not \leq C\left(A_{z}\right) \times Q_{R}$. Then $\left|\Omega_{1}(Z(S)) \cap\left(A_{z} \times C_{G}\left(A_{z}\right)\right)\right|=4,|R|=2$ and $Q_{R} \unlhd S$. Further $E\left(N / C_{N}(U)\right) \cong A_{5}$ and induces just one nontrivial irreducible module in U, the permutation module, or $N / C_{N}(U) \cong O_{4}^{+}(2)$ and just the natural module is induced in U. Further there is some $t \in \Omega_{1}(Z(S)) \backslash\langle z\rangle$ such that $t \notin A_{z}$ and $t \in Z(N)$.

Proof. We first show

$$
\begin{equation*}
U \text { normalizes } Q_{R} \text {. } \tag{1}
\end{equation*}
$$

If U does not normalize Q_{R} we get $A_{z} \cong S p_{4}(q)$ or $F_{4}(q)$. We have $\left[U, Q_{R}\right] \leq U$. In particular $\left[U, Q_{R}\right]$ is abelian. From Lemma 2.26 we get
$A_{z} \not \neq S p_{4}(q)$ or $F_{4}(q)$. This proves (1).
Next we show

$$
\begin{equation*}
O_{2}(N) \leq N_{N_{G}\left(A_{z}\right)}(R) \tag{2}
\end{equation*}
$$

Otherwise $R \cap U=1$. Hence by (1) $\left[\left[U, Q_{R}\right], Q_{R}\right]=1$, which shows that $\left[U, Q_{R}\right] \leq Z\left(Q_{R}\right)$. As $U \not \leq Q_{R} \times C_{G}\left(A_{z}\right)$, we get from Lemma 2.25 that $A_{z} \cong S p_{4}(q)$ and Q_{R} is elementary abelian. Let R_{1}, R_{2} be the two root groups in $Z\left(S \cap A_{z}\right)$. As U is elementary abelian, we have that $U \cap A_{z} \times C_{S}\left(A_{z}\right)$ is contained in $R_{1} R_{2} \times C_{S}\left(A_{z}\right)$, recall that $R_{1} R_{2}=Q_{R_{1}} \cap Q_{R_{2}}$ by Lemma 2.21. Then we also see that U cannot contain elements which induce field automorphisms on A_{z}, otherwise for such $u \in U$, we have that $1 \neq[u, R] \leq R$, contradicting $R \cap U=1$. Hence $U \leq R_{1} R_{2} \times C_{G}\left(A_{z}\right)$, contradicting $U \not 又 Q_{R} \times C_{G}\left(A_{z}\right)$. So we have (2).

Now we apply Lemma 3.21 with N in the role of M and $N_{N_{G}\left(A_{z}\right)}(R)$ in the role of H. Suppose that $X=O_{2}\left(N_{N_{G}\left(A_{z}\right)}(R)\right) \not \leq C_{G}\left(A_{z}\right) \times Q_{R}$. Then there is some $x \in X$ inducing an outer automorphism on A_{z}. In particular A_{z} is of Lie type in characteristic two. If x is a field automorphism it acts on a group of order $q-1$ which acts nontrivially on R, so x cannot be contained in X. Hence x acts nontrivially on the Dynkin diagram and so has to centralize the Levi factor. This shows $A_{z} \cong L_{4}(q)$. By Proposition 5.2 we have $q>2$. But then x acts nontrivially on a group $\mathbb{Z}_{q-1} \times \mathbb{Z}_{q-1}$ in $N_{A_{z}}(R)$, a contradiction. So we have that $X \leq C_{G}\left(A_{z}\right) \times Q_{R}$ and then $U \not \leq X$. Hence from Lemma 3.21 we get
U is a $2 F$ - module.
We show
If \tilde{U} is a Q_{R}-invariant submodule of U with $\left[Q_{R}, \tilde{U}\right] \neq 1$.
(U) Then either Q_{R} is abelian or $R \leq \tilde{U}$.

Further $O_{2}(N) \leq N_{N}\left(Q_{R}\right)$.
Suppose Q_{R} to be nonabelian. By (1) $\left[\tilde{U}, Q_{R}\right] \leq Q_{R}$. Then $[\tilde{U} \cap$ $\left.Q_{R}, Q_{R}\right]=1$ or $\left[\tilde{U} \cap Q_{R}, Q_{R}\right]=R$. In the latter $R \leq \tilde{U}$. In the former we have $\left[Q_{R}, \tilde{U}\right] \leq Z\left(Q_{R}\right)$. Hence by Lemma $2.25 \tilde{U} \leq Q_{R} \times C_{S}\left(A_{z}\right)$ and so $\left[\tilde{U}, Q_{R}\right]=R$ and we are done. The second statement in (U) follows by (2).

We now first work under the assumption:
Assume N is nonsolvable.
Let $E\left(N / C_{N}(U)\right)=N_{1} * \cdots * N_{r}$. Assume first that for an offender A as a $2 F$-module which is given by Lemma 3.21 we have that $\left[A, N_{1}\right] \not \subset N_{1}$. If A acts quadratically then by Lemma 3.21 we have that A induces an F-module offender. But this contradicts Lemma 3.5. So A cannot be quadratic on U. By Lemma 3.22 we get that $N_{1} \cong L_{n}(2)$, and for some $a \in A$ with $N_{1}^{a} \neq N_{1}$ we have that A induces the full transvection group on $[U, a]$. Hence $C_{N_{1} N_{1}^{a}}(a)$ induces the natural module on $[U, a]$. As $N_{1} N_{S}\left(N_{1}\right)$ is a minimal parabolic by Lemma 6.4 , we have $n=3$ and with the natural module also the dual module is involved. Hence for $C_{N_{1} N_{1}^{a}}(a)$ we have a natural and a dual module involved in U, which contradicts that $C_{N_{1} N_{1}^{a}}(a)$ induces just the natural module.

So we have that

The offender A from Lemma 3.21 normalizes all components.

We have $\left|U: C_{U}(A)\right|<\left|A: C_{A}(U)\right|^{2}$ by Lemma 3.21. Now we choose A minimal such that $\left|U: C_{U}(A)\right|<\left|A: C_{A}(U)\right|^{2}$. Set $A_{1}=C_{A}\left(N_{1}\right)$. Then we have that $\left|U: C_{U}\left(A_{1}\right)\right| \geq\left|A_{1}: C_{A_{1}}(U)\right|^{2}$. In particular for a complement B of A_{1} in A we have that $\left|C_{U}\left(A_{1}\right): C_{C_{U}\left(A_{1}\right)}(B)\right|<\mid B$: $\left.C_{B}\left(C_{U}\left(A_{1}\right)\right)\right|^{2}$, which yields:

Let $T=C_{S}\left(N_{1}\right)$, then we have that $V=C_{U}(T)$

$$
\begin{equation*}
\text { is a } 2 \mathrm{~F} \text {-module for } N_{1} \text { with offender } B \tag{A.2}
\end{equation*}
$$

$$
\text { such that }\left|V: C_{V}(B)\right|<|B|^{2}
$$

Application of Lemma 6.10 yields $Q_{R} \not \leq O_{2}(N)$. By Lemma 6.4(i) we have that $O_{2}(N)$ is normal in $C_{N}(U)$. This shows $\left[Q_{R}, U\right] \neq 1$. Hence $\left[N_{1} * \cdots * N_{r}, Q_{R}\right] \neq 1$. So we may assume that $\left[N_{1}, Q_{R}\right] \neq 1$. Set $U_{1}=\left[N_{1}, V\right]$.

Now by (A.2) N_{1} and U_{1} are given in Lemma 3.4. As $\left[z, N_{1}\right] \neq 1$ we get $C_{V}\left(C_{N_{1}}(z)\right) \neq C_{V}\left(N_{1}\right)$. If the irreducible N_{1}-modules in V are $F-$ modules, we have that $N_{1} \cong L_{2}\left(2^{n}\right)$ and $C_{N_{1}}(z)$ is a Borel subgroup, a contradiction to Lemma 3.14 , or $N_{1} \cong A_{2^{n}+1}$ and $C_{N_{1}}(z) \cong A_{2^{n}}$. By Lemma 3.12 we see that $V / C_{V}\left(N_{1}\right)$ is the permutation module. Then Lemma 3.14 shows that $C_{N_{1}}(z)$ centralizes $\Omega_{1}(Z(S))$. So we see that $Q_{R} \leq O_{2}\left(C_{N}(z)\right)$. We get $N_{1}=A_{5}$ and then U_{1} is the permutation module.

So assume now that we have Lemma 3.4(b). In the first three cases always $C_{N_{1}}(z)$ is a Borel subgroup, which has a fixed point on the corresponding modules exactly when $r=2$, so $N_{1} \cong L_{3}(2)$ or $S p_{4}(2)^{\prime}$. In both cases we have that $U_{1} / C_{U_{1}}\left(N_{1}\right)$ is a direct sum of a natural module and its dual. Assume now $N_{1} \cong A_{9}$ and $\left|U_{1} / C_{U_{1}}\left(N_{1}\right)\right|=2^{8}$. Then $z \in C_{U}\left(N_{1}\right)$ by Lemma 3.14, a contradiction.

So we collect:
$N_{1} \cong L_{2}(4), L_{3}(2)$, or A_{6}. In the last two cases we have $U_{1} / C_{U_{1}}\left(N_{1}\right)=U_{11} \oplus U_{12}$, where U_{11} and U_{12} are dual modules for N_{1}. In the first case we have that U_{1} is the permutation module.

Next we show
$A_{z} \not \not F_{4}(q)$. Further if $A_{z} \cong S p_{4}(q)$, then Q_{R} is elementary abelian and Q_{R} acts quadratically on U.
The second statement follows from (1). So assume $A_{z} \cong F_{4}(q)$. Suppose first $\left\langle U_{1}^{S}\right\rangle \leq Q_{R} \times C_{S}\left(Q_{R}\right)$. Then $\left[\left\langle U_{1}^{S}\right\rangle, Z\left(Q_{R}\right)\right]=1$. Hence $\left[\left\langle N_{1}^{S}\right\rangle, Z\left(Q_{R}\right)\right] \leq O_{2}(N)$. This shows that $Z\left(Q_{R}\right) \leq O_{2}(N)$ and so $\left[U, Z\left(Q_{R}\right)\right]=1$, which by Lemma 2.17 shows $U \leq Q_{R} \times C_{S}\left(Q_{R}\right)$, a contradiction. Thus we may assume that $U_{1} \not \subset Q_{R} \times C_{S}\left(Q_{R}\right)$. Then for $u \in U_{1} \backslash Q_{R} \times C_{G}\left(A_{z}\right)$, we obtain that $\left|\left[Q_{R}, u\right]\right| \geq q^{4}$. As $R \leq U$ by (U) we receive that $Q_{R} O_{2}(N) / O_{2}(N)$ is elementary abelian. Hence we get from (A.3) that $\left|Q_{R}: C_{Q_{R}}\left(U_{1}\right)\right| \leq 8$ if Q_{R} normalizes N_{1}, a contradiction to $\left|\left[Q_{R}, u\right]\right| \geq q^{4} \geq 16$. So we have that Q_{R} does not normalize N_{1}. Then at least a subgroup T of index two in $S \cap N_{1}$ normalizes Q_{R}, as this is true in $\operatorname{Aut}\left(F_{4}(q)\right)$, and then $\left[Q_{R}, T\right]$ is abelian and centralized by Q_{R}. Hence we get that $\left|N_{1}^{Q_{R}}\right|=2$ and then $\left|Q_{R}: C_{Q_{R}}\left(U_{1}\right)\right| \leq 16$. In particular $q=2$. Further U_{1} does not induce transvections on $Z\left(Q_{R}\right)$, as for any transvection $u \in U_{1}$ we have $\left|\left[Q_{R} / Z\left(Q_{R}\right), u\right]\right|=16$ by Lemma 2.17. This implies $N_{1} \cong A_{6}$ and further $S p_{4}(2)$ is induced. Now $Z\left(Q_{R}\right)$ acts quadratically on U and so we have by Lemma 3.5 that $Z\left(Q_{R}\right)$ normalizes N_{1}. Then it acts quadratically on U_{1}. As U_{1} involves the natural module and the dual as well, we see that $Z\left(Q_{R}\right)$ induces a group of order at most four which is in the center of a Sylow 2 -subgroup of $S p_{4}(2)$. But then U_{1} contains some u which induces a transvection on $Z\left(Q_{R}\right)$, a contradiction. This proves (A.4).

$$
\begin{equation*}
\left[Q_{R}, N_{1}\right] \leq N_{1} . \tag{A.5}
\end{equation*}
$$

Suppose false. If $A_{z} \cong S p_{4}(q)$, then by Proposition $5.2 q>2$. Hence $\left|Q_{R}: C_{Q_{R}}\left(U_{1}\right)\right| \geq 4$. By (A.4) Q_{R} acts quadratically on U. We get
by Lemma 3.5 that $N_{1} \cong L_{2}(4)$. Further $\left\langle N_{1}^{Q_{R}}\right\rangle$ induces just natural $\Omega_{4}^{+}(4)$-modules in U, contradicting the fact that by (A.3) N_{1} induces an $\Omega_{4}^{-}(2)$-module. So we have that $A_{z} \not \approx S p_{4}(q)$ and by (A.4) $Q_{R} \unlhd S$. We further have that $R \leq U$ by (U) and so $Q_{R} O_{2}(N) / O_{2}(N)$ is elementary abelian. Hence N_{1} has elementary abelian Sylow 2-subgroups, as for $t \in Q_{R}$, with $N_{1}^{t} \neq N_{1}$, we have that $\left[N_{1}, t\right]$ has a Sylow 2-subgroup contained in $Q_{R} O_{2}(N) / O_{2}(N)$ and so is abelian. Then $N_{1} \cong L_{2}(4)$ again. We further have $\left|Q_{R}: N_{Q_{R}}\left(N_{1}\right)\right|=2$. Set $W_{1}=\left[U_{1}, N_{Q_{R}}\left(N_{1}\right)\right]$. As $N_{Q_{R}}\left(N_{1}\right)$ projects onto a Sylow 2 -subgroup of N_{1} and N_{1} induces an $\Omega_{4}^{-}(2)$-submodule, we have $\left[W_{1}, N_{Q_{R}}\left(N_{1}\right)\right] \neq 1$. As U_{1} normalizes Q_{R}, we have that $W_{1} \leq Q_{R}$ and so $\left|R \cap U_{1}\right|=2$. Set $W_{1}=\left\langle U_{1} \cap R, x_{1}, y_{1}\right\rangle$ and choose $x \in Q_{R}$ with $N_{1}^{x}=N_{2}$. We have $\left|Q_{R}: C_{Q_{R}}\left(x_{1}\right)\right| \leq 4$. From Lemma 2.17 we see that $\left|Q_{R}: C_{Q_{R}}\left(x_{1}\right)\right| \geq q$. Hence $|R|=q \leq 4$. As $\left[W_{1}, x\right] \leq R$ and $\left|R: R \cap U_{1}\right| \leq 2$, we may assume that $\left[x_{1}, x\right] \in$ $U_{1} \cap R$. Hence $\left|Q_{R}: C_{Q_{R}}\left(x_{1}\right)\right|=2$, which gives $|R|=2=q$ and $R \leq U_{1}$. But then $\left[Q_{R}, W_{1}\right] \leq R \leq W_{1}$. This shows $W_{1}^{x}=W_{1}$. Set $M=N_{N_{1}}\left(W_{1}\right) N_{N_{1}}\left(W_{1}\right)^{x}$, which is isomorphic to $A_{4} \times A_{4}$. Then M acts on W_{1}. Hence there is some element of order three in M which centralizes W_{1}. But then $O_{2}(M)$ centralizes W_{1} too, which contradicts the action of $N_{Q_{R}}\left(N_{1}\right)$ on W_{1}. This proves (A.5)

Next we show
$N_{1} \cong A_{5}$ and U_{1} is the irreducible part of the permutation module.

According to (A.3) we may assume $N_{1} \cong L_{3}(2)$ or A_{6}. Assume further $A_{z} \not \neq S p_{4}(q)$. If Q_{R} normalizes both modules U_{11} and U_{12} given in (A.3) then by (U) $R \leq U_{11} \cap U_{12}$, a contradiction. Hence there is $x \in Q_{R}$ with $U_{11}^{x}=U_{12}$. But then x induces an outer automorphism of $L_{3}(2)$ or Σ_{6} and then $\left[x, S / O_{2}(N)\right]$ is not abelian. By (U) we have $R \leq O_{2}(N)$ and so $Q_{R} / Q_{R} \cap O_{2}(N)$ is elementary abelian. This contradicts $Q_{R} \unlhd S$ and [$x, S / O_{2}(N)$] being not abelian.

So we have that $A_{z} \cong S p_{4}(q), q \geq 4$. Then by (A.4) Q_{R} is elementary abelian and acts quadratically on U. As $\left|Q_{R} / O_{2}(N) \cap Q_{R}\right| \geq 4$, we see that $Q_{R} \cap N\left(U_{11}\right) \not \leq C\left(U_{11}\right)$. By quadratic action we get that Q_{R} normalizes U_{11} and U_{12}. This even shows $Q_{R} / Q_{R} \cap O_{2}(N) \cap N_{1} \neq 1$. In particular $\left|U_{1}: C_{U_{1}}\left(Q_{R}\right)\right| \geq 16$. As by Lemma 3.8 in Σ_{6} no subgroup of order 8 acts quadratically on both modules, we get that Q_{R} induces a foursgroup on N_{1} and so $q=4$. But then $N_{C_{G}(z)}\left(Q_{R}\right) / C_{C_{G}(z)}\left(Q_{R}\right)$ is isomorphic to a subgroup of $\left(A_{5} \times \mathbb{Z}_{3}\right): \mathbb{Z}_{2}$ and so contains no elementary abelian subgroup of order 16 , but $U_{1} / C_{U_{1}}\left(Q_{R}\right)$ contains such an
elementary abelian subgroup. This proves (A.6).
Next we are going to describe the structure of N. We have $N_{1} \cong L_{2}(4)$. Further we have that U_{1} is the permutation module. As before we see by (U) that $R \leq U_{1}$ for Q_{R} not abelian. This shows that Q_{R} acts quadratically on U / U_{1} in any case. As by Lemma $3.14 Q_{R} \leq O_{2}\left(C_{N}(z)\right)$, we see that Q_{R} projects into a subgroup of $C_{N_{1}}(z) \cong A_{4}$. If this projection is of order two, we get that U_{1} induces transvections on Q_{R}. In particular $A_{z} \not \neq S p_{4}(q)$. This now shows that $U_{1} \leq Q_{R} C_{G}\left(Q_{R}\right)$. But $\left|U_{1}: C_{U_{1}}\left(Q_{R}\right)\right|=4$ and so $\left|Q_{R}: C_{Q_{R}}\left(U_{1}\right)\right| \geq 4$. Hence $Q_{R} / Q_{R} \cap O_{2}(N)$ acts as a Sylow 2 -subgroup of A_{5}, which is not quadratic on the permutation module. In particular $Q_{R} \unlhd S$ and $A_{z} \not \neq S p_{4}(q)$ by (A.4). Hence U_{1} is the only permutation module for N_{1} involved in U. This shows that $\left[U_{1}, N_{i}\right]=1$ for $i=2, \cdots, r$. Choose $s \in S$ with $N_{1}^{s}=N_{2}$. Then by (U) we have that $R \leq U_{1} \cap U_{2}=1$, a contradiction. This shows $r=1$. Now we have that $U=U_{1} \oplus U_{2}$, with some N-module U_{2}. As $R \leq U_{1}$, we get from (U$)$ that U_{2} is a trivial $E\left(N / O_{2}(N)\right)$-module. Hence

$$
U=U_{1} \oplus C_{U}\left(N_{1}\right)
$$

So we have shown
If $N / C_{N}(U)$ is nonsolvable, then $E\left(N / C_{N}(U)\right) \cong A_{5}$ and $U=U_{1} \oplus C_{U}\left(E\left(N / C_{N}(U)\right)\right)$, where U_{1} is the permutation module. Further $|R|=2, R \leq U_{1}$ and $Q_{R} \unlhd S$.
Now we assume:
Assume N is solvable.
By Lemma 6.4 $N=O_{2,2^{\prime}, 2}(N)$. As by Lemma 3.21(2) offenders are not exact provided U is not an F-module, we get with Lemma 3.17 that $N / C_{N}(U)$ is a $\{2,3\}$-group. As N is a minimal parabolic we have $N=O_{2,3,2}(N)$. By minimality we have that $\Phi\left(O_{2,3}(N) / O_{2}(N)\right) \leq$ $C_{N}(z) / O_{2}(N)$. So $\Phi\left(O_{2,3}(N) / O_{2}(N)\right)$ centralizes

$$
\left\langle z^{N}\right\rangle=U_{1}
$$

which gives that S acts irreducibly on $O_{3}\left(N / C_{N}\left(U_{1}\right)\right)$.
We show

$$
\begin{equation*}
C_{O_{2,3}(N)}(U)=C_{O_{2,3}(N)}\left(U_{1}\right) \text { and so }\left[O_{2,3}(N)^{\prime}, U\right]=1 . \tag{*}
\end{equation*}
$$

For this let P be a Sylow 3-subgroup of N such that $O_{2}(N) N_{N}(P)=N$. In particular $P / C_{P}\left(U_{1}\right)$ is elementary abelian. Hence we may assume that a $2 F$-module offender A with $\left|U: C_{U}(A)\right|<|A|^{2}$ acts on P. We have that $\left|U_{1}: C_{U_{1}}(A)\right| \geq|A|$ by Lemma 3.17. Hence we conclude
$\left|U / U_{1}: C_{U / U_{1}}(A)\right|<|A|$. So by Lemma 3.17, we get some $1 \neq a \in A$, which acts trivially on U / U_{1}. This gives that $C_{P}\left(U / U_{1}\right) \not \leq \Phi(P)$. As $N_{N}(P)$ acts irreducibly on $P / \Phi(P)$, we get that $P=\Phi(P) C_{P}\left(U / U_{1}\right)$ and then $[P, U] \leq U_{1}$. In particular $\left[C_{P}\left(U_{1}\right), U\right]=1$. This is $(*)$.

Application of (U) shows that for $A_{z} \not \not \equiv S p_{4}(q)$ we have $Q_{R}^{\prime}=R \leq U_{1}$.
So we have

$$
\begin{equation*}
Q_{R} C_{N}(U) / C_{N}(U) \text { is abelian. } \tag{B.1}
\end{equation*}
$$

Let $\left|Q_{R}: C_{Q_{R}}(U)\right|=2$. Then U induces a transvection on Q_{R} with elementary abelian commutator, so $U \leq Q_{R} C_{S}\left(Q_{R}\right)$, a contradiction.

We receive

$$
\begin{equation*}
\left|Q_{R}: C_{Q_{R}}(U)\right| \geq 4 \tag{B.2}
\end{equation*}
$$

By the Dihedral Lemma 2.3 we have a subgroup $D_{1} \times \cdots \times D_{s}, s \geq 2$ in $N / C_{N}(U), D_{i}=\left\langle x_{i}, \rho_{i}\right\rangle, x_{i} \in Q_{R}, o\left(\rho_{i}\right)=3, D_{i} \cong \Sigma_{3}, i=1, \ldots, s$.

Set $W=\left[\left[\rho_{1}, U\right], x_{1}\right]$. We have $W \leq Q_{R}$. If $\left[Q_{R}, W\right]=1$, then $W \leq$ $Z\left(Q_{R}\right)$. As $\left\langle W^{\rho_{1}}\right\rangle=\left[\rho_{1}, U\right]$, we get $\left[x_{i},\left[\rho_{1}, U\right]\right]=1, i=2, \ldots, s$, and so $\left[\left[\rho_{1}, U\right], Q_{R}\right] \leq Z\left(Q_{R}\right)$. Now the elements in $\left[\rho_{1}, U\right]$ induce transvections on Q_{R}, which gives that $A_{z} \not \approx S p_{4}(q), q>2$. Application of Lemma 2.25 shows $\left[\rho_{1}, U\right] \leq Q_{R}$ and so $\left[\left[\rho_{1}, U\right], Q_{R}\right] \leq R$. As $\left[\left\langle x_{2}, \ldots, x_{s}\right\rangle,\left[\rho_{1}, U\right]\right]=$ 1 , we see that $\left|Q_{R}: C_{Q_{R}}\left(\left[\rho_{1}, U\right]\right)\right|=2$ and so we have $q=2$, and $W=R$ is of order 2, further $\left|\left[U, \rho_{1}\right]\right|=4$. Set $T=N_{S}\left(Q_{R}\right)$ and let $t \in T$. Then $R \leq\left[U, \rho_{1}\right] \cap\left[U, \rho_{1}^{t}\right]$. But as $\left[\rho_{1}, \rho_{1}^{t}\right] \in C_{N}(U)$ by $(*)$, we have $\left[U, \rho_{1}, \rho_{1}^{t}\right] \leq\left[U, \rho_{1}\right]$. This yields $\left\langle\rho_{1}\right\rangle C_{N}(U)=\left\langle\rho_{1}^{t}\right\rangle C_{N}(U)$. Now also $\left\langle\rho_{1}^{T}\right\rangle C_{N}(U) / C_{N}(U)=\left\langle\rho_{1}\right\rangle C_{N}(U) / C_{N}(U)$. By (B.2) we have that $O_{2,3}(N) / C_{N}(U)$ contains an elementary abelian group of order 9 . So we get that $|S: T|=2$ and $O_{3}\left(N / C_{N}(U)\right)=\left\langle\rho_{1}, \rho_{1}^{s}\right\rangle C_{N}(U) / C_{N}(U)$, for some $s \in S \backslash T$. This shows $\left|\left[U, O_{2,3}(N)\right]\right|=16$ and so $N / C_{N}(U)$ is a subgroup of $G L_{4}(2)$, which gives that $S / C_{S}(U)$ is contained in a dihedral group. But as $\left|Q_{R} / C_{Q_{R}}(U)\right|=4$, this shows that Q_{R} is normal in S, a contradiction.

So we have

$$
\begin{equation*}
\left[Q_{R},\left[\left[U, \rho_{i}\right], x_{i}\right]\right] \neq 1 \text { for all } i=1, \ldots, s \tag{B.3}
\end{equation*}
$$

As by (B.3) Q_{R} does not act quadratically, we have that Q_{R} is not abelian and so

$$
\begin{equation*}
A_{z} \not \approx S p_{4}(q) \tag{B.4}
\end{equation*}
$$

By (B.3) and (U) we have $R \leq\left[U, \rho_{1}\right]$. Hence $R \cap C_{U}\left(\rho_{1}\right)=1$. So by (U) we get that $\left[Q_{R}, C_{U}\left(\rho_{1}\right)\right]=1$. In particular $\left[C_{U}\left(\rho_{1}\right), \rho_{2}\right]=1$. By choosing ρ_{1} with $C_{U}\left(\rho_{1}\right)$ maximal we obtain

$$
\begin{equation*}
C_{U}\left(\rho_{1}\right)=C_{U}\left(\rho_{i}\right) \text { and }\left[U, \rho_{1}\right]=\left[U, \rho_{i}\right] \text { for } i=1, \ldots, s \tag{B.5}
\end{equation*}
$$

Now we consider $\left\langle\rho_{1}, \rho_{2}\right\rangle$. We have $\left(\rho_{1} \rho_{2}\right)^{x_{2}}=\rho_{1} \rho_{2}^{-1}$. Then $\left[U, \rho_{1}\right]=$ $C_{\left[U, \rho_{1}\right]}\left(\rho_{1} \rho_{2}\right) \times C_{\left[U, \rho_{1}\right]}\left(\rho_{1} \rho_{2}^{-1}\right)$. Set $V_{1}=C_{\left[U, \rho_{1}\right]}\left(\rho_{1} \rho_{2}\right)$. We have that $x_{1} x_{2}$ normalizes V_{1} and $\left[V_{1}, x_{1} x_{2}\right] \leq Q_{R}$. Set $V_{2}=V_{1}^{x_{2}}$, then we obtain $1 \neq\left[\left[V_{1}, x_{1} x_{2}\right], x_{2}\right] \leq R$. Further $\left|\left[\left[V_{1}, x_{1} x_{2}\right], x_{2}\right]\right|=\left|\left[V_{1}, x_{1} x_{2}\right]\right|$. As $x_{1} x_{2}$ inverts $\rho_{1} \rho_{2}^{-1}$ and $\rho_{1} \rho_{2}^{-1}$ acts fixed point freely on V_{1}, we get that $\left|V_{1}\right|=$ $\left|\left[V_{1}, x_{1} x_{2}\right]\right|^{2} \leq|R|^{2}=q^{2}$. This gives

$$
\begin{equation*}
\left|\left[U, \rho_{1}\right]\right| \leq q^{4} \tag{B.6}
\end{equation*}
$$

Suppose $s \geq 3$. Now x_{3} centralizes $\rho_{1} \rho_{2}$ and so normalizes V_{1} and [$\left.V_{1}, x_{1} x_{2}\right]$. This gives $\left[\left[V_{1}, x_{1} x_{2}\right], x_{3}\right] \leq R \cap V_{1}$. As $R \cap V_{1}=\left(R \cap V_{1}\right)^{x_{2}}=$ $R \cap V_{2}$ and $V_{1} \cap V_{2}=1$, we get $\left[\left[V_{1}, x_{1} x_{2}\right], x_{3}\right]=1$. But as $\left[x_{3}, \rho_{1} \rho_{2}^{-1}\right]=1$ and $V_{1}=\left\langle\left[V_{1}, x_{1} x_{2}\right]^{\rho_{1} \rho_{2}^{-1}}\right\rangle$ we then have $\left[x_{3}, V_{1}\right]=1$ and also $\left[x_{3}, V_{1}^{x_{2}}\right]=$ 1. This gives $\left[\left[U, \rho_{1}\right], x_{3}\right]=1$. But then $\left[\left[U, \rho_{1}\right], \rho_{3}\right]=1$, a contradiction to (B.5). So we have

$$
\begin{equation*}
s=2 \tag{B.7}
\end{equation*}
$$

Suppose that $\left[V_{1}, x_{1} x_{2}\right] \leq C_{G}\left(Q_{R}\right)$. Then

$$
\left|Q_{R} C_{S}\left(Q_{R}\right) / C_{S}\left(Q_{R}\right): C_{Q_{R} C_{S}\left(Q_{R}\right) / C_{S}\left(Q_{R}\right)}\left(V_{1}\right)\right| \leq 2
$$

By (B.4) and Lemma 2.4 we see that $V_{1} \leq Q_{R} C_{S}\left(Q_{R}\right)$. Now also $V_{2}=V_{1}^{x_{2}} \leq Q_{R} C_{S}\left(Q_{R}\right)$, which gives $\left[U, \rho_{1}\right] \leq Q_{R} C_{S}\left(Q_{R}\right)$. This shows $\left[\left[\left[U, \rho_{1}\right], x_{1}\right], Q_{R}\right]=1$, which contradicts (B.3). Hence we have that [$\left.V_{1}, x_{1} x_{2}\right]$ centralizes a subgroup of index two in Q_{R}, which implies

$$
\begin{equation*}
q=2 \tag{B.8}
\end{equation*}
$$

Assume now $|S: T|=2, T=N_{S}\left(Q_{R}\right)$. Then by (B.4) and (B.8) $A_{z} \cong F_{4}(2)$. As $\left[U, \rho_{1}\right] \notin Q_{R}$, we have for $1 \neq u \in\left[U, \rho_{1}\right]$ that $\left|Z\left(Q_{R}\right): C_{Z\left(Q_{R}\right)}(u)\right| \geq 2$ and $\left[Q_{R} / Z\left(Q_{R}\right): C_{Q_{R} / Z\left(Q_{R}\right)}(u) \mid \geq 4\right.$. In particular $\left|Q_{R}: C_{Q_{R}}(u)\right| \geq 8$, which contradicts $\left|Q_{R}: C_{Q_{R}}(U)\right|=4$ by (B.7).

So we have that $Q_{R} \unlhd S$. Further $\left[\left\langle\rho_{1}, \rho_{2}\right\rangle, U\right]$ is of order 16 by (B.6) and (B.8). As above we see that $\left[\left\langle\rho_{1}, \rho_{2}\right\rangle, U\right]=\left[\left\langle\rho_{1}, \rho_{1}\right\rangle^{s}, U\right]$ for all $s \in S$. In particular $O_{2,3}(N) / C_{N}(U)$ is of order 9 .

So we have shown

$$
\begin{equation*}
Q_{R} \unlhd S,|R|=2, N / C_{N}(U) \cong O_{4}^{+}(2) \text { and } \tag{B.9}
\end{equation*}
$$

$\left[U, O_{3}\left(N / C_{N}(U)\right)\right]$ is the natural module.
As $R \leq\left[U, O_{3}\left(N / C_{N}(U)\right)\right]$ and $\left[Q_{R}, O_{3}\left(N / C_{N}(U)\right)\right]=O_{3}\left(N / C_{N}(U)\right)$, we get

$$
\begin{equation*}
U=\left[U, O_{3}\left(N / C_{N}(U)\right)\right] \times C_{U}\left(O_{3}\left(N / C_{N}(U)\right)\right) \tag{B.10}
\end{equation*}
$$

Hence in both cases, N solvable and nonsolvable, by (A.7) and (B.9) we just need to prove the existence of t and determine the size of $\left|\Omega_{1}(Z(S))\right|$.

For the remainder N might be solvable or not. Assume $\mid \Omega_{1}(Z(S)) \cap$ $A_{z} \mid>2$. By (B.8) and (A.7) $q=2$. So we have that $A_{z} \cong S p_{2 n}(2)$ or $F_{4}(2)$. By Proposition 5.2 we have $A_{z} \not \neq S p_{2 n}(2)$. Now in $\left[U, O^{2}(N)\right]$, we have some x such that $x \notin Q_{R}$ but $\left|\left[Q_{R} / R, x\right]\right|=4$. As $A_{z} \cong F_{4}(2)$, then by Lemma $2.17 Q_{R} / R$ involves two non isomorphic modules for $N_{A_{z}}(R)$ on one there are transvections on the other not, a contradiction. So we have $\left|\Omega_{1}(Z(S)) \cap A_{z}\right|=2$.

As $\left|\Omega_{1}(Z(S))\right| \geq 4$, we see $\left|\Omega_{1}(Z(S))\right|=4$ and from (A.7) and (B.10) we get that $C_{U}(N) \neq 1$ and so there is some $1 \neq t \in \Omega_{1}(Z(S))$, which is central in N. By (U$) R \leq\left[U, F^{*}\left(N / C_{N}(U)\right)\right]$. As $\left|\Omega_{1}(Z(S)) \cap A_{z}\right|=$ 2 we have that $\Omega_{1}(Z(S)) \cap A_{z} \leq\left\langle R^{S}\right\rangle$ and so $\Omega_{1}(Z(S)) \cap A_{z} \leq$ $\left[U, F^{*}\left(N / C_{N}(U)\right)\right]$. Hence $t \notin A_{z}$.

We now can get further restrictions on the structure of A_{z}.
Lemma 6.13. $A_{z} \not \not F_{4}(2)$. Further Q_{R} is extraspecial with center R, normal in S and $N_{N_{G}\left(A_{z}\right)}\left(Q_{R}\right)$ acts irreducibly on Q_{R} / R.

Proof. Suppose $A_{z} \cong F_{4}(2)$. By Lemma 6.11 and Lemma 6.12 we have that $\left|\Omega_{1}(Z(S)) \cap A_{z}\right|=2$. Hence there is some $u \in C_{G}(z)$, which induces a graph automorphism on A_{z}. In particular $Q_{R} \notin S$. This shows by Lemma 6.12 that Lemma 6.11 (ii) holds. In particular $U=$ $\Omega_{1}\left(Z\left(O_{2}(N)\right) \leq Q_{R} C_{S}\left(A_{z}\right)\right.$. As $z^{G} \cap U \neq\{z\}$ also $z^{G} \cap\langle z\rangle \times Q_{R} \neq\{z\}$. Let r_{1}, r_{2} be the two root elements such that $\left\langle r_{1}, r_{2}\right\rangle=Z\left(S \cap A_{z}\right)$. Then $C_{S}\left(\left\langle z, r_{1}, r_{2}\right\rangle\right)=C_{S}\left(A_{z}\right) \times\left(S \cap A_{z}\right)$. As $Q_{R} \leq O_{2}\left(C_{G}\left(\left\langle z, r_{1}, r_{2}\right\rangle\right)\right)$, we get from Lemma 6.10 that $N_{G}\left(\left\langle z, r_{1}, r_{2}\right\rangle\right)$ does not contain some element in \mathcal{N}_{S}. Hence $N_{G}\left(\left\langle z, r_{1}, r_{2}\right\rangle\right) \leq N_{G}\left(A_{z}\right)$. Let $v \in\left\langle z, r_{1}, r_{2}\right\rangle$ such that $\mid S$: $C_{S}(v) \mid=2$. So $\Omega_{1}\left(Z\left(C_{S}(v)\right)\right)=\left\langle z, r_{1}, r_{2}\right\rangle$. As $N_{G}\left(\Omega_{1}\left(Z\left(C_{S}(v)\right)\right)\right) \leq A_{z}$, we see that $C_{S}(v)$ is a Sylow 2-subgroup of $C_{G}(v)$ and so $v \nsim z$ in G. As $z^{G} \cap \Omega_{1}(Z(S))=\{z\}$ by Lemma 6.9 we get that $z^{G} \cap\left\langle z, r_{1}, r_{2}\right\rangle=\{z\}$. In particular $z^{G} \cap Z\left(\left\langle z, Q_{R}\right\rangle\right)=\{z\}$. On the other hand we have some
$v \in U, z \neq v \sim z$. This implies $v \notin Z\left(Q_{R}\right)\langle z\rangle$. By Lemma 6.11 we see $\left|S: C_{S}(v)\right| \leq 8$. As $F_{4}(2)$ has four classes of involutions by [Shi, Theorem 2.1] three of them are 2-central and the forth has centralizer of order $2^{20} \cdot 3^{2}$, we see that v must be conjugate to some element in $\left\langle z, r_{1}, r_{2}\right\rangle$ in $N_{G}\left(A_{z}\right)$. As $z^{G} \cap\left\langle z, r_{1}, r_{2}\right\rangle=\{z\}$, this is impossible. So $A_{z} \neq F_{4}(2)$.

As by Proposition 5.2 $A_{z} \not \not G_{2}(2)^{\prime}$ and $A_{z} \not \neq S p_{2 n}(2)$, we have that Q_{R} is extraspecial. Further by Proposition $5.2 A_{z} \not \neq L_{3}(2)$ or $L_{4}(2)$. If $N_{N_{G}\left(A_{z}\right)}\left(Q_{R}\right)$ is not irreducible on Q_{R} / R, then by [MaStr, Lemma 2.33] $A_{z} \cong L_{n}(2)$ and no graph automorphism is involved. Now $N_{G}\left(A_{z}\right)=$ $C_{G}\left(A_{z}\right) \times A_{z}$. From Lemma 2.2 and Lemma 6.9 we get a contradiction.

For the remainder of this chapter we fix t as in Lemma 6.11 or Lemma 6.12. We will prove that $C_{G}(t)$ has a standard subgroup A_{t}, which is isomorphic to A_{z}.

Lemma 6.14. $A_{t}=E\left(C_{G}(t)\right)$ is simple, $Q_{R} \leq A_{t}$ and $C_{S}\left(A_{t}\right)$ is cyclic. In particular A_{t} is a standard subgroup.

Proof. By Lemma 6.13 we have that Q_{R} is extraspecial, $R=\langle r\rangle$ and $C_{G}(\langle z, t\rangle)=C_{G}(\langle z, r\rangle)$ acts irreducibly on Q_{R} / R.

We first prove:
Let $H \leq C_{G}(t)$ with $N_{C_{G}(z)}\left(Q_{R}\right) \leq N_{G}(H)$ and let $T=S \cap H$ be a Sylow 2-subgroup of H, then $Q_{R} \leq H$, or $T \leq C_{S}\left(Q_{R}\right)$.

For this suppose $Q_{R} \not \leq H$. As by Lemma $6.13 N_{C_{G}(z)}\left(Q_{R}\right)$ acts irreducibly on Q_{R} / R, we see that $H \cap Q_{R} \leq R$. Hence $\left[T, Q_{R}\right] \leq H \cap Q_{R} \leq$ R. Then we have by Lemma 2.25 that $T \leq C_{S}\left(Q_{R}\right) Q_{R}$. As $N_{C_{G}(z)}\left(Q_{R}\right)$ normalizes H and $C_{S}\left(Q_{R}\right) Q_{R}$, it also normalizes $T=H \cap C_{S}\left(Q_{R}\right) Q_{R}$. As $N_{C_{G}(z)}\left(Q_{R}\right)$ has no fixed point in Q_{R} / R we see that $T \leq C_{S}\left(Q_{R}\right)$, the assertion (A).

Suppose first $C_{C_{G}(t)}\left(O_{2}\left(C_{G}(t)\right)\right) \leq O_{2}\left(C_{G}(t)\right)$. Then set $H=O_{2}\left(C_{G}(t)\right)$. As $N_{C_{G}(z)}\left(Q_{R}\right) \leq C_{G}(\langle z, t\rangle)$ we see that $N_{C_{G}(z)}\left(Q_{R}\right)$ normalizes H. As $t \in Z(S)$, we also have $H \leq S$. Now (A) implies that either $Q_{R} \leq$ $O_{2}\left(C_{G}(t)\right)$ or $O_{2}\left(C_{G}(t)\right) \leq C_{S}\left(Q_{R}\right) \leq C_{S}\left(A_{z}\right) \times\langle r\rangle$. But the latter contradicts $C_{C_{G}(t)}\left(O_{2}\left(C_{G}(t)\right)\right) \leq O_{2}\left(C_{G}(t)\right)$. So we have $Q_{R} \leq O_{2}\left(C_{G}(t)\right)$. By Lemma 6.10 we see that $C_{G}(t)$ contains no $M \in \mathcal{N}_{S}$. This implies $C_{G}(t) \leq C_{G}(z)$, contradicting the choice of N.

So we have that $E\left(C_{G}(t)\right) \neq 1$ (recall that $O\left(C_{G}(i)\right)=1$ for all involutions $i \in G)$. Now set $H=E\left(C_{G}(t)\right)$ in (A). If $Q_{R} \not \leq E\left(C_{G}(t)\right)$ then as $C_{S}\left(Q_{R}\right) /\langle t\rangle$ is cyclic, we get a cyclic Sylow 2-subgroup of $E\left(C_{G}(t)\right)$, a contradiction. Hence $Q_{R} \leq E\left(C_{G}(t)\right)$.

Now let N_{1} be some component of $C_{G}(t)$ and set $T=S \cap N_{1}$. If $\left[T, Q_{R}\right]=1$, then $T\langle t\rangle /\langle t\rangle$ is cyclic, which cannot be a Sylow 2-subgroup of N_{1}. So $1 \neq\left[T, Q_{R}\right]$. In particular $R \leq N_{1}$. If $\left[R, N_{1}\right]=1$ we get as $\langle t, R\rangle=\langle z, R\rangle$ that $N_{1} \leq C_{G}(z)$. Now N_{1} normalizes $O_{2}\left(C_{A_{z}}(\langle z, R\rangle)\right)=$ Q_{R}. But $\left[Q_{R}, N_{1}\right] \leq Q_{R} \cap N_{1} \leq R \leq Z\left(N_{1}\right)$, a contradiction. So we have that $R \not \leq Z\left(N_{1}\right)$. In particular $N_{C_{G}(z)}\left(Q_{R}\right) \leq N_{G}\left(N_{1}\right)$. Application of (A) now shows that $Q_{R} \leq N_{1}$. As this is true for any component N_{i}, we get that $E\left(C_{G}(t)\right)$ is quasisimple.

Next we show

$$
E\left(C_{G}(t)\right) \text { is simple. }
$$

Otherwise some $1 \neq u \in Z(S)$ is contained in $Z\left(E\left(C_{G}(t)\right)\right)$. Suppose $u \neq t$. We then have that $\Omega_{1}(Z(S))=\langle r, z\rangle=\langle u, t\rangle$. Hence $E\left(C_{G}(t)\right) \leq C_{G}(z)$, a contradiction. So we must have $t \in Z\left(E\left(C_{G}(t)\right)\right)$. Now $C_{G}\left(E\left(C_{G}(t)\right)\right) \leq C_{C_{G}(t)}\left(Q_{R}\right)=C_{C_{G}(z)}\left(Q_{R}\right)$. As $r \in E\left(C_{G}(t)\right) \backslash$ $Z\left(E\left(C_{G}(t)\right)\right)$, we see that $C_{G}\left(E\left(C_{G}(t)\right)\right)$ has a cyclic Sylow 2-subgroup and so in particular $E\left(C_{G}(t)\right)$ is standard. But this contradicts Proposition 5.1. Hence $E\left(C_{G}(t)\right)$ is simple.

As $Q_{R} \leq E\left(C_{G}(t)\right)$ we see that $C_{S}\left(E\left(C_{G}(t)\right)\right) \leq C_{S}\left(Q_{R}\right)$ is cyclic. In particular $E\left(C_{G}(t)\right)$ is standard.

We have $\langle z, t\rangle=\Omega_{1}\left(Z(S)\right.$ and $r=z t \in A_{z} \cap A_{t}$. Now everything we proved for A_{z} applies for A_{t} too. This shows that both groups are isomorphic to one of the following groups: $J_{2}, M(24)^{\prime}, L_{n}(2), U_{n}(2)$, $n \geq 5, \Omega_{2 n}^{ \pm}(2), E_{6}(2), E_{7}(2), E_{8}(2),{ }^{2} E_{6}(2),{ }^{3} D_{4}(2)$.

Lemma 6.15. We have that $O_{2}\left(C_{A_{t}}(R)\right)=O_{2}\left(C_{A_{z}}(R)\right)$. Further let H_{t} be the preimage of $E\left(N_{A_{t}}\left(O_{2}\left(C_{A_{t}}(R)\right)\right) / O_{2}\left(C_{A_{t}}(R)\right)\right)$ and H_{z} the preimage of $E\left(N_{A_{z}}\left(Q_{R}\right) / Q_{R}\right)$. Then $H_{t}=H_{z}$.

Proof. By Lemma 6.14 we have $Q_{R} \leq A_{t}$. Further we have that $H_{z} \leq$ $C_{G}(t)$. As $H_{z}^{\prime} Q_{R}=H_{z}$ by Lemma 6.13 and $C_{G}(t) / A_{t}$ is solvable, we get that $H_{z} \leq A_{t}$ (this is also true if $N_{A_{z}}\left(O_{2}\left(C_{A_{z}}(R)\right)\right.$) is solvable, as then $H_{z}=Q_{R}$). Similarly we see $H_{t} \leq A_{z}$ and then we have that $O_{2}\left(N_{A_{t}}(R)\right) \leq O_{2}\left(C_{A_{z}\langle z\rangle}(R)\right)$ and $Q_{R} \leq O_{2}\left(C_{\left.A_{t}\langle \rangle\right\rangle}(R)\right)$. This shows
that $Q_{R} \leq O_{2}\left(C_{A_{t}}(R)\right) \leq Q_{R}$ and so $Q_{R}=O_{2}\left(C_{A_{t}}(R)\right)$. We further get $H_{t} \leq H_{z} \leq H_{t}$, the assertion.

Lemma 6.16. We have $A_{z} \cong A_{t}$.
Proof. Let first A_{z} be sporadic. By Proposition 5.2 we have that $A_{z} \cong$ J_{2} or $M(24)^{\prime}$. In both cases $N_{A_{z}}\left(Q_{R}\right)$ is nonsolvable. By Lemma 6.15 we have that $H_{z}=H_{t} \leq A_{t}$ and $H_{z} \cong 2^{1+4} A_{5}$ or $2^{1+12} 3 U_{4}(3)$. If A_{t} is sporadic too, then we have that $A_{z} \cong A_{t}$. So we may assume that A_{t} is a group of Lie type over $\mathrm{GF}(2)$. As $3 U_{4}(3)$ is not a group of Lie type in characteristic two, we get a contradiction. In the first case we have that $\left|Q_{R}\right|=2^{5}$. Then by Lemma 2.17 we get that $A_{t} \cong L_{4}(2)$ or $U_{4}(2)$, which contradicts Proposition 5.2. So we have $A_{z} \cong A_{t}$.

Next we assume that both A_{z} and A_{t} are groups of Lie type. If $N_{A_{z}}\left(Q_{R}\right)$ is nonsolvable we may argue as before, i.e. we compare the orders of Q_{R} and the Levi factors, as given by Lemma 2.17. Then we receive $A_{z} \cong A_{t}$ or $A_{z} \cong L_{3}(2), L_{4}(2), \Omega_{8}^{+}(2), U_{4}(2), U_{5}(2)$. By Proposition $5.2 A_{z} \not \approx L_{3}(2), L_{4}(2)$ or $U_{4}(2)$. Now we have symmetry and so also $A_{t} \cong \Omega_{8}^{+}(2)$ or $U_{5}(2)$. But these groups are determined just by the order of Q_{R}, which is $2^{9}, 2^{7}$, respectively, so $A_{t} \cong A_{z}$ too.
Proposition 6.17. The main theorem holds.
Proof. Suppose false. Then according to Lemma 6.11 and Lemma 6.12 we have some $t \in \Omega_{1}(Z(S)), t \neq z, t \in Z(N)$. By Lemma 6.16 $A_{z} \cong A_{t}$ and by Lemma 6.14 both groups are standard. We first show

$$
\begin{equation*}
A_{t} \cong A_{z} \cong L_{n}(2) \text { or } U_{n}(2) . \tag{1}
\end{equation*}
$$

Suppose false. By [MaStr, Lemma 2.33] we have that $N_{A_{z}}\left(Q_{R}\right)$ acts irreducibly on Q_{R} / R. Set $V=\Omega_{1}\left(Z_{2}\left(S \cap A_{z}\right)\right)$. We get with [MaStr, Lemma 2.35] that $|V|=4$. Set $P=N_{A_{z}}(V)$. Then P is normalized by S and $P / O_{2}(P) \cong \Sigma_{3}$. For a group of Lie type this is just a minimal parabolic not in $N_{A_{z}}(R)$. For the sporadic groups this follows with Lemma 2.14.

Hence $\Omega_{1}\left(Z\left(O_{2}(P)\right)\right)=\Omega_{1}\left(Z_{2}\left(S \cap A_{z}\right)\right)$. Then $V \leq Q_{R}$ and so $V=$ $\Omega_{1}\left(Z_{2}\left(S \cap A_{t}\right)\right)$ by Lemma 6.15. On V both $N_{A_{t}}(V)$ and $N_{A_{z}}(V)$ induce Σ_{3}. Now $\left\langle N_{A_{z}}(V), N_{A_{t}}(V)\right\rangle$ acts on $\langle z, V\rangle=\langle t, V\rangle$. As $z^{G} \cap \Omega_{1}(Z(S))=$ $\{z\}$ by Lemma 6.9 we have $z^{G} \cap\langle z, V\rangle=\{z\}$. So $N_{A_{t}}(V) \leq C_{G}(z)$. This implies $A_{t}=\left\langle N_{A_{t}}(V), N_{A_{t}}\left(Q_{R}\right)\right\rangle \leq C_{G}(z)$, a contradiction. This proves (1).

By $(1) A_{t} \cong A_{z} \cong U_{n}(2)$, or $L_{n}(2)$. In the latter by Lemma 6.13 we
have some graph automorphism induced. As $\left[C_{S}\left(A_{z}\right), Q_{R}\right]=1$, we get $C_{S}\left(A_{z}\right) \leq C_{S}\left(A_{t}\right) \times R$. This yields $\Omega_{1}\left(\Phi\left(C_{S}\left(A_{z}\right)\right)\right) \leq \Omega_{1}\left(\Phi\left(C_{S}\left(A_{t}\right)\right)\right) \leq$ $\langle t\rangle$. As $z \neq t$ this shows that $C_{S}\left(A_{z}\right)=\langle z\rangle$. By the Thompson transfer lemma (Lemma 2.2) and $z^{G} \cap \Omega_{1}(Z(S))=\{z\}$ by Lemma 6.9, we have that z is a square of some $x \in C_{G}(z)$, which induces an outer automorphism on A_{z}. The same of course is true for t. In particular

> All involutions of $C_{G}(z)$ are in $\langle z\rangle \times A_{z}$ and all involutions of $C_{G}(t)$ are in $\langle t\rangle \times A_{t}$.

By Lemma 6.11 and Lemma 6.12 there is some parabolic N in $C_{G}(t)$, $N \not \leq N_{C_{G}(t)}(R)$. This shows that $N / C_{N}\left(\Omega_{1}\left(Z\left(O_{2}(N)\right)\right)\right) \cong \mathrm{O}_{4}^{+}(2)$ in case of $A_{t} \cong L_{n}(2)$ and $\Omega_{4}^{-}(2)$ or $\mathrm{O}_{4}^{-}(2)$ in case of $A_{t} \cong U_{n}(2)$. Set again $U=\Omega_{1}\left(Z\left(O_{2}(N)\right)\right)$ and $V=U \cap A_{t}$. Then V is the natural module for $N / C_{N}(U)$. Further we have that $V \cap Q_{R}=\left[V, Q_{R}\right]$ is of order eight. By (2) and Lemma 2.28 we have that U is uniquely determined in S. But then also there is a corresponding subgroup N_{1} of $C_{G}(z)$ such that N_{1} induces $\Omega_{4}^{ \pm}(2)$ on U. This now implies the following. The orbits of $N \leq N_{C_{G}(t)}(U)$ on U^{\sharp} are $1,5,5,10,10$, or $1,6,6,9,9$ and $N_{1} \leq N_{C_{G}(z)}(U)$ induces the same orbit sizes. As $\left|z^{N_{G}(U)}\right|$ is odd, we see that under $N_{G}(U)$ the orbit of z must have length 11 or 21 and 7 or 13, respectively. Recall that $z \nsim t$ or r. But $\left|z^{N_{G}(U)}\right|$ has to divide the order of $G L_{5}(2)$, which implies that $\left|z^{N_{G}(U)}\right|=21$ in the first case and 7 in the second. The same applies for t, i.e. $\left|t^{N_{G}(U)}\right|=21,7$, respectively. But there is obviously just one possibility to make up an orbit of length 21 or 7 , which implies that $z \sim t$, the final contradiction.

References

[Asch] M. Aschbacher, Sporadic groups, Cambridge University Press, Cambridge 1994.
[Asch1] M. Aschbacher, On finite groups of Lie type and odd characteristic, J. Algebra 66, $400-424,1980$.
[AschSe] M. Aschbacher, G. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J. 63 (1976), 1 - 91; Correction, Nagoya Math. J. 72 (1978), 135 - 136.
[Cher] A. Chermak, Quadratic action and the $\mathcal{P}(G, V)$-theorem in arbitrary characteristic, J. of Group Theory 2 (1999), 1-13.
[DaSo] S. Davis, R. Solomon, Some sporadic characterizations, Comm. Algebra 9 (1981), 1725-1742.
[DeSte] A. Delgado, D. Goldschmidt, B. Stellmacher, Groups and Graphs: New Results and Methods, DMV Seminar 6 (1985), Birkhäuser.
[EgaYo] Y. Egawa, T. Yoshida, Standard subgroups of type $\Omega^{+}(8,2)$, Hokkaido Math. J. 11 (1982), 279-285.
[Fin1] L. Finkelstein, Finite groups with a standard component of type $H J$ or $H M J$, J. Algebra 43 (1976), 61-114.
[Fin2] L. Finkelstein, Finite groups with a standard component whose centralizer has cyclic Sylow 2-subgroups, Proc. AMS 62 (1977), 237 241.
[Glau] G. Glaubermann, Central elements in core-free groups, J. Algebra 4 (1966), 403-421.
[GoLy] D. Gorenstein, R. Lyons, Finite groups of characteristic 2 type, Mem. of AMS 276, 1983.
[GoLyS1] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Amer. Math. Soc. Surveys and Monographs 40 (1) (1994).
[GoLyS2] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Amer. Math. Soc. Surveys and Monographs 40 (2) (1996).
[GoLyS3] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Amer. Math. Soc. Surveys and Monographs 40 (3) (1998).
[GoLyS4] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Amer. Math. Soc. Surveys and Monographs 40 (4) (1999).
[GM] R.M. Guralnick, G. Malle, Classification of 2F-Modules, I, J. Algebra 257, 2002, 348-372.
[GM1] R.M. Guralnick, G. Malle, Classification of 2F-Modules, II, J. Algebra 257, 2002, 348-372.
[GLM] R. M. Guralnick, R. Lawther, G. Malle, The 2F-modules for nearly simple groups, J. Algebra 207 (2007), 643-676.
[HaSo] K. Harada, R. Solomon, Finite groups having a standard component L of type \hat{M}_{12} or \hat{M}_{22}, J. Algebra 319 (2008), 621-629.
[Hi] G. Higman, Odd characterization of finite simple groups, Univ. of Michigan Lecture Notes 1968.
[$\mathrm{Hu} \quad$ B. Huppert, Endliche Gruppen I, Springer 1967.
[Ja] Z. Janko, A new finite simple group with abelian 2-Sylow subgroup and its characterization, J. Alg. 3 (1966), 147 - 186.
[MaStr] K. Magaard, G. Stroth, Groups of even type which are not of even characteristic, I, same Journal.
[Mar] R. Martineau, On 2-modular representations of the Suzuki groups, Amer. J. Math. 94 (1972), 55-72.
[MeiStr1] U. Meierfrankenfeld, G. Stroth, On quadratic $G F(2)$ - modules for Chevalley groups over fields of odd order, Arch. Math. 55, (1990), 105-110.
[MeiStr2] U. Meierfrankenfeld, G. Stroth, Quadratic GF(2) - modules for sporadic groups and alternating groups, Comm. in Algebra 18, (1990), 2099-2140.
[Se] G. Seitz, Some standard subgroups, J. Algebra 70 (1981), 299-302.
[Shi] K. Shinoda, Conjugacy classes of Chevalley groups of type $\left(F_{4}\right)$, J. of Faculty of Science Univ. Tokyo 21, (1974),133-159.
[So]
R. Solomon, Standard components of alternating type I, II, J. Algebra 41 (1976), 496 - 514, J. Algebra 47 (1977), 162 - 179.
[Str1] G. Stroth, On standard subgroups of type ${ }^{2} E_{6}(2)$, Proc. AMS 81 (1981), 365-368.
[Str2] G. Stroth, Strong quadratic modules, Israel J. Math. 79, (1992), 257 - 279 .

Kay Magaard, School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

E-mail address: k.magaard@bham.ac.uk
Gernot Stroth, Institut für Mathematik, Universität Halle - Wittenberg, Theordor Lieser Str. 5, 06099 Halle, Germany

E-mail address: gernot.stroth@mathematik.uni-halle.de

[^0]: Date: February 9, 2015.

