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GROUPS OF EVEN TYPE WHICH ARE NOT OF
EVEN CHARACTERISTIC,II

KAY MAGAARD AND GERNOT STROTH

1. Introduction

In this second part of the paper we continue the investigation started
in the first part and finish the classification of the groups of even type,
which are not of even characteristic. More precisely we prove:

Theorem 1.1. Let G be a simple K2-group of even type. Then either G
is of even characteristic or G ∼= J1, Co3, M(23), A12, Ω7(3) or Ω−8 (3).

Let us recall the notation used in the statement of the theorem.

Definition 1.2. A group G is said to be of even type if the following
hold:

(i) L ⊆ C2, where L is the set of all components of CG(x) for all
involutions x ∈ G.

(ii) O(CG(x)) = 1 for every involution x ∈ G.
(iii) G has 2-rank at least 3.

Here we denote by C2 the following set of components of G:

Definition 1.3. [GoLyS1, Definition (12.1)(1)] The set C2 consists of
simple and quasisimple groups.

• The simple groups in C2 areK ∈ Chev(2), L2(9), L2(p), p a Fer-
mat or Mersenne prime, L3(3), L4(3), U4(3), G2(3), M11, M12,
M22, M23, M24, J2, J3, J4, HiS, Suz, Ru, Co1, Co2, M(22),
M(23), M(24)′, Th, F2, F1.
• The groups K ∈ C2 with K not simple are those for which
K/O2(K) is a simple group in C2. But the following quasisim-
ple groups are deleted, i.e. are not in C2: SL2(q), q odd, 2A8,
SL4(3), SU4(3), Sp4(3), and [X]L3(4), with X ∼= Z4, Z4 × Z2

or Z4 × Z4.
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2 Kay Magaard and Gernot Stroth

Furthermore we call a group G a K2–group if any simple factor of
any nontrivial 2–local subgroup of G is either cyclic, a group of Lie
type, an alternating group or one of the 26 sporadic groups.

We now define even characteristic.

Definition 1.4. A group G is said to be of even characteristic, if for a
Sylow 2-subgroup S and all nontrivial 2-local subgroups H of G with
S ≤ H, we have that CG(O2(H)) ⊆ O2(H).

The main result of the first part of this paper was:

Theorem 1.5. Let G be a simple K2-group of even type. Then one of
the following holds

• G is of even characteristic; or
• G ∼= Ω7(3), Ω−8 (3) or A12; or
• There is a 2-central involution z such that CG(z) possesses a

standard subgroup L. Furthermore CG(L) is cyclic.

In this second part of the paper we start with the statement of Theo-
rem 1.5. We assume that there is some 2-central involution z ∈ G such
that CG(z) possesses a standard subgroup Az. Furthermore we assume
that G is not isomorphic to J1, Co3 or M(23). We then first show that
Z(Az) = 1 and then that Az is a group of Lie type in characteristic
two or is one out of a small list of sporadic groups (Proposition 5.1
and Proposition 5.2). For this we use some classifications of groups
by standard subgroups. At this point our analysis moves away from
CG(z) and we construct in Lemma 6.4 and Lemma 6.5 a subgroup
N of G such that N and NG(Az) share a Sylow 2–subgroup S of G,
CN(O2(N)) ≤ O2(N) and N 6≤ NG(Az). By choosing N minimal with
these properties we achieve that N is a minimal parabolic subgroup in
the sense that we now describe.

We call a subgroup P of a group X a parabolic (subgroup) of X if
1 6= |X : P | is odd. A maximal parabolic is a parabolic which is max-
imal in the set of parabolics. In contrast a minimal parabolic P is a
parabolic which is not 2-closed such that there is exactly one class of
maximal subgroups M of P such that |P : M | is odd.

Now using the action of O2(CAz(x)) on Ω1(Z(O2(N))) for some 2-
central involution x 6= z in Az, we get results about the action of
the group N/CN(Ω1(Z(O2(N)))) on Ω1(Z(O2(N))). Using this action
we eventually are able to prove that there is some involution t which is
central in N (Lemma 6.11, Lemma 6.12). This is the key for the final
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contradiction. We are able to prove some similarity between z and t.
In particular in Lemma 6.16 we show that CG(t) also has a standard
subgroup At isomorphic to Az, but t 6∼ z. Then we show that the group
N constructed above corresponds to a minimal parabolic in Az and At
as well. This at the end shows that Az = At is centralized by a unique
involution, which would give z = t, the final contradiction. Hence for
all 2-central involutions z we have that F ∗(CG(z)) = O2(CG(z)). The
theorem then follows from the following fact ([MaStr, Lemma 2.1]): Let
G be a group and S be a Sylow 2-subgroup. Then G is of even charac-
teristic if and only if CG(O2(CG(x))) ≤ O2(CG(x)) for all involutions
x ∈ Z(S).

2. Preliminaries

In this chapter we collect some results in group theory of general
nature and some properties of the groups involved in the proof of the
main theorem. For convenience of the reader we will also state some
of the preliminary lemmas from the first part, which are used quite
frequently in this second part.

Lemma 2.1. [Glau] Let G be a nonabelian simple group, z an involu-
tion and z ∈ S ∈ Syl2(G). Then zG ∩ S 6= {z}.

Lemma 2.2. (Thompson transfer)[GoLyS2, Lemma 15.16]. Let G be
a group, S ∈ Syl2(G), T E S with S = TA, A ∩ T = 1, A cyclic. If G
has no subgroup of index two and u is the involution in A, then there
is some g ∈ G with ug ∈ T and CS(ug) ∈ Syl2(CG(ug)). In particular
|CS(u)| ≤ |CS(ug)|.

Lemma 2.3. [GoLyS2, Lemma 24.1] Let R be a p–group , p odd, and E
be an elementary abelian 2-group, acting faithfully on R. Then there is
a subgroup U in RE, such that U is a direct product of dihedral groups
of order 2p and E is a Sylow 2-subgroup of U .

Lemma 2.4. Let Q be an extraspecial subgroup of a group G, which
is normalized by some element t ∈ G. If |Q : CQ(t)| = 2, then either
t ∈ QCG(Q) or [t, Q] is cyclic.

Proof. Assume t 6∈ QCG(Q). Let [t, Q] = 〈s, Z(Q)〉 be elementary
abelian. In particular Q 6∼= Q8 and so Q is generated by involutions. Let
s1 be some involution in Q \ CQ(s). Assume ts1 = ts. Then t = ts

2
1 =

tsss1 and so [s, s1] = 1, a contradiction. So t centralizes modulo Z(Q)
any involution in Q \ CQ(s). As Q is generated by such involutions,
together with s, we get that [Q, t] ≤ Z(Q). Then t induces an inner
automorphism and so t ∈ QCG(Q), a contradiction. �
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Lemma 2.5. Let G ∼= L2(p), p = 2n ± 1 > 5 a prime, A6, L3(3) or
M11. Then a Sylow 2-subgroup of G is dihedral of order at least 8 or
semidihedral of order 16.

Proof. This is [GoLyS3, Lemma 4.10.5] and [GoLyS3, Table 5.3a] for
M11. �

Lemma 2.6. [MaStr, Lemma 2.19] Let L = L4(3), U4(3) or 2U4(3).
Then the following holds:

(i) If z ∈ L \ Z(L) is a 2-central involution, then O2(CL(z)) ∼=
Q8 ∗Q8 or O2(CL(z)) ∼= Z2×Q8 ∗Q8 in case of L ∼= 2U4(3). In
all cases O3(CL(z)/O2(CL(z))) is elementary abelian of order 9
and CL(z)/O2(CL(z)) acts faithfully on O2(CL(z)).

(ii) Out(U4(3)) ∼= D8 and Out(L4(3)) is elementary abelian of or-
der 4.

(iii) If G ∼= Aut(L), L ∼= U4(3) and x is an involution in G such
that 26 · 32 divides |CL(x)| then one of the following holds:
(α) x is contained in L and 2-central,
(β) CL(x) ∼= PSp4(3), or
(γ) O2(CL(x)) is elementary abelian and |CL(x)/O2(CL(x))| =

36 and CL(x)/O2(CL(x)) acts faithfully on O2(CL(x)).
(iv) Let L ∼= L4(3) or U4(3). Then |Z(T )| = 2 for T a Sylow 2-

subgroup of L. Let G be a subgroup of Aut(L) containing L
and T1 be a Sylow 2-subgroup of G. If |Ω1(Z(T1))| > 2, then
L ∼= L4(3) and |G : L| = 2. Furthermore some element t ∈
Ω1(Z(T1)) \ L centralizes PSp4(3) : 2 in L.

Lemma 2.7. Let G ∼= G2(2)′, G2(3) or M22. Then G has exactly one
conjugacy class or involutions with representative t and we have:

(i) O2(CG(t)) ∼= SL2(3) for G ∼= G2(2)′;
(ii) O2(CG(t)) ∼= SL2(3) ∗ SL2(3) for G ∼= G2(3) and

(iii) O2(CG(t)) ∼= 21+4Z3 for G ∼= M22.
(iv) If i is an outer automorphism of G, then CG(i) ∼= SL2(3) in

case of G ∼= G2(2)′ and L2(8) : 3 in case of G2(3).
(v) If i is an outer automorphism of G = M22, then CG(i) ∼=

23L3(2) or 24F20.

Proof. As G2(2)′ ∼= U3(3), we get (i), (ii) and (iv) from [GoLyS3, Table
4.5.1]. The assertions (iii) and (v) follow from [GoLyS3, Table 5.3c]. �

Lemma 2.8. Let G = M12. Then the following holds:

(i) G possesses two conjugacy classes of involutions with represen-
tatives t and u.

(ii) O2(CG(t)) ∼= 21+4Z3, CG(u) ∼= Z2 × Σ5.
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(iii) E(CG(u)) contains conjugates of t.
(iv) If i is an outer automorphism of G, then CG(i) ∼= Z2 × A5.

Proof. (i), (ii), (iv) follow from [GoLyS3, Table 5.3b]. To prove (iii) let
T be a Sylow 2-subgroup of CG(u) and T1 ≤ G with |T1 : T | = 2. As
T ′ ≤ E(CG(u)), we get that Z(T1) ∩ E(CG(u)) 6= 1 and so E(CG(u))
contains a 2-central involution. �

Lemma 2.9. Let G = 2F4(2) and i be an involution of G which is not
2-central. Then CG(i) is of order 210 · 3. If T is a Sylow 2-subgroup of
CG(i), then |Ω1(Z(T ))| = 4.

Proof. By [Shi, Corollary 2] we just have two classes of involutions in
G and so i is uniquely determined. By [Shi, Theorem 2.1] we see that
|CF4(2)(i)| = 220 ·32 and so |CG(i)| = 210 ·3. By the Borel-Tits-Theorem
[MaStr, Lemma 2.15] we have that CG(i) is contained in the parabolic
P1 of G, with P1/O2(P1) ∼= Σ3. Application of [MaStr, Lemma 2.31]
shows that i ∈ Z3(S), where S is a Sylow 2-subgroup of P1 and so
|CO2(P1)(i)| = 29. Furthermore Z3(S) = Z(O2(CG(i))). As by [MaStr,
Lemma 2.31] CG(i) induces Σ3 on Z3(S), we see that |Ω1(Z(T ))| = 4.

�

Lemma 2.10. Let K ∈ C2 be a sporadic simple group and N be a
subgroup of K, N ∼= L2(p), p a Fermat or Mersenne prime, p > 5,
L2(9), L3(3) or L4(3). Suppose that for a Sylow 2-subgroup S of K
we have S ≤ M < K such that F ∗(M) = N , then N ∼= L2(9) and
K ∼= M11.

Proof. If N ∼= L2(p), then as M is an automorphism group of N , we
have that S is dihedral. But there is no such sporadic group. Let N ∼=
L4(3). Then Lemma 2.6 implies 26 ≤ |S| ≤ 28. Furthermore 36 divides
the order of K. Inspection of the list in [GoLyS3, Table 5.3] gives a
contradiction. So we have N ∼= L2(9) or L3(3) and then |S| ≤ 25.
As K ∈ C2, we see K ∼= M11. As 13 does not divide |M11|, we get
N ∼= L2(9). �

Lemma 2.11. Let F ∗(G) ∼= M(22) and t ∈ F ∗(G) be a 2–central in-
volution. Set Qt = O2(CF ∗(G)(t)). Then CG(Qt) = Z(Qt). Furthermore
O2(CG(Z(Qt))) = Qt.

Proof. This follows from [GoLyS3, Table 5.3t]. �

Lemma 2.12. Let G ∼= M11, M23, J3, Th, Ru, M24, J4, Co1, Co2, F2

or F1, then G = Aut(G).

Proof. This can be found in [GoLyS3, Table 5.3]. �
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Lemma 2.13. If G ∼= L2(p), p a Fermat or Mersenne prime, p 6= 5,
G ∼= A6, L3(3) or L4(3) and T is a Sylow 2-subgroup of G, then
|Ω1(Z(T ))| = 2.

Proof. For G ∼= L4(3) this follows by Lemma 2.6. For the remaining
groups it follows by Lemma 2.5 �

Lemma 2.14. Suppose that either G ∼= J2 or G ∼= M(24)′. Let S be a
Sylow 2-subgroup of G. Then NG(Z2(S)) induces Σ3 on Z2(S).

Proof. For G ∼= J2 the statement can be found in [GoLyS3, Table 5.3g].
So we assume G ∼= M(24)′. Then by [Asch, chapter 19] there is a 2-
local subgroup P ∼= 211M24 of G, where O2(P ) is the irreducible part
of the Todd-module. We may assume that S ≤ P . Let r be a 2-central
involution in S, then by [GoLyS3, Table 5.3v] CG(r) ∼= 21+123U4(3) : 2.
In particular by [Asch, (19.10)] we have that CP (r) ∼= 211263Σ6. Ac-
cording to [GoLyS3, Table 5.3e] there is some parabolic P1 of P con-
taining S with P1

∼= 21121+6L3(2). Hence there is some minimal par-
abolic P2 ≤ P1 such that P2/O2(P2) ∼= Σ3 and P2 6≤ CG(r). Now
|Ω1(Z(O2(P2)))| = 4, as |Ω1(Z(S))| = 2 by [MaStr, Lemma 2.33].
Hence Ω1(Z(O2(P2))) = Z2(S) by [MaStr, Lemma 2.35], the assertion
follows. �

Let us repeat the definition of a group of Lie type.

Definition 2.15. A genuine group of Lie type in characteristic p is
a group isomorphic to Op′(CK̄(σ)), where K̄ is a semisimple GF(p)-

algebraic group, GF(p) is the algebraic closure of GF(p), and σ is the
Steinberg endomorphism of K̄, see [GoLyS3, Definition 2.2.2] for de-
tails. A simple group of Lie type in characteristic p is a non-abelian
composition factor of a genuine group of Lie type in characteristic p.

Hypothesis 2.16. [MaStr, Hypothesis 2.27] Let G = G(q), q = 2n,
be a simple group of Lie type, G 6∼= Sz(q), L2(q) or 2F4(q)′. Let R be a
long root subgroup of G if G 6∼= Sp2n(q), and a short root subgroup if
G ∼= Sp2n(q). Set XR = CG(R) and QR = O2(XR).

Lemma 2.17. [MaStr, Lemma 2.28] Assume Hypothesis 2.16 with G 6∼=
L3(q), U3(q), Sp4(2)′ or G2(2)′. Let L be a Levi complement in NG(R).
Then QR/R has the following L–module structure:

(i) G ∼= Ln(q), O2′(L) ∼= SLn−2(q), QR/R = V1 ⊕ V2, V1 is the
natural L–module and V2 its dual.

(ii) G ∼= Ω±2n(q), O2′(L) ∼= Ω±2n−4(q) × L2(q) = L1 × L2, QR/R =
V1⊕V2, Vi, i = 1, 2, are natural L1–modules and [QR, L2] = QR.

(iii) G ∼= Un(q), O2′(L) ∼= SUn−2(q), QR/R is the natural module.
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(iv) G ∼= E6(q), O2′(L) ∼= L6(q), QR/R is an irreducible module
with |QR/R| = q20.

(v) G ∼= 2E6(q), O2′(L) ∼= U6(q), QR/R is an irreducible module
with |QR/R| = q20.

(vi) G ∼= E7(q), O2′(L) ∼= Ω+
12(q), QR/R is an irreducible module

with |QR/R| = q32.
(vii) G ∼= E8(q), O2′(L) ∼= E7(q), QR/R is an irreducible module

with |QR/R| = q56.
(viii) G ∼= F4(q), O2′(L) ∼= Sp6(q), QR/R is an extension of the

natural module by a spin module, where the natural module is
contained in Z(QR), where the natural module is contained in
Z(QR). Finally Z(QR) does not split over R.

(ix) G ∼= 3D4(q), O2′(L) ∼= L2(q3), QR/R is the 8–dimensional
GF(q)–module for L.

Lemma 2.18. [MaStr, Lemma 2.29] Let K ∼= Sp2n(q), n ≥ 3, q = 2m.
We have two root groups R1 and R2, with

(1) The Levi factor of NK(R1) is Sp2n−2(q), O2(NK(R1)) is ele-
mentary abelian and O2(NK(R1))/R1 is the natural module.

(2) The Levi factor L of NK(R2) is Sp2n−4(q)×L2(q), furthermore
Z(O2(NK(R2)))/R2 is the natural L2(q)-module, and for n >
2, O2(NK(R2))′ = R2, and O2(NK(R2))/Z(O2(NK(R2))) is a
tensor product of the two natural modules for the two factors
of L. If q > 2, then Z(O2(NK(R2))) does not split over R2 as
an NK(R2)-module.

Lemma 2.19. [DeSte, 10.10 and page 238] Assume Hypothesis 2.16
with K ∼= G2(2e), e 6= 1. Let P be the normalizer of the root group
R. Then O′(P ) ∼= (2e)1+4 : SL2(2e). If e 6= 2, then O′(P )/QR acts
irreducibly on QR/R. If e = 2, then P acts irreducibly on QR/R but
O′(P )/QR induces a direct sum of two permutation modules for A5 on
QR/R.
Let S be a Sylow 2 subgroup of P , then Z2(S) ≤ QR and K induces the
natural L2(q)-module on Z2(S).

Lemma 2.20. [MaStr, Lemma 2.40] Let G = L3(q), q = 2n, and T be
a Sylow 2-subgroup of G. Then G possesses two parabolics P1, P2 which
contain T , such that Ui = O2(Pi) is elementary abelian of order q2 and
O2′(Pi/Ui) ∼= L2(q), for i = 1, 2. Furthermore Pi induces the natural
module on Ui, i = 1, 2, T = U1U2 and any involution of T is contained
in U1∪U2. Finally there is an automorphism α of G, which normalizes
T with Pα

1 = P2.
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Lemma 2.21. [MaStr, Lemma 2.48] Let G = Sp4(q), q = 2n > 2,
and T be a Sylow 2-subgroup of G. Then G possesses two parbolics
P1, P2 which contain T , such that Ui = O2(Pi) is elementary abelian
of order q3 and Pi/Ui ∼= GL2(q), for i = 1, 2. We have that Ui is
an indecomposable module for Pi an Z(O2′(Pi)) = Ri is a root group.
Furthermore Z(T ) = R1R2 = T ′, T = U1U2 and any involution in T is
contained in U1 ∪U2. There is an automorphism α of G with Rα

1 = R2

and Pα
1 = P2.

Lemma 2.22. [GoLyS3, Theorem 2.5.1.] Let K be a group of Lie type
over GF(pe) and x ∈ Out(K). Then x = dfg with:

(a) d is a diagonal automorphism. In particular p - o(d).
(b) f is a field automorphism. In particular if S is a Sylow p-

subgroup of K normalized by f , then X(t)f = X(tσ), where σ is
a field automorphism of GF(pe) and X(t) is a root group in S.
This implies that f also induces a field automorphism on any
parabolic containing S and any Levi complement. Recall that
twisted groups are not defined over GF(pe) but over GF(p2e)
or GF(p3e) and σ is an automorphism of this larger field, in
particular f might be trivial on Levi factors, which are defined
over GF(pe).

(c) g is a graph automorphism, which comes from a symmetry of
the corresponding Dynkin diagram. We have o(g) = 2 or 3.
The case o(g) = 3 just occurs for K ∼= Ω+

8 (pe). Further g = 1,
if K is twisted.

Lemma 2.23. [MaStr, Lemma 2.25] Let G be a group and L = F ∗(G)
be a group of Lie type in characteristic two.

(1) If there is an outer automorphism of order 2 of L, which cen-
tralizes a Sylow 2–subgroup of L, then L ∼= Sp4(2)′.

(2) Assume that L is a central extension of Sp2n(q), F4(q), 2F4(q)′

or Sz(q), q = 2n, and t is an involution in G \ Z(L).
(i) If CL(t)/O(CL(t)) has a component K, then K is a central

extension of Sp2n(s), F4(s), 2F4(s)′, s = 2b, or in case of
Sp4(q) also Sz(q) is possible. Further F ∗(L) 6∼= Sz(q) or
2F4(2).

(ii) A Sylow 2–subgroup T of CF ∗(G)(t) is not abelian.
(3) Let L ∼= PSL3(4) and t ∈ G be an involution, which induces

an outer automorphism on L. Then CL(t) ∼= 32 : Q8, PSL2(7)
or A5.

Lemma 2.24. Let G be an automorphism group of a group H = G(q)
of Lie type in characteristic two, G 6∼= L2(q), Sp2n(q), F4(q), 2F4(q)′ or
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G2(2)′. Let S be a Sylow 2-subgroup of G. If O2(CG(Ω1(Z(S)))) 6≤ H,
then H ∼= L3(q) or L4(q).

Proof. We assume H 6∼= L3(q). Set R = Ω1(Z(S ∩ H)). Then we have
that |R| = q. By Lemma 2.23 we have Ω1(Z(S)) ≤ R. Let now t ∈
O2(CG(Ω1(Z(S)))). Then we have that [CH(R), t] ≤ O2(CH(R)) = QR.
If H ∼= U3(q), then there is some element ω of order q + 1 in H, which
centralizes R and so also Ω1(Z(S)). As by Lemma 2.22 a Sylow 2-
subgroup of the outer automorphism group of H is cyclic and induces
just field automorphism, we see that no such automorphism would cen-
tralize ω and so S ∩H = O2(CG(Ω1(Z(S)))). So we may assume that
H 6∼= U3(q). Suppose that also H 6∼= Ln(q). Then NH(R) is a maximal
parabolic in H, whose structure is given by Lemma 2.17 or Lemma 2.19
in case of H ∼= G2(q). Again by Lemma 2.22 we see that field automor-
phisms induce nontrivial automorphisms on the Levi factor of NH(R).
As no graph automorphism can centralize the Levi factor, we have the
assertion.

So we are left with H ∼= Ln(q). We now must have a graph automor-
phism, which centralizes the Levi factor, i.e. the Levi factor admits no
nontrivial graph automorphism, which gives that it has to be L2(q) and
so H = L4(q), the assertion. �

Lemma 2.25. [MaStr, Lemma 2.45] Assume Hypothesis 2.16 with G 6∼=
G2(2)′. Let t be a 2-element which induces an automorphism of G such
that [t, QR] ≤ Z(QR), then t is induced by some element from QR, or
G ∼= Sp4(q)′.

Lemma 2.26. Suppose Hypothesis 2.16 with G ∼= Sp4(q) or F4(q),
q = 2n. Let S be a Sylow 2–subgroup of G with R ≤ Z(S). If t is an
automorphism of G which normalizes S with Rt 6= R then [QR, t] is not
elementary abelian.

Proof. If G ∼= Sp4(q), then by Lemma 2.21 QR and QRt are the only
maximal elementary abelian subgroups of S, so we are done.

AssumeG ∼= F4(q). Then t normalizesNG(RRt). We have thatQRQRt =
O2(NG(RRt)). FurtherQR∩QRt is elementary abelian andQRQRt/QR∩
QRt is a direct sum of two Sp4(q)–modules which are both extensions
of the trivial module by a natural module. Take the preimage U of the
two trivial modules. Then we have that U = (QR ∩QRt)Z(QR)Z(QRt)
and Z(U) = QR ∩ QRt . Further Z(QRt) induces a group of GF(q)–
transvections on Z(U)Z(QR). This shows that CZ(U)Z(QR)(t) = Z(U)
for all t ∈ Z(QRt) \ Z(U). In particular all involution are either in
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Z(U)Z(QR) or Z(U)Z(QRt). But then (QR ∩ QRt)Z(QR) and (QR ∩
QRt)Z(QRt) are the only maximal elementary abelian subgroups in U ,
which again gives that [QR, t] is not elementary abelian. �

Lemma 2.27. Assume Hypothesis 2.16. Assume further that G 6∼=
G2(2)′, L3(2), L3(4), L3(16) or L4(2). If t ∈ Aut(G) is an involution
with [t,XR] ≤ QR, then t ∈ G.

Proof. Suppose that t induces an outer automorphism on G. Suppose
further that XR/QR has a normal subgroup LR, which is a group of Lie
type in characteristic 2. Then t cannot induce a field automorphism or
a graph/field automorphism, as this has to be nontrivial on LR. If t
induces a graph automorphism, LR must be of Lie rank at most 1. So
we have that G ∼= L4(q), L3(q) or U3(q). In case of L4(q) we have a
cyclic group of order q − 1, which is normal in XR/QR. As q > 2 by
assumption, we have that graph automorphisms act nontrivially on this
group. So assume G ∼= L3(q). Now XR/QR is cyclic of order (q − 1)/d,
where d = gcd(3, q−1). Suppose d 6= q−1. Then both field- and graph
automorphisms act nontrivially on XR/QR. By [AschSe, (19.1)] graph
automorphisms t invert XR/QR and field automorphisms t centralize
a subgroup of order r − 1 for r2 = q. Hence we see that t must be a
graph/field automorphism. Then t centralizes a group of order r+1 and
inverts a group of order r− 1/d. In particular we must have d = r− 1,
which is r = 4, so q = 16, a contradiction as G 6∼= L3(4) or L3(16).
Assume now G = U3(q). Then XR/QR is cyclic of order q+ 1/d, where
d = gcd(3, q + 1). As we now have q > 2, we have that XR/QR is
nontrivial. Further by [AschSe, (19.8)] we see that [t,XR] 6≤ QR. �

Lemma 2.28. Let G = Ln(q) or Un(q), S a Sylow 2-subgroup of G,
with center R. Let V be normal in S with |V ∩ O2(CG(R))| = q3. If
|S : CS(V )| ≤ q2 then V = Z(CS(CQ(Z2(S)))), where Q = O2(CG(R)).

Proof. We start to prove that V = Z(CS(CQ(Z2(S)))). If G ∼= Un(q),
then by Lemma 2.17 Q/Z(Q) is a module over GF(q2). In particular
|[V,Q]/Z(Q)| ≥ q2. This shows [V,Q] = V ∩Q. If G ∼= Ln(q), then again
by Lemma 2.17 we have that Q/R is a direct sum of two irreducible
modules over GF(q) and so again [V,Q] = V ∩Q. Hence in both cases
we have that |Q : CQ(V )| = q2. Furthermore as V Q/Q is normal in
S/Q, we see that S acts on [V,Q]/R and so [S, [V,Q]] ≤ R. This shows
V ∩ Q = Z2(S). In particular V ≤ CS(Z2(S)). As CQ(Z2(S))/Z2(S)
is irreducible respectively the direct sum of two irreducible modules
for NNG(Q)/Q(V Q/Q), we see that [V,CQ(Z2(S))] ≤ R. But as |Q :
CQ(V )| = q2, we get that [CQ(Z2(S)), V ] = 1. So V ≤ CS(CQ(Z2(S))).
Let now t ∈ S, with [t, CQ(Z2(S))] = 1. If t 6∈ Q, then t induces a
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transvection to Z2(S)/R. But this group of transvections in Un−2(q) and
Ln−2(q) is of order q and so t ∈ V Q. Hence V = Z(CS(CQ(Z2(S)))),
the assertion. �

A 2-localN can fail to be of characteristic 2 in one of two ways. Either
E(N) 6= 1 or O(N) 6= 1. The next lemma will become important when
we show in Chapter 6 that O(N) = 1 for all 2-locals containing a Sylow
2-subgroup.

Lemma 2.29. Let F ∗(G) be a simple group, F ∗(G) ∈ C2 and let T
be a Sylow 2-subgroup of G. Assume that T normalizes a non-trivial
subgroup U of G of odd order. Then G ∼= L3(3) or M11 and |U | = 9.

Proof. We always have that T contains a fours group V . Then by co-
prime action we have that

U = 〈CU(v) | 1 6= v ∈ V 〉.(1)

This we will use in what follows.

If F ∗(G) is a sporadic simple group we see that F ∗(G) ∼= M11 by going
over the groups in [GoLyS3, Table 5.3]. Suppose now that F ∗(G) is a
group of Lie type in odd characteristic. If F ∗(G) ∼= L2(p), p a Fermat or
Mersenne prime, or L2(9), we have that the centralizer of an involution
is a 2-group, and so by (1) T cannot act on U . If F ∗(G) ∼= L4(3), U4(3)
or G2(3), then by Lemma 2.6 and Lemma 2.7 centralizer of involu-
tions are {2, 3}-groups. So by (1) U is a 3-group. Then the Borel-Tits-
Theorem [MaStr, Lemma 2.15] implies that UT is contained in some
parabolic subgroup. But obviously none of them contains a full Sylow
2-subgroup. Hence as F ∗(G) ∈ C2 we are left with F ∗(H) ∼= L3(3).

So it remains to deal with groups of Lie type in characteristic 2. Then
the assertion follows with [GoLyS3, Corollary 3.1.4]. �

Lemma 2.30. Let G ∼= L4(3) or U4(3) and t be a 2-central involution
in G. Then CG(t) has no normal subgroup Q ∼= Q8.

Proof. For both groups the structure of CG(t) is described in Lemma 2.6.
Hence we have that O2(CG(t)) ∼= Q8 ∗Q8. Furthermore there is a sub-
group U ∼= SL2(3) ∗ SL2(3) = S1 ∗ S2 normal in CG(t), with O2(U) =
O2(CG(r)). Suppose Q is normal in CG(r), then Q ≤ O2(CG(r)) and
is normal in U . So Q is one of the two normal quaternion subgroups
O2(Si), i = 1, 2, of O2(U). But CG(t) contains some element u with
Su1 = S2, in particular O2(Si), i = 1, 2, both are not normal in CG(t).

�



12 Kay Magaard and Gernot Stroth

Lemma 2.31. Let G/Z(G) ∈ M (see [MaStr, Definition 2.51]) with
Z(G) 6= 1, and assume that G has a 2–central involution z such that
|CG(z)| = 2a · 3b, with b ≤ 2. Then G ∼= 2L3(4), 22L3(4), 2Sp6(2),
2U4(3), 2M12, 2M22, 4M22, 2Sz(8) or 22Sz(8).

Proof. We have z 6∈ Z(G). Hence also CG/Z(G)(z) is a {2, 3}–group.
Now we just go over the groups in M. Let us assume that G is not
one of the groups listed in the conclusion of the lemma. By inspection
of [GoLyS3, Table 5.3] and Lemma 2.17 we see that 5

∣∣|CG/Z(G)(z)|, or

G ∼= Ω+
8 (2) and |CG/Z(G)(z)| = 212 · 33, which contradicts b ≤ 2. Hence,

G/Z(G) is as claimed. �

Lemma 2.32. Let G ∼= L2(p), p an odd prime, A6, L3(3), M11, L3(4)
or Sz(q), q = 2m. Then G possesses exactly one conjugacy class of
involutions.

Proof. IfG is isomorphic to L2(p), A6, L3(3) orM11, then by Lemma 2.5
a Sylow 2-subgroup of G is dihedral or semidihedral. Now it is an
easy application of Lemma 2.2 to see that these groups have pre-
cisely one class of involutions. For G ∼= L3(4) the assertion follows
from Lemma 2.20. For G ∼= Sz(q), we get the assertion with [GoLyS4,
Lemma 4.3.4]. �

Lemma 2.33. Let G ∼= 2L3(4), 22L3(4), 2Sp6(2), 2U4(3), 2M12, 2M22,
4M22, 2Sz(8) or 22Sz(8). If there is an element x of order four in G
such that x2 ∈ Z(G), then G ∼= 2Sp6(2), 2M12 or 4M22.

Proof. Let S be a Sylow 2–subgroup of G. Suppose G 6∼= 4M22. Then
Z(G) is elementary abelian. Further it is enough to deal with the case
of |Z(G)| = 2. As S is not a quaternion group, there are involutions
in S \ Z(G). Hence G/Z(G) has more than one conjugacy class of
involutions. But U4(3), L3(4), M22 and Sz(8) have just one class of
involutions. So G/Z(G) ∼= Sp6(2) or M12. �

Lemma 2.34. Let G be a group, LEG, L ∼= L4(3). Assume that CG(L)
is a cyclic 2-group. Let S be a Sylow 2–subgroup of G and |Ω1(Z(S))| =
8. Then CG(L) ≤ Z(S) and S = CS(L)× ((S ∩ L)〈d〉) with d ∈ Z(S).

Proof. By Lemma 2.6 we have that Z(L ∩ S) = 〈t〉 and we may as-
sume that there is d ∈ S, which centralizes in L a group PSp4(3) : 2.
Furthermore |G : LCG(L)| = 2 and td 6∼ d, as NG(S) normalizes S ∩L
and so centralizes Z(S). Then we have that S = CS(L)× ((S ∩ L)〈d〉)
and so CG(L) ≤ Z(S). �

Lemma 2.35. Let G ∼= M12 or M22 and let x be a 2-central involution
in G. Then |CG(x)| is divisible by 3 but not by 9. Furthermore Out(G)
is of order 2.
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Proof. This follows from [GoLyS3, Table 5.3b] and [GoLyS3, Table
5.3c]. �

Lemma 2.36. Let G = Sp6(2) and x be a 2-central involution, which
is centralized by an elementary abelian group U of order 9. If there
is an elementary abelian subgroup E of order 32 in CG(x), which is
normalized by U , then x is a transvection on the natural module.

Proof. By the Borel-Tits-Theorem [MaStr, Lemma 2.15] CG(x) is con-
tained in one of the parabolics 25Sp4(2), (22Q8 ∗ Q8)(Σ3 × Σ3), or
26L3(2). As |U | = 9, we have that CG(x) is contained in one of the first
two parabolics. By Lemma 2.18 we see that the centralizer of a group U
of order 9 in both case is U〈x〉. So we just have to eliminate the second
case. Here U normalizes Q = Q8 ∗Q8 and so it induces orbits of length
9 on the involutions in Q \ Z(Q). In particular U cannot normalize an
elementary abelian group of order 32, as this group must contain all
involutions of O2(CG(x)) and so equals to O2(CG(x)). �

Lemma 2.37. Let G = L2(p), p an odd prime, A6, L3(3), M11, Sz(q)
or L3(4). Let furthermore t be an involution in G〈t〉, which induces
an outer automorphism on G and S be a Sylow 2-subgroup of G〈t〉.
Then t ∼ tx for all x ∈ Ω1(Z(CS(t))), or G ∼= A6 and t induces the
Σ6–automorphism.

Proof. If G ∼= M11, then by Lemma 2.12 there is no such automor-
phism t. The same is true for G ∼= Sz(q) by Lemma 2.23(2). If G ∼=
L2(p) then Aut(G) ∼= PGL2(p) by [GoLyS3, Table 4.5.3]. Now Aut(G)
has a dihedral Sylow 2-subgroup and so all involutions in Aut(G) \ G
are conjugate anyway. If G ∼= L3(3), then by [GoLyS3, Table 4.5.1] ,
we see that CG(t) ∼= Σ4 and so CS(t) = 〈t〉 ×D, where D ∼= D8. As t
obviously is not 2-central in S, we see that t ∼ tx with 〈x〉 = Z(D).

Let G ∼= L3(4). Then by Lemma 2.23(3), CG(t) ∼= L2(4), L2(7) or
32Q8. In all cases CG(t) has just one class of involutions and as t is not
2-central, the assertion follows.

So let finally G ∼= A6. As t is an involution we get with [GoLyS4,
Lemma 4.4.2] that G〈t〉 is isomorphic to PGL2(9) or Σ6. In the former
the assertion follows with [GoLyS4, Lemma 4.4.1]. �

Lemma 2.38. Let G = A8. There is no subgroup H of G, such that
H has abelian Sylow 2-subgroup and |H| is divisible by 3 · 5 · 7.

Proof. Assume false. Let L be a Sylow 7-subgroup of H. The normalizer
of L in G is of order 21. If NH(L) = L, we have a normal 7–complement
in H. But then L centralizes a Sylow 5-subgroup, a contradiction. So
we have |NH(L)| = 21. We get with Sylow’s theorem that |H| = 32 ·5 ·7
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or 23 ·32 ·5 ·7. In the latter |G : H| = 8 and so H ∼= A7, which does not
possess an abelian Sylow 2-subgroup. So we have |H| = 32 · 5 · 7. Let
T be a Sylow 5-subgroup of H, then NH(T ) = CH(T ), as |H| is odd.
Hence now H has a normal 5–complement and so again T centralizes
a Sylow 7-subgroup, a contradiction. �

Lemma 2.39. [Asch1, Theorem A] Let G be a finite group with F ∗(G) =
L a simple group, T a Sylow 2-subgroup of G and z ∈ Z(T ) be an in-
volution. Assume that M = CG(z) is the unique maximal subgroup of
G which contains T . Then one of the following holds:

(1) L ∼= L2(q), q > 5 odd.
(2) q ≡ −1( mod 4) and L ∼= L2n+1(q), or q ≡ 1( mod 4) and

L ∼= U2n+1(q), and M contains a normal subgroup SL2n(q),
SU2n(q), respectively. In the first case S acts nontrivially on
the Dynkin diagram.l

(3) L ∼= Ω2n+1(q), q odd, n > 2, and M contains a normal subgroup
SO2n(q).

(4) q ≡ −1( mod 4) and L ∼= Ω+
2n+2(q), or q ≡ 1( mod 4) and

L ∼= Ω−2n+2(q), and M contains a normal subgroup SO+
2n(q).

Further T is not contained in the group O2n+2(q) extended by
the group of field automorphisms.

3. Small Modules

In Chapter 6 we will construct a 2-local subgroup N of G, which is
not contained in CG(z) (with z 2-central), such that N ∩ CG(z) con-
tains a Sylow 2-subgroup S of CG(z) and N∩CG(z) is the only maximal
subgroup of N which contains S. Finally we will have F ∗(N) = O2(N).

Then we will determine the action of N/O2(N) on Ω1(Z(O2(N))). This
will be a so called small module for N/O2(N). In this chapter we inves-
tigate small modules in generality. The results obtained will be applied
to determine the acton of N on Ω1(Z(O2(N))).

Definition 3.1. Let X be a group, V be a faithful module over GF(p).
We call V an

(i) F–module if there is some nontrivial elementary abelian p-sub-
group A of X such that |V : CV (A)| ≤ |A|;

(ii) F + 1–module if there is some nontrivial elementary abelian
p-subgroup A of X such that |V : CV (A)| ≤ 2|A|;

(iii) 2F–module if there is some nontrivial elementary abelian p-
subgroup A of X such that |V : CV (A)| ≤ |A|2.
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In all cases the group A is called an offender. We call the module V a
sharp F -module, if for any offender A we have that |V : CV (A)| = |A|.

We will call the modules defined in Definition 3.1 small modules.
Here is a typical situation in which F -modules show up.

Lemma 3.2. Let G be a group which acts on a p-group X and S be
a Sylow p-subgroup of XG. Assume that G acts faithfully on W =
Ω1(Z(X)) 6= Ω1(Z(S)). Then either J(S) ≤ X, and so J(S) is normal
in XG, or W is an F -module for G.

Proof. We may assume that J(S) 6≤ X. Then there is a maximal ele-
mentary abelian subgroup A of S, with A 6≤ X. Now |A∩X||W |/|W ∩
A| = |(A ∩ X)W | ≤ |A|. This implies that |W/W ∩ A| ≤ |A/A ∩ X|.
As W ∩ A ≤ CW (A), we get that W is an F -module with offender
A/A ∩X. �

In the next two lemmas we give a classification of some of the small
modules for simple groups using the classification of the finite simple
groups. By a full transvection group we mean the unipotent radical of
the stabilizer of a point or hyperplane of the natural module for SLn(q).
Let X = An and V be the permutation module over GF(2). We call the
non trivial irreducible module involved in V of dimension n − 2 for n
even and dimension n− 1 for n odd, the reduced permutation module.

Lemma 3.3. Let X be a group such that F ∗(X) is quasisimple and let
V be an irreducible F ∗(X)–module over GF(2) which is an F–module
for X. Then F ∗(X) is classical, G2(q), An, or 3A6 and one of the
following holds

(1) F ∗(X) is classical and V is the natural module, or An and V
is the irreducible reduced permutation module.

(2) F ∗(X) ∼= SLn(q) and V is the exterior square of the natural
module or its dual. Further this module is sharp.

(3) F ∗(X) ∼= Sp6(q) or Ω+
10(q) and V is the spin module or half

spin module, respectively. If F ∗(X) ∼= Ω+
10(q), then this module

is sharp.
(4) F ∗(X) ∼= G2(q) and V is the natural module or F ∗(X) ∼= 3A6

and V is the 6–dimensional module. In both cases this is sharp.
(5) X ∼= A7 and V is the 4–dimensional module over GF(2).

Proof. [GM], [GM1], [GLM]. �

Lemma 3.4. Let X be a group such that F ∗(X) is quasisimple and
let V be a faithful irreducible X–module over GF(2). Suppose that X
is a minimal parabolic (i.e. a Sylow 2-subgroup of X is not normal in
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X but contained in a unique maximal subgroup of X) and V is a 2F–
module with offender A such that |V : CV (A)| < |A|2. Then one of the
following holds

(a) V is an F–module, F ∗(X) ∼= L2(2n) and V is the natural mod-
ule, or F ∗(X) ∼= A2n+1 and V is the irreducible section of the
permutation module.

(b) V is not an F -module and one of the following holds
(1) F ∗(X) ∼= SL3(2n) and V is the direct sum of the natural

module and its dual. Furthermore X contains some ele-
ment, which induces a graph or graph/field automorphism
on F ∗(X).

(2) F ∗(X) ∼= L2(22n) ∼= Ω−4 (2n) and V is the orthogonal mod-
ule.

(3) F ∗(X) ∼= Sp4(2n) and V is a direct sum of the two 4–
dimensional modules. Furthermore X contains some ele-
ment, which induces a graph automorphism on F ∗(X).

(4) F ∗(X) ∼= A9 and |V | = 28, V is the spin module.

Proof. If V is irreducible for F ∗(X) then we get (a), (b)(2) or (b)(4)
by [GM], [GM1], [GLM]. If V is not irreducible for F ∗(X), then there
is a submodule V1 such that V = V1 ⊕ · · · ⊕ Vr, r > 1 and Vi are
X–conjugate irreducible F ∗(X)–modules.

We will show:

V1 is an F −module for F ∗(X)Ã, where

Ã is an offender with |V1 : CV1(Ã)| < |Ã|.(∗)

For this assume first that A acts on each Vi. Then we see that it in-
duces on at least one Vi an F–module offender A/CA(Vi) such that
|Vi : CVi(A)| < |A/CA(Vi)|. We may assume i = 1. So we can set

Ã = A/CA(V1) to get (∗). Now let W = V A
1 = V1 ⊕ · · · ⊕ Vt, t > 1.

Then we have that |A|2 > |W : CW (A)| = |V1 : CV1(B)||V1|t, where
B = NA(V1). Assume that |V1 : CV1(B)| ≥ |B|. Then t2|B| > |V1|t−1 ≥
(2|B|)t−1. This shows t = 2, B 6= 1 and |V1| = 2|B|. In particular B
induces the full transvection group to a point on V1. As A 6= B and
there is no outer automorphism of Ln(2) centralizing a full transvec-
tion group this is not possible. Hence we have |V1 : CV1(B)| < |B|. Now
with Ã = B, we again have (∗). This finally proves (∗).

Using (∗) an application of Lemma 3.3 shows that we have (b)(1) or
(3) or F ∗(X) ∼= An. In case of An, as X is a minimal parabolic, we
have n odd. Offenders are transvection groups and so they are sharp.
Hence F ∗(X) 6∼= An. �
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By Thompson replacement [GoLyS2, Theorem 25.2] F -modules are
also quadratic modules. Hence we now turn to quadratic modules.

Lemma 3.5. [Cher, Theorem 3] Let K be a component of a group X,
O2(K) = 1 and V be a GF(2)–module for X with [V,K] 6= 1. Suppose
that A ≤ X and [V, a, A] = 1 for some 1 6= a ∈ A, then one of the
following holds:

(i) [K,A] ≤ K,
(ii) K ∼= SL2(2k), |A/NA(K)| = 2 and |A/CA(K)| > 2. Further

[V, 〈KA〉] is a direct sum of natural Ω+
4 (2k)–modules, or

(iii) A 6= NA(K), |A/CA(K)| = 2.

If [K,A] 6≤ K, then A does not act as a quadratic F -module offender
on [V, 〈KA〉].

Lemma 3.6. [Str2] Let X ∼= Sp4(q)′ or 2F4(q)′, q = 2n, and V be
an irreducible GF(2)-module. Suppose there is a fours group A in X
with [V,A,A] = 1. If A intersects some root group R nontrivially but
A 6≤ R, then X ∼= Sp4(q)′ and V is a natural module.

Lemma 3.7. Let X be a group such that F ∗(X) is a perfect central
extension of a finite simple group. Suppose there is some elementary
abelian 2-subgroup A of X, |A| ≥ 4, such that for some irreducible
nontrivial faithful module V over GF(2) we have [V,A,A] = 1. Then:

(i) If F ∗(X)/Z(F ∗(X)) is sporadic, then F ∗(X)/Z(F ∗(X)) ∼= M12,
M22, M24, J2, Co1, Co2 or Sz. If |A| ≥ 8, then F ∗(X) ∼= 3·M22.

(ii) If F ∗(X)/Z(F ∗(X)) is a group of Lie type in odd characteristic
which is not also a group of Lie type in even characteristic,
then F ∗(X) ∼= 3 · U4(3). Furthermore V is the 12–dimensional
module.

(iii) If F ∗(X)/Z(F ∗(X)) is alternating, then either V is the re-
duced permutation module, a spin module or F ∗(X) ∼= 3 ·
A6 and V is the 6-dimensional module or F ∗(X) ∼= 3 · A7

and V is the 12–dimensional module. If |A| > 8, then V is
natural or X ∼= A8 and |V | = 16. If V is the spinmodule
and |A| = 4, then A is conjugate to 〈(12)(34), (13)(24)〉 or
〈(12)(34)(56)(78), (13)(24)(57)(68)〉. If |A| = 8 then A is con-
jugate to 〈(12)(34)(56)(78), (13)(24)(57)(68), (14)(26)(37)(48)〉
in Σn.

Proof. (i) This is [MeiStr2].
(ii) This is [MeiStr1].
(iii) The first assertion is [MeiStr2]. There the group 3 · A7 was for-

gotten. But as J. Hall pointed out there is an embedding 3 · A7 ≤
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3 ·M22 ≤ SU6(2), which gives a 6-dimensional module over GF(4) on
which a fours group in 3 · A7 acts quadratically.
For the proof of the second assertion suppose |A| ≥ 4. Let a ∈ A] and k
be the number of fixed points of a. Then there is K ≤ CX(a), K ∼= Σk.
Furthermore CCX(a)(K

′)′ is an extension of a 2–group by Am, m =
(n − k)/2. Now choose a ∈ A with m as big as possible. Suppose
first m > 2. By [MeiStr1, (4.3)] there is no x ∼ (12)(34) such that
[[V, a], x] = 1. In particular 〈ACX(a)〉 does not contain such an ele-
ment x.

Suppose first [A,CCX(a)(K
′)] 6= 1. If m ≥ 5, then Am is nonsolvable and

so CCX(a)([V, a]) contains an elementary abelian subgroup of O2(CX(a))
of order 2m−1. But then this group contains a conjugate t of (12)(34).
Now 〈a, t〉 acts quadratically, a contradiction.

Let m = 4. Then a ∼ (12)(34)(56)(78). Furthermore as we may assume
that no x ∼ (12)(34) is contained in 〈ACX(a)〉 we see that A is conjugate
to a subgroup of 〈(12)(34)(56)(78), (13)(24)(57)(68), (15)(26)(37)(48)〉.

Let m = 3. Then CX(K ′) ≤ Σ6 and a ∼ (12)(34)(56). We see that
〈ACX(a)〉 has to contain some x ∼ (12)(34), a contradiction.

So let [A,O2′(CCX(a)(K
′))] = 1. If [A,K ′] 6= 1, then [K ′, [V, a]] = 1.

If k ≥ 4, then K ′ contains some x ∼ (12)(34), a contradiction. Let
k ≤ 3. As [A,O2′(CCX(a)(K

′))] = 1 and m > 2, there is x ∼ (12) in
A. But then xa has fewer fixed points than a, a contradiction. So we
are left with [A,K ′] = 1 = [A,CCX(a)(K

′)]. But this is impossible with
m > 2.

So we have m ≤ 2 for all a ∈ A]. As there is no fours group of
transpositions we may assume a = (12)(34) ∈ A. Now A ≥ 〈a, b〉,
b = (13)(24), (12)(56) or (34). Let b = (12)(56). If [b,K ′] 6= 1 then K ′

contains no involutions by [MeiStr1, (4.3)]. This shows k ≤ 3 and so
A ≤ Σ7. If [b,K ′] = 1, then even k ≤ 2 and so A ≤ Σ6. But for this
group A = 〈(12)(34), (12)(56)〉 does not act quadratically on the four
dimensional spin module. Recall that in case of Σ6 the natural module
is defined as the module on which 〈(12)(34), (12)(56)〉 acts quadrati-
cally.

Assume now b = (34). Then CX(b) ∼= Z2 × Σn−2. If n − 2 > 3, then
(12)(56) ∈ [a, CX(b)]. But then 〈(34), (12)(56)〉 acts quadratically, a



19

contradiction. So n = 5. But 〈(12), (34)〉 does not act quadratically on
the natural L2(4)–module. Hence b = (13)(24), which proves (iii). �

Lemma 3.8. Let A ≤ Σ6 be an elementary abelian subgroup of order 8.
Then A does not act quadratically on both of the two 4-dimensional
modules for Σ6.

Proof. As the two 4-dimensional modules are interchanged by an outer
automorphism of Σ6, which also interchanges the two elementary abelian
subgroups of order 8, it is enough to show that not both act quadrati-
cally on the irreducible part of the permutation module. But the fours
group 〈(12)(34), (13)(24)〉 does not act quadratically on the irreducible
permutation module, as the commutator of (12)(34) with the permuta-
tion module, which is 〈v1+v2, v3+v4〉, is not centralized by (13)(24). �

For later applications we need some information about central ex-
tensions of some of the small modules.

Lemma 3.9. Let X = An, n ≥ 5, V be a GF(2)X-module with [V,X]
the natural irreducible permutation module. Assume CV (X) = 1. Then
|V : [V,X]| ≤ 2, and V = [V,X] if n is odd. Furthermore V is a factor
of the reduced permutation module. In particular V is of dimension
n− 1 or n− 2.

Proof. This will be proved by induction on n. For n = 5 this is well
known as the permutation module is injective. So let n > 5, K ∼=
An−1, K ≤ X. If n− 1 is odd, then [V,X] = [V,K] is the permutation
module for K. By induction V = [V,K]

⊕
T . Hence there is v ∈ V \

[V,X], [v,K] = 1, i.e. 〈vX〉 = V1 is a factor of the permutation module.
Let K1 ≤ K such that K1

∼= An−2. Then |CV (K1) : T | = 2. Now
there is an involution t ∈ X such that t 6∈ K but t normalizes K1. As
〈K, t〉 = X, we get CT (t) = 1 and so T = 〈v〉, i.e. V1 = V .

Let n−1 be even. Then we have aK-chain. 1 < T < T1 < [V,X] < V ,
with |T | = 2, T1/T the irreducible permutation module for K and
|[V,X]/T1| = 2. Now by induction CV/T (K) 6= 1. As CV/T (K) 6≤
[V,X]/T , we again get some v ∈ V \ [V,X], [v,K] = 1, and so V is
a factor of the permutation module. �

Lemma 3.10. Let F ∗(G) = L2(2n) and V be a faithful F–module over
GF(2) for G such that CV (G) = 1. Then V is irreducible.

Proof. If n = 1, then V = [V,G′] ⊕ CV (G′). As CV (G) = 1 also
CV (G′) = 1 and so V = [G′, V ] is of order 4. So let n > 1. By
Lemma 3.3 we have that there is an irreducible submodule V1 in V
which is the natural L2(2n)–module or n = 2 and it is the permutation
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module for A5. In both cases we get |V1 : CV1(A)| = |A| for an offender
A. Hence we see that V = CV (A)V1. In particular V/V1 is a trivial
L2(2n)–module. By Lemma 3.9 we may assume that V1 is the natural
L2(2n)–modules. Now A is a Sylow 2–subgroup of L2(2n). Application
of [Hu, (I.17.4)] gives V = V1. �

Lemma 3.11. Let X = Ω+
4 (q), q even, and V be a module over GF(2)

with [V,X] the natural module and CV (X) = 1. Then [V,X] = V.

Proof. We have X = X1X2, Xi
∼= L2(q), i = 1, 2. We may assume

that q > 2, as the assertion is obvious for q = 2. There are ωi ∈ Xi

with o(ωi) = q + 1. If C[V,X](ω1) 6= 1, then as X2 acts nontrivially on
C[V,X](ω1) we get |C[V,X](ω1)| = q2 and so |[[V,X], ω1]| = q2. By Schur’s
Lemma [[V,X], ω1] is a 1-dimensional module over GF(q2) for X2 and so
X2 ≤ GL1(q2), a contradiction. Hence ωi act fixed point freely on [V,X]
for both i = 1, 2. Now choose v1 ∈ V \ [V,X] with [v1, ω1] = 1. Then v1

is uniquely determined in the coset [V,X]v1. Since ω1 and ω2 commute,
we have v1 is centralized by ω2. So CV (ω1) = CV (ω2) is normalized by
〈CX(ω1), CX(ω2)〉 ≥ 〈X2, X1〉 = X, which is a contradiction. �

Lemma 3.12. Let F ∗(G) = A2n+1 and V be a module over GF(2),
which is an 2F–module, with offender A such that |V : CV (A)| <
|A|2. Assume CV (G) = 1 and V involves just trivial and nontrivial
irreducible parts of the permutation module. Then we have that V is
the irreducible part of the permutation module.

Proof. If we have just one irreducible part of the permutation module in
V , the assertion follows by Lemma 3.9. So we may assume that we have
at least two such modules involved. Let W be the irreducible part of the
permutation module. Then we have that A is an F–module offender on
W with |W : CW (A)| < |A|. Then by Thompson replacement [GoLyS1,
Theorem 25.1] there is also a quadratic F–module offender with this
property. Take an involution x ∈ G. On W we have that |[W,x]| = 2u,
where u is the number of transpositions in the cycle decomposition of
x. We may assume that {1, 2, . . . ,m} is the support of A. Then there
is a subgroup B of A such that |W : CW (B)| = |W : CW (R)|, where
R = 〈(1, 2), (3, 4), . . . , (m − 1,m)〉. But then |W : CW (R)| = |R|, a
contradiction. �

Lemma 3.13. Let G = A2n+1 and S be a Sylow 2–subgroup of G. Let
V be the irreducible part of the permutation module over GF(2) for G.
Then |CV (S)| = 2.

Proof. Let W be the module with basis vi, i = 1, . . . , 2n + 1 with
natural G-action on W . Then W = V ⊕W1, W1 the trivial module.
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Choose S ≤ X ∼= A2n , where X is the stabilizer of 1. Then we calculate
immediately that CW (S) = 〈v1, v2 + · · ·+v2n+1〉. As v1 6∈ V , we get the
assertion. �

Lemma 3.14. Let G = L2(2n) or A2n+1, n ≥ 2. Let H be a Borel
subgroup in the first case and a subgroup isomorphic to A2n in the
second case. Let V be a GF(2)–module for G such that [V,G] is the
natural module, or G ∼= A9 and [V,G] is the 8–dimensional spin module.
Then one of the following holds:

(i) G = L2(2n) and CV (H) = CV (G).
(ii) G = A2n+1 and CV (H) = CV (S), S a Sylow 2–subgroup of H.

(iii) G = A9, [V,G] is the 8-dimensional spin module and CV (H) =
CV (G).

Proof. We may assume that in all cases V = [V,G]CV (H). As H con-
tains a Sylow 2-subgroup of G we get that V = [V,G]CV (S). Now
application of [Hu, (I.17.4)] shows that V = [V,G]⊕CV (G). In case (i)
and (iii) we have that C[V,G](H) = 1, so we have that CV (G) = CV (H).
In case (ii) by Lemma 3.13 we have that C[V,G](H) = C[V,G](S), so we
get CV (H) = CV (S). �

Lemma 3.15. Let G = E(G)T , T a Sylow 2–subgroup of G, E(G) =
G1 · · ·Gr, G1

∼= L2(q), q even, or A2n+1. Assume that T acts transi-
tively on the Gi and CG(E(G)) = 1. Let V be an irreducible faithful
F–module over GF(2) for G. Then V = V1 ⊕ · · · ⊕ Vr, Vi the natural
module for Gi, i = 1, . . . , r, and [Vj, Gi] = 1 for i 6= j.

Proof. Let A be an offender. We may assume [V,A,A] = 1 by Thomp-
son replacement. Now choose A with |A| minimal. Set A1 = CA(G1).
Then we may assume A1 = 1 or |V : CV (A1)| > |A1|. If [G1, A] 6≤ G1

we get with Lemma 3.5 that GA
1 = G1G

a
1 and |A/CA(G1)| = 2. In

any case 〈a〉 has to be an F–module offender on CV (A1). This shows
A1 = 1 and 〈a〉 = A. But now a inverts some element of prime or-
der p > 3 in E(G) and so cannot induce a transvection on V . So we
have that [G1, A] ≤ G1. Then G1 induces an F–module in CV (A1).
By Lemma 3.3 we have that there is exactly one nontrivial module W
involved in CV (A1), the natural one.

Assume that A1 6= 1. Let B ≤ A be a complement to A1 and let
1 6= a ∈ A1. As A acts quadratically, we see that [V, a,G1] = 1. This
implies [V,G1] ≤ CV (A1). If A1 = 1, then also [V,G1] ≤ CV (A1). Hence
in any case [V,G1] involves just one nontrivial irreducible module. Now
we have that [V,G1] is centralized by G2×· · ·×Gr. As CV (E(G)) = 1,
we get that W = [V,G1] is the natural module. But now [V,Gi] is the
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natural module for all i, as T acts transitively. Hence V = V1⊕· · ·⊕Vr
with [Vi, Gj] = 1 for i 6= j and Vi the natural Gi–module, the asser-
tion. �

The next two lemmas deal with solvable groups having F or 2F -
modules.

Lemma 3.16. Let G be a solvable group with Sylow 2–subgroup S and
O2(G) = 1. Assume that S is contained in a unique maximal subgroup
of G. Let V be a faithful GF(2)–module for G. If V is an F–module,
then G = O3(G)S.

Proof. If G 6= F (G)S, then there are maximal subgroups containing
F (G)S and NG(S ∩O2′,2(G)), which are different. Hence G = F (G)S.
Further again by minimality F (G) = Op(G) for some prime p. By
Lemma 2.3 we have a subgroup D = D1 × · · · × Dr of G such that
the Di are dihedral of order 2p and a Sylow 2–subgroup A of D is
an F–module offender. Hence we have that |V/CV (D)| ≤ |A|2, as D
is generated by two conjugates of A. Now Op(D) acts faithfully on
V/CV (D) and so p = 3. �

Lemma 3.17. Let G be a group and V be a faithful 2F–module over
GF(2) with offender A. Suppose G = Op(G)A with Op(G) = F (G) for
some odd prime p. Then p ≤ 5 and in case of p = 5, we have that
|V : CV (A)| = |A|2. If A is an F–module offender, then p = 3 and
|V : CV (A)| = |A|.

Proof. By the Dihedral Lemma 2.3, we may assume that

G = D1 × · · · ×Dr,

Di dihedral of order 2p. Now as |V : CV (A)| ≤ |A|2 or |A| we have that

|V : CV (G)| ≤ |A|4, |A|2 respectively.

Hence |[V,Op(G)]| ≤ |A|4 ≤ 24r, or |[V,Op(G)]| ≤ 22r. In GL4r(2)
elementary abelian subgroups of order pr just exist for p = 3 and
p = 5, while in GL2r(2) they just exist for p = 3. This shows that
p ≤ 5. If p = 5, then we must have that |V : CV (G)| = 24r and so
|V : CV (A)| = |A|2. If p = 3 and A is an F–module offender then
|V : CV (G)| = 22r and so |V : CV (A)| = |A|. �

Lemma 3.18. Let X = Sz(q) or L2(q), q > 2 even. Suppose that
X acts on a 2-group U . Let V be a normal subgroup of U of order 2
and U/V be the natural module for X. In case of X ∼= Sz(q) assume
additionally that U contains an elementary abelian subgroup U1 with
|U1|2 = 2|U |. Then U is abelian.
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Proof. If X ∼= L2(q), then X acts transitively on (U/V )]. As q > 2 we
see that U is not a quaternion group and so there are involutions in
U \ V , so all elements in U are involutions, the assertion.

So let X ∼= Sz(q). We may assume that U is extraspecial. Now ele-
ments of order 5 act fixed point freely on U/V . The existence of U1

guarantees that U is extraspecial of + type. As q = 22n+1, we get
|U/V | = 28n+4 and so U is a central product of 4n+ 2 dihedral groups.
But as an element of order 5 acts fixed point freely on U/V the number
of dihedral groups must be divisible by four by [MaStr, Lemma 2.9], a
contradiction. �

Lemma 3.19. Let X = L2(q) or Sz(q), q ≥ 4, q even. Let S ∈ Syl2(X)
and A ≤ Ω1(S) , |A| ≥ 4. Then there is some g ∈ X with X = 〈A,Ag〉.

Proof. We have that X acts 2-transitively on a set Ω with |Ω| = q+ 1,
q2 + 1, respectively. For 1 ∈ Ω we have that X1 = SK, where K is
cyclic of order q− 1 and acts transitively on Ω1(S). Further K = X1,2,
the stabilizer of two points. Finally the stabilizer of any three points is
trivial.

This has the following consequences. Choose 1 6= ρ ∈ K. Then {1, 2}
are the two fixed points of ρ. Hence NX(〈ρ〉) contains K as a subgroup
of index two. This shows that K = CX(ρ). Let a ∈ S be an involution.
Then a has just one fixed point. This shows that CX(a) = S, a 2-group.

Now choose 〈t, a〉 ≤ A ≤ Ω1(S) , |A| ≥ 4. Choose g ∈ X such that
NX(K g) = 〈a, b〉 for some involution b. Then set U = 〈a, b, t〉. Let T
be a Sylow 2–subgroup of U with 〈a, t〉 ≤ T . Then T ≤ CX(a) = S,
so T = U ∩ S. If T = NU(T ), we get a normal 2-complement W in
U . But then one of CW (a), CW (t), CW (at) must be nontrivial, which
contradicts the fact that centralizers of involutions are 2-groups. Hence
we have that K∩U 6= 1. Now choose ρ ∈ K∩U of prime order p. As |K|
is coprime to |X : K| and Kg ≤ U , there is some x ∈ U with ρx ∈ Kg.

Then Kg = CU(ρx). Now K = CX(ρ) = Kgx−1 ≤ U . This shows that
〈Ω1(S),Ω1(S)x〉 ≤ U . Thus it is enough to show 〈Ω1(S) ,Ω1(S)x〉 = X.

We have that Y = 〈Ω1(S),Ω1(S) g〉 contains at least q+1 conjugates
of Ω1(S). Thus we are done if X ∼= L2(q), as 〈Ω1(S),Ω1(S) b〉 contains
all conjugates.

So let X ∼= Sz(q). The number of conjugates of Ω1(S) in Y is nq+1.
But then nq + 1

∣∣ q(q2 + 1). Which gives n = q and so 〈Ω1(S)X〉 ≤ Y ,
hence X = Y . �

The next two lemmas show how the 2F -modules will appear later on.
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Lemma 3.20. Let G be a K2-group with F ∗(G) = O2(G) 6= 1, A ≤ G
be elementary abelian with A 6≤ O2(G) and A E S for some Sylow
2–subgroup S of G. Then there is some g ∈ G such that one of the
following holds:

(i) g2 ∈ NG(A), Ag ≤ S, 1 6= [Ag, A] ≤ A∩Ag and |A : CA(Ag)| =
|Ag : CAg(A)|.

(ii) With X = 〈A,Ag〉 the following hold:
(1) X/O2(X) ∼= L2(q), Sz(q) or X/O2(X) is a dihedral group

of order 2u, u odd.
(2) S ∩X is a Sylow 2–subgroup of X.
(3) Y = (A ∩O2(X))(Ag ∩O2(X))EX.
(4) Y 6= A ∩O2(X).
(5) |A : CA(Y )| ≤ |Y : CY (A)|q ≤ |Y : CY (A)|2, where q = 2

if X/O2(X) is dihedral. Further [Y, a](A∩Ag) = [Y,A](A∩
Ag) for all a ∈ A \O2(X).

(6) If X/O2(X) is not dihedral, then Y/(A ∩ Ag) is a direct
sum of natural modules for X/O2(X).

Proof. We start the proof with some general remarks. Let X be as in
(ii) (1) and (2). Then obviously (3) follows. If (4) would be false, then as
[O2(G), A] ≤ O2(G) ∩ A ≤ O2(X) ∩ A, we get that [O2(G), X,X] = 1
and so [O2(X), O2(G)] = 1, which contradicts CG(O2(G)) ≤ O2(G).
Hence also (4) holds. Next we see that CY (A) = A ∩ Y and so we see
that CY/(A∩Ag)(A) = (A∩Y )/(A∩Ag) and Y/(A∩Ag) = (Y ∩A)/(A∩
Ag)⊕(Y ∩Ag)/(A∩Ag). So the first assertion in (5) follows. Further we
see that elements of odd order in X act fixed point freely on Y/(A∩Ag).
Hence [Hi] and [Mar] yield (6) and the second assertion in (5). So to
prove the lemma we may assume that (i) dos not hold. Then to prove
(ii) we just have to prove (1) and (2). In fact when constructing X such
that (1) holds, we immediately will see from this construction that also
(2) holds.

Set Ḡ = G/O2(G). We first prove

(∗) Suppose there is a subgroup L of Ḡ such that |Ā : CĀ(L)| = 2
and Ā 6≤ O2(〈L, Ā〉) then (ii) holds. In particular (ii) holds if
|Ā| = 2.

As Ā 6≤ O2(〈L, Ā〉) there is some ω ∈ 〈L, Ā〉, o(ω) odd, which is in-
verted by some ā ∈ Ā \ CĀ(L). Then 〈Ā, ω〉/O2(〈Ā, ω〉) ∼= D2u, u odd.
Set X = 〈A, ω〉. Then X satisfies (ii)(1). Of course S ∩ X is a Sylow
2-subgroup of X. So (ii)(2) is satisfied. Hence (∗) is proved.

If [F (Ḡ), Ā] 6= 1 then F (Ḡ) = 〈CF (Ḡ)(B̄) | |Ā : B̄| = 2〉. Hence there is
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some B̄ with CF (Ḡ)(B̄) 6= 1 and [CF (Ḡ)(B̄), Ā] 6= 1. So by (∗) (ii) holds.

For the remainder of this proof we will assume that F ∗(Ḡ) = E(Ḡ),
Ḡ = E(Ḡ)Ā and |Ā : CĀ(L)| ≥ 4 for all components L. As [S,A] ≤ A,
we have that A acts quadratically on O2(G). Hence by Lemma 3.5 we
have [L, Ā] ≤ L or L ∼= SL2(q), q even. In the latter there is some
a ∈ Ā such that C〈LA〉(a) = L1

∼= L2(q) and as Ā is normal in a Sylow

2–subgroup of 〈L, Ā〉, we have that A1 = L1∩ Ā is a Sylow 2–subgroup
of L1. So L1 = 〈A1, A

g
1〉 for suitable g ∈ L1. Hence X = 〈A,Ag〉 satisfies

(ii)(1) and (2). So from now on we assume that [L, Ā] ≤ L. We collect
this in

(∗∗) L = F ∗(Ḡ) is a component, |Ā| ≥ 4 and if Ā ≤ Ū < Ḡ, with
S ∩ Ū a Sylow 2–subgroup of Ū , then Ā ≤ O2(Ū).

Assume first that L is of Lie type in odd characteristic, which is not
also of Lie type in even characteristic. Then by Lemma 3.7 we have
that L/Z(L) ∼= U4(3). As A E S, there is some 2–central involution s
in Ā. By (∗∗) we have Ā ≤ O2(CLĀ(s)). As we may generate CLĀ(s)
by elements g with g2 ∈ O2(CLĀ(s)), then if Ā is not normal in CLĀ(s)
there is such a g with Āg ≤ O2(CL(s)) and 1 6= [Ā, Āg] ≤ Ā∩ Āg. Then

also 1 6= [A,Ag] ≤ A∩Ag and Ag
2

= A. Obviously |A : CA(Ag)| = |Ag :

CAg(Ag
2
)| = |Ag : CAg(A)|. So we may assume Ā E CLĀ(s). As CL(s)

contains a normal subgroup U = SL2(3)∗SL2(3) by Lemma 2.6(i) and
O2(U) = O2(CL(s)), we see that O2(CL(s)) cannot contain an elemen-
tary abelian subgroup of order at least four which is normal in U . So
Ā 6≤ L. In particular there is some t ∈ Ā such that [U, t] ≤ O2(U). As
〈s, t〉 is normal in CLĀ(s), we get that |CL(t)| is divisible by 26 ·3. Then
by Lemma 2.6 we get CL(t) ∼= PSp4(3), contradicting (∗∗).

Next let L ∼= G(r) be a group of Lie type in even characteristic. Sup-
pose first that Ā acts nontrivially on the Dynkin diagram. If the rank
is greater than two, then there is a parabolic U of rank two of L such
that Ā acts nontrivially on F ∗(U/O2(U)). But this contradicts (∗∗).
So we may assume that L/Z(L) ∼= L3(q) or Sp4(q)′. Let B be a Borel
subgroup of L, which is normalized by Ā, then by (∗∗) we have that
[B, Ā] ≤ O2(B). This now gives q = 2. But then we easily see that
[S ∩ L, Ā] is not abelian, contradicting ĀE S̄. So we have that Ā acts
trivially on the Dynkin diagram.

Let R be a root subgroup in Z(S̄ ∩ L). By (∗∗) we have that Ā ≤
O2(NḠ(R)). If CL(R) is generated by elements g with g2 ∈ O2(NL(R)),
then we either get (i), or 〈ĀNL(R)〉 is abelian.
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If even Ā ≤ R, then Ā ≤ L̃ ≤ L, with L̃ ∼= L2(r) or Sz(r) and
S ∩ L̃ is a Sylow 2–subgroup of L̃.

Now we just have to handle rank 1 groups or groups L in which NL(R)
contains a normal elementary abelian subgroup different from R, in
particular NL(R) does not act irreducibly on O2(NL(R))/R. Applica-
tion of Lemma 2.17 shows L/Z(L) ∼= Ln(r), Sp2n(r)′, F4(r) or 2F4(r).

Suppose L is a rank 1 group. We have that Ā ≤ O2(BĀ) for some
Borel subgroup B of L. Hence we have that Ā ≤ L. Then as |Ā| ≥ 4,
by Lemma 3.19 we get some g ∈ L such that for X = 〈A,Ag〉. We have
X/O2(X) ∼= L2(q) or Sz(q) and a Sylow 2-subgroup of X is contained
in S̄ and we are done. In particular from now on we may assume that
Ā 6≤ R.

Now assume that L/Z(L) ∼= Ln(r), n ≥ 3. Let P1, Pn−1 be the two par-
abolic subgroups of LĀ containing S̄∩L which involve Ln−1(r). We have
that Ā ≤ O2(Pi) for both i. So we have Ā ≤ O2(P1) ∩ O2(Pn−1) = R,
a contradiction.

Next let L/Z(L) ∼= Sp2n(r)′, n ≥ 2. Now CL(R) is generated by ele-
ments g with g2 ∈ O2(CL(R)). By (∗∗) we have Ā ≤ Z(O2(NḠ(R))). We
now may embed Ā into some L̃ ∼= Sp4(r)′ with S∩L̃ a Sylow 2–subgroup
of L̃. Hence we may assume L ∼= Sp4(r)′. We apply Lemma 2.21. So we
have two parabolics P1, P2 of LĀ containing S̄ ∩ L. By (∗∗) we have
Ā ≤ O2(P1)∩O2(P2). As Ā is not contained in a root subgroup we see
that 〈ĀPi〉 = O2(Pi) for i = 1, 2. Even in case of r = 2 this is true as
|Ā| > 2. Let Hi be the preimage of Pi, i.e. Hi/O2(G) = Pi. Now sup-

pose that 〈AO2′ (H1)〉 is not abelian. Then there is some conjugate Ah,
h ∈ O2′(H1), with 1 6= [A,Ah] ≤ A∩Ah. As O2′(H1) is generated by el-

ements h with h2 ∈ NH1(A), we may even choose h such that Ah
2

= A,

so (i) holds. Hence we may suppose that 〈AO2′ (Hi)〉 is abelian for both
i = 1, 2. Then we see that O2(Hi) ≤ CS(A)O2(G). As this is true for
both i, we get S ∩ L = CS(A)O2(G)/O2(G). As A acts quadratically
on O2(G) we may apply Lemma 3.6. Suppose there is a chief factor
V in O2(G) which is the natural module. We have |[V, Ā]| = r2, while
|CV (S ∩ L)| = r. As [V, Ā] is covered by A this is a contradiction. So
we have that Z(L) is nontrivial and acts faithfully on V . This gives
q = 2. By Lemma 3.7 we must have L ∼= 3 · A6 and the 6–dimensional
module is involved in O2(G). Then by quadratic action we get Ā ≤ L.
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As Ā ≤ O2(P1) ∩ O2(P2) and Pi ∩ L ∼= Σ4, this implies |Ā| = 2, a
contradiction.

Next let L ∼= F4(r). We have two root groups R1 and R2 in Z(S̄ ∩ L)
and by (∗∗) Ā ≤ Z(O2(NL(R1))) ∩ Z(O2(NL(R2))). But this group is
contained in some Sp4(r) as can be seen in [Shi, (1.5), Proposition 2.2
and Theorem 2.1] and we get the assertion by induction.

Next let L ∼= 2F4(r)′. As Ā acts quadratically we get by Lemma 3.6
that Ā ≤ R, a contradiction.

Now let L ∼= An, n ≥ 5. So we may assume n = 7 or n ≥ 9. We
have LĀ ≤ Σn. If n is odd, then there is L̃ ≤ L, L̃ ∼= An−1, which
is normalized by S̄. Hence we may assume n to be even right from
the beginning. So n ≥ 10. Let first n = 2m. Then there is a subgroup
L̃ ≤ L normalized by Ā with S̄ ∩ L ≤ L̃ and L̃ is a subgroup of index
at most two in Σn

2
o Z2. As n ≥ 16 we have O2(L̃) = 1 and so we get a

contradiction with (∗∗). Let m1, . . . ,mr be the dyadic decomposition
of n. Let L̃ be the subgroup of L with S∩L ≤ L̃ = L∩Σm1×· · ·×Σmr .
By (∗∗) Ā centralizes any component X1 of L̃. So as |Ā| > 2 by (∗)
and Ā acts nontrivially on L̃, we see that Ā ≤ Σ4 × Z2. Now we can
embed Ā into some X2

∼= Σ6 or Σ5, which contradicts (∗∗).

Finally let L be sporadic. By Lemma 3.7 we get that L/Z(L) ∼= M12,
M22, M24, J2, Co1, Co2, or Suz, recall that by (∗) |Ā| > 2. Now we
choose s ∈ Z(S̄ ∩ L ∩ Ā). By (∗∗) we have Ā ≤ O2(CḠ(s)). If there is
some involution g in CL(s) with [Ā, Āg] 6= 1, we have (i). So we may as-
sume that 〈ĀCL(s)〉 is abelian. This gives L/Z(L) ∼= Mi, i = 12, 22, 24.
If L ∼= M24 there is a subgroup L̃ ≤ L with S ∩ L ≤ L̃ and L̃ ∼= 24A8.
Now by (∗∗) we have Ā ≤ O2(L̃). But there is no quadratic foursgroup
in O2(L̃) according to [MeiStr2].

Next let L/Z(L) ∼= M22. Then Ā normalizes a subgroup P of Ḡ/Z(L)
with 24A6 ≤ P ≤ 24Σ6. By (∗∗) we have that Ā ≤ O2(P ). Hence we
may embed Ā into a subgroup (S)L3(4). But then (∗∗) gives a contra-
diction.

So we are left with L ∼= M12. If Ā 6≤ L, then with [MeiStr2] we see
that Ā cannot be normalized by S ∩ L, so we have Ā ≤ L. Now in L
there are two parabolics P1, P2 such that Pi/O2(Pi) ∼= Σ3. By (∗∗) we
have that Ā ≤ O2(P1) ∩ O2(P2) and so 〈ĀCL(s)〉 is elementary abelian
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of order 8. Then this group contains an involution i which acts fixed
point freely on the 12 points moved by L. So CL(i) ∼= Z2 × Σ5. Fur-
ther S contains a Sylow 2–subgroup of CL(i). As Ā ≤ CL(i), we get a
contradiction by (∗∗). �

Lemma 3.21. Suppose M and H are K2 – groups with F ∗(M) =
O2(M) and F ∗(H) = O2(H), which are subgroups of some group X. As-
sume further that M contains a Sylow 2–subgroup S of H and O2(M) ≤
H. Finally we assume that there is Z EM , Z ≤ Ω1(Z(O2(M))) and
Z 6≤ O2(H). Then one of the following holds.

(1) There is some g ∈ H, g2 ∈ NH(Z) with Zg ≤ S ≤ M , Z ≤
M g. Further 1 6= |Z : CZ(Zg)| = |Zg : CZg(Z)|. In particular
Z is an F–module.

(2) There is some g ∈ H such that for L = 〈Z,Zg〉 we have
(i) L/O2(L) ∼= L2(q), Sz(q), q even, or D2u, a dihedral group

of order 2u, u odd. Set q = 2 in the latter.
(ii) Set B = Zg ∩O2(L) ≤ S ≤M . Then

(α) For the action of B on Z we have [Z,B,B,B] = 1. If
x ∈ Z\O2(L), then CB(x) = B∩Z, [x,B](Z∩Zg) =
[Z,B](Z ∩ Zg) and |Z : CZ(B)| ≤ q|B/(B ∩ Z)|.

(β) In particular Z is a 2F–module with offender B/(B∩
Z) and an F+1–module in case of q = 2. In all cases
we have |Z : CZ(B)| < |B/(B∩Z)|2. Moreover if B
acts quadratically on Z, then Z is an F–module.

Proof. Up to the last assertion that |Z : CZ(B)| < |B/(B ∩ Z)|2, we
find everything for (1) and (2) in Lemma 3.20 where G = H and A = Z.

So assume |Z : CZ(B)| = |B/(B ∩ Z)|2. Then |(Z ∩ O2(L))(Zg ∩
O2(L))/Z∩Zg| = q2. Hence we have that L/O2(L) ∼= L2(q) or L induces
Σ3 on (Z∩O2(L))(Zg∩O2(L))/Z∩Zg. In both cases L acts transitively
on ((Z ∩O2(L))(Zg ∩O2(L))/Z ∩Zg)] and so (Z ∩O2(L))(Zg ∩O2(L))
is abelian. But then |Z : CZ(B)| = |B/(B ∩ Z)|, a contradiction.

If B acts quadratically we have that [B,Z ∩ O2(L)] = 1. If L/O2(L)
is dihedral, we get that B induces transvections. In the other case we
see by Lemma 3.20(ii)(6) that |B : B ∩ O2(H)| ≥ q. Then Z is an
F–module with offender B. �

The last lemma of this chapter is a generalization of Lemma 3.5 to
2F -modules.
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Lemma 3.22. Let the notation be as in Lemma 3.21. Suppose we have
the situation of Lemma 3.21(2). Set B̄ = B/CB(Z) and suppose there
is a component K of M/CM(Z) with [K, B̄] 6≤ K. Then |B̄| > 4 and
K ∼= Ln(2) for some n. If a ∈ B̄ with Ka 6= K, then |[Z, a]| = 2n and B̄
induces the full transvection group on [Z, a]. In particular |Zg : B| = 2.
Further KKa = KB̄ and B̄ acts faithfully on KKa.

Proof. First we show

|B̄| > q.(∗)
For this assume |B̄| ≤ q. Then |(O2(L)∩Z)(O2(L)∩Zg)/Z ∩Zg| ≤ q2.
In particular 〈Z,Zg〉 induces L2(q) on this group, which gives that all
elements in the factor group are conjugate. As (O2(L)∩Z)(O2(L)∩Zg)
is generated by involutions, we get that this group is abelian. Further-
more |B̄| = q and so B̄ is a quadratic F -module offender on Z. By
Lemma 3.5 we get the contradiction that B̄ has to normalize K. This
proves (∗).

For b ∈ B̄ set Kb = K if [K, b] = 1. If Kb 6= K set Kb = CK×Kb(b).
Recall that there is always some Kb as K = Kb for b = 1. Hence this
notation makes sense.

Suppose first q > 2. By Lemma 3.20 we know that Y := (Z∩O2(L))(Zg∩
O2(L))/(Z ∩ Zg) is a direct sum of natural modules. So let A1 ≤ Zg

such that A1 ≥ Z ∩ Zg, |A1 : Z ∩ Zg| = q and A1/Z ∩ Zg is contained
in one of these modules V1, say. We have [Z,A1, A1] ≤ Z ∩ Zg.

Let Z ∩ Zg ≤ V2 ≤ O2(L) with V2/Z ∩ Zg = V1. Let R be any hy-
perplane in Z ∩ Zg. As |(Z ∩ V2)/R|2 = 2|V2/R|, we have the assump-
tions of Lemma 3.18, and so V2/R is abelian. Hence as [A1, Z] ≤ V2,
[Z,A1, A1] ≤ R. As this is true for any hyperplane, we have that A1

acts quadratically on Z. Note that |Ā1| = q > 2, so by Lemma 3.5 we
have three possibilities

(1) [K, Ā1] ≤ K.
(2) |Ā1 : CĀ1

(K)| > 2, [K, Ā1] 6≤ K and K ∼= L2(2n). Further

[Z, 〈KĀ1〉] is a direct sum of natural Ω+
4 (2n)-modules.

(3) |Ā1 : CĀ1
(K)| = 2 and [K, Ā1] 6≤ K.

We first show

(4) [Kb, Ā1] ≤ Kb for all b ∈ B̄. In particular, taking b = 1, we
have that K is normalized by Ā1.
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This will be done in several steps. We fix notation such that [Kb, Ā1] 6≤
Kb for a certain b. In particular [Kb, B̄] 6≤ Kb.

(4.1) [Z,Kb] 6≤ O2(L).

By way of contradiction assume that [Z,Kb] ≤ O2(L) ∩ Z. Then B̄
acts quadratically on [Z, 〈KB̄

b 〉]. Hence we may apply Lemma 3.5 to Kb

and B̄. Assume first |B̄ : CB̄(Kb)| = 2. As q > 2, we have CB̄(Kb) 6= 1
and |Z : Z ∩ O2(L)| ≥ 4. Then by Lemma 3.21(2) we see that Z ∩
O2(L) = [Z,B](Z∩Zg) = [Z,CB̄(Kb)](Z∩Zg). We have that Kb acts on
[Z,CB̄(Kb)]. By quadratic action we have that [[Z,Kb], CB̄(Kb), B̄] = 1.
As Kb ≤ 〈B̄Kb〉, we get [[Z,Kb], CB̄(Kb), Kb] = 1. Obviously we have
[CB̄(Kb), Kb, [Z,Kb]] = 1. So by the Three-Subgroups-Lemma we ob-
tain [[Kb, Z,Kb], CB̄(Kb)] = 1 and then also [Z,Kb, CB̄(Kb)] = 1, which
again with the Three-Subgroups-Lemma implies [Z,CB̄(Kb), Kb] = 1.
As [B,O2(L) ∩ Z] = [Z,CB̄(Kb)], we get [Z ∩ O2(L), Kb] = 1. Now
[Z,Kb, Kb] = 1 and so [Z,Kb] = 1, a contradiction.

So we have 〈KB̄
b 〉 ∼= Ω+

4 (2n). As [Z,Kb] ≤ O2(L) by assumption, we get
by Lemma 3.5 and Lemma 3.11 that Z = [Z,Kb]CZ(Kb). Hence there is
some y ∈ CZ(Kb)\O2(L). For this y we see [y,B](Z ∩B) = Z ∩O2(L).
Then [Z,Kb, B] ≤ [Z ∩ O2(L), B] = [y,B,B]. But as [y,Kb] = 1, also
[y,B,Kb] = 1 Hence [Z,Kb, B,Kb] = 1, a contradiction as [Z,Kb] con-
tains natural 〈KB̄

b 〉-modules. So we have shown (4.1).

(4.2) CĀ1
(Kb) = 1.

Assume there is 1 6= a ∈ CĀ1
(Kb). Then 〈KĀ1

b 〉 acts on [Z, a]. By qua-
dratic action of Ā1 we have [Z, a,Kb] = 1. By the Three-Subgroups-
Lemma we get that [Z,Kb] is centralized by a and so by Lemma 3.21
as CZ(a) ≤ O2(L), [Z,Kb] ≤ O2(L), a contradiction to (4.1). This
proves (4.2).

Now as |Ā1| > 2 we get with (4.2) that we have (2), so 〈KĀ1
b 〉 ∼= Ω+

4 (2n).

In particular by Lemma 3.5 [Z, 〈KĀ1
b 〉] is a direct sum of natural mod-

ules for Ω+
4 (2n). Let W be the sum of all such modules which are in

O2(L). Then W is a 〈Kb, Ā1〉–module. As [Z,Kb] 6≤ O2(L) by (4.1)
there is some module V for 〈Kb, Ā1〉 in Z such that V 6≤ O2(L) and
V/W is the natural Ω+

4 (2n)–module. Choose y ∈ V \ O2(L). We have
[y, A1](Z∩Zg) = [Z,A1](Z∩Zg). As |[V/W, Ā1]| > |Ā1| by Lemma 3.5,
we see that V ∩B 6≤ W .

(4.3) b = 1 and CB̄(Kb) = 1. In particular Kb = K.

Suppose there is some 1 6= a ∈ CB̄(Kb). Then [a, V ∩ B] = 1. Hence a
centralizes some element in V \W . As a normalizes O2(L) and 〈Kb, Ā1〉,
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we see that a normalizes also 〈Kb, Ā1〉-submodules of V , which are
in O2(L). Hence a normalizes W . So we get [V, a] ≤ V . But now
[V/W, a] < V/W , and so [V, a] ≤ W . As [W,a] ≤ Z ∩ Zg, [W,a] is

a sum of natural modules for 〈KĀ1
b 〉 and [Z ∩ Zg, A1] = 1, we see that

[W,a] = 1. As V 6≤ O2(L) and so V/CV (a) ∼= [V, a], we have that [V, a]

is a natural module for 〈KĀ1
b 〉. This gives that |[V, a] : [[V, a], A1]| = 22n.

As [[V, a], A1] = [V, a] ∩ Zg, we see that |V : V ∩O2(L)| = 22n. In par-
ticular q ≥ 22n. But as CĀ1

(Kb) = 1, we have that q = |Ā1| ≤ 2n+1. As
n ≥ 2, this is a contradiction. This proves (4.3).

(4.4) 〈KB̄〉 = 〈KĀ1〉.
Let B1 ≤ Z, Z ∩Zg ≤ B1 such that B1 covers another natural module
in Y/Z ∩ Zg. Let b ∈ B̄1. If Kb 6= K, then Ā1 normalizes Kb by (4.3)
and so Kb ≤ 〈KĀ1〉. Hence B̄1 normalizes 〈KĀ1〉. As B̄ is generated by
such groups, we get (4.4).

Define W and V as above. If W 6= 1, then |W/CW (A1)| ≥ 22n. So
|Y : CY (Zg ∩ Y )| ≥ 22n and then also |Y : CY (Z ∩ Y )| ≥ 22n, hence
|B̄| ≥ 22n. As CB̄(K) = 1 by (4.3) we have |B̄| ≤ 2n+1 and n > 1, which
is not possible. So we have that W = 1. Hence V is the natural Ω+

4 (2n)–
module. Let a ∈ Ā1 such that Ka 6= K. Then CK×Ka(a) = Ka

∼= K.
Further a Sylow 2–subgroup of Ka together with a acts quadratically
on V . As Ā1 acts quadratically we have that Ā1 projects onto Ka×〈a〉.
So we have that B̄ centralizes a and then acts on Ka. As CB̄(K) = 1
by (4.3), we see that B̄ contains a subgroup B̃ of index two contain-
ing Ā1, which acts quadratically on V . As V 6≤ O2(L), we have that
|Y : B̃[B̃, V ](Z ∩ Zg)| ≤ 4. As [[B̃, V ]B̃, B̃] = 1, we see that B̃ cen-
tralizes a subgroup of index at most 2q in V . Now as V is not an
F–module for B̃ by Lemma 3.5, we get |B̃| ≤ q, which gives |B̄| ≤ 2q.
But as q > 2, and |B̄| is a power of q, we would get Ā1 = B̄ and then B
acts quadratically on Z, which by Lemma 3.21(2) gives that B̄ is an F–
module offender on V , contradicting Lemma 3.5. So we have proved (4).

From (4) we now get that 〈KĀ1〉 = K. As B̄ is generated by such
subgroups Ā1, we have the contradiction [K, B̄] ≤ K. This shows

(5) q = 2.

(5.1) There is some Kb such that [Kb, B̄] 6≤ Kb.

Otherwise, if there is no such Kb then for b = 1 we have Kb = K and
so [K, B̄] ≤ K, a contradiction.



32 Kay Magaard and Gernot Stroth

For the remainder of the proof we fix Kb such that it satisfies (5.1).

(5.2) [Z,Kb] 6≤ O2(L).

If [Z,Kb] ≤ O2(L), then again B acts quadratically on [Z,Kb]. Hence by
Lemma 3.5 we have one of the cases (2) or (3) above with Ā1 replaced
by B̄. Assume |B̄ : CB̄(Kb)| = 2. As |B̄| > q = 2 by (∗) we can choose
1 6= a ∈ CB̄(Kb). Then 〈KB̄

b 〉 acts on [Z, a]. As |Z : Z ∩ O2(L)| = 2,
we have that |[Z, a] : [Z, a] ∩ Zg| = 2. Therefore |[Z, a] : C[Z,a](B)| ≤ 2.
If B̄ does not centralize [Z, a], then B̄ induces transvections on [Z, a].
As B̄ does not normalize Kb this is impossible by Lemma 3.5. Hence
B̄ centralizes [Z, a] and so [[Z, a], Kb] = 1 for all a ∈ CB̄(Kb). We
have that [Z,CB̄(Kb)](Z ∩ Zg) ∩ [Z,Kb] is a subgroup of index at
most four in [Z,Kb]. So B̄ centralizes a subgroup of index two in
[Z,Kb]/[Z,Kb] ∩ [Z,CB̄(Kb)], which gives [Kb, Z] ≤ [Z,CB̄(Kb)] and
then [Z,Kb] = 1, a contradiction.

Hence we are in case (2), i.e. |B̄ : CB̄(Kb)| > 2. As before by Lemma 3.5
and Lemma 3.11 there is some y ∈ CZ(Kb)\O2(L). This shows [y,B](Z∩
B) = Z ∩ O2(L). Now [Z,Kb, B] ≤ [Z ∩ O2(L), B] = [y,B,B]. But as
[y,Kb] = 1, also [y,B,Kb] = 1. In particular [Z,Kb, B,Kb] = 1, a con-
tradiction. So we have (5.2).

Fix a ∈ B̄ with Ka
b 6= Kb.

(5.3) [Z, a, B̄] 6= 1.

Assume [Z, a, B̄] = 1. Then by Lemma 3.5 either |B̄ : CB̄(Kb)| = 2, or
Kb
∼= L2(r) and [Z,Kb] is a direct sum of orthogonal Ω+

4 (r)–modules,
r = 2n.

Suppose the latter. As before let W be the sum of all natural modules
in [Z,Kb], which are contained in O2(L) and V/W be a natural Ω+

4 (r)–
module. Then there is y ∈ V \O2(L) and [B, y](B∩Z) = [Z,B](B∩Z).
In particular as |V : V ∩ O2(L)| = 2, we see that V ∩ B 6≤ W . This
shows that B normalizes V . Now let c ∈ CB̄(Kb). Then we have that
[V, c] ≤ W . As [W, c] ≤ Z ∩ Zg and [B,Z ∩ Zg] = 1, we get that
[W, c] = 1 or [W, c] is the natural module. But [B̄, [W, c]] = 1 and so
[Kb, [W, c]] = 1, hence [W, c] = 1. If c 6= 1, then [V, c] is the natural mod-
ule. But we have that |[V, c] : [V, c]∩Zg| = 2 and so B induces transvec-
tions on [V, c], a contradiction. So we have that CB̄(Kb) = 1, i.e. b = 1
and Kb = K. Assume W 6= 1. In the natural module the centralizer of a
quadratic fours group is just the commutator of this fours group. Hence
we have that CW (B) = W ∩Zg. So |W : W ∩Zg| = |W ∩Zg| = |W ∩Z|
and then |B̄| ≥ |W/W ∩ Z| ≥ r2. As the largest quadratic group
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in O+
4 (r) is of order 2r we have |B̄| ≤ 2r, a contradiction. This im-

plies W = 1. So we have V is the natural module and then B acts
quadratically on V . But [y,B](Z∩Zg) = Z∩O2(L). As [y,B] ≤ [V,B],
[B,Z ∩O2(L)] = 1, and so B induces transvections on Z, a contradic-
tion as B̄ does not normalizes K.

So we have |B̄ : CB̄(Kb)| = 2. As [Z, a,B] = 1 = [Z,B, a] by the Three-
Subgroups-Lemma, we see that [Z,CB̄(Kb), Kb] = 1. By the Three-
Subgroups-Lemma again we get [Kb, Z, CB̄(Kb)] = 1. But as [Z,Kb] 6≤
O2(L) by (5.2) this shows CB̄(Kb) = 1 and then |B : B ∩ Z| = 2. Now
B induces transvections on Z and so by Lemma 3.5 B has to normalize
Kb, a contradiction. This proves (5.3).

(5.4) We have that CB̄(Kb) = 1 and then b = 1 and Kb = K.

By (5.3) |B̄| ≥ 4. As |[Z, a] : [Z, a] ∩ Zg| = 2, B̄ induces transvections
on [Z, a] to a hyperplane. Choose 1 6= c ∈ CB̄(Kb) and assume that
[Z, c,Kb] = 1. Then also [Z,Kb, c] = 1 and so [Z,Kb] ≤ O2(L), a
contradiction. Hence Kb acts nontrivially on [Z, c]. But a induces a
transvection on [Z, c], a contradiction as Ka

b 6= Kb. This proves (5.4).
In particular we get

(5.5) If b 6= 1, then [Kb, B̄] ≤ Kb.

Let b ∈ B̄ with (KKa)b 6= KKa. Then a does not normalize Kb, a con-
tradiction to (5.5). So we have that KKa = 〈KB̄〉. As [Z, a, B̄] 6= 1 by
(5.3), we see that Ka = CK×Ka(a) ∼= K acts faithfully on [Z, a], and so,
as B̄ induces transvections to a hyperplane, we get by Lemma 3.3 that
K ∼= Ln(2), Sp2n(2), Ω±2n(2) or An. We further have that CB̄(Ka) = 〈a〉
as CB̄(K) = 1 by (5.4).

(5.6) |B̄| > 4.

Assume |B̄| ≤ 4. Then |[Z, a]| ≤ 4, but Ka has to act nontrivially on
[Z, a], a contradiction.

By (5.6) |B̄| > 4 and B̄ induces at least a fours group of transvec-
tions on [Z, a]. This gives

(5.7) K ∼= Ln(2).

It remains to prove that [Z, a] is the natural module. In fact we know
that [Z, a]/C[Z,a](Ka) is the natural module. We have that |B̄| ≤ 2n.
Then as [Z, a, a] = 1 and |Z : Z ∩ O2(L)| = 2 we see that |[Z, a] ≤
|B̄/〈a〉| = |B̄| ≤ 2n. This shows that |[Z, a]| = 2n and B̄ induces the
full transvection group on [Z, a]. �
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4. Examples

In this chapter we show under which circumstances the examples
M(23), Co3, Ω7(3), Ω−8 (3) and J1 in the main theorem appear. The
group A12 already appeared in [MaStr, Theorem 1.4].

Lemma 4.1. [MaStr, Lemma 4.15] Let G be a group of even type,
which is not of even characteristic. If G has standard subgroup with
L ∼= 2M(22), then G ∼= M(23).

Lemma 4.2. [Se] Let G be a group of even type, which is not of even
characteristic. Let furthermore L ∈ L be a standard subgroup with L ∼=
2Sp6(2). If CG(L) has cyclic Sylow 2–subgroups, then G ∼= Co3.

Lemma 4.3. Let G be a group of even type, which is not of even
characteristic. Let furthermore L be a standard subgroup of G. Assume
that the following hold:

(1) L ∼= L4(3), U4(3) or 2U4(3) and CG(L) is a cyclic 2-group.
(2) NG(L) contains a Sylow 2-subgroup S of G.

Then G ∼= Ω7(3) or Ω−8 (3).

Proof. Suppose false. We have that CG(L) is normal in S, S as in (2),
and so contains a 2-central involution z. By Lemma 2.6 we have that
for an involution t in L \ Z(L) we get O2(CL〈z〉(t)) ∼= Z2 × Q8 ∗ Q8.
Now we choose t such that t ∈ O2(CL(t))′. Again by Lemma 2.6 we see
that O3(NL(O2(CL(t)))/O2(CL(t)))) is elementary abelian of order 9.
Let U be the full preimage. Then [U,O2(CL(t))] = Q ∼= Q8∗Q8. In par-
ticular QECCG(z)(t) and so we may assume that [S, t] = 1, i.e. t ∈ Z(S).

We have that S centralizes 〈z, t〉 and so normalizes U . Now the Frattini
argument provides us with a Sylow 3–subgroup U1 of U such that

S = QNS(U1).(∗)

Next we try to determineO2(CG(t)). For this we assume that CG(t) 6≤
NG(L). Furthermore we first assume that CCG(t)(O2(CG(t))) ≤ O2(CG(t)).
Suppose additionally that there is some 1 6= u ∈ U1, with [u,Q ∩
O2(CG(t))] = 1. We have that O2(CG(t)) ≤ S, so [U1Q,O2(CG(t))] ≤
O2(CG(t)) ∩ U1Q ≤ Q. Hence [u,O2(CG(t))] ≤ Q and we get

[O2(CG(t)), u] = [O2(CG(t)), u, u] ≤ [Q ∩O2(CG(t)), u] = 1,

contradicting CCG(t)(O2(CG(t))) ≤ O2(CG(t)).
This shows that U1 acts faithfully on Q ∩ O2(CG(t)). Then Q ≤

O2(CG(t)). By Lemma 2.6 we have |CL〈z〉(Q)| = 4. Furthermore we
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have that Out(L) does not contain an elementary abelian group of
order 8 by Lemma 2.6. Hence we see that

|Ω1(Z(O2(CG(t))))| ≤ 16.

We set Z = Ω1(Z(O2(CG(t)))). If 〈z, t〉 = Z, we get NG(〈z, t〉) =
CG(〈z, t〉) and then the contradiction CG(t) ≤ CG(z) ≤ NG(L). So we
conclude that |Z| ≥ 8. Then [Z,U1] ≤ Z. As Z ≤ S we see [Z,U1] ≤ Q
and so [Z,U1] ≤ Q ∩ Z. As [Q ∩ Z,U1] = 1, we have [Z,U1] = 1.
Furthermore [O2(CG(t)), U1] ≤ Q. As CG(Z) ≤ NG(L), we now see
that U1O2(CG(t))/O2(CG(t))E CG(t)/O2(CG(t)). Hence

U1O2(CG(t))E CG(t).

Let U2 ≤ U1, |U2| = 3, with [U2, Q] ∼= Q8. Then 〈[Q,U2], U2〉 =
X ∼= SL2(3). Further t ∈ Z(X). As [O2(CG(t)), U2] = [U2, Q], we see
X E U1O2(CG(t)) E CG(t) and so X E ECG(t) and for g ∈ CG(t) we
have either Xg ∩X = 〈t〉 or X = Xg. The assertion now follows with
[MaStr, Lemma 3.2].

So we may assume that CG(O2(CG(t))) 6≤ O2(CG(t)). Then

F = E(CG(t)) 6= 1

as O(CG(t)) = 1 by the general assumption. Set T = S ∩ F . As-
sume there is 1 6= u ∈ U1 with [F ∩ Q, u] = 1. Then Q 6= F ∩ Q
and F ∩ Q is normal in CL(t). By Lemma 2.30 T ∩ Q ≤ 〈t〉. We also
have [T,Q] ≤ T ∩ Q ≤ 〈t〉. So [U1, S] ≤ U1Q and then [T, U1] ≤
U1(Q ∩ T ) ≤ U1〈t〉. This shows [T, U1] = [T, U1, U1] ≤ [U1, U1〈t〉] = 1.
Now T ≤ CG(〈US

1 〉) ≤ CG(Q) and then again T/T ∩ 〈t〉 has a cyclic
normal subgroup CL(t) ∩ T/〈t〉 of index at most 4. This shows that F
is quasisimple.

Assume first [CCG(t)(F ), U1] = 1. As CCG(t)(F ) is normal in CG(t),
we get that [Q,CCG(t)(F )] = 1. Hence QU1 induces an outer auto-
morphism group on F , which centralizes a Sylow 2-subgroup, contra-
dicting [GoLyS4, Lemma 4.1.1]. So we have that [CCG(t)(F ), U1] 6= 1.
If [Q,F ] 6= 1 then we get by Lemma 2.30 that CQ(F ) ≤ 〈t〉 and
then Q ∩ CCG(t)(F )F = 〈t〉. But then we have the same contradic-
tion as before. So we have that [Q,F ] = 1. The Frattini argument
now implies that CG(t) = FNCG(t)(T ). Further we have (CS(Q)/〈t〉)′ ≤
CS(L)〈t〉/〈t〉 as NS(L)/S ∩ L is abelian. So if F 〈t〉/〈t〉 has nonabelian
Sylow 2–subgroups, we get that 〈z, t〉 ≤ F 〈t〉 is centralized byNCG(t)(T )
and so

CG(t) = CNG(L)(t)F.
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We are going to prove the same result if F 〈t〉/〈t〉 has abelian Sylow
2–subgroups. As F ∈ C2 we have, that F itself has abelian Sylow 2–
subgroups. In particular t 6∈ F . If |Ω1(Z(S))| = 4, then again z ∈ F 〈t〉
and so NCG(t)(T ) ≤ CG(z), as all involutions in F are conjugate. If
|Ω1(Z(S))| > 4, then by application of Lemma 2.6 we see L ∼= L4(3)
and |Ω1(Z(S))| = 8. By Lemma 2.34 we have that S ∩ CG(L) ≤ Z(S)
and S = CS(L) × ((S ∩ L)〈u〉). Hence CS(Q) = (S ∩ CG(L))〈t, u〉.
If CCG(L)(z) 6= 〈z〉, then z ∈ Z(NG(Z(S))) and so zG ∩ Z(S) = {z},
contradicting Lemma 2.1 and Lemma 2.2. So Z(S) = 〈z, t, u〉 = CS(Q).
Hence a Sylow 2–subgroup of F is contained in Z(S). Now we have that
NCG(t)(T ) = NF (T )CCG(t)(T ), which gives again

CG(t) = CNG(L)(t)F.(∗∗)

As Q 6≤ F and [U1, S] ≤ QU1 we have U1 ∩ F = 1 and then CF (z) =
S ∩ F . Hence U1 cannot induce nontrivial inner automorphisms on F ,
so [F,U1] = 1. This now gives [F,U ] = 1. As CG(t) = CNG(L)(t)F
by (∗∗), we see that Q ≤ O2(CCG(t)(F )) and then U is normal in
CCG(t)(F ). Hence as above we construct a subgroup X ∼= SL2(3) in U ,
with XEECG(t). Again the assertion follows with [MaStr, Lemma 3.2].

So we may assume

Q ≤ F.

Let first N be a component with N ∩ Q = 1, then [S ∩ N,Q] ≤
S ∩ N ∩ Q = 1. As [S ∩ F,Q] 6= 1, there is at least one compo-
nent N with Q ∩ N 6= 1. We now fix such a component N and set
F1 = 〈NU1〉. As Q normalizes N we have F1 = N1 ∗N2 ∗ · · ·Nx, where
x divides |U1| = 9. If x = 9, then, as any Ni has an elementary abelian
section of order 4, we have an elementary abelian section of order 218

in F1, which contradicts the structure of S. Let x = 3. As U1 acts on
S ∩ F1 and [S ∩ F1, U1] ≤ [Q,U1] = Q, we see by Lemma 2.30 that
Q ≤ F1. As x = 3 there is 1 6= u ∈ U1, with [Ni, u] ≤ Ni for all i.
Furthermore we have some element u1 ∈ U1, which acts transitively on
the Ni and normalizes S ∩ F1. As Q ≤ F1 we see [u,Ni ∩ S] 6= 1. As
(S ∩Ni)〈u1〉 is a subgroup, we get that 1 6= [S ∩Ni, u1] ≤ Q. But then
|〈(Q ∩ N1)〈u1〉〉| ≥ 26, a contradiction. So we have x = 1 and then U1

normalizes N1 = N . Then (S ∩N)U1 is a subgroup of G. As U1 cannot
centralizes all components N with N ∩ Q 6= 1, we get that there is a
component N with N ∩Q > 〈t〉.

The action of U1 on Q shows that either Q ∩ N = Q or Q ∩ N is
a quaternion group. Suppose first that Q ∩ N is a quaternion group.
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Then by Lemma 2.30 there is some s ∈ S ∩ L such that N s 6= N and
N s ∩ Q also is a quaternion group. As Z(N) ≥ 〈t〉 [MaStr, Lemma
2.53] implies that N ∈ M. In particular the same lemma implies that
|N/Z(N)|2 ≥ 26, and hence |[s, T ]| ≥ 26. As |S∩L : O2(CL(t))| ≤ 4, we
now see that |[T, s] ∩ O2(CL(t))| ≥ 25 and then |[T, s] ∩ Q| ≥ 24. Now
Q∩N is a quaternion group, which implies that [T, s]∩N > 〈t〉, a con-
tradiction. So we have Q ≤ N for some component N . Further CCG(z)(t)
normalizes N as it normalizes Q. Now z induces some automorphism
on N , which centralizes a Sylow 2–subgroup and has a solvable cen-
tralizer in N of order 2a · 3b, b ≤ 2. As N ∈ M Lemma 2.31 implies
that N ∼= 2L3(4), 22L3(4), 2Sp6(2), 2U4(3), 2M12, 2M22, 4M22, 2Sz(8)
or 22Sz(8). As Q ≤ N , there are involutions in N/Z(N) which become
elements of order 4 in N . So by Lemma 2.33 we are left with 2Sp6(2),
2M12 or 4M22. If N ∼= 2M12 or 4M22, then by Lemma 2.35 |U1| induces
an inner automorphism of order at most three. On the other hand
by the same lemma N has no outer automorphism of order three, so
CU1(N) 6= 1, which contradicts CU1(Q) = 1. So we have N ∼= 2Sp6(2).
Now U1 has to induce a group of inner automorphisms of order 9. We
have that [Q,U1]/〈t〉 is elementary abelian of order 16. Hence let z̃ be
the inner automorphism induced by z, then we see that 〈[Q,U1], z̃〉/〈t〉
is elementary abelian of order 32. By Lemma 2.36 we have that z̃ cor-
responds to a transvection in Sp6(2). But then a group isomorphic to
Σ6 would be in CG(〈z, t〉), a contradiction to CG(z) ≤ NG(L).

So we have shown that CG(t) ≤ NG(L). But then CG(t) has a sub-
normal subgroup SL2(3). [MaStr, Lemma 3.2] now yields the asser-
tion. �

Lemma 4.4. Let G be of even type but not of even characteristic. Let
L ∼= L2(q), q even, be a standard subgroup with CG(L) cyclic. Assume
that CG(L) contains a 2–central involution z. Then q = 4 and G ∼= J1.

Proof. Let S be a Sylow 2–subgroup ofNG(L) containing z. In Ω1(Z(S))
there are three NG(L)–classes of involutions, {z}, (Ω1(Z(S)) ∩ L)]

and z(Ω1(Z(S)) ∩ L)]. Hence either zG ∩ Ω1(Z(S)) = Ω1(Z(S))] or
zG∩Ω1(Z(S)) = {z}. Set U = L∩S. Then there are at most two abelian
subgroups of S which have the same order as E = CCG(L)∩S(z)×U . In
particular conjugacy takes place in NG(E).

Assume first that zG∩Ω1(Z(S)) 6= {z}. Then in particular CCG(L)∩S(z) =
〈z〉. As Out(L) is cyclic, we have that z 6∈ S ′. So we conclude Ω1(Z(S))∩
S ′ = 1 and then CG(z) ∼= 〈z〉 × L2(q). By O’Nan’s lemma [MaStr,
Lemma 2.6] we obtain q = 4 and so G ∼= J1 by [Ja].
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So we may assume that zG ∩ Ω1(Z(S)) = {z}. As L has just one
class of involutions, we have that zG ∩ (L × CCG(L)∩S(z)) = {z}. By
Lemma 2.1 L must possess some outer automorphism u with u ∼ z
in G. Obviously u 6∈ CS(u)′. In particular also z 6∈ CS(u)′. Hence
CCG(L)∩S(u) ≤ Z(CS(u)). As u is not a square in Z(CS(u)), we get that
the same holds for z. In particular CCCG(L)∩S(z)(u) = 〈z〉. If z 6∈ S ′, then

in particular S∩CG(L) = 〈z〉 and we get a contradiction by Lemma 2.2.
So we may assume that z ∈ S ′. Then u ∼ zu by some element in CS(L).
As CS∩CG(L)(u) ≤ Z(CS(u)), we see that CS(u) = 〈u, z, CU(u)〉. Fur-
ther u〈z, CU(u)〉 ⊆ uG. Now we may assume that u ∼ z in NG(CS(u)).
In particular CS(u) contains a hyperplane H with z 6∈ H but zH ⊆ zG.
Choose u1 ∈ CU(u)]. Then neither u1 nor zu1 are in zH, so both are
in H and so z ∈ H, a contradiction. �

5. The central case

In this chapter we fix a Sylow 2–subgroup S of G and assume that G
is of even type but not of even characteristic. Furthermore we assume
that G is not one of the exceptional groups in the main theorem, i.e.

G 6∼= Ω7(3),Ω−8 (3), A12, Co3,M(23) or J1.

This means by [MaStr, Theorem 1.4] that there is some 1 6= z ∈
Ω1(Z(S))], which possesses a standard component Az. Furthermore
CG(Az) has cyclic Sylow 2–subgroups.

We will prove:

Proposition 5.1. z 6∈ Az.

and

Proposition 5.2. Az is a simple group of Lie type in characteristic
two or isomorphic to J2 or M(24)′. Further Az is not isomorphic to
L2(q), Sz(q), 2F4(q)′, q even, L3(4), Sp2n(2), G2(2)′, L4(2), U4(2), A6

or L3(2).

We first are going to prove Proposition 5.1. For this until further notice
we assume z ∈ Az and aim for a contradiction. By [MaStr, Lemma 2.53]
we have that Az/Z(Az) ∈ M. For the proof we consider the various
groups in M.

Lemma 5.3. Az/Z(Az) 6∼= Sz(8).

Proof. Assume Az/Z(Az) ∼= Sz(8). Let 1 6= x ∈ S, x2 = 1. Then, as
CS(Az) ∩Az = 〈z〉, we see that x = ab, a ∈ CS(Az) and b ∈ Az, where
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a2, b2 ∈ 〈z〉. By Lemma 2.33 z is not a square in S ∩ Az. In particular
b2 = 1. But then also a2 = 1, which shows that Ω1(S) = Ω1(S ∩ Az).
Hence Ω1(S) is elementary abelian of order 16. Furthermore Ω1(S) =
J(S). So NG(J(S)) controls G-fusion of involutions in S.
If zG ∩ S 6= {z}, then all involutions in S are conjugate. But then
|NG(J(S)) : NCG(z)(J(S))| = 15, and NG(J(S))/CG(J(S)) is a sub-
group of GL4(2) ∼= A8 of order divisible by 3 · 5 · 7. As S/CS(J(S)) is
abelian, we get a contradiction by Lemma 2.38. So zG∩S = {z} which
contradicts Lemma 2.1. �

Lemma 5.4. [Se] Az/Z(Az) 6∼= F4(2) or G2(4).

Lemma 5.5. [EgaYo] Az/Z(Az) 6∼= Ω+
8 (2).

Lemma 5.6. Az/Z(Az) 6∼= U6(2).

Proof. [DaSo, Theorem 3.1]. In fact there is shown that G ∼= M(22).
But then z 6∈ Z(S). �

Lemma 5.7. Az/Z(Az) 6∼= 2E6(2).

Proof. [Str1]. In fact in [Str1, (2.2)] it is shown that z 6∈ Z(S). �

Lemma 5.8. Az/Z(Az) 6∼= HiS, M12, M22, J2, Suz, Co1 or Ru,

Proof. Suppose false. Application of [So] shows Az/Z(Az) 6∼= HiS. In
the cases ofAz/Z(Az) ∼= M12 orM22 we get a contradiction with [HaSo].
The remaining cases are treated in [Fin1] and [Fin2]. �

Lemma 5.9. Az/Z(Az) 6∼= F2.

Proof. If Az ∼= 2F2 then by [DaSo, (5.5)] we get z 6∈ Z(S). �

Lemma 5.10. Az/Z(Az) 6∼= L3(4).

Proof. Suppose Az/Z(Az) ∼= L3(4). As Az ∈ C2 we have by [MaStr,
Definition 1.1] that Z(Az) = 〈z〉. According to Lemma 2.20 there are
exactly two elementary abelian groups of order 16 in (S ∩Az)/〈z〉. Let
E be the preimage of such a group. Again by Lemma 2.20 A5 acts tran-
sitively on (E/〈z〉)]. So we see that E is elementary abelian of order 32.
Let CS(Az) be cyclic of order 2n, then by Lemma 2.20 there are exactly
two abelian subgroups of type (2, 2, 2, 2, 2n) in S ∩AzC(Az). Let F be
an elementary abelian group of order 32 in S. Assume there is some
t ∈ F \AzC(Az). As m2(CAz/〈z〉(t)) ≤ 2 by Lemma 2.23(3), we get that
|F ∩ AzC(Az)| ≤ 8. But then F has to induce a fours group of outer
automorphisms on Az/〈z〉. Choose f1 ∈ F such that f1 centralizes A5

in Az/〈z〉. Then F induces an outer automorphism on A5, which gives
the contradiction m2(CAz/〈z〉(F )) ≤ 1. Hence any elementary abelian
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subgroup of order 32 in S is contained in AzCG(Az). By Lemma 2.20
there are exactly two abelian groups E1, E2 of type (2, 2, 2, 2, 2n) con-
tained in S. Set E3 = Ω1(E1 ∩E2). As again by Lemma 2.20 E1E2 is a
Sylow 2–subgroup of AzCG(Az), we have E3 = Z(S∩Az) and |E3| = 8.

Suppose zG ∩ AzC(Az) 6= {z}. Let t ∈ AzC(Az), t 6= 1, t ∼ z in
G. By Lemma 2.20 any involution in AzCG(Az) is conjugate in Az to
some involution in Ei, i = 1, 2. On Ω1(Ei) we have that NCG(z)(Ei)

induces orbits of length 1, 15 and 15. Hence we see that zNG(Ei) 6= {z}.
This implies that CS(Az) is of order two and so both Ei are elementary
abelian. We have that NG(E1) 6≤ CG(z). As |zNG(Ei)| is odd, this shows
that |NG(E1) : NCG(z)(E1)| = 31. Now all involutions in Az are conju-
gate in G. As NCG(z)(E1)/E1

∼= A5, A5×Z3, Σ5 or (A5×Z3) : 2, we get
that NG(E1)/E1 has the order 22 · 3 · 5 · 31, 23 · 3 · 5 · 31, 22 · 32 · 5 · 31 or
23 ·32 ·5 ·31, respectively. As the normalizer of a Sylow 31–subgroup in
GL5(2) has order 31 · 5 we get a contradiction with Sylow’s theorem.
So we have shown

zG ∩ AzC(Az) = {z}.(1)

Again let t ∈ zG ∩ S, z 6= t and E1, E2 as above. By Lemma 2.20
we have that NAz(E1E2) = E1E2〈ρ〉, where o(ρ) = 3 and ρ acts fixed
point freely on Ei/CS(Az) for i = 1, 2. By Lemma 2.20 we have that
t normalizes E1E2. By (1) and the Frattini argument we may assume
that t normalizes 〈ρ〉.

Suppose first ρt = ρ−1. Assume further that [Ei, t] ≤ Ei for both i =
1, 2. As ρ acts fixed point freely on Ei/E1∩E2 for both i, there is ei ∈ Ei
with tei = fit, fi ∈ Ω1(Ei) \ E3, i = 1, 2. So we have that [f1f2, t] = 1.
Now te1e2 = f e21 f2t. Further f e21 = f1r, with 1 6= r ∈ E3 \ 〈z〉. By
Lemma 2.20 f1f2 is of order four. So 1 6= u = (f1f2)2 = (f e21 f2)2. Hence
t ∼ ut. This shows that

If ρt = ρ−1 and Et
i = Ei, i = 1, 2, then Ω1(Z(CS(t))) = 〈z, t, u〉

with t ∼ tu, u ∈ Φ(CS(t)).
(2)

By Lemma 2.22 we see Φ(S) ≤ S ∩AzCG(Az). So we have that t, zt 6∈
Φ(CS(t)). As zG ∩Φ(S) ⊆ {z} by (1), we see that z 6∈ Φ(CS(t)), which
shows that

〈z, t, u〉 ∩ Φ(CS(t)) = 〈u〉.(3)

Assume now that Et
1 = E2. We will show that also in this case (2) and

(3) hold. Choose e1 ∈ E1 \ E3. Then e2 = et1 ∈ E2. Now t ∼ (e1e2)2t.
This shows that E3 = 〈z, (e1e2)2, r〉, with x = [t, r] 6= 1, as [ρ, t] 6= 1
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and CE(ρ) = 〈z〉. In particular x 6= z.

Suppose that 〈x, (e1e2)2〉 = 〈z, (e1e2)2〉. Then t ∼ zt. Again we have
that Ω1(Z(CS(t))) = 〈z, t, (e1e2)2〉. In G we have that t ∼ tz ∼
t(e1e2)2 ∼ tz(e1e2)2 ∼ z. Further neither (e1e2)2 nor z(e1e2) are conju-
gate to z inG. This shows thatNG(CS(t)) normalizes 〈(e1e2)2, z(e1e2)2〉.
But as zG ∩ 〈(e1e2)2, z〉 = {z}, we have that NG(CS(t)) ≤ CG(z), and
so CS(t) is a Sylow 2–subgroup of CG(t). As CS(t) 6= S, t cannot be
conjugate to z in G, a contradiction.

So we have that (e1e2)2 = x. Hence e1e2r ∈ CS(t). As (e1e2)2 =
(e1e2r)

2, we again get (2) and (3) with u = (e1e2r)
2.

Now we show that [ρ, t] = 1. Otherwise (2) and (3) hold. We have that
〈u〉 is normalized by NG(CS(t)). Let T ≤ CG(t) with |T : CS(t)| = 2.
Then we obtain for g ∈ T \ CS(t) that [g, 〈u, t〉] = 1 and so zg = zt or
ztu. But in G we have zt ∼ ztu. Now zG ∩ 〈z, u, t〉 = {z, t, tu, zt, ztu}
and so 〈u, zu〉 is normal in T , which shows z ∈ Z(T ), a contradiction.

So we have shown that

[ρ, t] = 1.

Set E3 = 〈z, r, s〉, where we choose notation such that [E3, ρ] = 〈r, s〉.
As t and ρ normalize E3 and [t, ρ] = 1 we force [E3, t] = 1. Set F =
〈E3, t〉. Then F is elementary abelian of order 16. Further we have that
NAz∩S(F ) is the preimage of C(S∩Az)/E3(t). Hence NAz(F ) induces A4

on F . We first show

zNG(F ) = {z}.(4)

Suppose false. We have that NAz(F ) induces orbits of length 1 (z), 3
(r and zr) and length 4 (t, zt). As z is not conjugate to r or zr by
(1), we see that z has 5 or 9 conjugates under NG(F ). If z has 9 con-
jugates, then all the other elements generate 〈z, s, r〉, a contradiction.
So we see that z has 5 conjugates. In particular all NG(F )–orbits have
a length divisible by 5, so we must have an orbit of length 10. This
shows that r ∼ zr in G. As z, r ∈ Ω1(Z(S)), we have that zr ∼ r in
NG(S). But Ω1(Z(S)) ≤ Az and so zG∩Ω1(Z(S)) = {z} by (1). Hence
NG(S) ≤ CG(z), contradicting zr 6∼ r in CG(z). So we proved (4).

We have that F∩Az = CS∩Az(t) and so F∩Az = Ω1(CS∩AzCG(Az)(t)). As
NG(CS(t)) 6≤ CG(z), we conclude from (4) that NG(CS(t)) 6≤ NG(F ).
Hence we get that |CS(t) : CS(F )| = 2 and CS(t) = CS(F )F g, for
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some g ∈ NG(CS(t)). So we have that Ω1(Z(CS(t))) = 〈t, z, u〉, where
〈u〉 = Ω1(Z(CS(t)))∩Φ(CS(t)). Further it shows that there are exactly
two conjugates of F in CS(t). In particular O2(NG(CS(t))) normalizes
F and so is contained in CG(z). Hence |zNG(CS(t))| is a power of two.
Now we may assume that z ∼ t in NG(CS(t)). As z 6∼ zu in G by (1), we
have that also t 6∼ tu inNG(CS(t)) ≤ CG(u). AsNCG(z)(CS(t)) 6≤ CG(t),

we obtain that t ∼ tz or tzu in NCG(z)(CS(t)). So as |zNG(CS(t))| is even
and z 6∼ u, we get that both zt and ztu have to be conjugate to z in
NG(CS(t)) ≤ CG(u), but this again would imply z ∼ zu, a contradic-
tion to (1). This final contradiction proves the lemma. �

We are going to prove Proposition 5.1. By [MaStr, Lemma 2.53] we
have that Az/Z(Az) ∈ M. The groups in M are given in [MaStr,
Definition 2.51(a)]. According to Lemma 5.3 through Lemma 5.10 we
are left with Az/Z(Az) ∼= Sp6(2), M(22) or U4(3). By Lemma 4.2
Az/Z(Az) 6∼= Sp6(2), by Lemma 4.1 Az/Z(Az) 6∼= M(22) and finally by
Lemma 4.3 Az/Z(Az) 6∼= U4(3). This proves Proposition 5.1.

Next we will prove Proposition 5.2. For this we first go over all com-
ponents Az, which are not of Lie type in characteristic two or J2 or
M(24)′. We furthermore show that the groups of Lie type in character-
istic two, which were excluded in Proposition 5.2 also do not appear.
The main ingredient of the proof is the interplay between Glauberman’s
Z∗-theorem and Thompson’s transfer lemma.

We begin by eliminating the sporadic groups and some groups in
characteristic three.

Lemma 5.11. Az 6∼= M23, J3, Th, Ru, M24, J4, Co1, Co2, F2 or F1.

Proof. By Lemma 2.12 in all cases we have Out(Az) = Az. So CG(z) =
CCG(Az)(z) × Az. Further by [MaStr, Lemma 2.34] |Z(S ∩ Az)| = 2.
Hence either zG ∩ Z(S) = {z} or all involutions in Z(S) are conjugate
in G. But z 6∈ S ′ and as S is not abelian, we have Z(S) ∩ S ′ 6= 1. So
we get zG ∩ Z(S) = {z}. As S = (S ∩ Az)CS(Az) this by Lemma 2.2
contradicts the simplicity of G. �

Lemma 5.12. Az 6∼= HiS, Suz or M(22).

Proof. Suppose false. Let S be a Sylow 2–subgroup of NG(Az). Then we
have by [MaStr, Lemma 2.34] Ω1(Z(S)) = 〈z, t〉, with t ∈ Az. Further
by [GoLyS3, Table 5.3m, 5.3o, 5.3t] we see that

CG(Ω1(Z(S)))/O2(CG(Ω1(Z(S)))) ∼= Σ5, U4(2) or U4(2) : 2.
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So 〈t〉 = CG(Ω1(Z(S)))(∞) ∩ Ω1(Z(S)). In particular

zG ∩ Ω1(Z(S)) = {z}.(∗)

Next we show that

zG ∩ AzCG(Az) = {z}.(1)

Let first Az ∼= HiS or Suz. Choose u ∈ Az, u 6∼ t. Then by [GoLyS3,
Table 5.3m], [GoLyS3, Table 5.3o] we have that CAz(u) = 〈u〉×PΓL2(9)
or (V4 × L3(4)) : 2, respectively. As again by [GoLyS3, Table 5.3m]
or [GoLyS3, Table 5.3o] no outer automorphism of HiS centralizes
PΓL2(9) and no outer automorphism of Suz centralizes L3(4) we see
that Ω1(Z(CS(u))) = 〈z, t, u〉. Assume that z is conjugate to u or zu in
G. We will denote this element by v. So let g ∈ G with zg = v. Then
obviously z centralizes in Av a subgroup PΓL2(9), L3(4), respectively.
So z ∈ AvC(Av). Hence E(CG(z) ∩ CG(v)) = F is normalized by g.
We now show that we may assume t ∈ F . For this we choose a Sylow
2-subgroup T of CAz(v) and T1 ≤ Az with |T1 : T | = 2. In the first
case, Az ∼= HiS, we have that T ′ ≤ F , and so we have a 2-central
involution in F , in particular we can assume that t ∈ F . In the sec-
ond case, Az ∼= Suz, we have by Lemma 2.20 exactly two elementary
abelian subgroups F1, F2 of order 64 in T and [F1, F2] ≤ F . Hence
again F contains a 2-central involution and we may assume t ∈ F .
As all involutions in A6 and L3(4) are conjugate, we may assume that
tg = t. But in CG(z) we have that u ∼ ut and so v ∼ vt, while z 6∼ zt
by (∗), a contradiction. This proves (1) in these cases.

Assume finally Az ∼= M(22). By [GoLyS3, Table 5.3t] we have a sub-
group H ∼= 210M22 in Az. By Lemma 3.3 the group M22 does not
possess an F -module. Hence O2(H) = J(S ∩ Az) and so J(S ∩ Az) is
the only elementary abelian subgroup of order 210 in S ∩ Az. In par-
ticular in S there is exactly one abelian subgroup E, which is a direct
product of an elementary abelian group of order 210 and a cyclic group
of order 2n, where |CS(Az)| = 2n. We see from [GoLyS3, Table 5.3t]
that involutions of type 2A of Az are centralized by L3(4) in the group
M22 in H above. Hence H induces one orbits of length 22. The product
of two involutions in this orbit gives an orbit of length 231. As Az has
exactly three classes of involutions and H controls fusion in J(Az ∩S),
we have a third orbit of length 770. Further any involution of AzCG(Az)
is conjugate to one inside of E. So we get that NG(E) controls fusion in
AzCG(Az). In particular if 〈z〉 6= CS(Az) then Φ(E) = 〈z〉 and we have
(1). So we may assume that 〈z〉 = CS(Az). By Lemma 2.2 and (∗) we
have that CG(z)/〈z〉 ∼= Aut(M(22)). We now obtain that z 6∈ CG(z)′
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and so z 6∼ u ∈ Az with CAz(u) ∼= 2U6(2). In particular there is at least
one orbit of length 22, which cannot be fused with z. As |zNG(E)| is
odd, we get, just by checking all possibilities, that |zNG(E)| = 23, 771,
793, 1541 or 1563. As NG(E)/E is a subgroup of GL11(2) and 771,
7793, 1541 and 1563 do not divide the order of GL11(2), we conclude
|zNG(E)| = 23. As NNG(Az)(E)/E ∼= Aut(M22) and |zNG(E)| = 23, we
obtain |NG(E)/E| = 28 ·32 ·5 ·7 ·11 ·23. As 211−1 = 23 ·89, we see that
a Sylow 23 subgroup of NG(E)/E is just centralized by itself. Now with
Sylow’s theorem we receive that a Sylow 23–subgroup is normalized by
a cyclic group of order 22. Hence this group acts on zNG(E) by fixing a
point. In particular NNG(Az)(E)/E contains a cyclic group of order 22.
Then Aut(M22) contains a cyclic group of order 22, which contradicts
[GoLyS3, Table 5.3c]. Hence (1) holds.

By Lemma 2.1 there is some involution u ∼ z, which induces an outer
automorphism on Az. If CS(Az) = 〈z〉 we get a contradiction with
Lemma 2.2. Hence

CS(Az) > 〈z〉.(2)

As |Aut(Az)| = 2, we have that Φ(CS(u)) ≤ AzCS(Az) and u 6∈
Φ(CS(u)). As NG(CS(u)) 6≤ CG(z), we see by (1) that z 6∈ Φ(CS(u)).
This implies CCS(Az)(u) = 〈z〉. In particular u ∼ uz by (2). Now there
is a fours group V = 〈z, s〉 ≤ CS(u), s ∈ Az, not containing u such
that uV ⊆ uG. Hence there must be another fours group W such
that z 6∈ W and all involutions in zW are conjugate. We see that
W ∩ CG(Az)Az 6= 1, which contradicts zG ∩ AzCG(Az) = {z}. This
contradiction combined with Lemma 2.1 proves the lemma. �

Lemma 5.13. Az 6∼= G2(3), G2(2)′, M12 or M22.

Proof. By [MaStr, Lemma 2.35] we have Ω1(Z(S)) = 〈z, t〉, with t ∈ Az.
We first show that

zG ∩ Ω1(Z(S)) = {z}.(1)

Otherwise under NG(CG(Ω1(Z(S)))) all elements in Ω1(Z(S))] are con-
jugate. Let P be a Sylow 3-subgroup of CG(Ω1(Z(S))). By Lemma 2.7
and Lemma 2.8 we have that t ∈ W = [O2(CG(Ω1(Z(S)))), P ] while
z 6∈ W as W ≤ Az, a contradiction. This proves (1).

Next we show

zG ∩ (AzCCG(Az)(z)) = {z}.(2)
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Assume false. If Az 6∼= M12 then by Lemma 2.7 all involutions in
CG(Az)×Az are conjugate to z, t ∈ Az or zt and so are conjugate into
Ω1(Z(S)). Hence (2) follows from (1). So we may assume Az ∼= M12. Let
i ∈ CS(Az)Az, i 6= z and i ∼ z in G. We have Ω1(Z(CS(i))) = 〈z, i, t〉.
By (1) and Lemma 2.8(ii) we see CAz(i)

∼= Z2×Σ5. Let zg = i. Then z is
some involution in CG(i) which centralizes Σ5 there. By Lemma 2.8iv)
this shows that z ∈ 〈i, Ai〉. And so i ∼ z in NG(E(CG(〈i, z〉))), i.e. g
normalizes E(CG(〈i, z〉)). By Lemma 2.8(iii) we may assume tg = t.
Further i ∼ it under the action of S, while z 6∼ zt by (1), a contradic-
tion.

Suppose now that there is some outer automorphism i of Az with i ∼ z
in G. As i 6∈ Φ(CS(i)), we get by (2) that also z 6∈ Φ(CS(i)), which
implies that 〈z〉 = CCS(Az)(i). Further by Lemma 2.2 CCS(Az)(z) > 〈z〉.
Hence i ∼ iz.

Let now first Az ∼= G2(2)′ or M22. Then application of Lemma 2.7
shows CAz(i)

∼= SL2(3), E8L3(2), or 24F20. So in all cases we see
Ω1(Z(CS(i))) = 〈i, z, t〉. Furthermore we notice that i ∼ iz ∼ it ∼ itz.
Now 〈t, zt〉 is generated by the involutions in Ω1(Z(CS(i))) which are
not conjugate to z in G. Then 〈z, t〉ENG(CS(i)). By application of (1)
we get NG(CS(i)) ≤ CG(z) but CS(i) 6= S, contradicting i ∼ z.

So we have Az ∼= G2(3) or M12. By Lemma 2.7 and Lemma 2.8 we
get CAz(i)

∼= L2(8) : 3 or Z2 × A5, respectively. In both cases CS(i)
is elementary abelian and all involutions in i(CS(i) ∩ (CG(Az)Az)) are
conjugate to i in CG(z). As z ∼ i in NG(CS(i)) there is some elemen-
tary abelian group E ≤ CS(i) of order 8 with zG ∩ zE = zE, z 6∈ E.
Hence we have that |E ∩Az| ≥ 2. But this contradicts zG ∩ zAz = {z}
by (2). This final contradiction by Lemma 2.1 proves the lemma. �

We now start to exclude the exceptional cases in Proposition 5.2.

Lemma 5.14. Az 6∼= 2F4(q)′.

Proof. Suppose false and assume first O2′(CG(z)) = Az × CG(Az).
By [MaStr, Lemma 2.31] we see that Z(S) ∩ Az ≤ S ′. In particular
zG∩Ω1(Z(S)) = {z} as z 6∈ S ′. But then by Lemma 2.2 we get z 6∈ G′,
a contradiction.

So we have O2′(CG(z)) 6= Az × CG(Az). If q 6= 2 then by [MaStr,
Lemma 2.24] Az has just outer automorphisms of odd order. Hence we
have q = 2. Further we have that NG(Az)/CG(Az) ∼= 2F4(2). By [MaStr,
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Lemma 2.24] we know that there are no involutions in 2F4(2) \ 2F4(2)′.
In particular Z(S) ∩ Az ≤ Ω1(S)′, while z 6∈ Ω1(S)′. Hence again

zG ∩ Ω1(Z/S) = {z}.(∗)

As |Ω1(Z(S))| = 4 and fusion in this group is controlled byNG(Ω1(Z(S))),
we get with (∗)

No two involutions in Ω1(Z(S)) are conjugate in G.(1)

Let i ∈ CG(z) \ 〈z〉, i ∼ z in G. Then i ∈ CG(Az)Az. Furthermore
by Lemma 2.9 Ω1(Z(CS(i))) = 〈z, i, r〉, where r is 2-central in Az. In
the notation of [MaStr, Lemma 2.31] we have that CAz(i) ≤ P1. This
shows

Ω1(Z(O2(CG(i)))) = 〈z, i, r, r1〉, where 〈r, r1〉 = Z2(S ∩ Az).

Thus

r ∼ r1 ∼ rr1 in Az.(2)

Additionally

i ∼ ir ∼ ir1 ∼ irr1 and zi ∼ zir ∼ zir1 ∼ zirr1.(3)

Let now g ∈ G with zg = i. We have that z is an involution in
CG(Ai)Ai, which is centralized by CCG(z)(i). Furthermore ig also is con-
tained in CG(Az)Az and centralized by CCG(z)(i)

g. As all involutions in
Ai centralizing a subgroup isomorphic to CAi

(z) are conjugate, we may
choose g such that

CG(〈i, z〉)g = CG(〈i, z〉).

Hence we have that i ∼ z in H = NG(〈i, z, r, r1〉). Application of (1),
(2) and (3) show that |zH | = 5 or 9. In the latter case 〈zr, r, r1〉 is the
subgroup generated by all those involutions, which are not conjugate
to z. But then (∗) implies H ≤ CG(z), a contradiction.

Thus |zH | = 5. Let ω be an element of order 5 in H. Then ω acts
fixed point freely on 〈z, r, r1, i〉. Hence all orbits have a length divisible
by 5. Now by (2) and (3) there are H∩CG(z)-orbits of length 3,3,4 left.
This shows that we must have an orbit of length 10. But then r ∼ rz
in G, which contradicts (1).

So we have shown that zG∩CG(z) = {z}, which contradicts Lemma 2.2.
This proves the lemma. �

Lemma 5.15. Az 6∼= Sp2n(2), n ≥ 3.
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Proof. Suppose Az ∼= Sp2n(2). Then by [MaStr, Lemma 2.21] and
Lemma 2.22 we see that CG(z) = CS(Az)×Az. By Lemma 2.18 we see
that Ω1(Z(S))∩Az ≤ S ′. As z 6∈ S ′, we have that zG∩Ω1(Z(S))∩Az =
∅. Application of Thompson transfer Lemma 2.2, now yields the con-
tradiction z 6∈ G′. �

Lemma 5.16. Az 6∼= A8 or U4(2).

Proof. Suppose false. As a Sylow 2-subgroup of Aut(U4(2)) is isomor-
phic to one of Σ8, treat A8 and U4(2) using similar argument. Set
〈t〉 = Z(S∩Az), then Ω1(Z(S)) = 〈z, t〉. We have that CG(Ω1(Z(S))) ∼=
(S ∩ CG(Az)) × ((Q8 ∗ Q8)Σ3) or ((S ∩ CG(Az)) × ((Q8 ∗ Q8)Σ3)) · 2
depending on whether CG(z)/CS(Az) ∼= A8 or Σ8 and CG(Ω1(Z(S))) ∼=
(S∩CG(Az))×((Q8∗Q8)(Σ3×Z3)) or ((S∩CG(Az))×((Q8∗Q8))(Σ3×
Z3)) ·2 depending on whether CG(z)/CS(Az) ∼= U4(2) or U4(2) : 2. Now
z 6∈ [CG(Ω1(Z(S))), O2(CG(Ω1(Z(S))))]′ while t is. This shows

zG ∩ Ω1(Z(S)) = {z}.(∗)
If CG(z) ∼= CG(Az)× Az or CG(Az)× Az : 2, we get a contradiction

by application of Lemma 2.2. So we have

CG(z)/CG(Az) ∼= Σ8 or U4(2) : 2. Furthermore there is no
involution in CG(z) \ AzCG(Az), which centralizes CG(Az).

(1)

Let F be the elementary abelian subgroup of S ∩Az corresponding to
〈(12)(34), (13)(24), (56)(78), (57)(68)〉. Then this is the only elementary
abelian subgroup of order 16 in S∩Az. Set E = (S∩CG(Az))×F , then E
is an abelian subgroup of S of type (2n, 2, 2, 2, 2), where 2n = |CS(Az)|.
As Σ8 and U4(2) : 2 possess no elementary abelian subgroups of order
32, and no involution in CG(z) \ AzCG(Az) centralizes CS(Az), we see
that E is the only abelian subgroup of this type in S. Hence NG(E)
controls fusion in E. As all involution in AzCG(Az) are conjugate into E
in CG(z), we see that NG(E) controls fusion of involutions in AzCG(Az).
We are going to show

zG ∩ CS(Az)Az = {z}.(2)

If n > 1, then we have that 〈z〉 = Φ(E) and so NG(E) ≤ CG(z),
which implies (2). So we may assume that CS(Az) = 〈z〉 and so E is
elementary abelian. We have that NAz(F ) induces two orbits on F ] of
length 6 and 9 in case of A8 and of length 5 and 10 in case of U4(2).
Hence NAz(E) induces orbits of length 1,6,6,9,9 or 1,5,5,10,10 on E]. As
NG(E)/E is a subgroup of GL5(2) and neither 11 nor 13 divides the or-
der of GL5(2), we see from (∗) that z has one or seven conjugates under
NG(E) in the case of A8 and one or 21 conjugates in the case of U4(2).
So assume first that z has 7 conjugates. Then |NG(E)/E| = 23 · 32 · 7.
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As this is a subgroup of GL5(2), and as the normalizer of a Sylow 7–
subgroup in GL5(2) is isomorphic to Σ3 × F21, we see that a Sylow
7–subgroup of NG(E) is centralized by some element of order three in
NG(E). As |zNG(E)| = 7, we see that this 3–element has to centralize
zNG(E). But this orbit generates E, a contradiction. So we have again
NG(E) ≤ CG(z), which proves (2). If z has 21 conjugates, then by (∗)
we have two orbits of length 5 under NG(E). But one of theses orbits
generates F and so F is normal in NG(E). This contradicts the fact
that z is conjugate to elements in the orbit of length 10 in F . Hence
also in this case we have (2).

Suppose now that zG ∩ S 6= {z}. Then there is some i, i ∼ z which
induces an outer automorphism on Az. From (1) we get that CS(Az) >
〈z〉 and so i ∼ iz. Now conjugacy happens in NG(E1), where E1 =
〈z〉× 〈(1, 2), (3, 4), (5, 6), (7, 8)〉. In both case Az induces a group of or-
der 2b · 3 on E1. We have that NCG(z)(E1) induces two orbits of length

8 on E1 \ AzCG(Az). Hence by (2) we get that |zNG(E1)| = 9. Then
|NG(E1)/CG(E1)| = 2a ·33, but 33 does not divide the order of GL5(2).
This shows zG ∩ S = {z}, contradicting Lemma 2.1, which proves the
lemma. �

Lemma 5.17. We have Az 6∼= L2(p), p a prime, p > 5, A6, Sz(q), q
even, L3(4), L3(3) or M11.

Proof. Suppose false. If Ω1(Z(S)) ≤ CS(Az)Az, then 〈z,Ω1(Z(S)) ∩
Az〉 = Ω1(Z(S)). If Ω1(Z(S)) 6≤ CS(Az)Az, then Az possesses an in-
volutory outer automorpism, which centralizes a Sylow 2-subgroup of
Az. Application of [MaStr, Lemma 2.26] shows CG(z) ∼= CG(Az)× Σ6.
In this case we have Ω1(Z(S)) = 〈z, x, t〉, with x ∈ Az, where t induces
the Σ6–automorphism.

First we show

zG ∩ (Ω1(Z(S)) ∩ AzCG(Az)) = {z}.(1)

If Ω1(Z(S)) = 〈z, x, t〉, then CG(z) ∼= CCG(z)(Az) × Σ6 and so 〈x〉 =
S ′ ∩ Ω1(Z(S)). In particular z 6∼ x in NG(S), as z 6∈ S ′. This shows
that |zG∩Ω1(Z(S))| = 1 or 3, as |zNG(Ω1(Z(S)))| has to be odd. Suppose
that we have three conjugates. Let ρ be some element in NG(〈z, t, x〉)
which induces an element of order three. Then 〈x〉 is fixed by ρ and so
ρ acts fixed point freely on 〈z, x, t〉/〈x〉. This implies that z 6∼ zx. In
particular zG ∩ 〈z, x〉 = {z}, which is (1). Of course (1) also holds if
zG ∩ Ω1(Z(S)) = {z}.

So we may assume that Ω1(Z(S)) = 〈z,Ω1(Z(S))∩Az〉. By Lemma 2.32
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all involutions in Ω1(Z(S)) ∩ Az are conjugate in Az. Hence we may
assume that zG ∩ Ω1(Z(S)) = Ω1(Z(S))].

First let Az ∼= L2(p), A6, L3(3), or M11. Lemma 2.5 implies that
Ω1(Z(S)) = 〈x, z〉. Suppose that there is some automorphism g of
S of order three, with zg ∈ Az. We have S ∩ Az E S. Hence (S ∩
Az)

g ∩ (S ∩ Az) E S ∩ Az. Assume that (S ∩ Az)g ∩ (S ∩ Az) 6= 1.
Then Ω1(Z(S)) ∩ Az = 〈x〉 ≤ (S ∩ Az)g and the same applies to xg.
In particular Ω1(Z(S)) ≤ S ∩ Az, a contradiction. So we have that
(S∩Az)g∩ (S∩Az) = 1. Now we get (S∩Az)g ≤ CG(S∩Az). As there
is no subgroup isomorphic to (S ∩Az)× (S ∩Az)g in AzCG(Az), recall
that CS(Az) is cyclic, we have that (S ∩ Az)g contains some outer au-
tomorphism of Az which centralizes S ∩ Az. By [MaStr, Lemma 2.26]
we get Az ∼= A6 and this automorphism is a Σ6–automorphism. As
S ∩ Az ∼= D8, we now get that CS(Az) ∼= Z4 and then S ∼= D8 × D8,
but this group has no automorphism of order three and the order of g
was three.

Let now Az ∼= Sz(q), q = 22n+1. Then by Lemma 2.22 we get S =
(S ∩ Az) × CS(Az). But Ω1(Z(S)) ∩ Az ≤ S ′, as S is not abelian. As
z 6∈ S ′ we get (1).

Let now finally Az ∼= L3(4). By Lemma 2.23(3) any elementary abelian
subgroup of order 16 in Aut(L3(4)) is contained in L3(4). According to
Lemma 2.20 there are exactly two elementary abelian subgroups U1,
U2 of order 16 in S ∩Az. Hence in S there are exactly two abelian sub-
groups of type (2n, 2, 2, 2, 2), where |CS(Az)| = 2n. Then the conjugacy
in Ω1(Z(S)) takes place in the normalizer of CS(Az) × U1. As Az in-
duces an orbit of length 15 on the involutions of U1 and |zNG(CS(Az)×U1)|
is odd, we may assume that z possesses 31 conjugates. This then would
imply that |NG(〈z, U1〉)/CG(〈z, U1〉)| = 2a · 3 · 5 · 31, where a = 2 or
3. So by Sylow’s theorem NG(〈z, U1〉)/CG(〈z, U1〉) must have a normal
subgroup of order 31, a contradiction to the structure of GL5(2). So
we have proved we have that zG ∩CS(Az)×U1 = {z}, which is (1). In
particular (1) holds in all cases.

As Az has just one class of involutions, we have that

zG ∩ (Az × CCG(Az)(z)) = {z}.(2)

By Lemma 2.1 we get some t ∈ S, t 6= z with t ∼ z in G. So by (2)
t has to induce an outer automorphism on Az. By Lemma 2.22 and
Lemma 2.12 we see that Az 6∼= M11 or Sz(q).
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Let first t induces the Σ6-automorphism on Az. Then we have that

CS(t) = CCS(Az)(t)× (S ∩ Az)× 〈t〉.

As z ∼ t and t 6∈ Φ(CS(t)), we see that z 6∈ Φ(CS(t)), so

CCS(Az)(t) = 〈z〉.(∗)

This now shows that CS(t) = E1E2, where Ei are elementary abelian
of order 16, i = 1, 2, and CAz(t)

∼= Σ4. We choose notation such that

E1 = 〈z, t, r, s〉, 〈r, s〉 = E1 ∩ Az, E1 6E CCG(z)(t).

Then NAz(E1) induces in E]
1 orbits of length 1,3,3,3,3,1,1 with repre-

sentatives z, t, zt, r, zr, tr, ztr, respectively.

Suppose first that zNG(E1) 6= {z}. Assume further that t ∼ zt in
CG(z)∩NG(E1). As NAut(Az)(E1) ≤ Σ6, there is some u ∈ CS(Az) with
tu = tz. This shows that NCG(z)(E1) induces on E1 orbits of length
1,2,3,3,6, with representatives z, t, r, zr, tr, respectively. By (2) we
have that z 6∼ r and z 6∼ zr. Hence 〈z, r, s〉 is generated by involu-
tions which are not conjugate to z in G. As zG ∩ 〈z, r, s〉 = {z}, we
see that 〈z, r, s〉 must not be NG(E1)–invariant. In particular tr 6∼ z,
too. Now z has seven conjugates under NG(E1). As this number is odd,
we have that NS(E1) is a Sylow 2–subgroup of NG(E1). In particular
as r ∈ Z(NS(E1)), we have that both |rNG(E1)| and |(zr)NG(E1)| are
odd. As z ∈ 〈zr, zs, zrs〉, we see that |rNG(E1)| = 3 and so 〈r, s〉 is
normal in NG(E1). Let ν be an element of order 7 in NG(E1). Then
[ν, 〈r, s〉] = 1. Furthermore also [E1/〈r, s〉, ν] = 1, which gives the con-
tradiction [E1, ν] = 1, but zν 6= z. But as zG ∩ z〈r, s〉 = {z} and
tG ∩ t〈r, s〉 contains t and ts, we get a contradiction.

So we have that t 6∼ tz in NCG(z)(E1). In particular [t, CS(Az)] = 1
and so CS(Az) = 〈z〉 by (∗). This again shows that CG(z) contains a
Sylow 2–subgroup of NG(E1), i.e. |zNG(E1)|, |rNG(E1)| and |(zr)NG(E1)|
are all odd. Further z 6∼ r 6∼ zr 6∼ z by (2). In particular t is not conju-
gate to r or zr. Counting orbits we see again that either |rNG(E1)| = 3
or |(zr)NG(E1)| = 3. As above we see the later is not possible, so zr has
5 or 7 conjugates and 〈r, s〉 E NG(E1). But then p–elements, p = 5 or
7, have to centralize E1, a contradiction.

So we have shown that

zNG(E1) = {z}.
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Assume now that NG(CS(t)) 6≤ CG(z). Then we have that NG(CS(t)) 6≤
NG(E1). This means that there is some g ∈ NG(CS(t)) with Eg

1 = E2.
In particular (zg)NG(E2) = {zg}. We have that E2 is normal in CCG(z)(t).
So NAz(E2) induces orbits of length three and exactly three orbits of
length 1 with representatives z, t and zt. If t ∼ zt in NCG(z)(t), then
there is exactly one NG(E2)–orbit of length 1, which is {z}. But then
zg = z, a contradiction. This again shows that [t, CS(Az)] = 1 and then
CS(Az) = 〈z〉. As there are exactly two elementary abelian subgroups
of order 16 in S, we see that o(g) cannot be odd. This implies t 6∈ Z(S).
Hence we get that there is some u ∈ CG(z), which induces an additional
outer automorphism on A6, in particular we may assume that Eu

2 = E1.
Now gu ∈ NG(E1) ≤ CG(z). But then g ∈ CG(z), a contradiction. So
we have shown

If Az ∼= A6, then t does not induce a Σ6 − automorphism.(3)

Now (3) together with (1) imply that

zG ∩ Ω1(Z(S)) = {z}.(4)

Again by Lemma 2.1 we get

z ∈ S ′.(5)

By Lemma 2.22 or Lemma 2.12 we have that t is not a square in CS(t).
Hence we also have that z is not a square in CS(t). This gives that

CCS(Az)(t) = 〈z〉.(6)

We next show

t ∼ tz in CG(z).(7)

This is true if CS(Az) > 〈z〉 = CCS(Az)(t) by (6). So we may assume
that CS(Az) = 〈z〉. By (5) we have z ∈ S ′. In particular there is some
s ∈ S with ts = tzj, where j ∈ Az ∩ S. As by (3) all involutions in Azt
are conjugate to t, there is some g ∈ Az with (tj)g = t. Hence (7) holds.

We now come to the final contradiction. We have that Ω1(Z(CS(t))) =
〈z, t,X〉 = F , where X ≤ Az. Assume first that zNG(F ) = {z}. Then
CS(t) is a Sylow 2–subgroup of CG(t) and so t ∈ Z(S), as t ∼ z in G.
But then Az ∼= A6 and t induces a Σ6–automorphism, contradicting (3).

So we have zNG(F ) 6= {z}. By (2) we have that 〈z,X〉 is generated
by involutions which are not conjugate to z in G. Hence t〈z,X〉 must
also contain such involutions, as zG ∩ 〈z,X〉 = {z}. But by (3) and
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Lemma 2.37 all involutions in tX are conjugate and by (7) t ∼ tz in
CG(z), so all involutions in t〈z,X〉 are conjugate to t and thus to z, a
contradiction. This final contradiction proves the lemma. �

Now we are going to prove Proposition 5.2. Besides the groups we have
excluded in Lemma 5.14 through Lemma 5.17 we just have to exclude
the groups Az ∼= L4(3), U4(3), L2(q), q even and M(23). The first three
cases have been handled in Lemma 4.3 and Lemma 4.4 where groups
show up which are in the statement of our theorem, so G is not a
counterexample. The last has been handled in [MaStr, Lemma 4.14].

6. Some 2-local subgroups

We continue with the assumption that G is a counterexample to the
main theorem. Hence there is some z ∈ Ω1(Z(S)) such that Az is stan-
dard. By Proposition 5.1 we have that Az is simple. Furthermore by
Proposition 5.2 we have that Az is a group of Lie type of characteristic
two or J2 or M(24)′. Remember that among the groups of Lie type
in characteristic two the group Az is not isomorphic to one of L2(q),
Sz(q), 2F4(q)′, q even, L3(4), G2(2)′, L4(2), A6 or L3(2). The aim of
this chapter is to derive a contradiction, which then proves the main
theorem.

For this chapter we fix the following notation. We denote by S a Sylow
2–subgroup of G with z ∈ Z(S). By R we denote a fixed root group
in Ω1(Z(S ∩ Az)) if Az is of Lie type and just Ω1(Z(S ∩ Az)) if Az is
sporadic. By QR we denote O2(CAz(R)). As Az is normal in CG(z) we
see that

Lemma 6.1. |Ω1(Z(S))| ≥ 4.

The first step towards deriving a contradiction it to show the existence
of a group N such that S ≤ N , N 6≤ CG(z) and F ∗(N) = O2(N)
(Lemma 6.5 and Lemma 6.6). Among these groups we choose N mini-
mal with this property. In Lemma 6.11 and Lemma 6.12 we determine
the structure of N . Here Lemma 3.20 and Lemma 3.21 come into the
game. The key fact for us will be to show that there is some t ∈ Z(N),
t 6= z and t 6∈ Az. Furthermore we will see that Az is one of the two
sporadic groups or defined over GF(2). In particular we get that QR is
extraspecial.

At this point we turn our attention to CG(t). We show that also CG(t)
has a standard component At. Then we can show that QR ≤ Az ∩ At.
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This is sufficient to show that eventually At will be isomorphic to Az.
With this information we get that N is isomorphic to a minimal par-
abolic in Az and At as well. Now both of these groups induce some
action on Ω1(Z(O2(N))). This together with the fact that t 6∼ z in G
eventually yields the desired contradiction.

Now we are going to show the existence of a suitable N . But first
a technical lemma.

Lemma 6.2. Let x ∈ Ω1(Z(S))\CS(Az) and K ≤ CCG(z)(x) such that
K = D1×D2×· · ·×Dm, m ≥ 1, D1 dihedral of order 2n, quaternion of
order 8 or isomorphic to SL2(3) ∗ SL2(3) and there are s2, . . . sm ∈ S
such that Di = Dsi

1 , i = 2, . . . ,m. Then K is not normal in CCG(z)(x).

Proof. Suppose false. We first will treat the case of Az ∼= Sp4(q), q > 2,
as in this group there is some x such that CAz(x) is a 2-group. We fix the
following notation. According to Lemma 2.21 there are two elementary
abelian subgroups E1, E2 in Az∩S of order q3 such that E1E2 = S∩Az
and E1 ∪ E2 = Ω1(S ∩ Az). Furthermore E1 ∩ E2 = R1R2, where R1,
R2 are the two root subgroups such that R1R2 = Ω1(Z(S ∩ Az)). We
now set

Fi = 〈z, Ei〉, i = 1, 2, and S1 = S ∩ AzCS(Az).

We first show

D1 is dihedral.

Obviously D1 6∼= SL2(3) ∗ SL2(3). So let D1 be quaternion. Then
Ω1(K) = Z(K). AssumeD1 ≤ S1. Then [E1, D1] ≤ E1 and so [D1, E1] ≤
Z(K). As |D1 : D1 ∩ E1| ≥ 4, we see with [MaStr, Lemma 2.67] that
Z(S ∩ Az) ≤ [D1, E1]. As |K| = |Z(K)|3, we now get |K| ≥ q6. But
|Ω2(S1)| ≤ 4q4, a contradiction. So we have that D1 6≤ S1. Choose
u ∈ D1 \ S1. If [u,E1] ≤ E1, then by Lemma 2.21 and Lemma 2.22 we
see that u induces a field automorphism on Az and so |[E1, u]| = r3,
where q = r2. Again [E1, u] ≤ Z(K) and so K ∩Az ≤ CAz([E1, u]). As
[E1, u] 6≤ Z(Az ∩ S), we see that CS∩Az([E1, u]) = E1. Hence we have
that [E1, u] = K ∩Az. But the same applies to E2. So [E1, u] = [E2, u],
which is impossible as E1∩E2 = Z(S ∩Az). This shows that Eu

1 = E2.
Then |[E1, u] : [E1, u]∩Z(S ∩Az)| = q. Again by [MaStr, Lemma 2.67]
we get that Z(S ∩ Az) ≤ [[E1, u], S ∩ Az] and so Z(S ∩ Az) ≤ Z(K).
But then [R1, u] = 1, while we have Ru

1 = R2, a contradiction.

So we have shown that D1 is dihedral. We fix the following notation:

D1 = 〈x1, x2〉, where x2
1 = x2

2 = 1.
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Let first m = 1. We may assume that [E1, x1] 6= 1. In particular
x1 6∈ E1. If [E1, x1] ≤ E1. then |〈[E1, x1], x1〉| ≥ 2q ≥ 8. But there
are no elementary abelian subgroups of order 8 in D1. So we have that
Rx1

1 = R2 and again |〈[R1R2, x1], x1〉| ≥ 2q and this group is elemen-
tary abelian.

So we have ptoved that m > 1. Now we set

D2 = 〈y1, y2〉, where we choose notation such that xs2i = yi, i = 1, 2.

Suppose first that D1 ≤ S1. Then as S1 is normal in S, we have K ≤ S1.
As Ω1(S1) = F1 ∪ F2, we may assume that x1y1 ∈ F1. As [x1, x2] 6= 1,
we get x2y2 ∈ F2. Now we consider the involution x2y1 ∈ K. We have
[x1y1, x2y1] 6= 1 6= [x2y2, x2y1], so x2y1 6∈ F1 ∪ F2, a contradiction.

So we may assume that x1 6∈ S1. By Lemma 2.22 we have that S/S1

is abelian. Hence x1x
s2
1 = x1y1 ∈ S1. Furthermore also x2y2 ∈ S1. So

we may assume that x1y1 ∈ F1 and x2y2 ∈ F2. As [x1y1, x2y2] 6= 1,
we see that x1y1, x2y2 both are not in Z(S1). As [x1, x1y1] = 1, we
see that x1 normalizes E1 and induces a field automorphism on Az.
In particular it also normalizes E2 and so we get that K normalizes
Ei, i = 1, 2. As the group of field automorphisms is cyclic, we get
|K : K∩S1| = 2. We consider the involution x1y2. As above we get that
x1y2 6∈ S1. But then y2 = x1x1y2 ∈ S1 and so also x2 ∈ S1. In particular
〈x2, Z(D2)〉 is normal in D2, which shows that D1 is dihedral of order 8.
As [x2, x2y2] = 1, we have x2, y2 ∈ E2. As [x1y1, x2] 6= [x1y1, y2],we see
that |〈x2, y2, Z(S1)〉/Z(S1)| = 4. Now application of [MaStr, Lemma
2.67] shows that [〈x2, y2〉, E1] = R1R2 and so R1R2 ≤ K. As x1 induces
a field automorphism on Az, we have that |R1R2 : CR1R2(x1)| = q > 2.
On the other hand |K : CK(x1)| = 2, a contradiction. So we have shown

Az 6∼= Sp4(q).(1)

By Lemma 2.23 we have that x ∈ CS(Az) × Az. Hence x = zir where
1 6= r ∈ Z(S ∩ Az) and i = 0, 1.

We assume first that r ∈ R and show

O2(K) ≤ AzCS(Az).(∗)

Suppose false. As [O2(K), CAz(r)] ≤ QR, we see from [GoLyS3, Table
5.3] for the two sporadic groups and by application of Lemma 2.27
in the case Az a group of Lie type that Az ∼= L3(16) and some el-
ement k ∈ K induces a graph/field automorphism on Az. In par-
ticular K = O2(K). So CAz(k) ∼= U3(4). As Z(K) ≤ K ′, we have
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Z(K) ≤ CS(Az)Az and Z(K) ≤ C(k). Hence |Z(K)| ≤ 8. In CAz(k)
we have some element ω of order 5, which centralizes Z(K) and x.
Hence this element has to normalize any quaternion group or dihedral
group in K modulo Z(K) and so it has to centralize K. As ω acts fixed
point freely on QR/R, we see that K ∩AzCS(Az) ≤ Z(K)CS(Az). But
then K cannot be normal in S. So we have (∗).

As Z(K) ≤ K ′ and CS(Az) is cyclic, we get by (∗) that K∩CS(Az) = 1.
As CS(Az)Az/CS(Az) ∼= Az, we may assume x = r and O2(K) is a
subgroup of Az. Now O2(K) ≤ O2(CAz(r)), as K is normal in CAz(R),
which gives that O2(K) is of class two and Z(K) ≤ O2(CAz(r))

′ = R.
But then any O2(Di) has to be normal modulo R, which gives that
CAz(r) has a normal dihedral group, quaternion group or Q8 ∗Q8. For
Az 6∼= L3(q) we receive from Lemma 2.17, Lemma 2.18, Lemma 2.19 or
[MaStr, Lemma 2.10] that CAz(r) induces at most two nontrivial mod-
ules on O2(CAz(r))/Z(O2(CAz(r))). We conclude that we must have
exactly two such modules and CAz(r) induces Z3 or Σ3, or m = 1 and
O2(CAz(r)) is dihedral of order eight or isomorphic to Q8 ∗ Q8. This
then implies that we are over GF(2). Hence we just have the groups
excluded by Proposition 5.2. In case of Az ∼= L3(q), q > 2, by [MaStr,
Lemma 2.39], we have that R = Z(K) and so as |O2(K)| ≥ |Z(K)|3,
we see K = QR. As q > 2, we have m > 1. But QR is not a direct
product of m dihedral groups.

So we may assume that r is not a root element. In particular Az ∼=
F4(q) or Sp2n(q). In the latter by (1) we have n > 2. We first show
that (∗) holds again. Set Xz = CAz(Z(S ∩ Az)). Then we have that
[O2(K), Xz] ≤ O2(Xz). Assume that there is some t ∈ O2(K) such
that t induces an outer automorphism on Az. As Az 6∼= Sp4(q), we
have that E(Xz/O2(Xz)) is a nonsolvable group and by Lemma 2.22
any outer automorphism of Az induces a nontrivial automorphism
on this group. Hence (∗) holds. So as above we may assume that
〈x,K〉 ≤ Az. As O2(Xz)/O2(CAz(R)) is elementary abelian, we see
that Z(K) ≤ O2(CAz(R)).

Let first Az ∼= Sp2n(q). Assume furthermore Z(K) 6≤ Z(O2(CAz(R))).
Then Z(K)/Z(K)∩Z(O2(CAz(R))) is a natural Sp2n−4(q)–module. We
have that CO2(CAz (R))(Z(K)) = Z(K)Z(O2(CAz(R))) ≥ K∩O2(CAz(R)).
Hence

|O2(K)Z(O2(CAz(R))) : Z(K)Z(O2(CAz(R)))|
≤ |O2(Xz) : O2(CAz(R))| = q = 2t.
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This shows that m ≤ t. As |Z(K)Z(O2(CAz(R)))/Z(O2(CAz(R)))| =
2t(2n−4) ≥ 22t, as n > 2, and 22t > 2m, we get a contradiction to
|Z(K)| = 2m. Hence Z(K) ≤ Z(O2(CAz(R))). But now O2(Xz) cen-
tralizes Z(K), i.e. O2(K) ≤ CO2(Xz)(O

2(Xz)), or O2(Xz) induces a
3-group on O2(Xz).

Assume first that [O2(Xz), O2(K)] = 1. Then K 6≤ O2(CAz(R)), as
CO2(CAz (R))(O

2(Xz)) = Z(O2(CAz(R))). Take u ∈ K \ O2(CAz(R)).
Then [u,O2(CAz(R))] ≤ O2(CAz(R)) ∩K ≤ Z(O2(CAz(R))). But this
contradicts Lemma 2.18.

So assume that O2(Xz) induces a 3-group on O2(Xz). Then application
of Lemma 2.18 yieldsAz ∼= Sp6(2). But this contradicts Proposition 5.2.

So we are left with Az ∼= F4(q). As there is no 3-group, which central-
izes CAz(Z(S ∩Az))/O2(CAz(Z(S ∩Az))), we see that K = O2(K). By
Lemma 2.17 CAz(O2(CAz(R)))/Z(O2(CAz(R)))) ≤ O2(CAz(R)). Now
assume that O2(CAz(R))∩K ≤ Z(O2(CAz(R))). As [K,O2(CAz(R))] ≤
K ∩ O2(CAz(R)), we get K ≤ O2(CAz(R)). But then K would be ele-
mentary abelian, a contradiction. Hence

O2(CAz(R)) ∩K 6≤ Z(O2(CAz(R)))(∗∗)

and so as O2(CAz(R))∩K is normal in O2(CAz(R)) we get R ≤ K. But
in case of F4(q) we have two roots with isomorphic centralizers. Then a
similar argument shows that Z(S ∩ Az) ≤ K. As O2(Xz)/O2(CAz(R))
is elementary abelian and Z(K) ≤ K ′, we have Z(K) ≤ O2(CAz(R)).
Assume first Z(K) = Z(S ∩ Az). Then O2(Xz) centralizes K. But
by Lemma 2.17 we have that O2(Xz)/Z(S ∩ Az) has a normal sub-
group which is a direct sum of two natural Sp4(q)–modules whose fac-
tor group is a direct sum of two natural Ω5(q)–modules. This implies
that CO2(CAz (R))/Z(CAz (R))(O

2(Xz)) = 1, which contradicts (∗∗). So we
have that Z(K) > Z(Az∩S). Hence by Lemma 2.17 we have that either
|Z(K)/Z(K)∩Z(O2(CAz(R)))| = q4 or |Z(K)∩Z(O2(CAz(R)))| ≥ q6.
In both cases we have that |Z(K)| ≥ q6 and so as |K| ≥ |Z(K)|3,
we get |K| ≥ q18. In particular there is some proper normal subgroup
of order at least q18. But now the structure of Xz as described before
shows that K = O2(Xz). Then Z(K) ≤ Z(O2(Xz)) = Z(Az ∩ S), a
contradiction. �

Next we set

N = {N | N ≤ G,Ω1(Z(S)) ≤ N 6≤ CG(z), 1 6= O2(N) ≤ S}.
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The group N we are looking for will be in this set N . So we first show
that N is not empty.

Lemma 6.3. There exists 1 6= S1 ≤ S such that NG(S1) 6≤ CG(z).
Among those choose S1 such that |NG(S1)∩CG(z)|2 is maximal. Then

(i) NG(S1) ∈ N , in particular N 6= ∅.
(ii) NG(S1) ∩ S ∈ Syl2(CNG(S1)(z)) ⊆ Syl2(NG(S1)).
(iii) If NG(S1) ∩ S is not a Sylow 2-subgroup of G, then NG(S ∩

NG(S1)) ≤ CG(z).

Proof. As CG(z) cannot control fusion in CG(z) by Lemma 2.1 we have
that CG(z) is not strongly 2-embedded in G. Hence there is some 1 6=
S1 ≤ S with NG(S1) 6≤ CG(z). Now we choose S1 such that |NG(S1) ∩
CG(z)|2 is maximal. Obviously Ω1(Z(S)) ≤ NG(S1). Set T = NS(S1).
Then S1 ≤ T . Let T1 be a Sylow 2-subgroup of CNG(S1)(z), which
contains T . Then there is some g ∈ CG(z) with T g1 ≤ S. We have
|S ∩ NG(S1)g| ≥ |S ∩ NG(S1)|. As Sg1 ≤ S and NG(S1)g 6≤ CG(z), we
have by the choice of NG(S1) that T = T1 is a Sylow 2-subgroup of
CNG(S1)(z). If T = S, we have the assertion (ii). So assume T 6= S. In
particular NS(T ) > T . Hence by the choice of S1 we have that NG(T ) ≤
CG(z), which is (iii). As T is a Sylow 2-subgroup of CNG(S1)(z), this
shows that T is a Sylow 2–subgroup of NG(S1), which finishes the
proof of (ii). In particular O2(NG(S1)) ≤ T ≤ S, which shows that
N 6= ∅, which proves (i). �

Lemma 6.4. Set N1 = {U | U ∈ N with |U ∩ S| maximal}. Choose
N ∈ N1 minimal by inclusion. Then N is a minimal parabolic where
CN(z) is the unique maximal subgroup of N containing N ∩ S. Fur-
thermore we have:

(i) If E is normal in N and E ≤ CG(z), then S∩E is also normal
in N .

(ii) E(N) = 1.
(iii) O(N) ≤ CG(z) and O2′,2(N) = O2(N)O(N).

Proof. Recall that by Lemma 6.3 there is such an N ∈ N . Further we
have that T = S ∩N is a Sylow 2–subgroup of N .

The minimality of N then shows, that for M < N and T ≤ M we
have M ≤ CG(z). Therefore N ∩ CG(z) is the only maximal subgroup
of N containing T , which means that

N is a minimal parabolic with respect to T.

Let now E be normal in N . Then we have that N = NN(E ∩ T )E. If
E ≤ CG(z), then NN(E ∩ T ) 6≤ CG(z) and so by minimality we have
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that N = NN(E ∩ T ), which is (i).

Assume there is some involution x ∈ Z(N). Then CG(x) 6≤ CG(z). Let
T1 ≤ CG(x) with |T1 : T | = 2. Then as NG(T ) ≤ CG(z) by Lemma 6.3,
we see T1 ≤ CG(z). This implies that there is some g ∈ CG(z) with
T g1 ≤ S. In particular |S ∩ CG(xg)| > |S ∩ N |. So we may apply
Lemma 6.3 with 〈xg〉. This implies the existence of some S1 ≤ S such
that NG(S1) ∈ N and |NG(S1) ∩ CG(z)|2 ≥ |CS(xg)| > |N ∩ S|, which
contradicts the choice of N . So we have that T is a Sylow 2–subgroup
of CG(x), in particular O2(CG(x)) ≤ O2(N). We collect:

If 1 6= x ∈ Z(N) is an involution then
T is a Sylow 2-subgroup of CG(x).

(1)

Assume now E(N) 6= 1. Then by (i) we have E(N) 6≤ CG(z) and so
N = E(N)T . Let E(N) = N1 · · ·Nr. As E(N)T is a minimal parabolic
we have that N1NT (N1) is a minimal parabolic with respect to NT (N1).
As [O2(N), E(N)] = 1, we have z 6∈ O2(N). So the maximal subgroup
containing the Sylow 2-subgroup is CN1(z)NT (N1), the centralizer of
an involution. Hence by Lemma 2.39 we get that

N1 is a group of Lie type in odd characteristic.(2)

Choose x ∈ Z(N) an involution, which exists as O2(N) 6= 1. By
(1) we have that T is a Sylow 2–subgroup of CG(x), in particular
O2(CG(x)) ≤ O2(N) and then [E(N), O2(CG(x))] = 1. This shows
that E(N) ≤ E(CG(x)) (recall that O(CG(x)) = 1 by the general as-
sumption).

Assume first that N1 is not conjugate to L2(p), L2(9), L3(3), L4(3),
U4(3) or PSp4(3). It follows that N1 is not a component of CG(x), as
now by (2) N1 6∈ C2. Furthermore from Lemma 2.39 we get that CN1(z)
has a component K1, which is a group of Lie type in odd character-
istic. Let K be some component of CG(x) with N1 ≤ K. As by (∗)
we see that N contains a Sylow 2-subgroup of CG(x), we have that
[K1, O2(CCG(x)(z))] = 1. This shows that also CK(z) has a component.
As K ∈ C2 and z centralizes a Sylow 2-subgroup of K, we get with
[MaStr, Lemma 2.26] that either z induces an inner automorphism on
K or K ∼= L4(3) and then z has to induce an outer automorphism,
which then is a graph automorphism, which centralizes L ∼= PSp4(3)
in K. Now K1 ≤ L. But as PSp4(3) ∼= Ω−6(2) we get with the Borel-
Tits-Theorem, that all subgroups of L containing a Sylow 2-subgroup
of L are constrained, in particular do not have components, a contra-
diction. So we may assume that z induces an inner automorphism on
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K. With [MaStr, Lemma 2.22] we see that K cannot be a group of
Lie type in characteristic two. Further as centralizers of involutions in
L3(3), G2(3), U4(3) are solvable by [MaStr, Lemma 2.20], Lemma 2.7,
Lemma 2.6 respectively, these groups are also not possible. The cen-
tralizers of 2–central involutions in the sporadic groups are given by
[GoLyS3, Table 5.3]. From there we see that only M(23) possesses a
2-central involution, whose centralizer has a component. In M(23) this
component would be 2M(22), which is not a group of Lie type in odd
characteristic. Hence K1 6= 2M(22). But then M(22) must contain a
subgroup L, which contains a Sylow 2-subgroup and a normal subgroup
which is a product of groups of Lie type in odd characteristic, contra-
dicting [GoLyS3, Table 5.3].

Hence we have that

N1/Z(N1) ∼= L2(p), p > 5, L2(9), L3(3), L4(3), U4(3) or PSp4(3).(3)

In particular N1 ∈ C2. By Lemma 2.39 we get that N1/Z(N1) 6∼=
U4(3) or PSp4(3). If N1/Z(N1) is isomorphic to L2(p) or L3(3), then
Ω1(Z(NT (N1)/CT (N1))) ≤ N1. If N1

∼= A6, then as NT (N1)N1 is a min-
imal parabolic there is some element in NT (N1), which interchanges the
two subgroups isomorphic of Σ4. So also Ω1(Z(NT (N1)/CT (N1))) ≤ N1.
In case of N1/Z(N1) ∼= L4(3) ∼= Ω+

6 (3), we see from Lemma 2.39 that
also a graph automorphism is induced by T . This then again implies
Ω1(Z(NT (N1)/CT (N1))) ≤ N1. As N1 6∼= L2(5), we have by Lemma 2.13
that |Ω1(Z(NT (N1)/CT (N1)))| = 2.

We have Ω1(Z(S)) ≤ N by the definition of N . Further we have
|Ω1(Z(S))| ≥ 4 by Lemma 6.1. As Z(S) centralizes T ∩ N1 it nor-
malizes N1, we get that Ω1(Z(S)) ∩ C(N1) 6= 1. As T acts transitively
on the components of N ,we get that Ω1(Z(S)) ∩ C(E(N)) 6= 1.

So we may assume

x ∈ Z(S) and then T = S. Further N1 ≤ K
for K some component of CG(x).

(4)

Now we show that

K = N1 or K ∼= M11.(5)

There is T1 ≤ T such that M1 = 〈NT1
1 〉T1 ≤ K and M1 contains a

Sylow 2-subgroup of K. If K is a group of Lie type in characteristic 2,
then by [MaStr, Lemma 2.15] we have that K = N1, as M1 would be a
parabolic subgroup. This proves (5). If K is a group of Lie type in odd
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characteristic, the list C2 shows that K/Z(K) ∼= L2(p), L2(9), L3(3),
L4(3), U4(3) or G2(3). As the centralizer of a 2-central involution in
K is solvable ([MaStr, Lemma 2.20], Lemma 2.7, Lemma 2.6), we see
that O2(M1) = 1. Now the order of L4(3) is divisible by 36 · 5 · 13,
so we get N1 = K in case of N1

∼= L4(3) or G2(3). Also the order
of L3(3) is divisible by 13, which shows N1 = K or M1 ≤ L4(3) in
case of N1

∼= L3(3). Suppose the latter. By [MaStr, Lemma 2.21] and
Lemma 2.22 we have that |Aut(L3(3)| = 25 · 33 · 13, which contradicts
|K|2 = 26 and O2(M1) = 1. So it remains N1

∼= L2(q). If N1 6= K1,
we see that K ∼= L3(3), L4(3), U4(3) or G2(3). As p is a Fermat or
Mersenne prime and p > 5, we see that N1

∼= L2(7) or L2(9). As nei-
ther 5 nor 7 divides the order of L3(3), we get K 6∼= L3(3). As 26 does
not divide |Aut(N1)|, we get that N1 ×N t

1 ≤ K. But then 52 or 72 has
to divide |K|, which is not the case. This proves (5) in case of K a
group of Lie type in odd characteristic.

So we are left with K a sporadic simple group. Suppose first that
CM1(N1) = 1. Then by Lemma 2.10 we get M1

∼= M10 and K ∼= M11,
which is (5). So assume K 6∼= M11. Then CM1(N1) 6= 1. If M1 = 〈NT1

1 〉T1

has 2n, n ≥ 1, many components isomorphic to N1, there is some in-
volution y ∈ M1, which centralizes in T1 a subgroup of index two and
2n−1 of these components. In particular in both cases CK(y) possesses
a component K̃. By [GoLyS3, Table 5.3] we see that K ∼= M(22) or
M(23). The same is true if O2(M1) 6= 1, where y ∈ Z(M1). Now the
situation in K̃ is the same as in K and so K̃/Z(K̃) cannot be a group
of Lie type in characteristic 2. As K̃/Z(K̃) ∼= U6(2) for K ∼= M(22), we
get K ∼= M(23) and K̃/Z(K̃) ∼= M(22). The odd part of the order of
M(23) implies that there are at most two components N1, N g

1 in M1.
If there are two of them, we have with [GoLyS3, Table 5.3u] and (1)
that N1

∼= L2(9). Now in any case we see that |M1/O2(M1)|2 ≤ 211.
Hence |O2(M1)| ≥ 4. So we may choose y ∈ Z(T1) and then we have
the same situation in CK(y)/〈y〉 ∼= M(22). Now we get a contradiction
with the same arguments as for K ∼= M(22).

So we have shown that either K = N1 or K ∼= M11 In any case we
have that CK(z) is dihedral or isomorphic to GL2(3) or in case of
L4(3) contains a normal subgroup SL2(3) ∗ SL2(3). This shows that
CG(z) ∩ CG(x) has a normal subgroup which is a direct product of
dihedral, quaternion groups or groups isomorphic to SL2(3) ∗ SL2(3),
which are permuted by S. This now contradicts Lemma 6.2 and so we
have (ii).
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Assume now O(N) 6= 1. We first show O(N) ≤ CG(z). So assume
false. Then by the minimality of N we have that N = O(N)T . Again
there is some involution x ∈ Z(N). By (∗) T is a Sylow 2-subgroup of
CG(x). As [O2(CG(x)), O(N)] = 1 and O(CG(x)) = 1, we must have
that E(CG(x)) 6= 1. As [T,O(N)] ≤ O(N), we see that O(N) normal-
izes any component K of CG(x). Further a Sylow 2-subgroup of K has
to normalize some nontrivial group of odd order of its automorphism
group. As K ∈ C2 we get by Lemma 2.29 that K ∼= L3(3) or M11.
Set K1 = 〈KT 〉 and K2 = K1T . Then by Lemma 2.29 we have that
Ω1(Z(T )) = Ω1(Z(T ))∩CT (K1)×Ω1(Z(T ))∩K1. Further |Ω1(Z(T ))∩
K1| = 2. As |Ω1(Z(S))| ≥ 4, we see that Ω1(Z(S)) ∩ CT (K1) 6= 1.
Hence we have that Ω1(Z(S)) ∩ O2(N) 6= 1, and so we may choose
x ∈ Ω1(Z(S)), which gives S = T . As CK1(z) is a direct product of
groups isomorphic to GL2(3), we see that CCG(z)(x) contains a normal
subgroup, which is a direct product of quaternion groups, contradicting
Lemma 6.2.

So we have that O(N) ≤ CG(z). Further by (i) we get that T ∩O2′,2(N)
must be normal in N , so we have (iii). �

Lemma 6.5. There is some subgroup N ∈ N with S ≤ N .

Proof. Assume false. Then in particular by Lemma 6.3 we see CG(x) ≤
CG(z) for all x ∈ Z(S)]. By Lemma 6.3 we can pick some N ∈ N with
|N ∩S| maximal. Among all such N choose N minimal. Set T = S∩N .
By Lemma 6.3 T is a Sylow 2-subgroup ofN . As S 6= T and by the max-
imal choice of N∩S we see NG(T ) ≤ CG(z) and then that no nontrivial
characteristic subgroup of T is normal in N . Set W = Ω1(Z(O2(N))).
By Lemma 6.4 we have CN(O2(N)) ≤ O2(N)O(N), and so Ω1(Z(T )) ≤
W . Hence W 6= Ω1(Z(T )) and then as J(T ) 6≤ O2(N), we have by
Lemma 3.2 that W is an F–module for N . As by Lemma 6.4 N is a
minimal parabolic with respect to T , this now gives with Lemma 3.4
that any component of N/CN(W ) is isomorphic to L2(2n) or A2n+1, for
suitable n, or N/CN(W ) is solvable.

First assume that N/CN(W ) is not solvable, i.e. 1 6= E(N/CN(W )) =
N1 ∗ · · · ∗Nr. Then by Lemma 3.15 W/CW (E(N/CN(W ))) = V1⊕· · ·⊕
Vr, where each Vi is a natural Ni–module. By the choice of N ∈ N ,
we have that the maximal subgroup M in E(N/CN(W )) containing
TCN(W )/CN(W ) centralizes z. If Ni

∼= L2(2u), then M is the normal-
izer of a Sylow 2-subgroup in E(N/CN(W )) and so has no fixed point
in V1 ⊕ · · · ⊕ Vr. This shows [z, E(N/CN(W ))] = 1, which contradicts
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Lemma 6.4(i).

So let Ni
∼= A2n+1. We have that in each module Vi, which is the

irreducible part of the permutation module, a Sylow 2-subgroup of Ni

just centralizes a 1-space. As T acts transitively on the components
Ni, since N is a minimal parabolic, we get that |CW/CW (N)(T )| = 2.
As |Ω1(Z(S))| ≥ 4, we must have some 1 6= t ∈ Ω1(Z(S)) with
[E(N/CN(W )), t] = 1. But for any such t we know that CG(t) ≤ CG(z)
and so again [E(N/CN(W )), z] = 1, a contradiction to Lemma 6.4(i).

So we have that N/CN(W ) is solvable. As CN(W ) ≤ CG(z), we get
by application of Lemma 6.4(i) that T ∩CN(W ) is normal in N , so N
is solvable. Set Ñ = N/O(N). As W = Ω1(Z(O2(Ñ))) is an F–module,
we have by Lemma 3.16 that Ñ/CÑ(W ) = O3,2(Ñ). As CÑ(W ) is 2-

closed and Ñ is a minimal parabolic we get that Ñ = O2,3,2(Ñ). Let

P be a Sylow 3–subgroup of Ñ . Then obviously P is not contained
in CN(z)/O(N). If C is a proper characteristic subgroup of P , then
CT < Ñ and so by minimality of N , we have that [C, z] = 1. In par-
ticular [Φ(P ), z] = 1. Set W1 = 〈zN〉. Then [W1,Φ(P )] = 1. As T acts
irreducibly on P/Φ(P ) we see that P/Φ(P ) acts faithfully on W1 and
so also on W2 = [CW (Φ(P )), P ]. Let A be an F–module offender on
W . As A acts faithfully on P/Φ(P ), we see that A also acts faithfully
on W2 and induces an F–module offender there. Then by the Dihe-
dral Lemma 2.3 we get some ρ ∈ P \ Φ(P ) with |[W2, ρ]| = 4. Further
|W2 : CW2(A)| = |A|. So let |P/Φ(P )| = 3n, then |W2| = 4n. We also
have that W2 = U1 ⊕ · · · ⊕ Un, where |Ui| = 4 and T acts transitively
on the Ui. As we may choose U1 = [W2, ρ], where ρ is inverted by some
element in A, we see that |CW2(T )| = 2. We have Ω1(Z(S)) ≤ W and
|Ω1(Z(S))| ≥ 4 by Lemma 6.1. Further as CG(t) ≤ CG(z) for all involu-
tions t ∈ Ω1(Z(S)) and P 6≤ CG(z), we have Ω1(Z(S))∩CN(P ) = 1. As-
sume [W,Φ(P )] = 1. Then W = W2⊕CW (P ). As |Ω1(Z(S))∩W2| ≤ 2
and |Ω1(Z(S))| ≥ 4, we get CΩ1(Z(S))(P ) 6= 1. But as CG(x) ≤ CG(z)
for all 1 6= x ∈ Ω1(Z(S)), we now get N ≤ CG(z), a contradiction.
Therefore W = [W,Φ(P )] ⊕ CW (Φ(P )), with W3 = [W,Φ(P )] 6= 1.
As A is an F -module offender and |W2 : CW2(A)| = |A|, we must
have that [A,W3] = 1. Now [A,P ] ≤ CN(W3). But as A 6≤ O2(N), we
have that [A,P ] 6≤ O2(N)Φ(P ). Hence by the irreducible action of T
on P/Φ(P ) we get P = CP (W3)Φ(P ) = CP (W3), which contradicts
[W3,Φ(P )] 6= 1. �
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We now set

NS = {N ∈ N with N is minimal with respect to S ≤ N 6≤ CG(z)}
By Lemma 6.5 NS is not empty.

Lemma 6.6. For N ∈ NS we have CN(O2(N)) ≤ O2(N).

Proof. By Lemma 6.4(iii) O(N) ≤ CG(z) and is normalized by S. As
O(CG(z)) = 1, we get the assertion from Lemma 2.29 as Az 6∼= L3(3)
or M11 by Proposition 5.2. �

We recall some notation which will be maintained until the end of this
chapter.

Notation 6.7. If Az = G(q), q = 2f , is a group of Lie type not
isomorphic to Sp2n(q), we denote by R a long root group in Z(S ∩Az).
In the case of Az ∼= Sp2n(q) we take a short root group. If Az is a
sporadic simple group we choose R = Z(S∩Az). Further we denote the
group O2(CAz(R)) by QR. The structure of QR is given in Lemma 2.17
and Lemma 2.19. In all cases but Az ∼= Sp2n(q) or F4(q) we have that
R = Ω1(Z(QR)). If Az is a sporadic simple group we have by [MaStr,
Lemma 2.10] that QR is extraspecial. If Az 6∼= Sp4(q) then R = Q′R.
Finally we always have that CAz(QR) = Z(QR) by Lemma 2.11.

Lemma 6.8. Let Az ∼= Sp4(q) or F4(q) and assume that S induces
a graph automorphism on Az. Set X = 〈z,R1, R2〉, where R1R2 =
Z(S ∩ Az). Then NG(X) ≤ CG(z).

Proof. We have O2(CG(X)) = CS(Az)QR1QR2 , so Z(O2(CG(X))) =
R1R2CS(Az). In particular Φ(CS(Az)) is invariant under NG(X). So if
CS(Az) > 〈z〉, we get that NG(X) ≤ CG(z), the assertion.

Assume now CS(Az) = 〈z〉. As Z(QR1QR2) = X ∩ (〈z〉QR1QR2)
′, we

have that NG(X) acts on Z(QR1QR2). We have that NCG(z)(X) induces
two orbits of length 2(q − 1) and (q − 1)2 in (R1R2)] (recall that there
is a graph automorphism in S, so R1 is conjugate to R2 in S). Further
∅ = zNG(X) ∩ Z(QR1QR2). As the |zNG(X)| is odd, we get that either
NG(X) ≤ CG(z) or z has precisely 2q − 1 conjugates under NG(X),
which are zR1 ∪ zR2.

By way of contradiction we assume that z has precisely 2q − 1 conju-
gates. Then NG(X) acts 2-transitively on zNG(X). In particular all zgzh,
g, h ∈ NG(X), zg 6= zh, are conjugate. Choose r1, r̃1 ∈ R1, r2, r̃2 ∈ R2

with r1r2 6= 1 6= r̃1r̃2. Then (zr1)(zr2) is conjugate to (zr̃1)(zr̃2). This
shows that all elements in Z(QR1QR2)

] are conjugate in NG(X). As
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Z(QR1QR2) contains involutions x which are centralized by S, we see
that |xNG(X)| is odd. Hence x has exactly q2− 1 conjugates. This gives
that q2 − 1 divides |NG(X)/CG(X)|.

Assume there is a Zsigmondy prime p dividing q2 − 1 and let ω be
some element in NG(X) with ω 6∈ CG(X) but ωp ∈ CG(X). Sup-
pose first that p does not also divide 2q − 1, then we may assume
that [ω, z] = 1. But |NCG(z)(X)/CCG(z)(X)|2′ divides (q − 1)2u, where
q = 2u. As p is a Zsigmondy prime, it does not divide (q − 1). Hence p
divides u. By the little Fermat Theorem we have that p divides 2p−1−1
which is smaller than q − 1 = 2u − 1, but this contradicts p being a
Zsigmondy prime. Hence we may assume that p divides 2q − 1 which
gives q = 2 and p = 3. By Proposition 5.2 we have Az ∼= F4(2). As
QR1 ∩QR2 = (QR1QR2)

′, we have that ω normalizes QR1 ∩QR2 Further
it acts on CQR1

QR2
(QR1 ∩QR2) = (QR1 ∩QR2)Z(QR1)Z(QR2) = Y . As

q = 2 and Z(QR1) induces a transvection on Z(QR2), we see |Y ′| = 2,
and so CR1R2(ω) 6= 1. As |R1R2| = 4, we get [ω,R1R2] = 1, which then
gives the contradiction [X,ω] = 1.

So we have that there is no Zsigmondy prime which divides q2−1. Hence
q = 8. By Lemma 2.22 we see |Out(F4(8))| = |Out(Sp4(8))| = 2 · 3.
This implies |S : CS(X)| = 2. In particular NG(X)/CG(X) has a nor-
mal 2–complement K. As |zNG(X)| = 15, we get that |K| = 3 · 5 · 72 or
32 · 5 · 72, as 72 = |NAz(X)/CAz(X)|. In both cases with the Burnside
lemma we get a normal 5–complement in K. Hence a Sylow 5–subgroup
centralizes a Sylow 7–subgroup and then we have a normal Sylow 7-
subgroup P in K. As 72 divides |NAz(X)|, we have P ≤ CG(z) and P
acts as the Borel subgroup on X. This gives CX(P ) = 〈z〉. But then
〈z〉ENG(X), a contradiction. �

Lemma 6.9. NG(S) ≤ CG(z). In particular zG ∩ Ω1(Z(S)) = {z}.

Proof. Set N = NG(S) and assume that N 6≤ CG(z). We first show
that

Z(QR) 6= R.(1)

Suppose false. Assume first that O2(CG(Ω1(Z(S)))) = QR×CS(Az).
Set M = NG(QR×CS(Az)). Then N ≤M . If Z(QR) = R, then M acts
on 〈z,R〉. As all elements in R] are conjugate in M , and |zM | is odd, we
would get that zM = 〈z,R〉]. But R ≤ (CS(Az)×QR)′, while z is not,
a contradiction. So we have that O2(CG(Ω1(Z(S)))) 6= QR × CS(Az).
By Lemma 2.24 we get that Az ∼= L3(q) or L4(q). By Proposition 5.2
we have q > 2. If Az ∼= L3(q), then by Lemma 2.20 S contains exactly
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two abelian groups isomorphic to Z2n × Eq2 , where |CS(Az)| = 2n.
If Az ∼= L4(q), then S contains exactly one abelian group isomorphic
to Z2n × Eq4 . This shows that elements of odd order in N normal-
ize these groups. As N 6≤ CG(z), we see that n = 1. If Az ∼= L3(q),
then the product of these two elementary groups is just 〈z〉QR, which
now is normal in N . But z 6∈ (〈z〉QR)′, a contradiction as before. So
assume Az ∼= L4(q). Then some graph automorphism is contained in
O2(CG(Ω1(Z(S)))). In particular this group contains 〈z〉×QR of index
two. Then again z 6∈ O2(CG(Ω1(Z(S))))′ but R is, a contradiction as
before. This proves (1)

With [MaStr, Definition 2.32] and (1) we now have that Az ∼= Sp2n(q)
or F4(q). We next show

R ∩ Ω1(Z(S)) = 1.(2)

Suppose false and let first Az 6∼= Sp4(q), i.e. QR is not abelian.
Set Xz = O2(CG(Ω1(Z(S)))). Then Xz = CS(Az) × (Xz ∩ Az). Fur-
ther Z(Xz ∩ Az) is elementary abelian. As N normalizes Xz, we get
CS(Az) = 〈z〉 again. We see that |Xz ∩ Az : QR| = q in case of
Sp2n(q) and Xz ∩ Az = QR1QR2 in case of F4(q), where R1, R2 are
the two root groups in Z(S∩Az). Now in both cases Z(Xz∩Az) ≤ X ′z,
while z 6∈ X ′z. Let K be a 2–complement of S in NG(S). Then K
acts on Ω1(Z(S)) ∩ Az and Ω1(Z(S))/Ω1(Z(S)) ∩ Az. If |Ω1(Z(S)) ∩
Az| > 4, then q > 2, and so Ω1(Z(S)) ∩ Az = [Ω1(Z(S)), NNG(Az)(S)].
Hence Ω1(Z(S)) ∩ Az = [Ω1(Z(S)), K] and we see that Ω1(Z(S)) =
(Ω1(Z(S)) ∩ Az) × CΩ1(Z(S))(K). As CΩ1(Z(S))(NNG(Az)(S)) = 〈z〉, we
get [z,K] = 1, a contradiction.

So we have |Ω1(Z(S))∩Az| = 4. If Az ∼= Sp2n(q), then q > 2 by Propo-
sition 5.2. So we receive O2(CG(Ω1(Z(S)))(∞)) ≤ QR is nonabelian.
Hence R = O2(CG(Ω1(Z(S)))(∞))′ and |R ∩ Ω1(Z(S))| = 2. But
then [K,R ∩ Ω1(Z(S))] = 1 and so [K,Ω1(Z(S))] = 1. So we are left
with Az ∼= F4(q). Now with [MaStr, Definition 2.32] and Lemma 2.17
we receive O2(CG(Ω1(Z(S)))′) = QR1QR2 . We further have that QR1 ∩
QR2/R1R2 just involves two natural Sp4(q)–modules andQR1QR2/QR1∩
QR2 is a direct sum of two modules which are non split extensions of the
trivial module by the natural module. As QR1 ∩QR2 = (QR1QR2)

′, we
have that K normalizes QR1 ∩QR2 and then Yz, where Yz/(QR1 ∩QR2)
is the sum of the trivial modules in QR1QR2/(QR1 ∩ QR2), i.e. Yz =
(QR1 ∩ QR2)Z(QR1)Z(QR2). Hence Y ′z = [Z(QR1), Z(QR2)]. We have
[K,Ω1(Z(S))] ≤ Az. As |Ω1(Z(S)) ∩ Az| = 4, there is a field auto-
morphism ν of Az possibly trivial, such that Z̄z = CYz/QR1

∩QR2
(ν) is
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of order 4. As then Z̄z = CYz/QR1
∩QR2

(S), we have that K normal-

izes Z̄z. For the preimage Zz we have |Z ′z| = 2. Hence [K,Z ′z] = 1.
As |Ω1(Z(S)) ∩ Az| = 4, this yields [K,Ω1(Z(S)) ∩ Az] = 1 and so as
|Ω1(Z(S)) : Ω1(Z(S)) ∩ Az| = 2, the contradiction [K,Ω1(Z(S))] = 1.

To complete the proof of (2) we have to treat Az ∼= Sp4(q). Then by
Proposition 5.2 q > 2. We have two root groups R1, R2 in Z(S ∩ Az).
Let |CS(Az)| = 2n. By Lemma 2.21 we have exactly two abelian sub-
groups CS(Az)×QR1 and CS(Az)×QR2 of type Z2n ×Eq3 in S. Hence
N normalizes both and so CS(Az) = 〈z〉. Now N normalizes a Sylow
2–subgroup of Az × 〈z〉, which is 〈z〉 ×QR1QR2 .

We have (QR1QR2)
′ = R1R2. Let K be as before a 2-complement in N .

Then K acts on R1R2. If |Z(S) ∩ R1R2| > 4, we may argue as before.
So we may assume that |Z(S)∩R1| = |Z(S)∩R2| = 2. Then again we
must have some element ν ∈ S, which induces a field automorphism
on Az such that |CR(ν)| = 2. By Lemma 2.22 ν acts in the same way
on QRi

/R1R2, i = 1, 2. Hence Z̄z = CQR1
QR2

/R1R2(ν) is of order 4. This
shows |Z ′z| = 2, and so [N,Zz] = 1. But then also [N,Z(S)∩R1R2] = 1
and so [Ω1(Z(S)), K] = 1, a contradiction. This proves (2).

By (2) we have that R does not contain 2–central elements of CG(z).
Then Az admits a graph automorphism in CG(z). So Az ∼= Sp4(q) or
F4(q). Set X = 〈z〉Z(QR1QR2), Ri as above. Now Ω1(Z(S)) ≤ X. As
before we see that 〈z〉 = CS(Az). Now by Lemma 2.21 〈z〉 × QR1QR2

is the group generated by the elementary abelian subgroups of O2(N)
of order 2q3 for Az ∼= Sp4(q) and 〈z〉 × QR1QR2 = O2(CG(Ω1(Z(S))))
if Az ∼= F4(q). Hence N normalizes 〈z〉QR1QR2 in both cases. So N ≤
NG(X). By Lemma 6.8 we have NG(X) ≤ CG(z) and so also NG(S) ≤
CG(z), the assertion. �

Lemma 6.10. If N ∈ NS, then QR 6≤ O2(N).

Proof. Suppose QR ≤ O2(N). Assume first that we have Ω1(Z(QR)) =
R. Then we have that Ω1(Z(O2(N))) = 〈z,R1〉 with R1 ≤ R. But then
all elements in Ω1(Z(O2(N))) are 2-central in G. By Lemma 6.9 we
then have zN ∩ Z(O2(N)) = {z} and so the contraction N ≤ CG(z).

By [MaStr, Definition 2.32] we are left with Az ∼= Sp2n(q) or F4(q).
Then all involutions in Z(QR) are 2–central in Az. If this is also true
in CG(z), then again all involutions in Ω1(Z(O2(N))) are 2-central and
so again N ≤ CG(z).
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So S must contain some element which induces a graph automorphism
on Az. This implies Az ∼= Sp4(q) or F4(q). In both cases we have that
QR1 and QR2 both are contained in O2(N), where R1, R2 are the two
root subgroups with R1R2 = Z(Az ∩ S). Set X = 〈z〉Z(QR1QR2),
Ω1(Z(O2(N))) ≤ X. If Az ∼= F4(q), we see that CS(Az) × QR1QR2 =
O2(CG(X)). If Az ∼= Sp4(q), we see by Lemma 2.22 and Lemma 2.21
that 〈CS(Az), QR1〉, 〈CS(Az), QR2〉 are the only two abelian subgroups
of order 2nq3, |CS(Az)| = 2n, in S. Hence in any case we see that
CS(Az) × QR1QR2 is normal in N . As N 6≤ CG(z), we get CS(Az) =
〈z〉. Now N normalizes Z(〈z,QR1 , QR2〉) = 〈z, R1, R2〉. Application of
Lemma 6.8 gives the final contradiction. �

The next two lemmas are of central importance for the proof of the
main theorem. These describe the structure of N ∈ NS. Moreover we
show that q = 2, if Az is a group of Lie type over GF(q), and finally that
there is some involution t ∈ Z(N). In what follows we then determine
the centralizer of this involution t, which eventually will yield the final
contradiction.

Lemma 6.11. Let N ∈ NS with U = Ω1(Z(O2(N))) ≤ CG(Az)×QR,
then |Ω1(Z(S)) ∩ (Az × CG(Az))| = 4, |R| = 2 and there is some
t ∈ Ω1(Z(S)) \ 〈z〉 such that t 6∈ Az and t ∈ Z(N). Further one of the
following holds:

(i) N/CN(U) ∼= Σ3 and QR E S; or
(ii) N/CN(U) ∼= Σ3 o Z2, Az ∼= F4(2) and QR 6 ES

Proof. By Lemma 6.6 z ∈ U , so CG(U) ≤ CG(z). We have

U 6≤ Z(QR)× CG(Az).(1)

Otherwise 〈QN
R 〉 ≤ CN(U), so 〈QN

R 〉 ≤ CG(z). By Lemma 6.4(i) we have
N = NN(S ∩〈QN

R 〉). Hence 〈QN
R 〉 ≤ O2(N), contradicting Lemma 6.10.

In particular by (1) QR is not abelian, hence Az 6∼= Sp4(q). As by
(1) [U,QR] = R ≤ U , we have that QR induces an elementary abelian
group QR/QR ∩O2(N) on U .

Let H be a hyperplane in Z(QR) not containing Q′R. Then by [MaStr,
Lemma 2.36] QR/H is extraspecial. Hence we receive that |QR/H :
CQR/H(UH/(〈z〉H))| ≥ |UH/(〈z〉H)|/|U ∩Z(QR)/H|. So we have that
|QR : CQR

(U)| ≥ |U : CU(QR)|. In particular U is an F–module with
quadratic offender A = QR/CQR

(U).

Suppose that N/CN(U) is nonsolvable. We have that O2(N/CN(U)) =
N1 ∗ · · · ∗Nr, S acts transitively on the Ni and by Lemma 6.4 induces
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on each a minimal parabolic. By Lemma 3.5 A normalizes each Ni and
so induces with some Ni an F–module on U . Hence by Lemma 3.3
and [Asch1, Theorem A] we have that Ni

∼= SL2(2n) or A2n+1. Let
Vi = [U,Ni], then also [Vi, QR] ≤ Vi and then we may assume that
R ≤ V1. But as S acts transitively on the Ni, we get r = 1 if R is
normalized by S. If there is t ∈ S with Rt = R̃R, then R̃ ≤ V2 and we
have r ≤ 2. If r = 2 then [QR, V2] = 1 = [QR̃, V1]. In any case we have
that V1/CV1(N1) is the natural module by Lemma 3.3, Lemma 3.9 and
Lemma 3.10. As [N1, V2] = 1, we get in any case that U/CU(N1) is the
natural module.

Let N1
∼= SL2(2n). Then first of all, as |QR : CQR

(U)| ≥ q and
|[U,QR]| = q, we have 2n = q. Then as N is a minimal parabolic such
that the unique maximal subgroup containing S is CN(z), we have that
a Borel subgroup B of N1 centralizes z. But we have that U/CU(N1)
is the natural module. Now CU(B) = CU(N1) by Lemma 3.14, and so
z ∈ Z(N), a contradiction.

Let N1
∼= A2n+1, n > 1. Then U/CU(N1) is the permutation mod-

ule. We have again that z is centralized by some subgroup L ∼= A2n

in N1. By Lemma 3.13 we see that Ω1(Z(S)) ≤ CU(CN1(z)). Hence
[CN(z),Ω1(Z(S))] = 1. So CN(z) ≤ CN(Ω1(Z(S))) and thenO2(CN(z)) ≤
O2(CN(Ω1(Z(S)))). In particular we have that QR ≤ O2(CN(z)). As
QR 6≤ CN(U), so O2(L) 6= 1, we get that 2n = 4. So we have that
N1/CN1(U) ∼= A5 and QR projects onto a subgroup of a Sylow 2-
subgroup of N1. As [N1, U ] is the permutation module now QR cannot
be an offender.

Assume next that N/CN(U) is solvable. Set U1 = 〈zN〉. By Lemma 3.16
we have that CN(U1) is 2-closed and N/CN(U1) = O3,2(N/CN(U1)).
Hence as N is a minimal parabolic, we receive N = SP , where P is
a Sylow 3–subgroup of N . Further by the minimal choice of N we
have that Φ(P ) centralizes z, so [Φ(P ), U1] = 1. Let A be an F–
module offender, which normalizes P . As O2(N) is a Sylow 2–subgroup
of CN(U1), we have that A exists and [a, P ] 6≤ Φ(P ) for a ∈ A].
Hence A induces an F–module offender on U1 too. By Lemma 3.17
we get that |U1 : CU1(A)| = |A|. As |U : CU(A)| ≤ |A|, we see that
[U,A] ≤ U1. As S acts irreducibly on P/Φ(P ), we see that [U, P ] ≤ U1

and so [U,Φ(P )] ≤ CU(Φ(P )). Hence [U,Φ(P )] = 1. This shows that
CN(U1) = CN(U) and so P induces an elementary abelian group on U .
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By Lemma 2.3 we get a direct product M = M1 × · · · × Mr of di-
hedral groups Mi of order 6 contained in N/CN(U) with QR/CQR

(U)
as a Sylow 2–subgroup. As U ≤ QR × CS(Az) we see [U,QR] ≤ R and
so QR acts quadratically on U . We get that [U,O3(M)] = V1⊕· · ·⊕Vr,
with [O3(Mi), Vi] = Vi and [O3(Mi), Vj] = 1, i, j = 1, . . . , r, i 6= j. As
[QR, Vi] ≤ R and [V1, QR] = R, we get r = 1 and |QR/CQR

(U)| = 2.
Then also |[U,QR]| = 2. If R is normalized by S, QR must invert
P/CP (U)), so |[P/Φ(P ), QR]| = 3 and N/CN(U) ∼= Σ3, which is (i). In
the other case P/CP (U) = [P/CP (U), QRQ

t
R] for some t in S \NS(QR).

Hence |P/CP (U)| = 9. We have a fours group acting on P and U/CU(P )
is the natural O−4 (2)–module. In both cases |QR : CQR

(U)| = 2. This
shows that QR is extraspecial or isomorphic to E×Q, with Q extraspe-
cial and E ≤ Z(QR). In particular if QR 6E S, we get that Az ∼= F4(2),
which is (ii).

Suppose that |Z(S)∩E×Q| > 2. Then by Proposition 5.2 we have that
Az ∼= F4(2). Further QR is normal in S and so CG(z) = Az × CG(Az).
As z 6∈ Z(N), we have CS(Az) = 〈z〉. Then Lemma 2.2 and Lemma 6.9
give a contradiction. So we have

|Ω1(Z(S)) ∩ Az × CS(Az)| = 4.

To prove the lemma, we just have to show the existence of the involu-
tion t.

In any case we have that U = [O2,3(N), U ]×CU(O2,3(N)). Furthermore
|Ω1(Z(S))| = 4 and |C[O2,3(N),U ](S)| = 2. This implies CU(O2,3(N)) 6= 1.
Hence there is some t ∈ Ω1(Z(S)) \ 〈z〉 with [t, N ] = 1. We have that
[[O2,3(N), U ], QR] 6= 1. In particular we have that R ≤ [O2,3(N), U ].
Hence Ω1(Z(S)) ∩ Az ≤ [O2,3(N), U ]. As t 6∈ [O2,3(N), U ] we get
t 6∈ Az. �

Lemma 6.12. Let N ∈ NS with U = Ω1(Z(O2(N))) 6≤ C(Az) × QR.
Then |Ω1(Z(S)) ∩ (Az × CG(Az))| = 4, |R| = 2 and QR E S. Further
E(N/CN(U)) ∼= A5 and induces just one nontrivial irreducible module
in U , the permutation module, or N/CN(U) ∼= O+

4 (2) and just the
natural module is induced in U . Further there is some t ∈ Ω1(Z(S))\〈z〉
such that t 6∈ Az and t ∈ Z(N).

Proof. We first show

U normalizes QR.(1)

If U does not normalize QR we get Az ∼= Sp4(q) or F4(q). We have
[U,QR] ≤ U . In particular [U,QR] is abelian. From Lemma 2.26 we get
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Az 6∼= Sp4(q) or F4(q). This proves (1).

Next we show

O2(N) ≤ NNG(Az)(R).(2)

Otherwise R ∩ U = 1. Hence by (1) [[U,QR], QR] = 1, which shows
that [U,QR] ≤ Z(QR). As U 6≤ QR×CG(Az), we get from Lemma 2.25
that Az ∼= Sp4(q) and QR is elementary abelian. Let R1, R2 be the
two root groups in Z(S ∩ Az). As U is elementary abelian, we have
that U ∩ Az × CS(Az) is contained in R1R2 × CS(Az), recall that
R1R2 = QR1 ∩ QR2 by Lemma 2.21. Then we also see that U cannot
contain elements which induce field automorphisms on Az, otherwise
for such u ∈ U , we have that 1 6= [u,R] ≤ R, contradicting R ∩ U = 1.
Hence U ≤ R1R2 × CG(Az), contradicting U 6≤ QR × CG(Az). So we
have (2).

Now we apply Lemma 3.21 with N in the role of M and NNG(Az)(R)
in the role of H. Suppose that X = O2(NNG(Az)(R)) 6≤ CG(Az) × QR.
Then there is some x ∈ X inducing an outer automorphism on Az. In
particular Az is of Lie type in characteristic two. If x is a field auto-
morphism it acts on a group of order q − 1 which acts nontrivially on
R, so x cannot be contained in X. Hence x acts nontrivially on the
Dynkin diagram and so has to centralize the Levi factor. This shows
Az ∼= L4(q). By Proposition 5.2 we have q > 2. But then x acts non-
trivially on a group Zq−1×Zq−1 in NAz(R), a contradiction. So we have
that X ≤ CG(Az)×QR and then U 6≤ X. Hence from Lemma 3.21 we
get

U is a 2F −module.(3)

We show

If Ũ is a QR–invariant submodule of U with [QR, Ũ ] 6= 1.

Then either QR is abelian or R ≤ Ũ .
Further O2(N) ≤ NN(QR).

(U)

Suppose QR to be nonabelian. By (1) [Ũ , QR] ≤ QR. Then [Ũ ∩
QR, QR] = 1 or [Ũ ∩QR, QR] = R. In the latter R ≤ Ũ . In the former
we have [QR, Ũ ] ≤ Z(QR). Hence by Lemma 2.25 Ũ ≤ QR × CS(Az)
and so [Ũ , QR] = R and we are done. The second statement in (U)
follows by (2).
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We now first work under the assumption:

Assume N is nonsolvable.(A)

Let E(N/CN(U)) = N1∗· · ·∗Nr. Assume first that for an offender A as
a 2F -module which is given by Lemma 3.21 we have that [A,N1] 6≤ N1.
If A acts quadratically then by Lemma 3.21 we have that A induces
an F–module offender. But this contradicts Lemma 3.5. So A cannot
be quadratic on U . By Lemma 3.22 we get that N1

∼= Ln(2), and for
some a ∈ A with Na

1 6= N1 we have that A induces the full transvection
group on [U, a]. Hence CN1Na

1
(a) induces the natural module on [U, a].

As N1NS(N1) is a minimal parabolic by Lemma 6.4, we have n = 3 and
with the natural module also the dual module is involved. Hence for
CN1Na

1
(a) we have a natural and a dual module involved in U , which

contradicts that CN1Na
1
(a) induces just the natural module.

So we have that

The offender A from Lemma 3.21
normalizes all components.

(A.1)

We have |U : CU(A)| < |A : CA(U)|2 by Lemma 3.21. Now we choose
A minimal such that |U : CU(A)| < |A : CA(U)|2. Set A1 = CA(N1).
Then we have that |U : CU(A1)| ≥ |A1 : CA1(U)|2. In particular for a
complement B of A1 in A we have that |CU(A1) : CCU (A1)(B)| < |B :
CB(CU(A1))|2, which yields:

Let T = CS(N1), then we have that V = CU(T )
is a 2F–module for N1 with offender B
such that |V : CV (B)| < |B|2.

(A.2)

Application of Lemma 6.10 yields QR 6≤ O2(N). By Lemma 6.4(i) we
have that O2(N) is normal in CN(U). This shows [QR, U ] 6= 1. Hence
[N1 ∗ · · · ∗ Nr, QR] 6= 1. So we may assume that [N1, QR] 6= 1. Set
U1 = [N1, V ].

Now by (A.2) N1 and U1 are given in Lemma 3.4. As [z,N1] 6= 1
we get CV (CN1(z)) 6= CV (N1). If the irreducible N1–modules in V are
F–modules, we have that N1

∼= L2(2n) and CN1(z) is a Borel subgroup,
a contradiction to Lemma 3.14, or N1

∼= A2n+1 and CN1(z) ∼= A2n . By
Lemma 3.12 we see that V/CV (N1) is the permutation module. Then
Lemma 3.14 shows that CN1(z) centralizes Ω1(Z(S)). So we see that
QR ≤ O2(CN(z)). We get N1 = A5 and then U1 is the permutation
module.
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So assume now that we have Lemma 3.4(b). In the first three cases
always CN1(z) is a Borel subgroup, which has a fixed point on the cor-
responding modules exactly when r = 2, so N1

∼= L3(2) or Sp4(2)′.
In both cases we have that U1/CU1(N1) is a direct sum of a natural
module and its dual. Assume now N1

∼= A9 and |U1/CU1(N1)| = 28.
Then z ∈ CU(N1) by Lemma 3.14, a contradiction.

So we collect:

N1
∼= L2(4), L3(2), or A6. In the last two cases we have

U1/CU1(N1) = U11 ⊕ U12, where U11 and U12 are dual
modules for N1. In the first case we have that U1

is the permutation module.

(A.3)

Next we show

Az 6∼= F4(q). Further if Az ∼= Sp4(q), then QR is elementary
abelian and QR acts quadratically on U.

(A.4)

The second statement follows from (1). So assume Az ∼= F4(q). Sup-
pose first 〈US

1 〉 ≤ QR × CS(QR). Then [〈US
1 〉, Z(QR)] = 1. Hence

[〈NS
1 〉, Z(QR)] ≤ O2(N). This shows that Z(QR) ≤ O2(N) and so

[U,Z(QR)] = 1, which by Lemma 2.17 shows U ≤ QR × CS(QR), a
contradiction. Thus we may assume that U1 6≤ QR×CS(QR). Then for
u ∈ U1 \QR×CG(Az), we obtain that |[QR, u]| ≥ q4. As R ≤ U by (U)
we receive that QRO2(N)/O2(N) is elementary abelian. Hence we get
from (A.3) that |QR : CQR

(U1)| ≤ 8 if QR normalizes N1, a contradic-
tion to |[QR, u]| ≥ q4 ≥ 16. So we have that QR does not normalize N1.
Then at least a subgroup T of index two in S∩N1 normalizes QR, as this
is true in Aut(F4(q)), and then [QR, T ] is abelian and centralized by QR.

Hence we get that |NQR
1 | = 2 and then |QR : CQR

(U1)| ≤ 16. In partic-
ular q = 2. Further U1 does not induce transvections on Z(QR), as for
any transvection u ∈ U1 we have |[QR/Z(QR), u]| = 16 by Lemma 2.17.
This implies N1

∼= A6 and further Sp4(2) is induced. Now Z(QR) acts
quadratically on U and so we have by Lemma 3.5 that Z(QR) normal-
izes N1. Then it acts quadratically on U1. As U1 involves the natural
module and the dual as well, we see that Z(QR) induces a group of
order at most four which is in the center of a Sylow 2–subgroup of
Sp4(2). But then U1 contains some u which induces a transvection on
Z(QR), a contradiction. This proves (A.4).

[QR, N1] ≤ N1.(A.5)

Suppose false. If Az ∼= Sp4(q), then by Proposition 5.2 q > 2. Hence
|QR : CQR

(U1)| ≥ 4. By (A.4) QR acts quadratically on U . We get
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by Lemma 3.5 that N1
∼= L2(4). Further 〈NQR

1 〉 induces just natural
Ω+

4 (4)–modules in U , contradicting the fact that by (A.3) N1 induces
an Ω−4 (2)–module. So we have that Az 6∼= Sp4(q) and by (A.4) QRE S.
We further have that R ≤ U by (U) and so QRO2(N)/O2(N) is elemen-
tary abelian. Hence N1 has elementary abelian Sylow 2-subgroups, as
for t ∈ QR, with N t

1 6= N1, we have that [N1, t] has a Sylow 2-subgroup
contained in QRO2(N)/O2(N) and so is abelian. Then N1

∼= L2(4)
again. We further have |QR : NQR

(N1)| = 2. Set W1 = [U1, NQR
(N1)].

As NQR
(N1) projects onto a Sylow 2–subgroup of N1 and N1 induces an

Ω−4 (2)–submodule, we have [W1, NQR
(N1)] 6= 1. As U1 normalizes QR,

we have that W1 ≤ QR and so |R ∩ U1| = 2. Set W1 = 〈U1 ∩ R, x1, y1〉
and choose x ∈ QR with Nx

1 = N2. We have |QR : CQR
(x1)| ≤ 4. From

Lemma 2.17 we see that |QR : CQR
(x1)| ≥ q. Hence |R| = q ≤ 4.

As [W1, x] ≤ R and |R : R ∩ U1| ≤ 2, we may assume that [x1, x] ∈
U1 ∩ R. Hence |QR : CQR

(x1)| = 2, which gives |R| = 2 = q and
R ≤ U1. But then [QR,W1] ≤ R ≤ W1. This shows W x

1 = W1. Set
M = NN1(W1)NN1(W1)x, which is isomorphic to A4 × A4. Then M
acts on W1. Hence there is some element of order three in M which
centralizes W1. But then O2(M) centralizes W1 too, which contradicts
the action of NQR

(N1) on W1. This proves (A.5)

Next we show

N1
∼= A5 and U1 is the irreducible

part of the permutation module.
(A.6)

According to (A.3) we may assume N1
∼= L3(2) or A6. Assume further

Az 6∼= Sp4(q). If QR normalizes both modules U11 and U12 given in (A.3)
then by (U) R ≤ U11∩U12, a contradiction. Hence there is x ∈ QR with
Ux

11 = U12. But then x induces an outer automorphism of L3(2) or Σ6

and then [x, S/O2(N)] is not abelian. By (U) we have R ≤ O2(N) and
so QR/QR∩O2(N) is elementary abelian. This contradicts QRES and
[x, S/O2(N)] being not abelian.

So we have that Az ∼= Sp4(q), q ≥ 4. Then by (A.4) QR is elemen-
tary abelian and acts quadratically on U . As |QR/O2(N) ∩ QR| ≥ 4,
we see that QR ∩ N(U11) 6≤ C(U11). By quadratic action we get that
QR normalizes U11 and U12. This even shows QR/QR∩O2(N)∩N1 6= 1.
In particular |U1 : CU1(QR)| ≥ 16. As by Lemma 3.8 in Σ6 no subgroup
of order 8 acts quadratically on both modules, we get that QR induces
a foursgroup on N1 and so q = 4. But then NCG(z)(QR)/CCG(z)(QR) is
isomorphic to a subgroup of (A5×Z3) : Z2 and so contains no elemen-
tary abelian subgroup of order 16, but U1/CU1(QR) contains such an
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elementary abelian subgroup. This proves (A.6).

Next we are going to describe the structure of N . We have N1
∼= L2(4).

Further we have that U1 is the permutation module. As before we see by
(U) that R ≤ U1 for QR not abelian. This shows that QR acts quadrat-
ically on U/U1 in any case. As by Lemma 3.14 QR ≤ O2(CN(z)), we
see that QR projects into a subgroup of CN1(z) ∼= A4. If this projec-
tion is of order two, we get that U1 induces transvections on QR. In
particular Az 6∼= Sp4(q). This now shows that U1 ≤ QRCG(QR). But
|U1 : CU1(QR)| = 4 and so |QR : CQR

(U1)| ≥ 4. Hence QR/QR ∩O2(N)
acts as a Sylow 2–subgroup of A5, which is not quadratic on the per-
mutation module. In particular QR E S and Az 6∼= Sp4(q) by (A.4).
Hence U1 is the only permutation module for N1 involved in U . This
shows that [U1, Ni] = 1 for i = 2, · · · , r. Choose s ∈ S with N s

1 = N2.
Then by (U) we have that R ≤ U1 ∩ U2 = 1, a contradiction. This
shows r = 1. Now we have that U = U1⊕U2, with some N -module U2.
As R ≤ U1, we get from (U) that U2 is a trivial E(N/O2(N))–module.
Hence

U = U1 ⊕ CU(N1).

So we have shown

If N/CN(U) is nonsolvable, then E(N/CN(U)) ∼= A5 and
U = U1 ⊕ CU(E(N/CN(U))), where U1 is the permutation
module. Further |R| = 2, R ≤ U1 and QR E S.

(A.7)

Now we assume:

Assume N is solvable.(B)

By Lemma 6.4 N = O2,2′,2(N). As by Lemma 3.21(2) offenders are
not exact provided U is not an F–module, we get with Lemma 3.17
that N/CN(U) is a {2, 3}–group. As N is a minimal parabolic we have
N = O2,3,2(N). By minimality we have that Φ(O2,3(N)/O2(N)) ≤
CN(z)/O2(N). So Φ(O2,3(N)/O2(N)) centralizes

〈zN〉 = U1,

which gives that S acts irreducibly on O3(N/CN(U1)).

We show

CO2,3(N)(U) = CO2,3(N)(U1) and so [O2,3(N)′, U ] = 1.(∗)
For this let P be a Sylow 3–subgroup ofN such thatO2(N)NN(P ) = N .
In particular P/CP (U1) is elementary abelian. Hence we may assume
that a 2F–module offender A with |U : CU(A)| < |A|2 acts on P . We
have that |U1 : CU1(A)| ≥ |A| by Lemma 3.17. Hence we conclude
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|U/U1 : CU/U1(A)| < |A|. So by Lemma 3.17, we get some 1 6= a ∈ A,
which acts trivially on U/U1. This gives that CP (U/U1) 6≤ Φ(P ). As
NN(P ) acts irreducibly on P/Φ(P ), we get that P = Φ(P )CP (U/U1)
and then [P,U ] ≤ U1. In particular [CP (U1), U ] = 1. This is (∗).

Application of (U) shows that for Az 6∼= Sp4(q) we have Q′R = R ≤ U1.

So we have

QRCN(U)/CN(U) is abelian.(B.1)

Let |QR : CQR
(U)| = 2. Then U induces a transvection on QR with

elementary abelian commutator, so U ≤ QRCS(QR), a contradiction.

We receive

|QR : CQR
(U)| ≥ 4.(B.2)

By the Dihedral Lemma 2.3 we have a subgroup D1 × · · · ×Ds, s ≥ 2
in N/CN(U), Di = 〈xi, ρi〉, xi ∈ QR, o(ρi) = 3, Di

∼= Σ3, i = 1, . . . , s.

Set W = [[ρ1, U ], x1]. We have W ≤ QR. If [QR,W ] = 1, then W ≤
Z(QR). As 〈W ρ1〉 = [ρ1, U ], we get [xi, [ρ1, U ]] = 1, i = 2, . . . , s, and so
[[ρ1, U ], QR] ≤ Z(QR). Now the elements in [ρ1, U ] induce transvections
onQR, which gives that Az 6∼= Sp4(q), q > 2. Application of Lemma 2.25
shows [ρ1, U ] ≤ QR and so [[ρ1, U ], QR] ≤ R. As [〈x2, . . . , xs〉, [ρ1, U ]] =
1, we see that |QR : CQR

([ρ1, U ])| = 2 and so we have q = 2, and
W = R is of order 2, further |[U, ρ1]| = 4. Set T = NS(QR) and let
t ∈ T . Then R ≤ [U, ρ1] ∩ [U, ρt1]. But as [ρ1, ρ

t
1] ∈ CN(U) by (∗), we

have [U, ρ1, ρ
t
1] ≤ [U, ρ1]. This yields 〈ρ1〉CN(U) = 〈ρt1〉CN(U). Now

also 〈ρT1 〉CN(U)/CN(U) = 〈ρ1〉CN(U)/CN(U). By (B.2) we have that
O2,3(N)/CN(U) contains an elementary abelian group of order 9. So
we get that |S : T | = 2 and O3(N/CN(U)) = 〈ρ1, ρ

s
1〉CN(U)/CN(U),

for some s ∈ S \ T . This shows |[U,O2,3(N)]| = 16 and so N/CN(U)
is a subgroup of GL4(2), which gives that S/CS(U) is contained in a
dihedral group. But as |QR/CQR

(U)| = 4, this shows that QR is normal
in S, a contradiction.

So we have

[QR, [[U, ρi], xi]] 6= 1 for all i = 1, . . . , s.(B.3)

As by (B.3) QR does not act quadratically, we have that QR is not
abelian and so

Az 6∼= Sp4(q).(B.4)
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By (B.3) and (U) we have R ≤ [U, ρ1]. Hence R ∩ CU(ρ1) = 1. So by
(U) we get that [QR, CU(ρ1)] = 1. In particular [CU(ρ1), ρ2] = 1. By
choosing ρ1 with CU(ρ1) maximal we obtain

CU(ρ1) = CU(ρi) and [U, ρ1] = [U, ρi] for i = 1, . . . , s.(B.5)

Now we consider 〈ρ1, ρ2〉. We have (ρ1ρ2)x2 = ρ1ρ
−1
2 . Then [U, ρ1] =

C[U,ρ1](ρ1ρ2)×C[U,ρ1](ρ1ρ
−1
2 ). Set V1 = C[U,ρ1](ρ1ρ2). We have that x1x2

normalizes V1 and [V1, x1x2] ≤ QR. Set V2 = V x2
1 , then we obtain

1 6= [[V1, x1x2], x2] ≤ R. Further |[[V1, x1x2], x2]| = |[V1, x1x2]|. As x1x2

inverts ρ1ρ
−1
2 and ρ1ρ

−1
2 acts fixed point freely on V1, we get that |V1| =

|[V1, x1x2]|2 ≤ |R|2 = q2. This gives

|[U, ρ1]| ≤ q4.(B.6)

Suppose s ≥ 3. Now x3 centralizes ρ1ρ2 and so normalizes V1 and
[V1, x1x2]. This gives [[V1, x1x2], x3] ≤ R∩V1. As R∩V1 = (R∩V1)x2 =
R∩V2 and V1∩V2 = 1, we get [[V1, x1x2], x3] = 1. But as [x3, ρ1ρ

−1
2 ] = 1

and V1 = 〈[V1, x1x2]ρ1ρ
−1
2 〉 we then have [x3, V1] = 1 and also [x3, V

x2
1 ] =

1. This gives [[U, ρ1], x3] = 1. But then [[U, ρ1], ρ3] = 1, a contradiction
to (B.5). So we have

s = 2.(B.7)

Suppose that [V1, x1x2] ≤ CG(QR). Then

|QRCS(QR)/CS(QR) : CQRCS(QR)/CS(QR)(V1)| ≤ 2.

By (B.4) and Lemma 2.4 we see that V1 ≤ QRCS(QR). Now also
V2 = V x2

1 ≤ QRCS(QR), which gives [U, ρ1] ≤ QRCS(QR). This shows
[[[U, ρ1], x1], QR] = 1, which contradicts (B.3). Hence we have that
[V1, x1x2] centralizes a subgroup of index two in QR, which implies

q = 2.(B.8)

Assume now |S : T | = 2, T = NS(QR). Then by (B.4) and (B.8)
Az ∼= F4(2). As [U, ρ1] 6∈ QR, we have for 1 6= u ∈ [U, ρ1] that
|Z(QR) : CZ(QR)(u)| ≥ 2 and [QR/Z(QR) : CQR/Z(QR)(u)| ≥ 4. In
particular |QR : CQR

(u)| ≥ 8, which contradicts |QR : CQR
(U)| = 4 by

(B.7).

So we have that QRES. Further [〈ρ1, ρ2〉, U ] is of order 16 by (B.6) and
(B.8). As above we see that [〈ρ1, ρ2〉, U ] = [〈ρ1, ρ1〉s, U ] for all s ∈ S.
In particular O2,3(N)/CN(U) is of order 9.
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So we have shown

QR E S, |R| = 2, N/CN(U) ∼= O+
4 (2) and

[U,O3(N/CN(U))] is the natural module.
(B.9)

As R ≤ [U,O3(N/CN(U))] and [QR, O3(N/CN(U))] = O3(N/CN(U)),
we get

U = [U,O3(N/CN(U))]× CU(O3(N/CN(U))).(B.10)

Hence in both cases, N solvable and nonsolvable, by (A.7) and (B.9)
we just need to prove the existence of t and determine the size of
|Ω1(Z(S))|.

For the remainder N might be solvable or not. Assume |Ω1(Z(S)) ∩
Az| > 2. By (B.8) and (A.7) q = 2. So we have that Az ∼= Sp2n(2) or
F4(2). By Proposition 5.2 we have Az 6∼= Sp2n(2). Now in [U,O2(N)],
we have some x such that x 6∈ QR but |[QR/R, x]| = 4. As Az ∼= F4(2),
then by Lemma 2.17 QR/R involves two non isomorphic modules for
NAz(R) on one there are transvections on the other not, a contradic-
tion. So we have |Ω1(Z(S)) ∩ Az| = 2.

As |Ω1(Z(S))| ≥ 4, we see |Ω1(Z(S))| = 4 and from (A.7) and (B.10)
we get that CU(N) 6= 1 and so there is some 1 6= t ∈ Ω1(Z(S)), which
is central in N . By (U) R ≤ [U, F ∗(N/CN(U))]. As |Ω1(Z(S)) ∩ Az| =
2 we have that Ω1(Z(S)) ∩ Az ≤ 〈RS〉 and so Ω1(Z(S)) ∩ Az ≤
[U, F ∗(N/CN(U))]. Hence t 6∈ Az. �

We now can get further restrictions on the structure of Az.

Lemma 6.13. Az 6∼= F4(2). Further QR is extraspecial with center R,
normal in S and NNG(Az)(QR) acts irreducibly on QR/R.

Proof. Suppose Az ∼= F4(2). By Lemma 6.11 and Lemma 6.12 we have
that |Ω1(Z(S)) ∩ Az| = 2. Hence there is some u ∈ CG(z), which
induces a graph automorphism on Az. In particular QR 6E S. This
shows by Lemma 6.12 that Lemma 6.11(ii) holds. In particular U =
Ω1(Z(O2(N)) ≤ QRCS(Az). As zG∩U 6= {z} also zG∩〈z〉×QR 6= {z}.
Let r1, r2 be the two root elements such that 〈r1, r2〉 = Z(S∩Az). Then
CS(〈z, r1, r2〉) = CS(Az)×(S∩Az). As QR ≤ O2(CG(〈z, r1, r2〉)), we get
from Lemma 6.10 that NG(〈z, r1, r2〉) does not contain some element in
NS. Hence NG(〈z, r1, r2〉) ≤ NG(Az). Let v ∈ 〈z, r1, r2〉 such that |S :
CS(v)| = 2. So Ω1(Z(CS(v))) = 〈z, r1, r2〉. As NG(Ω1(Z(CS(v)))) ≤ Az,
we see that CS(v) is a Sylow 2-subgroup of CG(v) and so v 6∼ z in G. As
zG ∩Ω1(Z(S)) = {z} by Lemma 6.9 we get that zG ∩ 〈z, r1, r2〉 = {z}.
In particular zG ∩ Z(〈z,QR〉) = {z}. On the other hand we have some
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v ∈ U , z 6= v ∼ z. This implies v 6∈ Z(QR)〈z〉. By Lemma 6.11 we
see |S : CS(v)| ≤ 8. As F4(2) has four classes of involutions by [Shi,
Theorem 2.1] three of them are 2-central and the forth has centralizer
of order 220 · 32, we see that v must be conjugate to some element in
〈z, r1, r2〉 in NG(Az). As zG ∩ 〈z, r1, r2〉 = {z}, this is impossible. So
Az 6∼= F4(2).

As by Proposition 5.2 Az 6∼= G2(2)′ and Az 6∼= Sp2n(2), we have that
QR is extraspecial. Further by Proposition 5.2 Az 6∼= L3(2) or L4(2). If
NNG(Az)(QR) is not irreducible on QR/R, then by [MaStr, Lemma 2.33]
Az ∼= Ln(2) and no graph automorphism is involved. Now NG(Az) =
CG(Az) × Az. From Lemma 2.2 and Lemma 6.9 we get a contradic-
tion. �

For the remainder of this chapter we fix t as in Lemma 6.11 or
Lemma 6.12. We will prove that CG(t) has a standard subgroup At,
which is isomorphic to Az.

Lemma 6.14. At = E(CG(t)) is simple, QR ≤ At and CS(At) is cyclic.
In particular At is a standard subgroup.

Proof. By Lemma 6.13 we have that QR is extraspecial, R = 〈r〉 and
CG(〈z, t〉) = CG(〈z, r〉) acts irreducibly on QR/R.

We first prove:

Let H ≤ CG(t) with NCG(z)(QR) ≤ NG(H) and let T = S ∩H
be a Sylow 2–subgroup of H, then QR ≤ H, or T ≤ CS(QR).

(A)

For this suppose QR 6≤ H. As by Lemma 6.13 NCG(z)(QR) acts irre-
ducibly on QR/R, we see that H∩QR ≤ R. Hence [T,QR] ≤ H∩QR ≤
R. Then we have by Lemma 2.25 that T ≤ CS(QR)QR. As NCG(z)(QR)
normalizes H and CS(QR)QR, it also normalizes T = H ∩ CS(QR)QR.
As NCG(z)(QR) has no fixed point in QR/R we see that T ≤ CS(QR),
the assertion (A).

Suppose first CCG(t)(O2(CG(t))) ≤ O2(CG(t)). Then setH = O2(CG(t)).
As NCG(z)(QR) ≤ CG(〈z, t〉) we see that NCG(z)(QR) normalizes H. As
t ∈ Z(S), we also have H ≤ S. Now (A) implies that either QR ≤
O2(CG(t)) or O2(CG(t)) ≤ CS(QR) ≤ CS(Az)×〈r〉. But the latter con-
tradicts CCG(t)(O2(CG(t))) ≤ O2(CG(t)). So we have QR ≤ O2(CG(t)).
By Lemma 6.10 we see that CG(t) contains no M ∈ NS. This implies
CG(t) ≤ CG(z), contradicting the choice of N .
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So we have that E(CG(t)) 6= 1 (recall that O(CG(i)) = 1 for all involu-
tions i ∈ G). Now set H = E(CG(t)) in (A). If QR 6≤ E(CG(t)) then as
CS(QR)/〈t〉 is cyclic, we get a cyclic Sylow 2–subgroup of E(CG(t)), a
contradiction. Hence QR ≤ E(CG(t)).

Now let N1 be some component of CG(t) and set T = S ∩ N1. If
[T,QR] = 1, then T 〈t〉/〈t〉 is cyclic, which cannot be a Sylow 2-subgroup
of N1. So 1 6= [T,QR]. In particular R ≤ N1. If [R,N1] = 1 we get as
〈t, R〉 = 〈z,R〉 thatN1 ≤ CG(z). NowN1 normalizesO2(CAz(〈z, R〉)) =
QR. But [QR, N1] ≤ QR∩N1 ≤ R ≤ Z(N1), a contradiction. So we have
that R 6≤ Z(N1). In particular NCG(z)(QR) ≤ NG(N1). Application of
(A) now shows that QR ≤ N1. As this is true for any component Ni,
we get that E(CG(t)) is quasisimple.

Next we show

E(CG(t)) is simple.

Otherwise some 1 6= u ∈ Z(S) is contained in Z(E(CG(t))). Sup-
pose u 6= t. We then have that Ω1(Z(S)) = 〈r, z〉 = 〈u, t〉. Hence
E(CG(t)) ≤ CG(z), a contradiction. So we must have t ∈ Z(E(CG(t))).
Now CG(E(CG(t))) ≤ CCG(t)(QR) = CCG(z)(QR). As r ∈ E(CG(t)) \
Z(E(CG(t))), we see that CG(E(CG(t))) has a cyclic Sylow 2–subgroup
and so in particular E(CG(t)) is standard. But this contradicts Propo-
sition 5.1. Hence E(CG(t)) is simple.

As QR ≤ E(CG(t)) we see that CS(E(CG(t))) ≤ CS(QR) is cyclic.
In particular E(CG(t)) is standard. �

We have 〈z, t〉 = Ω1(Z(S) and r = zt ∈ Az ∩ At. Now everything
we proved for Az applies for At too. This shows that both groups are
isomorphic to one of the following groups: J2, M(24)′, Ln(2), Un(2),
n ≥ 5, Ω±2n(2), E6(2), E7(2), E8(2), 2E6(2), 3D4(2).

Lemma 6.15. We have that O2(CAt(R)) = O2(CAz(R)). Further let
Ht be the preimage of E(NAt(O2(CAt(R)))/O2(CAt(R))) and Hz the
preimage of E(NAz(QR)/QR). Then Ht = Hz.

Proof. By Lemma 6.14 we have QR ≤ At. Further we have that Hz ≤
CG(t). As H ′zQR = Hz by Lemma 6.13 and CG(t)/At is solvable, we
get that Hz ≤ At (this is also true if NAz(O2(CAz(R))) is solvable,
as then Hz = QR). Similarly we see Ht ≤ Az and then we have that
O2(NAt(R)) ≤ O2(CAz〈z〉(R)) and QR ≤ O2(CAt〈t〉(R)). This shows
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that QR ≤ O2(CAt(R)) ≤ QR and so QR = O2(CAt(R)). We further
get Ht ≤ Hz ≤ Ht, the assertion. �

Lemma 6.16. We have Az ∼= At.

Proof. Let first Az be sporadic. By Proposition 5.2 we have that Az ∼=
J2 or M(24)′. In both cases NAz(QR) is nonsolvable. By Lemma 6.15
we have that Hz = Ht ≤ At and Hz

∼= 21+4A5 or 21+123U4(3). If At is
sporadic too, then we have that Az ∼= At. So we may assume that At
is a group of Lie type over GF(2). As 3U4(3) is not a group of Lie type
in characteristic two, we get a contradiction. In the first case we have
that |QR| = 25. Then by Lemma 2.17 we get that At ∼= L4(2) or U4(2),
which contradicts Proposition 5.2. So we have Az ∼= At.

Next we assume that both Az and At are groups of Lie type. If NAz(QR)
is nonsolvable we may argue as before, i.e. we compare the orders of
QR and the Levi factors, as given by Lemma 2.17. Then we receive
Az ∼= At or Az ∼= L3(2), L4(2), Ω+

8 (2), U4(2), U5(2). By Proposi-
tion 5.2 Az 6∼= L3(2), L4(2) or U4(2). Now we have symmetry and so
also At ∼= Ω+

8 (2) or U5(2). But these groups are determined just by the
order of QR, which is 29, 27, respectively, so At ∼= Az too. �

Proposition 6.17. The main theorem holds.

Proof. Suppose false. Then according to Lemma 6.11 and Lemma 6.12
we have some t ∈ Ω1(Z(S)), t 6= z, t ∈ Z(N). By Lemma 6.16 Az ∼= At
and by Lemma 6.14 both groups are standard. We first show

At ∼= Az ∼= Ln(2) or Un(2).(1)

Suppose false. By [MaStr, Lemma 2.33] we have that NAz(QR) acts
irreducibly on QR/R. Set V = Ω1(Z2(S ∩ Az)). We get with [MaStr,
Lemma 2.35] that |V | = 4. Set P = NAz(V ). Then P is normalized
by S and P/O2(P ) ∼= Σ3. For a group of Lie type this is just a mini-
mal parabolic not in NAz(R). For the sporadic groups this follows with
Lemma 2.14.

Hence Ω1(Z(O2(P ))) = Ω1(Z2(S ∩ Az)). Then V ≤ QR and so V =
Ω1(Z2(S∩At)) by Lemma 6.15. On V both NAt(V ) and NAz(V ) induce
Σ3. Now 〈NAz(V ), NAt(V )〉 acts on 〈z, V 〉 = 〈t, V 〉. As zG∩Ω1(Z(S)) =
{z} by Lemma 6.9 we have zG ∩ 〈z, V 〉 = {z}. So NAt(V ) ≤ CG(z).
This implies At = 〈NAt(V ), NAt(QR)〉 ≤ CG(z), a contradiction. This
proves (1).

By (1) At ∼= Az ∼= Un(2), or Ln(2). In the latter by Lemma 6.13 we
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have some graph automorphism induced. As [CS(Az), QR] = 1, we get
CS(Az) ≤ CS(At)×R. This yields Ω1(Φ(CS(Az))) ≤ Ω1(Φ(CS(At))) ≤
〈t〉. As z 6= t this shows that CS(Az) = 〈z〉. By the Thompson trans-
fer lemma (Lemma 2.2) and zG ∩ Ω1(Z(S)) = {z} by Lemma 6.9, we
have that z is a square of some x ∈ CG(z), which induces an outer
automorphism on Az. The same of course is true for t. In particular

All involutions of CG(z) are in 〈z〉 × Az
and all involutions of CG(t) are in 〈t〉 × At.

(2)

By Lemma 6.11 and Lemma 6.12 there is some parabolic N in CG(t),
N 6≤ NCG(t)(R). This shows that N/CN(Ω1(Z(O2(N)))) ∼= O+

4 (2) in
case of At ∼= Ln(2) and Ω−4 (2) or O−4 (2) in case of At ∼= Un(2). Set again
U = Ω1(Z(O2(N))) and V = U ∩ At. Then V is the natural module
for N/CN(U). Further we have that V ∩QR = [V,QR] is of order eight.
By (2) and Lemma 2.28 we have that U is uniquely determined in S.
But then also there is a corresponding subgroup N1 of CG(z) such that
N1 induces Ω±4 (2) on U . This now implies the following. The orbits of
N ≤ NCG(t)(U) on U ] are 1,5,5,10,10, or 1,6,6,9,9 and N1 ≤ NCG(z)(U)

induces the same orbit sizes. As |zNG(U)| is odd, we see that under
NG(U) the orbit of z must have length 11 or 21 and 7 or 13, respectively.
Recall that z 6∼ t or r. But |zNG(U)| has to divide the order of GL5(2),
which implies that |zNG(U)| = 21 in the first case and 7 in the second.
The same applies for t, i.e. |tNG(U)| = 21, 7, respectively. But there is
obviously just one possibility to make up an orbit of length 21 or 7,
which implies that z ∼ t, the final contradiction. �
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