UNIVERSITYOF
 BIRMINGHAM
 University of Birmingham Research at Birmingham

Groups of even type which are not of even characteristic, I

Magaard, Kay; Stroth, Gernot

DOI:
10.1007/s11856-016-1313-x

License:
Other (please specify with Rights Statement)

Document Version

Peer reviewed version
Citation for published version (Harvard):
Magaard, K \& Stroth, G 2016, 'Groups of even type which are not of even characteristic, I', Israel Journal of Mathematics, vol. 213, no. 1, pp. 211-278. https://doi.org/10.1007/s11856-016-1313-x

Link to publication on Research at Birmingham portal

Publisher Rights Statement:

The final publication is available at Springer via http://dx.doi.org/10.1007/s11856-016-1313-x
Checked 17/6/2016

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
- Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
\bullet User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
-Users may not further distribute the material nor use it for the purposes of commercial gain.
Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

GROUPS OF EVEN TYPE WHICH ARE NOT OF EVEN CHARACTERISTIC, I

KAY MAGAARD AND GERNOT STROTH

Abstract

In the ongoing revision of the classification of the finite simple groups there is a subdivision into two classes of groups, which reflects whether semisimple elements or unipotent elements are the primary focus of the investigation. While semisimple methods naturally lead to the definition of groups of even type, unipotent methods, notably the amalgam method, naturally lead to groups of even characteristic. This paper clarifies the relationship between the two definitions and thus makes the amalgam method available for use in the classification of groups of even type.

1. Introduction

One of the great achievements of the last century is the classification of the finite simple groups. The modern treatment began with the talk of R. Brauer at the International Congress of Mathematics in Amsterdam at 1954. There he suggested to classify the finite simple groups by the structure of the centralizers of their involutions. Together with the proof of the Odd Order Theorem of Feit-Thompson [FT] the strategy, which eventually was successful, for classifying the finite simple groups, was launched. In particular the prime 2 plays a prominent role. The next cornerstone in the classification of the finite simple groups is Aschbacher's Standard Component Theorem 1975 [Asch1] which shows that either $C_{G}\left(O_{2}(M)\right) \leq O_{2}(M)$ for all 2-local subgroups M of G or there exists an involution t such that $C_{G}(t) / O\left(C_{G}(t)\right)$ possesses a subnormal $S L_{2}(q)$ or $C_{G}(t)$ is in standard form. Groups of the first type are called of characteristic 2 . The groups of the second type are treated by Aschbacher's Classical Involution Theorem 1977 [Asch2]. The last case was treated by solving various standard form problems. The first case causes a lot of problems. In this case the classification tries to put the focus on some properly chosen odd prime p. Generically a group of characteristic 2 is a group of Lie type over a field of characteristic two. Then the prime p is a prime which divides the order of a torus. Using elements of order p one tries to follow arguments from before and to set

[^0]up a standard form problem now for elements of order p and continues to solve it. Unfortunately this does not work in general. So some difficult special cases like the Quasithin Group Theorem due to Aschbacher - Smith [AS] and the Uniqueness Theorem due to Aschbacher [Asch6] arise.

At present there are two strategies for revising the classification of the finite simple groups. Gorenstein-Lyons-Solomon or GLS for short generally follow the original strategy. However they have a subdivision in classes of simple groups which differs slightly from the original. They work with groups of even type rather than characteristic 2 type. We now recall the definition of even type [GoLyS1, Definition 21.3]. For this we first define a set \mathcal{C}_{2}.

Definition 1.1. [GoLyS1, Definition (12.1)(1)] The set \mathcal{C}_{2} consists of simple and quasisimple groups.

- The simple groups in \mathcal{C}_{2} are $K \in \operatorname{Chev}(2), L_{2}(9), L_{2}(p), p$ a Fermat or Mersenne prime, $L_{3}(3), L_{4}(3), U_{4}(3), G_{2}(3), M_{11}, M_{12}$, $M_{22}, M_{23}, M_{24}, J_{2}, J_{3}, J_{4}, H i S, S u z, R u, C o_{1}, C o_{2}, M(22)$, $M(23), M(24)^{\prime}, T h, F_{2}, F_{1}$.
- The groups $K \in \mathcal{C}_{2}$ with K not simple are those for which $K / O_{2}(K)$ is a simple group in \mathcal{C}_{2}. But the following quasisimple groups are delete, i.e. are not in $\mathcal{C}_{2}: S L_{2}(q), q$ odd, $2 A_{8}, S L_{4}(3)$, $S U_{4}(3), S p_{4}(3)$, and $[X] L_{3}(4)$, with $X \cong \mathbb{Z}_{4}, \mathbb{Z}_{4} \times \mathbb{Z}_{2}$ or $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$.

Definition 1.2. A group G is said to be of even type if the following hold:
(i) $\mathcal{L} \subseteq \mathcal{C}_{2}$, where \mathcal{L} is the set of all components of $C_{G}(x)$ for all involutions $x \in G$.
(ii) $O\left(C_{G}(x)\right)=1$ for every involution $x \in G$
(iii) G has 2-rank at least 3 .

In the following statement we list the finite simple groups of even type
Statement The (known) finite simple groups of even type are the groups G in $\operatorname{Chev}(2)$ of 2 -rank at least $3, A_{9}, A_{10}, A_{12}, G_{2}(3), L_{4}(3)$, $P S p_{4}(3), U_{4}(3), \Omega_{7}(3), \Omega_{8}^{ \pm}(3)$ and all sporadic groups with the exception of $M_{11}, O N, L y S$ and McL.

For the sporadic groups this is an easy inspection of [GoLyS3, (5.3)]. Recall that M_{11} is not of even type as $m_{2}\left(M_{11}\right)=2<3$. For A_{n} one always has some component A_{n-4}, which gives the list. The groups $G \in \operatorname{Chev}(2)$ even satisfy that $C_{G}\left(O_{2}(H)\right) \leq O_{2}(H)$ for any 2-local
H of G by the Borel - Tits theorem [GoLyS3, Theorem 3.1.3]. For the groups of Lie type in odd characteristic the list will follow from the proof of Lemma 3.1 in this paper.

Meierfrankenfeld-Stellmacher-Stroth, MSS for short, follow a different strategy. They work with groups of characteristic 2 type and use 2-local subgroups rather than switching primes. Hence the main focus is to determine the structure of $M / O_{2}(M)$ and the action of M on $O_{2}(M)$ for various 2-local subgroups M to set up a parabolic system. Then using geometric methods one can eventually identify the target group G. The first main result the Structure Theorem [MeStStr] has been proved. In this approach representations of groups play an important role. Hence the basic difference, one can say roughly, is that this approach uses unipotent methods, while GLS uses more semisimple methods.

It is not so easy to verify that a group is of characteristic 2 . There is a variant of this which is much easier to verify, that is even characteristic.

Definition 1.3. A group G is said to be of even characteristic, if for a Sylow 2-subgroup S and all nontrivial 2-local subgroups H of G with $S \leq H$, we have that $C_{G}\left(O_{2}(H)\right) \leq O_{2}(H)$.

Groups of even characteristic are sometimes also called of parabolic characteristic two. To verify that a group is of even characteristic one just has to show that for all involutions $x \in Z(S)$ one has that $C_{G}\left(O_{2}\left(C_{G}(x)\right)\right) \leq O_{2}\left(C_{G}(x)\right)$ (see Lemma 2.1). In the proof of the structure theorem the assumption that G is of characteristic 2 and not just of even characteristic has been used just at one place. At the moment there is an ongoing project to prove the theorem under the weaker assumption that G is of even characteristic.

Unfortunately we now have two projects which have incompatible definitions. Of course it would be helpful if one could easily use results from one project in the other. The aim of this paper (part I and part II) is to build this bridge. More precisely we will prove that with a few exceptions a group of even type is of even characteristic. In [AS, Chapter 16] there is a similar result under the assumption that G is quasithin. Hence we can also say that this paper is a generalization of [AS, Chapter 16].

The main theorem of both parts of this paper will be:

Theorem Let G be a simple \mathcal{K}_{2}-group of even type. Then either G is of even characteristic or $G \cong J_{1}, C o_{3}, M(23), A_{12}, \Omega_{7}(3)$ or $\Omega_{8}^{-}(3)$.

Here we call a group G a \mathcal{K}_{2}-group if any simple factor of any nontrivial 2-local subgroup of G is either cyclic, a group of Lie type, an alternating group or one of the 26 sporadic groups. As this paper is considered to be a part of the revision of the classification of the finite simple groups, this reflects the inductive assumption of being a minimal counterexample.

For the remainder of both parts of this paper G is always a simple group of even type. Before proceeding, we say some words about quotations and how we identify the exceptional groups in the Theorem by centralizers of involutions. For the two groups of Lie type in odd characteristic we depend on the classical involution theorem [Asch2]. So from there on we may assume that there is no tightly embedded quaternion group and no subnormal $S L_{2}(3)$ in the centralizer of any involution. Then we use classifications of groups having a standard subgroup L. But we are not going to solve all standard subgroup problems for all groups in \mathcal{C}_{2}. This would go too far. We will just do it if $N_{G}(L)$ contains a Sylow 2-subgroup of G. Recall that a standard subgroup L is a component of the centralizer of some involution such that $C_{G}(i) \leq N_{G}(L)$ for all involutions $i \in C_{G}(L)$ and furthermore $\left[L, L^{g}\right] \neq 1$ for all $g \in G$. For standard subgroups L with $m_{2}\left(C_{G}(L)\right) \geq 2$, we will use [AschSe1] and [AschSe2] for the identification. But again we do not use these results in their full strength. We use them up to the point where it is proved that $N_{G}(L)$ could not contain a Sylow 2-subgroup of G. The case that L is a Bender group was not handled in [AschSe1] hence we include the proof in this paper (see Proposition 3.5). For the case that L is alternating we quote [Asch3]. At this point we are left with the case that $C_{G}(L)$ has cyclic Sylow 2-subgroups. Here we quote classifications from the literature just for the case that $Z(L)$ has even order but not for the cases $L / Z(L) \cong S z(8), L_{3}(4), U_{4}(3)$ and M_{22}. For these standard components and all the remaining standard subgroups L, i.e. $Z(L)=1$, proofs are included in this paper.

The proof proceeds as follows. Initially we assume that there is some centralizer of a 2-central involution which possesses a component. Then similar to [Asch1] we produce in Proposition 4.1 a standard subgroup L in G. Unfortunately there is no obvious reason why this standard subgroup should centralize a 2-central involution. To deal with this problem is the contents of Chapter 4. Here we trace the procedure
leading to the standard subgroup very carefully and in fact show that in a counterexample to our theorem we have a standard subgroup L, maybe different from the one we constructed in the first place, which centralizes a 2-central involution. This in fact is the main theorem of this first part of the paper, which might be of independent interest. We prove:

Theorem 1.4. Let G be a simple \mathcal{K}_{2}-group of even type. Then one of the following holds

- G is of even characteristic; or
- $G \cong \Omega_{7}(3), \Omega_{8}^{-}(3)$ or A_{12}; or
- There is a 2-central involution z such that $C_{G}(z)$ possesses a standard subgroup L. Furthermore $C_{G}(L)$ is cyclic.

In the second part of this paper we first deal with all such standard subgroups for which $|Z(L)|$ is even and the cases where L is sporadic or a group of Lie type in odd characteristic. Hence generically we have that the standard subgroup L in $C_{G}(z)$ is a group of Lie type in characteristic two. Now we build up a 2-local subgroup N, which is minimal with respect not to be contained in $N_{G}(L)$ but containing a Sylow 2subgroup of $N_{G}(L)$. To determine the structure of such a group we will need the \mathcal{K}_{2} assumption to prove results about action of N on $\Omega_{1}\left(Z\left(O_{2}(N)\right)\right.$. In fact this group N looks very similar to the minimal parabolic in $N_{G}(L)$, which is not contained in the normalizer of a root subgroup of L. The main result about this group N however is that it also contains an involution t in its center. We then prove that $C_{G}(t)$ also contains a standard subgroup L_{1}. As t and z both centralize the centralizer of a root subgroup in L, we see that both standard subgroups L and L_{1} must be isomorphic. But now N is the corresponding minimal parabolic in $N_{G}\left(L_{1}\right)$, as $t \in Z(N)$. This gives N a natural meaning and so we get that the corresponding minimal parabolic N_{1} in $N_{G}(L)$ also normalizes $Z\left(O_{2}(N)\right)$, which shows $\left\langle N, N_{1}\right\rangle \leq N_{G}\left(Z\left(O_{2}(N)\right)\right)$, which then leads to the final contradiction.

Acknowledgement: We thank the referee for a very careful reading and many comments which helped to improve the paper substantially.

2. Preliminaries

We start this section with some results from general group theory.
Lemma 2.1. Let G be a group and S be a Sylow 2-subgroup of G. Then G is of even characteristic if and only if $C_{G}\left(O_{2}\left(C_{G}(x)\right)\right) \leq O_{2}\left(C_{G}(x)\right)$ for all involutions $x \in Z(S)$.

Proof. If G is of even characteristic, then $C_{G}\left(O_{2}\left(C_{G}(x)\right)\right) \leq O_{2}\left(C_{G}(x)\right)$ just by definition.

So assume now that $C_{G}\left(O_{2}\left(C_{G}(x)\right)\right) \leq O_{2}\left(C_{G}(x)\right)$ for all involutions $x \in Z(S)$. Let N be some 2-local of G such that $S \leq N$. We have to show that $F^{*}(N)=O_{2}(N)$. As N is a 2-local we have that $O_{2}(N) \neq 1$. In particular there is some involution $x \in O_{2}(N)$ with $[S, x]=1$. Furthermore $\left[F^{*}(N), x\right]=1$. So $F^{*}(N) \leq C_{G}(x)$. Set $E=O^{2}\left(F^{*}(N)\right)$. Then $\left[O_{2}\left(C_{G}(x)\right), E\right] \leq O_{2}\left(C_{G}(x)\right)$ and as $O_{2}\left(C_{G}(x)\right) \leq S \leq N$, we have $\left[O_{2}\left(C_{G}(x)\right), E\right] \leq E \cap O_{2}\left(C_{G}(x)\right)$. In particular we have that

$$
\left[O(E), O_{2}\left(C_{G}(x)\right)\right]=1
$$

and

$$
\left[E(N), O_{2}\left(C_{G}(x)\right)\right] \leq O_{2}(E(N)) \leq Z(E(N))
$$

By the Three-Subgroups-Lemma we get $\left[O_{2}\left(C_{G}(x)\right), E(N)\right]=1$ and then $\left[O_{2}\left(C_{G}(x)\right), E\right]=1$. Combining this with our hypothesis yields

$$
E \leq C_{G}\left(O_{2}\left(C_{G}(x)\right)\right) \leq O_{2}\left(C_{G}(x)\right)
$$

So as $E=O^{2}(E)$, we have $E=1$ and $F^{*}(N)=O_{2}(N)$, as asserted.
Lemma 2.2. [Glau] Let G be a nonabelian simple group, z an involution and $z \in S \in \operatorname{Syl}_{2}(G)$. Then $z^{G} \cap S \neq\{z\}$.

Lemma 2.3. [GoLyS2, Lemma 15.16](Thompson transfer). Let G be a group, $S \in \operatorname{Syl}_{2}(G)$, $T \unlhd S$ with $S=T A, A \cap T=1$, A cyclic. If G has no subgroup of index two and u is the involution in A, then there is some $g \in G$ with $u^{g} \in T$ and $C_{S}\left(u^{g}\right) \in \operatorname{Syl}_{2}\left(C_{G}\left(u^{g}\right)\right)$. In particular $\left|C_{S}(u)\right| \leq\left|C_{S}\left(u^{g}\right)\right|$.

Lemma 2.4. [GoLyS2, Lemma 24.1] Let R be a $p-$ group, p odd, and E be an elementary abelian 2-group, acting faithfully on R. Then there is a subgroup U in $R E$, such that U is a direct product of dihedral groups of order $2 p$ and E is a Sylow 2-subgroup of U.

Definition 2.5. A pair (X, V) is called a Goldschmidt-O'Nan pair of type (n, k) provided the following conditions hold:
(i) V is a faithful $\mathrm{GF}(2) X$-module with $|V|=2^{n}$.
(ii) There is a nontrivial cyclic subgroup Y of X of odd order such that if we set $V_{1}=[V, Y]$, then Y acts transitively on V_{1}^{\sharp}.
(iii) $V_{0}=C_{V}(Y) \neq 1,\left|V_{0}\right|=2^{k}$ and if $\Omega=\left\{V_{0}^{X}\right\}$, then distinct elements of Ω intersect trivially.
(iv) $Y \unlhd N_{X}\left(V_{0}\right)$.

Lemma 2.6. [GoLyS2, Proposition 14.2] If (X, V) is a GoldschmidtO'Nan pair of type (n, k) then one of the following holds
(i) $\Omega=\left\{V_{0}\right\}$, i.e. V_{0} is X-invariant.
(ii) $\Omega=\left\{V_{0}, V_{1}\right\}$ and V_{0}, V_{1} are interchanged by a 2-element in X.
(iii) $|\Omega|=2^{n-k}, \bigcup_{W \in \Omega} W^{\sharp}=V \backslash V_{1}$ and V_{1} is X-invariant.
(iv) $k=1, n=3$ and X is nonabelian of order 21.

Lemma 2.7. Let G be a solvable group with $O(G)=1$. Let T be a Sylow 2-subgroup of G which is dihedral or semidihedral. If $G \neq T$ and $Z(T)$ is normal in G, then G possesses a normal subgroup $U \cong S L_{2}(3)$.
Proof. First of all as $O(G)=1$, we have $C_{G}\left(O_{2}(G)\right) \leq O_{2}(G)$. As $O_{2}(G) \neq G$, we have that there is some element ω of odd order which acts faithfully on $O_{2}(G)$. As T contains a cyclic subgroup of index two also $O_{2}(G)$ contains a cyclic subgroup of index at most two. Hence this cyclic group cannot be characteristic in $O_{2}(G)$. So we have that $O_{2}(G)$ is quaternion of order 8 or elementary abelian of order 4 . The latter is not possible as $Z(T)$ is normal in G and so central in G, which would imply that ω centralizes $O_{2}(G)$. So we have that $O_{2}(G)$ is quaternion of order 8 and then $o(\omega)=3$. Now set $U=\left\langle O_{2}(G), \omega\right\rangle$, the $U \cong S L_{2}(3)$. As $\operatorname{Out}\left(O_{2}(G)\right) \cong \Sigma_{3}$, we have that U is normal in G.

Lemma 2.8. Let $E \cong D_{8}^{m}$ be an extraspecial group, which is a central product of m dihedral groups of order 8 . Then the number of elements of order 4 in E is $2^{2 m}-2^{m}$.

Proof. We prove the formula by induction. For $m=1$ we have a dihedral group of order 8 , which has exactly two elements of order 4 . So let $m>1$ and set $G=H K$, where H is dihedral of order $8, K \cong D_{8}^{m-1}$ and $[H, K]=1$. Let $u \in G, o(u)=4$. Then $u=s t$, with $s \in H$ and $t \in K,[s, t]=1$. Set $\langle z\rangle=Z(E)=Z(H)=Z(K)$. If $o(t)=4$, we get $s^{2}=1$. There are exactly 6 elements $s \in H$ with $s^{2}=1$. By induction there are exactly $2^{2(m-1)}-2^{m-1}$ elements of order 4 in K. This gives $6 \times\left(2^{2(m-1)}-2^{m-1}\right)$ pairs (s, t) such that $s^{2}=1$ and $o(t)=4$. As $s z t^{-1}=s t$, we get

$$
3 \times\left(2^{2(m-1)}-2^{m-1}\right)
$$

elements of order 4 of this kind. Let now $o(s)=4$, then $t^{2}=1$. This then gives $2\left(2^{2(m-1)+1}-\left(2^{2(m-1)}-2^{m-1}\right)\right)$ pairs (s, t) of this kind. Again $s z t=s^{-1} z t$, so we get

$$
2^{2(m-1)+1}-\left(2^{2(m-1)}-2^{m-1}\right)
$$

elements of order 4 in this case. Altogether we have

$$
\left(3 \times\left(2^{2(m-1)}-2^{m-1}\right)+2^{2(m-1)+1}-\left(2^{2(m-1)}-2^{m-1}\right)\right.
$$

elements of order 4 . But this number is $2^{2 m}-2^{m}$.
Lemma 2.9. Let E be an extraspecial group which is a central product of m dihedral groups of order 8 . If there is an element ω of order 5 , which induces an automorphism on E such that $C_{E}(\omega)=Z(E)$, then m is divisible by 4.

Proof. We have that ω acts fixed point freely on the element of order 4 in E. Hence by Lemma 2.8 we get that

$$
2^{2 m} \equiv 2^{m}(\bmod 5)
$$

and so

$$
2^{m} \equiv 1(\bmod 5)
$$

So 4 divides m.
Next we will prove some results about the groups in \mathcal{C}_{2}.
Lemma 2.10. Let $G \cong J_{2}, M(22), M(24)^{\prime}, F_{2}, 2 F_{2}$ or F_{1}. Let v be a $2-$ central involution in $G \backslash Z(G)$. Then $C_{G}(v) \cong 2^{1+4} A_{5}, 2 \cdot 2^{1+8} U_{4}(2): 2$, $2^{1+12} 3 U_{4}(3): 2,2^{1+22} \mathrm{Co}_{2}, 2 \cdot 2^{1+22} \mathrm{Co}_{2}$ or $2^{1+24} \mathrm{Co}_{1}$, respectively.

Proof. This can be found in [GoLyS3, Table 5.3].
In the next lemma we will collect some properties of $L=M(23)$.
Lemma 2.11. Set $L=M(23)$ and let T be a Sylow 2-subgroup of L. Then the following holds:
(i) $Z(T)$ is elementary abelian of order 4 and all involutions in L are 2-central. The centralizers of these involutions are isomorphic to:

$$
2 M(22),(2 \times 2) U_{6}(2): 2 \text { or }\left(E_{2^{2}} \times D_{8}^{4}\right)\left(Z_{3} \times \Omega_{6}^{-}(2)\right): 2 .
$$

In particular if $x \in L$ is an involution then $x \in C_{L}(x)^{\prime}$.
(ii) $J(T)$ is elementary abelian of order 2^{11} and

$$
N_{L}(J(T)) / J(T) \cong M_{23}
$$

Finally $N_{L}(J(T)$ induces orbits of length 23, 253 and 1771 on the nontrivial elements of $J(T)$.
(iii) Let $t \in J(T)$ such that $C_{L}(t) \cong 2 M(22)$ then

$$
N_{C_{L}(t)}(J(T)) / J(T) \cong M_{22}
$$

acts indecomposably on $J(T)$ and involves a 10-dimensional module.
(iv) Let $t \in J(T)$ such that $E\left(C_{L}(t)\right) \cong 2^{2} \cdot U_{6}(2)$, then

$$
N_{C_{L}(t)}(J(T)) / J(T) \cong L_{3}(4)
$$

and induces a 9-dimensional module in $J(T)$.
(v) $\operatorname{Aut}(L)=L$ and there is no nontrival central extension of L.

Proof. (i) That $Z(T)$ is elementary abelian of order 4 and the structure of the centralizers can be found in [GoLyS3, Table 5.3u]. From this structure we easily see that $x \in C_{L}(x)^{\prime}$ for any involution x.
(ii) That $J(T)$ is elementary abelian of order 2^{11} and the structure of $N_{L}(J(T))$ can be found in [Asch4, 32.3] and [GoLyS3, Table 5.3u]. The orbit length are given in [Asch4, 22.4].
(iii) The structure of $N_{C_{L}(t)}(J(T))$ can be found in [Asch4, 32.2]. If $J(T)$ were a direct sum of a trivial module and a 10-dimensional one, then Gaschütz Lemma would get that $C_{L}(t)$ splits over $\langle t\rangle$, which contradicts (i).
(iv) This can be found in [Asch4, 22.2].
(v) This follows from [GoLyS3, Table 5.3u].

Lemma 2.12. Let $G=M_{24}$ and V be a faithful module for G with $|V|=2^{12}$ and point stabilizer M_{23}. Then V is the Todd-module. Furthermore G induces orbits of length 24, 276, 1771 and 2024 on the nontrivial vectors in V. Let $v \in V$ such that $\left|v^{G}\right|=1771$, then $C_{G}(v)$ is an extension of an elementary abelian group of order 2^{6} by $3 \Sigma_{6}$ and $C_{G}(v)$ induces in $V /\langle v\rangle$ one 4-dimensional, one 6-dimensional and one trivial module.

Proof. The uniqueness and the orbits follow from [Asch5, chapt.19] or [Asch4, 22.1]. Here we also find that $C_{G}(v) \cong 2^{6} 3 \Sigma_{6}$. Furthermore we find that a vector in the orbit of length 276 is centralized by $\operatorname{Aut}\left(M_{22}\right)$. As neither M_{23} nor $\operatorname{Aut}\left(M_{22}\right)$ contains an elementary abelian subgroup of order 64 , we see that all elements in $C_{V}\left(O_{2}\left(C_{G}(v)\right)\right)$ belong to the orbit of length 1771 and so they must be conjugate in $N_{G}\left(O_{2}\left(C_{G}(v)\right)\right)$, which gives that $\langle v\rangle=C_{V}\left(O_{2}\left(C_{G}(v)\right)\right)$. In particular we have that $C_{V /\langle v\rangle}\left(O_{2}\left(C_{G}(v)\right)\right)$ is isomorphic to $O_{2}\left(C_{G}(v)\right)$ as $C_{G}(v)$-module. This shows that one 6 -dimensional module is involved. Now the factor module is 5-dimensional and as $C_{G}(v)$ cannot act trivially on this factor we also get one 4 -dimensional module and one 1-dimensional module.

Lemma 2.13. Let $G=M_{24}$ and S be a Sylow 2-subgroup of G, then $N_{G}(S)=S$.

Proof. By [GoLyS3, Table 5.3e] there is an involution $x \in S$ such that $C_{G}(x)$ is an extention of an extraspecial group of order 2^{7} by $L_{3}(2)$.

Hence $N_{G}(S) \leq C_{G}(x)$ and, as Sylow 2-subgroups of $L_{3}(2)$ are self normalizing, the result follows.

Now we turn to the groups of Lie type. Most of the time we will treat groups like $S p_{4}(2)^{\prime}, G_{2}(2)^{\prime}$ and ${ }^{2} F_{4}(2)^{\prime}$ together with the groups of Lie type. We therefore use the following definition.
Definition 2.14. A genuine group of Lie type in characteristic p is a group isomorphic to $O^{p^{\prime}}\left(C_{\bar{K}}(\sigma)\right)$, where \bar{K} is a semisimple $\overline{\mathrm{GF}(p)}$ algebraic group, $\overline{\mathrm{GF}(p)}$ is the algebraic closure of $\mathrm{GF}(p)$, and σ is the Steinberg endomorphism of \bar{K}, see [GoLyS3, Definition 2.2.2] for details. A simple group of Lie type in characteristic p is a non-abelian composition factor of a genuine group of Lie type in characteristic p.

As $S p_{4}(2)^{\prime} \cong L_{2}(9)$, which both are elements of \mathcal{C}_{2}, we will treat this group sometimes also as a group of Lie type in odd characteristic. But this will always be clear from the context.
Lemma 2.15. (Borel-Tits-Theorem) Let $G=G(q), q=p^{f}$, be a genuine group of Lie type and S be a Sylow p-subgroup.
(a) If $S \leq X \leq G$ and $O_{p}(X)=1$, then $X=G$.
(b) If $X \leq G$ and $O_{p}(X) \neq 1$, then there is a parabolic P of G, $O_{p}(P) \neq 1$, such that $X \leq P$.
Proof. (a) is [GoLyS3, Theorem 2.6.7] and (b) is [GoLyS3, Theorem 3.1.3].

Lemma 2.16. [GoLyS3, Theorem 2.5.1.] Let K be a group of Lie type over $\mathrm{GF}\left(p^{e}\right)$ and $x \in \operatorname{Out}(K)$. Then $x=d f g$ with:
(a) d is a diagonal automorphism. In particular $p \nmid o(d)$.
(b) f is a field automorphism. In particular if S is a Sylow psubgroup of K normalized by f, then $X(t)^{f}=X\left(t^{\sigma}\right)$, where σ is a field automorphism of $\mathrm{GF}\left(p^{e}\right)$ and $X(t)$ is a root group in S. This implies that f also induces a field automorphism on any parabolic containing S and any Levi complement. Recall that twisted groups are not defined over $\mathrm{GF}\left(p^{e}\right)$ but over $\mathrm{GF}\left(p^{2 e}\right)$ or $\mathrm{GF}\left(p^{3 e}\right)$ and σ is an automorphism of this larger field, in particular f might be trivial on Levi factors, which are defined over $\mathrm{GF}\left(p^{e}\right)$.
(c) g is a graph automorphism, which comes from a symmetry of the corresponding Dynkin diagram. We have o $(g)=2$ or 3 . The case $o(g)=3$ just occurs for $K \cong \Omega_{8}^{+}\left(p^{e}\right)$. Furthermore $g=1$, if K is twisted.
Lemma 2.17. The groups ${ }^{2} E_{6}(2)$ and F_{2} do not have an involutory automorphism whose centralizer has a component $M(22)$.

Proof. By the Borel-Tits Theorem 2.15, we see that involutions in ${ }^{2} E_{6}(2)$ do not have components in their centralizer. By Lemma 2.16 we see that centralizers of outer automorphisms of order 2 have components which are groups of Lie type, so the result follows for ${ }^{2} E_{6}(2)$. For F_{2} it follows directly from [GoLyS3, Table 5.3y].

Lemma 2.18. (a) Let $G \cong L_{2}(9)$ or $P S p_{4}(3)$. Then there is no involution i in $\operatorname{Aut}(G)$ such that $C_{G}(i)$ is an elementary abelian 2-group.
(b) If $G \cong P \operatorname{Sp}_{4}(3)$ and x is an involution in $\operatorname{Aut}(G)$, then $\left|C_{G}(x)\right|_{2} \geq$ 16.

Proof. As $L_{2}(9) \cong A_{6}$ the assertion (a) is clear for $G \cong L_{2}(9)$. As $P S p_{4}(3) \cong \Omega_{6}^{-}(2)$, and $\operatorname{Aut}(G) \cong O_{6}^{-}(2)$, we get that

$$
C_{G}(i) \cong 2^{1+4}\left(Z_{3} \times \Sigma_{3}\right), 2^{4} \Sigma_{3}, \Sigma_{6} \text { or } Z_{2} \times \Sigma_{4}
$$

by [AschSe3] and [GoLy, Theorem 9.1]. This is (a).
(b) now follows just by inspection.

Lemma 2.19. Let $L=L_{4}(3), U_{4}(3)$ or $2 U_{4}(3)$. Then the following holds:
(i) If $z \in L \backslash Z(L)$ is a 2-central involution, then $O_{2}\left(C_{L}(z)\right) \cong$ $Q_{8} * Q_{8}$ or $Z_{2} \times Q_{8} * Q_{8}$ in case of $L \cong 2 U_{4}(3)$.
Furthermore $C_{L}(z) / O_{2}\left(C_{L}(z)\right)$ acts faithfully on $O_{2}\left(C_{L}(z)\right)$ and $O_{3}\left(C_{L}(z) / O_{2}\left(C_{L}(z)\right)\right)$ is elementary abelian of order 9 .
(ii) $\operatorname{Out}\left(U_{4}(3)\right) \cong D_{8}$ and $\operatorname{Out}\left(L_{4}(3)\right)$ is elementary abelian of order 4.
(iii) If $G \cong \operatorname{Aut}(L), L \cong U_{4}(3)$ and x is an involution in G such that $2^{6} \cdot 3^{2}$ divides $\left|C_{L}(x)\right|$ then one of the following holds:
$(\alpha) x$ is contained in L and 2 -central.
(β) $C_{L}(x) \cong P S p_{4}(3)$.
$(\gamma) O_{2}\left(C_{L}(x)\right)$ is elementary abelian, $C_{L}(x) / O_{2}\left(C_{L}(x)\right)$ acts faithfully on $O_{2}\left(C_{L}(x)\right)$ and induces a group of order 36.
(iv) Let $L \cong L_{4}(3)$ or $U_{4}(3)$. Then $|Z(T)|=2$ for T a Sylow 2 subgroup of L. Let G be a subgroup of $\operatorname{Aut}(L)$ containing L and T_{1} be a Sylow 2-subgroup of G. If $\left|\Omega_{1}\left(Z\left(T_{1}\right)\right)\right|>2$, then $L \cong L_{4}(3)$ and $|G: L|=2$. Furthermore some element $t \in$ $\Omega_{1}\left(Z\left(T_{1}\right)\right) \backslash L$ centralizes $P S p_{4}(3): 2$ in L.
Proof. (i) These facts can be found for $U_{4}(3)$ in [CCNPW, page 52], for $L_{4}(3)$ in [GoLyS5, Lemma 10.4.15].
(ii) This can be read off from Lemma 2.16.
(iii) Inspection of the orders of centralizers of involutions in $\operatorname{Aut}(L)$ ([CCNPW, page 52]) shows that either (α) or (β) holds or $\left|C_{L}(x)\right|=$ $2^{6} 3^{2}$. In this case also $L\langle x\rangle$ contains an involution y such that $C_{L}(y) \cong$ $P S p_{4}(3)$. Let T be a Sylow 2-subgroup of $L\langle y\rangle$, then we have that $J(T)$ is elementary abelian of order 32 and $N_{L\langle y\rangle}(J(T)) / J(T) \cong A_{6}$. This group induces orbits of length 6 and 10 on $J(T) \backslash J(T) \cap L$. Hence we have that x is in the orbit of length 10 and so $C_{L}(x) \leq N_{L}(J(T))$. Now $C_{N_{L}(J(T))}(x)$ is an extension of $J(S) \cap L$ by the normalizer of a Sylow 3-subgroup in A_{6}. This is (iii).
(iv) We see from [CCNPW, page 52] that in case of $L=U_{4}(3)$ there is no outer involution x, which will centralize a Sylow 2-subgroup of L, as 2^{7} does not divide the order of the centralizer $C_{L}(x)$. That $|Z(T)|=2$ follows from (i). For $L=L_{4}(3)$, we see with [CCNPW, page 68] that there are two classes of outer involutions which centralize $U_{4}(2): 2$ in $L_{4}(3)$. There is a third class corresponding to the diagonal automorphism of order two, which centralizes $L_{3}(3)$ in L. This shows that the center of a Sylow 2-subgroup of $\operatorname{Aut}(L)$ is of order two. Furthermore in fact there is $G \leq \operatorname{Aut}(L)$ with $|G: L|=2$, such that $\left|\Omega_{1}\left(Z\left(T_{1}\right)\right)\right|=4$ for T_{1} a Sylow 2-subgroup of G.

Lemma 2.20. If $G=L_{4}(3), U_{4}(3), L_{3}(3), G_{2}(3), L_{2}(9)$ or $L_{2}(p)$, pa prime, and t is some involution in $\operatorname{Aut}(G)$ with nonsolvable centralizer then $G=G_{2}(3)$ and $C_{G}(t)$ has a component $L_{2}(8)$ or $G=U_{4}(3)$ or $L_{4}(3)$ and $C_{G}(t)$ has a component $P S p_{4}(3), L_{3}(3), U_{3}(3)$ or $L_{2}(9)$.

Proof. As $L_{2}(9) \cong A_{6}$, we easily see in that case that there are no involutions with non solvable centralizer at all. For $L_{2}(p)$ we get the result with [GoLyS5, Lemma 10.1.3].

For the remaining groups we have by [GoLyS3, Table 4.5.1-4.5.3] that centralizers of inner involutions are solvable $\{2,3\}$-groups or $G \cong L_{4}(3)$ and we have a component $L_{2}(9)$. Further we there also find the centralizers of the outer automorphisms. In case of $U_{4}(3)$ we find a component $U_{3}(3)$ and in case of $L_{4}(3)$ we find a component $L_{3}(3)$, in both cases these are diagonal automorphisms. In both cases $U_{4}(3)$ and $L_{4}(3)$ we also find a component $P S p_{4}(3)$ for a graph automorphism. In case of $G_{2}(3)$ we get $L_{2}(8) \cong{ }^{2} G_{2}(3)^{\prime}$, which is the centralizer of an outer automorphism.

We next turn our attention to the groups of Lie type in characteristic two.

Lemma 2.21. [GoLyS3, Theorem 2.5.12.] Let K be a group of Lie type over $\mathrm{GF}\left(2^{e}\right)$. The group of diagonal automorphisms is nontrivial and cyclic exactly in the cases listed below. Its order is given in the second row of the table.

$L_{m}(q)$	$U_{m}(q)$	$E_{6}(q)$	${ }^{2} E_{6}(q)$
$(m, q-1)$	$(m, q+1)$	$(3, q-1)$	$(3, q+1)$

Lemma 2.22. Let G be of Lie type in characteristic two. Let $t \in G$ be an involution. Then $F^{*}\left(C_{G}(t)\right)=O_{2}\left(C_{G}(t)\right)$.

Proof. By the the Borel - Tits - Theorem 2.15 we have that $C_{G}(t)$ is contained in some parabolic P. Now we have that $F^{*}(P)=O_{2}(P)$. The $A \times B$-lemma implies that $O_{2}(P)$ is centralized by any element of odd order in $F^{*}\left(C_{G}(t)\right)$, which is impossible. Hence we get that $F^{*}\left(C_{G}(t)\right)=O_{2}\left(C_{G}(t)\right)$.

Lemma 2.23. [GoLyS5, Lemma 10.1.2(a)] Let $G=L_{2}(q), q$ even. Then there is no $U \leq \operatorname{Out}(G)$ such that $U \cong \Sigma_{3}$.

Lemma 2.24. Let $G={ }^{2} F_{4}(q)^{\prime}, q$ even. If $q \neq 2$, then $\operatorname{Out}(G)$ has odd order. If $q=2$ then $\operatorname{Aut}(G)={ }^{2} F_{4}(2)$ and there is no involution in $\operatorname{Aut}(G) \backslash G$.

Proof. If $q>2$, this follows from [GoLy, Theorem 9.1]. So assume that $q=2$. Then with [We] we get $\operatorname{Aut}(G)={ }^{2} F_{4}(2)$. Now the assertion follows from [Shi, Corollary 2].

Lemma 2.25. Let G be a group and $L=F^{*}(G)$ be a group of Lie type in characteristic two.
(1) If there is an outer automorphism of order 2 of L, which centralizes a Sylow 2-subgroup of L, then $L \cong S p_{4}(2)^{\prime}$.
(2) Let t be some outer automorphism of order two of L and K be a component of $C_{L}(t)$. Then $|Z(K)|$ is odd and K is of Lie type in characteristic two. Furthermore $Z(K) \leq Z(L)$.
(3) Assume that L is a central extension of $S p_{2 n}(q), F_{4}(q),{ }^{2} F_{4}(q)^{\prime}$ or $S z(q), q=2^{n}$, and t is an involution in $G \backslash Z(L)$.
(i) If $C_{L}(t) / O\left(C_{L}(t)\right)$ has a component K, then K is a central extension of $S p_{2 n}(s), F_{4}(s),{ }^{2} F_{4}(s)^{\prime}, s=2^{b}$, or in case of $S p_{4}(q)$ also $S z(q)$ is possible. Further $F^{*}(L) \not \not \equiv S z(q)$ or ${ }^{2} F_{4}(2)$.
(ii) A Sylow 2-subgroup T of $C_{L}(t)$ is not abelian.
(4) Let $L \cong P S L_{3}(4)$ and $t \in G$ be an involution, which induces an outer automorphism on L. Then $C_{L}(t) \cong 3^{2}: Q_{8}, P S L_{2}(7)$ or A_{5}.
(5) Assume that L is a central extension of $L_{3}(q)$ or $U_{3}(q), q=2^{n}$, and let t be an involution in $G \backslash Z(L)$. If $C_{L}(t)$ has a component K, then K is a central extension of $L_{2}(s), L_{3}(s)$ or $U_{3}(s)$, $s=2^{b}$, with $b \leq n$ in the first case and $2 b \leq n$ in the remaining cases.
(6) Assume that $L \cong G_{2}(4)$ and there is some involution $t \in G$ such that $C_{L}(t)$ has a component K, then $K \cong G_{2}(2)^{\prime}$.

Proof. By Lemma 2.22 we have that in (3)(i), (5) and (6) t induces an outer automorphism on L. Hence (1), (2), (3)(i), (5) and (6) follow from [AschSe3, Chapter 19] and Lemma 2.24. We get (4) with [GoLyS5, Lemma 10.2.1].

So we are left with (3)(ii). Suppose false. As the components in (3)(i) do not have abelian Sylow 2-subgroups we have $E\left(C_{L}(t) / O\left(C_{L}(t)\right)\right)=$ 1. As T is abelian we have that $T \leq C_{L}\left(O_{2^{\prime}, 2}\left(C_{L}(t)\right) / O\left(C_{L}(t)\right)\right) \leq$ $O_{2^{\prime}, 2}\left(C_{L}(t)\right)$. Hence we get that $T O\left(C_{L}(t)\right) \unlhd C_{L}(t)$. But then with [AschSe3] we get a contradiction as long as $L \not \not \approx F_{4}(q)$ or ${ }^{2} F_{4}(q)^{\prime}$. In the latter two cases we just quote [Shi, Corollary 1, Corollary 2].

Lemma 2.26. Let $F^{*}(G) \in \mathcal{C}_{2}$ and t be an involution in G centralizing a Sylow 2-subgroup of $F^{*}(G)$, then either $t \in F^{*}(G)$ or $F^{*}(G) \cong A_{6}$, and t induces the Σ_{6}-automorphism on $F^{*}(G)$ or $F^{*}(G) \cong L_{4}(3)$ and t induces a graph automorphism on $F^{*}(G)$.

Proof. If $F^{*}(G)$ is a group of Lie type over GF(2) this is Lemma 2.25(1). For $F^{*}(G)$ sporadic this follows with [GoLyS3, Table 5.3]. For the remaining groups the assertion follows with [GoLy, Theorem 9.1].

Next we introduce some notation.
Hypothesis 2.27. Let $G=G(q), q=2^{n}$, be a simple group of Lie type, $G \not \equiv S z(q), L_{2}(q)$ or ${ }^{2} F_{4}(q)^{\prime}$. If $G=S p_{2 n}(q)$ let R be a short root group, and a long root group otherwise. Set $X_{R}=C_{G}(R)$ and $Q_{R}=O_{2}\left(X_{R}\right)$.

Lemma 2.28. Assume Hypothesis 2.27 with $G \not \equiv L_{3}(q), U_{3}(q), S p_{4}(2)^{\prime}$ or $G_{2}(2)^{\prime}$. Let L be a Levi complement in $N_{G}(R)$. Then Q_{R} / R has the following L-module structure:
(i) $G \cong L_{n}(q), O^{2^{\prime}}(L) \cong S L_{n-2}(q), Q_{R} / R=V_{1} \oplus V_{2}, V_{1}$ is the natural L-module and V_{2} its dual.
(ii) $G \cong \Omega_{2 n}^{ \pm}(q), O^{2^{\prime}}(L) \cong \Omega_{2 n-4}^{ \pm}(q) \times L_{2}(q)=L_{1} \times L_{2}, Q_{R} / R=$ $V_{1} \oplus V_{2}, V_{i}, i=1,2$, are natural L_{1}-modules and $\left[Q_{R}, L_{2}\right]=Q_{R}$.
(iii) $G \cong U_{n}(q), O^{2^{\prime}}(L) \cong S U_{n-2}(q), Q_{R} / R$ is the natural module.
(iv) $G \cong E_{6}(q), O^{2^{\prime}}(L) \cong L_{6}(q), Q_{R} / R$ is an irreducible module with $\left|Q_{R} / R\right|=q^{20}$.
(v) $G \cong{ }^{2} E_{6}(q), O^{2^{\prime}}(L) \cong U_{6}(q), Q_{R} / R$ is an irreducible module with $\left|Q_{R} / R\right|=q^{20}$.
(vi) $G \cong E_{7}(q), O^{2^{\prime}}(L) \cong \Omega_{12}^{+}(q), Q_{R} / R$ is an irreducible module with $\left|Q_{R} / R\right|=q^{32}$.
(vii) $G \cong E_{8}(q), O^{2^{\prime}}(L) \cong E_{7}(q), Q_{R} / R$ is an irreducible module with $\left|Q_{R} / R\right|=q^{56}$.
(viii) $G \cong F_{4}(q), O^{2^{\prime}}(L) \cong \operatorname{Sp}_{6}(q), Q_{R} / R$ is an extension of the natural module by a spin module, where the natural module is contained in $Z\left(Q_{R}\right)$. Finally $Z\left(Q_{R}\right)$ does not split over R.
(ix) $G \cong{ }^{3} D_{4}(q), O^{2^{\prime}}(L) \cong L_{2}\left(q^{3}\right), Q_{R} / R$ is the 8 -dimensional $\mathrm{GF}(q)$-module for L.

Proof. This can easily be checked using the Chevalley commutator formula (see also [AschSe3] or [Chapter 3.2][GoLyS3]). In particular in [GoLyS3, Example 3.2.5] one will find the calculation for ${ }^{3} D_{4}(q)$. For $E_{6}(q), E_{7}(q), E_{8}(q)$, this is [CurKaSei, Proposition 4.4], for $F_{4}(q)$ we have [CurKaSei, Proposition 4.5]. As in the language of [CurKaSei] the groups G_{1} and G_{4} are conjugate in $\operatorname{Aut}(G)$, they have the same structure. But in G_{4} the $S p_{6}(q)$ induces $\Omega_{7}(q)$ on $Z\left(O_{2}\left(G_{4}\right)\right)$, which shows that the same also holds for L and so the module $Z\left(Q_{R}\right)$ does no split. The remaining twisted groups can be found in [CurKaSei, Proposition 4.6].

The classical groups are treated in [CurKaSei, Proposition 3.1-3.3] or [GoLyS3, Example 3.2.3]. That the corresponding modules are irreducible is shown in [CurKaSei, Proposition 4.9]. The structure of Q_{R} and the action of L is also given in the paper $[\mathrm{AzBaSei}$, Theorem 2, Theorem 3].

Lemma 2.29. Let $K \cong S p_{2 n}(q), n \geq 3, q=2^{m}$. We have two root groups R_{1} and R_{2}, with
(1) The Levi factor of $N_{K}\left(R_{1}\right)$ is $S p_{2 n-2}(q), O_{2}\left(N_{K}\left(R_{1}\right)\right)$ is elementary abelian and $O_{2}\left(N_{K}\left(R_{1}\right)\right) / R_{1}$ is the natural module.
(2) The Levi factor L of $N_{K}\left(R_{2}\right)$ is $S p_{2 n-4}(q) \times L_{2}(q)$, furthermore $Z\left(O_{2}\left(N_{K}\left(R_{2}\right)\right)\right) / R_{2}$ is the natural $L_{2}(q)$-module, and for $n>$ 2, $O_{2}\left(N_{K}\left(R_{2}\right)\right)^{\prime}=R_{2}$, and $O_{2}\left(N_{K}\left(R_{2}\right)\right) / Z\left(O_{2}\left(N_{K}\left(R_{2}\right)\right)\right)$ is a tensor product of the two natural modules for the two factors of L. If $q>2$, then $Z\left(O_{2}\left(N_{K}\left(R_{2}\right)\right)\right)$ does not split over R_{2} as an $N_{K}\left(R_{2}\right)$-module.

Proof. (1) This is [CurKaSei, Proposition 3.2].
(2) Let V be the natural module for K. Again by [CurKaSei, Proposition 3.2] we have that $N_{K}\left(R_{2}\right)$ is the stabilizer of an isotropic 2-space W in V, where $W=\left[V, R_{2}\right]$. Now $W \leq W^{\perp}$ and $N_{K}\left(R_{2}\right)$ induces on W^{\perp} / W the corresponding symplectic group $S p_{2(n-2)}(q)$. Furthermore we have by [CurKaSei, Proposition 3.2] that $C_{K}\left(R_{1} R_{2}\right) / O_{2}\left(C_{K}\left(R_{1}\right)\right) \cong$ $q^{2(n-2)+1} S p_{2(n-2)}(q)$, which is the centralizer of a long root group in $C_{K}\left(R_{1}\right) / O_{2}\left(C_{K}\left(R_{1}\right)\right)$. We further see that $C_{O_{2}\left(C_{K}\left(R_{1}\right)\right)}(W)$ has index q in $O_{2}\left(C_{K}\left(R_{1}\right)\right)$. By Witt's result we conclude that $C_{K}\left(R_{2}\right)$ induces $S p_{2}(q)$ on W and so $C_{K}\left(R_{2}\right) / O_{2}\left(C_{K}\left(R_{2}\right)\right) \cong S p_{2(n-2)}(q) \times S p_{2}(q)$. Now $O_{2}\left(C_{K}\left(R_{2}\right)\right)$ covers $O_{2}\left(C_{K}\left(R_{1} R_{2}\right)\right) / O_{2}\left(C_{K}\left(R_{1}\right)\right)$ and so $O_{2}\left(C_{K}\left(R_{2}\right)\right)^{\prime} \leq$ $R_{1} R_{2}$. As some $S p_{2}(q)$, which is not contained in $N_{K}\left(R_{1}\right)$, acts on this commutator group, we see that $O_{2}\left(C_{K}\left(R_{2}\right)\right)^{\prime} \leq R_{2}$, with equality for $n \geq 2$. For $n=2$, we see that $O_{2}\left(C_{K}\left(R_{2}\right)\right)$ is elementary abelian. We furthermore have that $R_{1} \leq Z\left(O_{2}\left(C_{K}\left(R_{2}\right)\right)\right)$, which, with the action of $S p_{2}(q)$, shows that $\left|Z\left(O_{2}\left(C_{K}\left(R_{2}\right)\right)\right)\right|=q^{3}$ and modulo R_{2}, the natural module is induced. Let $n>2$. From $C_{K}\left(R_{1}\right)$ we see that $C_{K}\left(R_{1} R_{2}\right) / O_{2}\left(C_{K}\left(R_{1} R_{2}\right)\right)$ induces two $S p_{2(n-2)}(q)$-modules on $O_{2}\left(C_{K}\left(R_{2}\right)\right) / Z\left(O_{2}\left(C_{K}\left(R_{2}\right)\right)\right.$), one in $O_{2}\left(C_{K}\left(R_{1}\right)\right)$ and another one in $O_{2}\left(C_{K}\left(R_{1} R_{2}\right)\right) / O_{2}\left(C_{K}\left(R_{1}\right)\right)$. As $O_{2}\left(C_{K}\left(R_{1} R_{2}\right)\right)$ does not act trivially on this group the same applies for the $S p_{2}(q)$. Hence we see that $O_{2}\left(C_{K}\left(R_{2}\right)\right) / Z\left(O_{2}\left(C_{K}\left(R_{2}\right)\right)\right)$ is a tensor product of the two natural modules.

As $Z\left(O_{2}\left(C_{K}\left(R_{2}\right)\right)\right)$ centralizes W^{\perp}, we may embed it into $S p_{4}(q)$. Hence it is enough to proof that $Z\left(O_{2}\left(C_{K}\left(R_{2}\right)\right)\right)$ does not split over R_{2} for $n=2$. But then we have that R_{1} and R_{2} are conjugate in $\operatorname{Aut}(K)$ and so we just have to prove that $O_{2}\left(C_{K}\left(R_{1}\right)\right)$ does not split over R_{1}. Let S be a Sylow 2-subgroup of K such that $R_{1} R_{2}=Z(S)$. Let B be the Borel subgroup, Then $B=S H$, where $H \cong \mathbb{Z}_{q-1} \times \mathbb{Z}_{q-1}$ induces \mathbb{Z}_{q-1} on R_{1} and R_{2} as well. In particular R_{1}, R_{2} are the only nontrivial H-invariant subgroups in $Z(S)$. As $S^{\prime} \neq 1$, we get that $S^{\prime}=R_{1} R_{2}$. In particular $R_{1} \leq C_{K}\left(R_{1}\right)^{\prime}$, which implies that $O_{2}\left(C_{K}\left(R_{1}\right)\right)$ does not split over R_{1} as a $N_{K}\left(R_{1}\right)$-module.

Lemma 2.30. [DeSte, 10.10 and page 238] Assume Hypothesis 2.27 with $K \cong G_{2}\left(2^{e}\right)$, $e \neq 1$. Let P be the normalizer of the root group R. Then $O^{\prime}(P) \cong\left(2^{e}\right)^{1+4}: S L_{2}\left(2^{e}\right)$. If $e \neq 2$, then $O^{\prime}(P) / Q_{R}$ acts irreducibly on Q_{R} / R. If $e=2$, then P acts irreducibly on Q_{R} / R but $O^{\prime}(P) / Q_{R}$ induces a direct sum of two permutation modules for A_{5} on Q_{R} / R.

Let S be a Sylow 2 subgroup of P, then $Z_{2}(S) \leq Q_{R}$ and $N_{K}\left(Z_{2}(S)\right)$ induces the natural $L_{2}(q)$-module on $Z_{2}(S)$.

Lemma 2.31. [DeSte, 12.9] Let $K \cong{ }^{2} F_{4}(q), q=2^{2 n+1}$. Let R be a long root group in K and $P=C_{K}(R)$. Then $P / O_{2}(P) \cong S z(q)$, $R=Z\left(O_{2}(P)\right), Z_{2}\left(O_{2}(P)\right) / R$ is an irreducible 4-dimensional module for $P / O_{2}(P),\left|C_{O_{2}(P)}\left(Z_{2}\left(O_{2}(P)\right)\right)\right|=q^{6}$ and $O_{2}(P) / C_{O_{2}(P)}\left(Z_{2}\left(O_{2}(P)\right)\right)$ is the natural $P / O_{2}(P)$-module. Finally $O_{2}(P) / Z_{2}\left(O_{2}(P)\right)$ is an indecomposable module for $q>2$.

If $q=2$, then $F^{*}(K) \cong F_{4}(2)^{\prime}$ has index 2 in K. We have that $R=Z\left(O_{2}\left(P \cap F^{*}(K)\right)\right), Z_{2}\left(O_{2}(P)\right)=Z_{2}\left(O_{2}(P) \cap F^{*}(K)\right)$ and $\mid O_{2}(P) \cap$ $F^{*}(K) / Z_{2}\left(O_{2}(P)\right) \mid=16$.

In K there is another parabolic P_{1} normalizing $Z_{2}(S)$ and $Z_{3}(S)$, which is of order q^{3}. We have that P_{1} induces $L_{2}(q)$ on $Z\left(O_{2}\left(P_{1}\right)\right)$.

Lemma 2.32. [GoLyS3, Theorem 3.3.1] Let K be a group of Lie type in characteristic 2 and S be a Sylow 2-subgroup of K. Then $\Omega_{1}(Z(S))$ is a root group or $K \cong S p_{2 n}\left(2^{e}\right)$ or $F_{4}\left(2^{e}\right)$, where $\Omega_{1}(Z(S))$ is a product of two root groups. In particular if $Z\left(Q_{R}\right) \neq R$, then $G \cong S p_{2 n}\left(2^{e}\right)$ or $F_{4}\left(2^{e}\right)$.

Lemma 2.33. Let $H=F^{*}(G)$ be one of $J_{2}, M(24)^{\prime}, L_{n}(2), \Omega_{2 n}^{ \pm}(2)$, $U_{n}(2), E_{6}(2), E_{7}(2), E_{8}(2),{ }^{2} E_{6}(2)$ or ${ }^{3} D_{4}(2)$. Let S be a Sylow 2subgroup of H. Then $\langle r\rangle=Z(S)$ is of order two. If $C_{G}(r)$ does not act irreducibly on $O_{2}\left(C_{H}(r) /\langle r\rangle\right)$, then $H=G \cong L_{n}(2)$, or $H \cong L_{3}(2)$ or $L_{4}(2)$.

Proof. If $F^{*}(G)$ is a group of Lie type this is Lemma 2.28. For $F^{*}(G) \cong$ J_{2} this is [GoLyS3, Table 5.3 g$]$ and for $F^{*}(G) \cong M(24)^{\prime}$ this is [GoLyS3, Table 5.3v].

Lemma 2.34. Let G be a group such that $F^{*}(G)=K \in \mathcal{\mathcal { C } _ { 2 }}$ is a simple group. Let S be a Sylow 2 -subgroup of G and assume that $\left|\Omega_{1}(Z(S))\right| \geq$ 4. If $K \notin \operatorname{Chev}(2)$ then $K \cong L_{4}(3), L_{2}(9)$ or $M(23)$.

Proof. If K is sporadic this follows with [GoLyS3, Table 5.3]. Hence we have that $K \cong L_{3}(3), U_{4}(3), L_{4}(3), G_{2}(3), P S p_{4}(3), L_{2}(9)$ or $L_{2}(p)$, $p=2^{n} \pm 1>5$. As by [GoLyS4, Lemma 4.4.2] $\operatorname{Aut}\left(L_{2}(p)\right)=P G L_{2}(p)$, which by [GoLyS4, Lemma 4.4.1] has a dihedral Sylow 2-subgroup of order $2^{n}>4$, we have that $K \not \not L_{2}(p)$. If $K \cong P S p_{4}(3), U_{4}(3), G_{2}(3)$, $L_{3}(3)$, we get the assertion with [GoLy, Theorem 9.1].

Lemma 2.35. Let G be one of $J_{2}, M(24)^{\prime}, \Omega_{2 n}^{ \pm}(2), n \geq 4, E_{6}(2)$, $E_{7}(2), E_{8}(2),{ }^{2} E_{6}(2)$ or ${ }^{3} D_{4}(2)$. Let S be a Sylow 2-subgroup of G. Then we have $\left|Z_{2}(S)\right|=4$.

Proof. By Lemma 2.33 we have that $|Z(S)|=2$. Set $Z(S)=\langle r\rangle$. Then again by Lemma $2.33 C_{G}(r)$ acts irreducibly on $O_{2}\left(C_{G}(r)\right) /\langle r\rangle$. In all cases but $G \cong M(24)^{\prime}$ we have that $C_{G}(r)$ induces an group of Lie type over $\mathrm{GF}(2)$ on $O_{2}\left(C_{G}(r)\right) /\langle r\rangle$. By [Sm] we then have that $\left|C_{O_{2}\left(C_{G}(r)\right) /\langle r\rangle}(S)\right|=2$, the assertion.

So assume that $G \cong M(24)^{\prime}$. Then by [GoLyS3, Table 5.3g]

$$
C_{G}(r) / O_{2}\left(C_{G}(r)\right) \cong 3 U_{4}(3): 2,
$$

where the normal subgroup of order three is inverted. Furthermore an element of order 3 has to act fixed point freely on $O_{2}\left(C_{G}(r)\right) /\langle r\rangle=$ W. Again we will show that $\left|C_{W}(S)\right|=2$. For this we first take the parabolic subgroup $P=2^{4} 3 A_{6}$ in $3 U_{4}(3)$. Then this group induces a faithful $3 A_{6}$-module on $C_{W}\left(O_{2}(P)\right)$. This must be one of the two 6 dimensional module and so a Sylow 2-subgroup T of P centralizes in W a 2-dimensional space. This shows that $\left|C_{W}(S \cap P)\right|=4$. We have that $Z(P)$ acts faithfully on $C_{W}(S \cap P)$ and so $\langle S, Z(P)\rangle$ induces $G L_{2}(2)$ on $C_{W}(S \cap P)$. Hence $C_{W}(S)$ is of order two and so $\left|Z_{2}(S)\right|=4$, the assertion.

Lemma 2.36. Assume Hypothesis 2.27 with $G \not \neq G_{2}(2)^{\prime}$ or A_{6}. Let H be a hyperplane in $Z\left(Q_{R}\right)$ not containing Q_{R}^{\prime}, then Q_{R} / H is extraspecial.

Proof. As $Q_{R}^{\prime} \leq Z\left(Q_{R}\right)$, we get that Q_{R} / H is non abelian with commutator group of order 2. Hence if $C_{G}(R)$ acts irreducibly on $Q_{R} / Z\left(Q_{R}\right)$, we have the assertion. So by Lemma 2.28, Lemma 2.29 and Lemma 2.30 we are left with $G \cong L_{n}(q), n \geq 3$, or $G_{2}(4)$.

Let first $G \cong L_{n}(q)$ and E_{1}, E_{2} be the two normal elementary abelian subgroups of order q^{n-1} in Q_{R}, which correspond to the set of transvection to a point and to a hyperplane on the natural module, respectively. Then G induces $S L_{n-1}(q)$ on these groups and so they are defined over $\operatorname{GF}(q)$. Let U be the preimage of $Z\left(Q_{R} / H\right)$. Then $\left[U, E_{i}\right] \leq H$, $i=1,2$. As $|H|<q$, this implies (recall E_{i} are modules over $\operatorname{GF}(q)$), that $U \leq E_{1} \cap E_{2}=R$. Hence Q_{R} / H is extraspecial.

Let $G \cong G_{2}(4)$ and let U be as before. By Lemma 2.30 we have $Z_{2}(S) \leq Q_{R}$. In particular $\left[Z_{2}(S), U\right] \leq H$. As by Lemma 2.30 $Z_{2}(S)$ is the natural $L_{2}(4)$-module, we get that $\left[Z_{2}(S), U\right]=1$. As Q_{R} / R is a direct sum of two modules for $C_{G}(R)$, we see that $Z_{2}(S)$ intersects both nontrivially and so $Q_{R}=\left\langle Z_{2}(S)^{C_{H}(R)}\right\rangle$. This implies $\left[U, Q_{R}\right]=1$ and so again $U=R$, the assertion.

Assume Hypothesis 2.27. Then using the lemmas above we get

- $C_{G}\left(Q_{R}\right)=Z\left(Q_{R}\right)$.
- X_{R} induces an irreducible module on $Q_{R} / Z\left(Q_{R}\right)$ for $G \not \approx L_{n}(q)$ or $G_{2}(4)$.
- If $Z\left(Q_{R}\right) \neq Q_{R}$, then $C_{X_{R}}\left(Q_{R} / Z\left(Q_{R}\right)\right)=Q_{R}$.
- For $G \cong F_{4}(q)$ or $S p_{2 n}(q)$ we have that X_{R} induces on $Z\left(Q_{R}\right) / R$ an irreducible module and an indecomposable module on $Z\left(Q_{R}\right)$ if $G \neq S p_{2 n}(2)$.
- Suppose $G \not \approx S p_{4}(q)$. If H is a hyperplane in $Z\left(Q_{R}\right)$ not containing R, then Q_{R} / H is extraspecial.

Lemma 2.37. Suppose Hypothesis 2.27 with $G \not \not G_{2}(2)^{\prime}$. We have $C_{Q_{R}}\left(X_{R}\right)=R$.

Proof. Obviously $C_{Q_{R}}\left(X_{R}\right) \leq Z\left(Q_{R}\right)$ Hence the lemma is true if $R=$ $Z\left(Q_{R}\right)$. So we may assume that $G \cong S p_{2 n}(q)$ or $F_{4}(q)$. But then by Lemma 2.29 or Lemma $2.28 X_{R}$ induces on $Z\left(Q_{R}\right) / R$ an irreducible nontrivial module, the assertion.

Lemma 2.38. Suppose Hypothesis 2.27 with $q>2$. If U / Q_{R} is normal in X_{R} / Q_{R}, then $F^{*}\left(U / Q_{R}\right)$ is a product of quasisimple groups, each of which is normal in X_{R} / Q_{R}, with at most one cyclic group.

Proof. If $G \cong L_{3}(q)$ or $U_{3}(q)$, then Q_{R} is a Sylow 2-subgroup and X_{R} / Q_{R} is a subgroup of the Cartan subgroup, which is a cyclic group in case of $U_{3}(q)$ and a product of two cyclic groups of order $(q-1)$ and $(q-1) / \operatorname{gcd}(3, q-1)$ in case of $L_{3}(q)$. But the Cartan subgroup induces a cyclic group of order $q-1$ on R, so the assertion holds. In the other cases we have with Lemma 2.28, Lemma 2.29 and Lemma 2.30 that X_{R} / Q_{R} is an extension of $O^{2^{\prime}}\left(X_{R} / Q_{R}\right)$ by a cyclic subgroup of the Cartan subgroup. Hence all we have to show is that $O^{2^{\prime}}\left(X_{R} / Q_{R}\right)$ is a product of quasisimple groups which are normal in X_{R}. Now the lemmas just quoted show that $O^{2}\left(X_{R} / Q_{R}\right)$ is quasisimple besides in the cases $\Omega_{2 n}^{ \pm}(q)$ and $S p_{2 n}(q)$. If there are just two components, then they cannot be conjugated in X_{R} / Q_{R}. So just the case $G=\Omega_{8}^{+}(q)$ remains, where we have three components $L_{2}(q)$. Now $\Omega_{8}^{+}(q)$ embeds into $S p_{8}(q)$ and so $O^{2^{\prime}}\left(X_{R}\right)$ embeds into the corresponding group there, which is an extension of a 2-group by $S p_{4}(q) \times L_{2}(q)$ and two of the three components of $O^{2^{\prime}}\left(X_{R} / Q_{R}\right)$ embed into the $S p_{4}(q)$, in particular they all have to be normal in X_{R} / Q_{R}, the assertion.

Lemma 2.39. Suppose Hypothesis 2.27 with $q>2$. If U is a normal subgroup in X_{R} which does not contain R, then $U<R$.

Proof. As $C_{G}\left(Q_{R}\right) \leq Q_{R}$ we get that $U \cap Q_{R} \neq 1$. Suppose first that $U \cap Q_{R} \not 又 Z\left(Q_{R}\right)$. Let $u \in U \cap Q_{R} \backslash Z\left(Q_{R}\right)$. Then, as by Lemma 2.36 Q_{R} / H is extraspecial for any hyperplane H of $Z\left(Q_{R}\right)$ not containing R, we get that $R=\left[u, Q_{R}\right] \leq U$, a contradiction. So we have that $U \cap Q_{R} \leq Z\left(Q_{R}\right)$. Now $\left[U, Q_{R}\right] \leq Q_{R} \cap U \leq Z\left(Q_{R}\right)$. If $Q_{R} \neq Z\left(Q_{R}\right)$, then $C_{X_{R}}\left(Q_{R} / Z\left(Q_{R}\right)\right)=Q_{R}$. So we now get that $U \leq Z\left(Q_{R}\right)$. Hence either $U<R$ or $Z\left(Q_{R}\right) \neq R$.

Assume $Z\left(Q_{R}\right) \neq R$. Then either $G \cong S p_{2 n}(q)$ or $G \cong F_{4}(q)$. In both cases we have by Lemma 2.29 or Lemma 2.28 that X_{R} acts irreducibly on $Z\left(Q_{R}\right) / R$. This shows that $Z\left(Q_{R}\right)=U R$. But as $q>2$, we have that X_{R} induces on $Z\left(Q_{R}\right)$ an indecomposable extension of the trivial module by the natural $L_{2}(q)$-module, $S p_{6}(q)$-module, respectively. As there is a group of order $q-1$ acting transitively on R^{\sharp}, we see that $R \leq\left[Z\left(Q_{R}\right), X_{R}\right]$ and so $R \leq U$, a contradiction.

Lemma 2.40. Let $G=L_{3}(q), q=2^{n}$, and T be a Sylow 2-subgroup of G. Then G possesses two parabolics P_{1}, P_{2} which contain T, such that $U_{i}=O_{2}\left(P_{i}\right)$ is elementary abelian of order q^{2} and $O^{2^{\prime}}\left(P_{i} / U_{i}\right) \cong L_{2}(q)$, for $i=1,2$. Furthermore P_{i} induces the natural module on $U_{i}, i=1,2$, $T=U_{1} U_{2}$ and any involution of T is contained in $U_{1} \cup U_{2}$. Finally there is an automorphism α of G, which normalizes T with $P_{1}^{\alpha}=P_{2}$.
Proof. We consider $L=S L_{3}(q)$ instead. Let V be the natural module for L and let P_{1} be the point stabilizer. Then $P_{1} / O_{2}\left(P_{1}\right) \cong G L_{2}(q)$ and $U_{1}=O_{2}\left(P_{1}\right)$ is elementary abelian of order q^{2}, U_{1} are just all transvections to this point. Fix T a Sylow 2-subgroup of P_{1}. By Lemma 2.16 there is a graph automorphism α which normalizes T. Set $P_{2}=P_{1}^{\alpha}$. Then $U_{2}=U_{1}^{\alpha}$ is the set of transvections to a hyperplane. In particular $U_{1} \neq U_{2}$. As $N_{P_{1}}(T)=N_{L}(T) \leq P_{2}$ and $N_{L}(T)$ acts irreducibly on T / U_{1}, we get that $U_{1} U_{2}=T$. Let $x \in T$ be some involution. Then $[V, x]$ is 1-dimensional. Furthermore $[V, x, x]=1$, so $[V, x] \leq C_{V}(x)$. Hence x is a transvection. So all involutions are in $U_{1} \cup U_{2}$.

Lemma 2.41. Let $G=L_{3}(4)$.
(a) If T is a Sylow 2-subgroup of G. Then $Z(T)$ is elementary abelian of order 4. Furthermore $C_{G}(v)$ is solvable for all $1 \neq$ $v \in Z(T)$.
(b) Let $H=G\langle\alpha\rangle$, where α is an involution, which induces a graph automorphism on G, then $C_{E(H)}(\alpha) \cong A_{5}$.
Proof. (a) By Lemma 2.40 we have that $T=U_{1} U_{2}$, where U_{1} and U_{2} are elementary abelian of order 16 and $C_{T}\left(U_{1}\right)=U_{1}$. Hence $Z(T)=U_{1} \cap U_{2}$ is elementary abelian of order 4 . If $1 \neq v$ is an involution in $Z(T)$, then
by the Borel-Tits-Theorem $2.15 C_{G}(v) \leq P_{1}$ or P_{2} in the language of Lemma 2.40. Now $P_{i} / O_{2}\left(P_{i}\right) \cong L_{2}(4)$, which induces a natural module on $O_{2}\left(P_{i}\right)$. As $v \in O_{2}\left(P_{i}\right)$, we have that $C_{P_{i}}(v)$ is a Sylow 2-subgroup and so solvable.
(b) This is [GoLyS5, Lemma 10.2.1].

Lemma 2.42. Let $X=H\langle\alpha\rangle, H / Z(H) \cong L_{3}(4), Z(H) \leq H^{\prime}$, where α induces a graph automorphism on. Let Y be a Sylow 2-subgroup of X.
(a) $Y Z(H) / Z(H)$ does not contain an elementary abelian normal subgroup of order 8 .
(b) Let $1 \neq Z(H) \leq H^{\prime}$ be a 2 -group. If U is a normal subgroup of Y such that Y / U is abelian or dihedral of order 8 , then $Z(H) \cap U \neq 1$.

Proof. For (a) we may assume $Z(H)=1$. By Lemma 2.40 we have in H two parabolics P_{1}, P_{2}, both extensions of elementary abelian groups of order 16 by $L_{2}(4)$. Further $P_{1}^{\alpha}=P_{2}$. In $Y \cap H$ we have that all involutions either are in $O_{2}\left(P_{1}\right)$ or in $O_{2}\left(P_{2}\right)$. Now let E be elementary abelian of order 8 and E be normal in Y. Then we may assume that $E \cap H \leq O_{2}\left(P_{1}\right)$. As α does not normalize any subgroup of order 8 in $O_{2}\left(P_{1}\right)$, we see that $|E \cap H|=4$ and so $E \not \leq H$. So we have some $e \in E$ with $P_{1}^{e}=P_{2}$. Then $E \cap H=(E \cap H)^{e} \leq O_{2}\left(P_{1}\right) \cap O_{2}\left(P_{2}\right)$ we see that $E \cap H=Z(Y \cap H)$. But then $[E, Y] \leq Z(Y \cap H) \leq O_{2}\left(P_{1}\right)$ and so E normalizes $O_{2}\left(P_{1}\right)$, a contradiction. This is (a).

By $[\mathrm{Hu},(\mathrm{I} .17 .4)]$ we have that $Z(H) \leq(Y \cap H)^{\prime}$. Let now $U \unlhd Y$. If Y / U is abelian, then $Y^{\prime} \leq U$ and so $Z(H) \leq U$. So we may assume that Y / U is dihedral of order 8 . Assume $Z(H) \cap U=1$. Then we have that $Z(H) U / U \leq Y^{\prime} U / U$ is the center of this dihedral group. In particular $|Z(H)|=2$. As even $Y \cap H / U \cap H$ has to be nonabelian, we may assume that $\alpha \in U$. Now also $[\alpha, Y] \leq U \cap H$. Let W be the preimage of $O_{2}\left(P_{1}\right)$. As $O_{2}\left(P_{1}\right)$ is the natural module for P_{1}, i.e. P_{1} acts transitively on the nontrivial elements, we see that W is elementary abelian. Now $Y \cap H=[Y, \alpha] W$ as $Y \cap H=W W^{\alpha}$. But then we have that $Y \cap H / H \cap U=[Y, \alpha] W / H \cap U \leq(U \cap H) W / H \cap U \cong W / W \cap U$ is elementary abelian, a contradiction. This is (b).

Lemma 2.43. Assume Hypothesis 2.27 with $q>2$. Assume further that $G \not \equiv L_{3}(4)$ and $G \not \approx G_{2}(4)$. Let $N \leq Q_{R}$ be a normal subgroup of X_{R}. If $N \not \leq Z\left(Q_{R}\right)$ then either $N=Q_{R}$ or $G=L_{n}(q)$ and N is elementary abelian of order q^{n-1}, or $G=L_{3}(q)$ and $\Omega_{1}(N) \leq R$.

Proof. By Lemma 2.28, Lemma 2.29 and Lemma 2.30 we have that X_{R} acts irreducibly on $Q_{R} / Z\left(Q_{R}\right)$ or $G=L_{n}(q)$. In the case of $L_{n}(q)$ we
have that Q_{R} / R is a direct sum of the natural $S L_{n-2}(q)-$ module by its dual. So N / R is one of the two modules provided $n>4$.

Assume $G=L_{4}(q)$. As $q>2$, we have that $X_{R} / Q_{R} \cong L_{2}(q) \times \mathbb{Z}_{q-1}$. As there is an outer automorphism, the graph automorphism, which inverts the cyclic group of order $q-1$ and centralizes the $L_{2}(q)$, we see again that the two modules are the only proper X_{R}-invariant subgroups in Q_{R} / R and so we get the same result as for $n>4$.

Finally let $G=L_{3}(q)$. Then we have a cyclic group Y_{R} of order $(q-1) / \operatorname{gcd}(3, q-1)$ in X_{R}. As now $q>4$, we have that Y_{R} is nontrivial. By Lemma $2.40 Q_{R}=E_{1} E_{2}$, where the E_{i} are the two elementary abelian subgroups of order q^{2} in Q_{R}. Further all involutions of Q_{R} are in $E_{1} \cup E_{2}$. As Y_{R} acts irreducibly on E_{i} / R, we see that either $N=E_{i}$ or $N \cap E_{i} \leq R$. But then $\Omega_{1}(N) \leq R$.
Lemma 2.44. Suppose Hypothesis 2.27 with $G \cong L_{n}(q), q=2^{m}$, $m \geq 2, n \geq 3, G \nsubseteq L_{3}(4)$. Then X_{R} has no subgroup of index two.
Proof. From Lemma 2.28 we see that $O^{2^{\prime}}\left(X_{R} / Q_{R}\right) \cong L_{n-2}(q)$. Let first $n \neq 3$. As $q>2, L_{n-2}(q)$ is a simple group. Next we see that X_{R} induces on $Q_{R} / Z\left(Q_{R}\right)$ a sum of two modules, which both are nontrivial. If $G \cong L_{3}(q)$ there is some cyclic group Y_{R} of order $(q-1) / \operatorname{gcd}(3, q-1)$ in X_{R}. As $q>4$ in this case, we have that $Y_{R} \neq 1$. Now in this case $\left[Q_{R}, Y_{R}\right]=Q_{R}$. Hence in any case a subgroup U_{R} of index two in X_{R} has to cover $O^{2^{\prime}}\left(X_{R} / R\right)$. As $Z\left(Q_{R}\right)=R$, then $R=O_{2}\left(X_{R}\right)^{\prime}$ and so $R \leq U_{R}$ too, a contradiction.

Lemma 2.45. Assume Hypothesis 2.27 with $G \not \approx G_{2}(2)^{\prime}$. Let t be a 2-element which induces an automorphism of G such that $\left[t, Q_{R}\right] \leq$ $Z\left(Q_{R}\right)$, then t is induced by some element from Q_{R}, or $G \cong S p_{4}(q)^{\prime}$.
Proof. We may assume that $G \not \equiv S p_{4}(q)^{\prime}$. Then we have that $Q_{R}^{\prime}=$ R and $Q_{R}=C_{G}\left(Q_{R} / Z\left(Q_{R}\right)\right)$. This shows that $\left[t, X_{R}\right] \leq Q_{R}$. By Lemma 2.39 we now get $G \cong L_{3}(2), L_{3}(4), L_{3}(16)$ or $L_{4}(2)$. In case of $L_{4}(2)$ the Σ_{8}-automorphism does not act trivially on $Q_{R} / Z\left(Q_{R}\right)$. So t is inner. So assume $G \cong L_{3}(q)$ Then we see that t also has to induces an inner automorphism by [AschSe3, (19.1)] which then has to be in Q_{R}.
Lemma 2.46. Assume Hypothesis 2.27. Let $G \cong S p_{2 n}(q)$, $n \geq 3$, or $F_{4}(q), q=2^{m}, m \geq 2$. Let S be a Sylow 2 -subgroup of G and $X=$ $C_{G}(Z(S))^{(\infty)}$. If N is normal in X with $R \cap N=1$, then $N \leq Z\left(Q_{R}\right)$.
Proof. We have that $Q_{R}^{\prime}=R$. Hence $N \cap Q_{R} \leq Z\left(Q_{R}\right)$ as $N \cap R=1$ and $N \unlhd X$. As Q_{R} is normal in X too, we see $\left[Q_{R}, N\right] \leq Q_{R} \cap N \leq Z\left(Q_{R}\right)$.

But $C_{G}\left(Q_{R} / Z\left(Q_{R}\right)\right)=Q_{R}$ and so $N \leq Q_{R}$, whence $N \leq Z\left(Q_{R}\right)$, the assertion.

Lemma 2.47. Let V be a non split extension of a trivial module by the natural module for $X=L_{2}(q), q$ even. Let S be a Sylow 2-subgroup of X and A be a fours group in S. Then $[V, A]=[V, S]$.
Proof. Let $\nu \in X, o(\nu)=q+1$ and $\nu^{a}=\nu^{-1}$ for some $a \in A$. We have that $|[V, \nu]|=q^{2}$ and so as $|[V, a]|=q$, we see $[V, a] \leq[V, \nu]$. Let $A=\langle a, b\rangle$. We have that $\langle[V, \nu],[V, b]\rangle$ is invariant under $\langle A, \nu\rangle=X$. Hence we conclude that $\langle[V, \nu],[V, b]\rangle=V$ and so $[V, A]=C_{V}(a)=$ $C_{V}(S)=[V, S]$.

Lemma 2.48. Let $G=S p_{4}(q), q=2^{n}>2$, and T be a Sylow 2subgroup of G. Then G possesses two parabolics P_{1}, P_{2} which contain T, such that $U_{i}=O_{2}\left(P_{i}\right)$ is elementary abelian of order q^{3} and $P_{i} / U_{i} \cong$ $G L_{2}(q)$, for $i=1,2$. We have that U_{i} is an indecomposable module for P_{i} and $Z\left(O^{2^{\prime}}\left(P_{i}\right)\right)=R_{i}$ is a root group. Furthermore $Z(T)=R_{1} R_{2}=$ $T^{\prime}, T=U_{1} U_{2}$ and any involution in T is contained in $U_{1} \cup U_{2}$. There is an automorphism α of G with $R_{1}^{\alpha}=R_{2}$ and $P_{1}^{\alpha}=P_{2}$.
Proof. Let R_{1} be the short root group in $Z(T)$ and $P_{1}=N_{G}\left(R_{1}\right)$. The structure of $O^{2^{\prime}}\left(P_{1}\right)$ is given in Lemma 2.29. Let α be a diagram automorphism, which normalizes T (see Lemma 2.16). Set $P_{2}=P_{1}^{\alpha}$ and $R_{2}=R_{1}^{\alpha}$. Then we have that $Z(T)=R_{1} R_{2}$. As in $O^{2^{\prime}}\left(P_{1}\right)$ there is a cyclic group of order $q-1$ which acts transitively on $R_{1} R_{2} / R_{1}$, we get that this group is in P_{2} and so $P_{2} / U_{2} \cong G L_{2}(q)$. The same applies for P_{1} via α. As U_{i} are indecomposable by Lemma 2.29 we get $R_{1} R_{2} \leq T^{\prime}$. But in P_{1} we see that $T / R_{1} R_{2}$ is abelian, so $T^{\prime}=R_{1} R_{2}=Z(T)$. As $O^{2^{\prime}}\left(P_{1} / R_{1}\right)$ is a split extension of the natural module by $L_{2}(q)$, we get that T / R_{1} is isomorphic to a Sylow 2-subgroup of $L_{3}(q)$. Now application of Lemma 2.40 gives that any involution of T is contained in $U_{1} \cup U_{2}$.

Lemma 2.49. Let $G=S p_{4}(q), q=2^{n}>2$, and let T be a Sylow 2 -subgroup of G. If α is an outer automorphism of G normalizing T, which is of 2-power order, then $\left|T: C_{T}(\alpha)\right| \geq q^{2}$.
Proof. Let $Z(T)=R_{1} R_{2}, R_{i}=Z\left(O^{\prime}\left(P_{i}\right)\right), i=1,2$, in the notation of Lemma 2.48. If $R_{1}^{\alpha}=R_{2}$, then $\left|Z(T): C_{Z(T)}(\alpha)\right| \geq q$. Furthermore $U_{1}^{\alpha}=U_{2}$ and so $\left|U_{1} U_{2} / U_{1} \cap U_{2}: C_{U_{1} U_{2} / U_{1} \cap U_{2}}(\alpha)\right| \geq q$, which gives the assertion.

So we may assume that $R_{1}^{\alpha}=R_{1}$ and $R_{2}^{\alpha}=R_{2}$. By Lemma 2.16 we see that α induces a field automorphism and $q=r^{2}$. Now $P_{1}^{\alpha}=P_{1}$ and α
induces a field automorphism on $P_{1} / O_{2}\left(P_{1}\right)$, which gives that $\mid T / U_{1}$: $C_{T / U_{1}}(\alpha) \mid \geq r$. Furthermore $\left|Z(T): C_{Z(T)}(\alpha)\right| \geq q$. As $\left[T, U_{1}\right] \leq Z(T)$, we have that α induces a field automorphism on $U_{1} / Z(T)$, which gives $\left|U_{1} / Z(T): C_{U_{1} / Z(T)}(\alpha)\right| \geq r$. Together we get $\left|T: C_{T}(\alpha)\right| \geq r q r=q^{2}$, which proves the lemma.
Lemma 2.50. Let $H=S p_{4}(q), q=2^{n}>2$, T be a Sylow 2-subgroup of H and R be a root group in $Z(T)$. Then the following hold:
(i) If $N \unlhd T$, then $N \nsubseteq \mathbb{Z}_{4}$ or D_{8}.
(ii) If $N \unlhd T$ with $R \not \leq N$, then $|T: N| \geq q^{2} / 2$. If $|T: N|=q^{2} / 2$, then $\left|(T / N)^{\prime}\right|=2$. If $|T: N|=q^{2}$ we have that $\left|(T / N)^{\prime}\right| \leq 4$.

Proof. By Lemma 2.48 we have that $T=U_{1} U_{2}$, where U_{i} are elementary abelian groups of order q^{3} and $\left\{i \mid i^{2}=1, i \in U\right\}=U_{1} \cup U_{2}$.
(i) Assume false. Hence we have in both cases that there is some $x \in N$ with $x \notin U_{1}$. But then $C_{U_{1}}(x)=Z(T)$, as $N_{H}\left(U_{1}\right)$ induces $L_{2}(q)$ on U_{1}. As by Lemma $2.48\left[U_{1}, x\right] \leq Z(T)$ we have that $\left[U_{1}, x\right] \leq \Omega_{1}(Z(N))$. As $\left|\left[U_{1}, x\right]\right|=q, q>2$ and $\left|\Omega_{1}(Z(N))\right|=2$, this is not possible.
(ii) Suppose $|N: Z(T) \cap N| \geq 8$. Then we may assume that N projects onto $U_{1} / Z(T)$ with a group of order at least 4 . By Lemma 2.47 we get that $N \geq\left[U_{2}, N\right] \geq Z(T)$, a contradiction to $R \not 又 N$.

So we have that $|N: N \cap Z(T)| \leq 4$ and N projects onto each $U_{i} / Z(T)$ with a group of order at most two. In fact this shows that $|T: N| \geq q^{2} / 2$.

Suppose now that $|T: N| \leq q^{2}$. In particular we have that $\mid Z(T)$: $Z(T) \cap N \mid \leq 4$. As $T^{\prime}=Z(T)$ by Lemma 2.48, we get that $(T / N)^{\prime} \leq$ $Z(T) N / N$ and so $\left|(T / N)^{\prime}\right| \leq 4$. If $|T: N|=q^{2} / 2$, then we have that $|Z(T): Z(T) \cap N|=2$ and so $\left|(T / N)^{\prime}\right|=2$.
Lemma 2.51. Let H be a group and $H_{1}=F^{*}(H) \cong S p_{4}(q)^{\prime}, q=2^{n}$, $U \leq H$ be a 2-group such that
(i) $U=\Omega_{1}(U)$,
(ii) $q^{4} \geq|U| \geq q^{4} / 2$,
(iii) $1 \neq\left|U^{\prime}\right| \leq 4$ and
(iv) if $|U|=q^{4} / 2$ then $\left|U^{\prime}\right|=2$.

Then $q=2$.
Proof. Suppose $q>2$. Let T be a Sylow 2 -subgroup of H_{1} which is normalized by U. As by Lemma $2.48 \operatorname{Out}\left(S p p_{4}(q)\right)$ has cyclic Sylow 2-subgroups, we have that $\left|U: U \cap H_{1}\right| \leq 2$.

Let R_{1}, R_{2} be the two root groups with $R_{1} R_{2}=Z(T)$. We have that $T=U_{1} U_{2}, N_{H_{1}}\left(U_{i}\right)=N_{H_{1}}\left(R_{i}\right), N_{H_{1}}\left(U_{i}\right) / U_{i} \cong G L_{2}(q)$ and U_{i} is a non split extension of R_{i} by the natural module for $G L_{2}(q), i=1,2$ (see Lemma 2.48).

Suppose there is some involution $t \in U$, with $t \notin H_{1}$. Then by Lemma 2.49

$$
\begin{equation*}
\left|T: C_{T}(t)\right| \geq q^{2} \tag{*}
\end{equation*}
$$

We have $|T: U \cap T| \leq 4$, as $|U| \geq|T| / 2$. So we see with ($*$) that $|[t, U]| \geq q^{2} /|T: U \cap T|$. Hence $8 \geq\left|U^{\prime}\right||T: U \cap T| \geq q^{2}$, a contradiction. This shows $U \leq H_{1}$.
As $\left|T^{\prime}\right|=q^{2}$ by Lemma 2.48 , we get that $|U|=q^{4} / 2$ and so $\left|U^{\prime}\right|=2$. If $x \in T \backslash Z(T)$, then $|[T, x]| \geq q$. Choose $t \in Z(U)$. Then $|[T, t]| \leq \mid T:$ $U \mid=2$. As $q>2$, we get $t \in Z(T)$. This shows that $Z(U) \leq Z(T)$. Further if $Z(T) \not \leq U$ then $T=Z(T) U$ and then $T^{\prime}=U^{\prime}$, which contradicts $\left|T^{\prime}\right|=q^{2}$. So $Z(T)=Z(U)$. In particular U is a central product of $Z(T)$ with an extraspecial group. Then $|U|=q^{2} 2^{2 n}$ for some n, which contradicts $|U|=q^{4} / 2$.

Lemma 2.52. Let $G=G_{2}(4)$.
(a) Let T be a Sylow 2-subgroup of G, then $Z(T)$ is elementary abelian of order 4 .
(b) $\operatorname{Out}(G)$ induces just field automorphisms on G.

Proof. (a) This follows from Lemma 2.30.
(b) This follows from Lemma 2.16 and Lemma 2.21.

Lemma 2.53. Let $G=L_{2}(r), L_{3}(r)$ or $U_{3}(r), r=2^{f}$, and T be a Sylow 2 -subgroup of $\operatorname{Aut}(G)$. Then $|T|<r^{2}$ in the first case and $|T|<2 r^{4}$ in the last two cases.

Proof. By Lemma 2.16 we have that $|\operatorname{Out}(L)|_{2} \leq f$ in the first case and $|\operatorname{Out}(L)| \leq 2 f$ in the last two cases. As $f<r$ and $|T|=r, r^{3}$, respectively, we get the assertion.

Lemma 2.54. Let $K \in \mathcal{C}_{2}$ and $E=S L_{2}(3) * S L_{2}(3)$ a subgroup of $\operatorname{Aut}(K)$, then $O^{2}(E)$ induces inner automorphisms.

Proof. This follows with [GoLyS4, Lemma 4.1.1].
In the next definition we sort out some subsets of \mathcal{C}_{2}, which will become important in the proof when we will construct a standard subgroup in the centralizer of a 2-central involution.

Definition 2.55. (a) By \mathcal{M} we denote the set

$$
\begin{aligned}
& \left\{U_{6}(2), S p_{6}(2), \Omega_{8}^{+}(2), F_{4}(2), S z(8), G_{2}(4), L_{3}(4),{ }^{2} E_{6}(2),\right. \\
& \left.\quad M(22), F_{2}, M_{22}, M_{12}, S u z, C o_{1}, J_{2}, R u, H i S, U_{4}(3)\right\}
\end{aligned}
$$

(b) By \mathcal{M}_{1} we denote the set

$$
\begin{gathered}
\left\{M(22), 2 M(22), M(23), M(24)^{\prime}, F_{2}, 2 F_{2}, F_{1}, 2 S u z, 2 R u, 2 C o_{1},\right. \\
\left.2 \Omega_{8}^{+}(2), 2^{2} \Omega_{8}^{+}(2), 2 U_{6}(2), 2^{2} U_{6}(2), 2 \cdot{ }^{2} E_{6}(2), 2^{2} \cdot{ }^{2} E_{6}(2)\right\} .
\end{gathered}
$$

(c) By \mathcal{M}_{2} we denote the set

$$
\left\{M(22), 2 M(22), M(23), M(24)^{\prime}, F_{2}, 2 F_{2}, F_{1}\right\}
$$

(d) By \mathcal{R} we denote the set

$$
\begin{gathered}
\left\{U_{6}(2), S p_{6}(2), \Omega_{8}^{+}(2),{ }^{2} F_{4}(2)^{\prime}, F_{4}(2),\right. \\
\left.{ }^{2} E_{6}(2), M(22), M(23), M(24)^{\prime}, F_{2}, F_{1}\right\} .
\end{gathered}
$$

The groups in \mathcal{M} are exactly those in \mathcal{C}_{2}, whose nontrivial central extensions by 2 -groups are again in \mathcal{C}_{2} (see Lemma 2.56). The groups in \mathcal{M}_{1} are the groups $G \in \mathcal{C}_{2}$ which possess an involution in $\operatorname{Aut}(G)$ such hat $C_{G}(t)$ has a component $K \in \mathcal{C}_{2}$ with $Z(K) \neq 1$, and the groups in \mathcal{M}_{2} are in \mathcal{M}_{1} but $Z(K) \not \leq Z(G)$ (see Lemma 2.60). The meaning of the set \mathcal{R} will become clear in Chapter 4 . There we introduce a certain relation on components of involution centralizer.

The set \mathcal{R} consists of those terminal elements, which cannot be reached from elements outside of \mathcal{R} (see Lemma 4.12 and Lemma 4.13).

Lemma 2.56. Let $G \in \mathcal{C}_{2}$ with $Z(G) \neq 1$, then $G / Z(G) \in \mathcal{M}$.
Proof. This can be found in [GoLyS3, Table 5.3] for the sporadic groups and [GoLyS3, Theorem 6.1.4] for the groups of Lie type.

Lemma 2.57. If $G \in \mathcal{C}_{2}$ and $G / Z(G)$ has abelian Sylow 2-subgroups, then $Z(G)=1$.

Proof. Suppose false, then by Lemma $2.56 G / Z(G) \in \mathcal{M}$. But there are no groups with abelian Sylow 2 -subgroup in \mathcal{M}.

We will quite often use that groups cannot be involved in other groups. For this we sometimes just use the orders. We now collect this information.

Lemma 2.58. For $L \in \mathcal{M}$ the order of L is given below:

```
\(U_{6}(2) \quad 2^{15} \cdot 3^{6} \cdot 5 \cdot 7 \cdot 11\)
\(S p_{6}(2) \quad 2^{9} \cdot 3^{4} \cdot 5 \cdot 7\)
\(\Omega_{8}^{+}(2) \quad 2^{12} \cdot 3^{5} \cdot 5^{2} \cdot 7\)
\(F_{4}(2) \quad 2^{24} \cdot 3^{6} \cdot 5^{2} \cdot 7^{2} \cdot 13 \cdot 17\)
\(S z(8) \quad 2^{6} \cdot 5 \cdot 7 \cdot 13\)
\(G_{2}(4) \quad 2^{12} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 13\)
\(L_{3}(4) \quad 2^{6} \cdot 3^{2} \cdot 5 \cdot 7\)
\({ }^{2} E_{6}(2) \quad 2^{36} \cdot 3^{9} \cdot 5^{2} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19\)
\(U_{4}(3) \quad 2^{7} \cdot 3^{6} \cdot 5 \cdot 7\)
\(M(22) \quad 2^{17} \cdot 3^{9} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13\)
\(F_{2} \quad 2^{41} \cdot 3^{13} \cdot 5^{6} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 17 \cdot 19 \cdot 23 \cdot 31 \cdot 47\)
\(M_{12} \quad 2^{6} \cdot 3^{3} \cdot 5 \cdot 11\)
\(M_{22} \quad 2^{7} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11\)
Suz \(\quad 2^{13} \cdot 3^{7} \cdot 5^{2} \cdot 7 \cdot 11 \cdot 13\)
\(C_{0} \quad 2^{21} \cdot 3^{9} \cdot 5^{4} \cdot 7^{2} \cdot 11 \cdot 13 \cdot 23\)
\(J_{2} \quad 2^{7} \cdot 3^{3} \cdot 5^{2} \cdot 7\)
Ru \(\quad 2^{14} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 13 \cdot 29\)
\(H i S \quad 2^{9} \cdot 3^{2} \cdot 5^{3} \cdot 7 \cdot 11\)
```

Proof. For the groups of Lie type this can be read of from [GoLyS3, Table 2.2]. For the sporadic groups it follows with [GoLyS3, Table 5.3].

Lemma 2.59. The Schur multipliers for the groups $L \in \mathcal{R}$ are as follows:

$U_{6}(2)$	$2^{2} \times 3$	$M(22)$	6
$S p_{6}(2)$	2	$M(23)$	1
$\Omega_{8}^{+}(2)$	2^{2}	$M(24)^{\prime}$	3
${ }^{2} E_{6}(2)$	$2^{2} \times 3$	F_{2}	2
$F_{4}(2)$	2	F_{1}	1
${ }^{2} F_{4}(2)^{\prime}$	1		

Proof. This is [GoLyS3, Theorem 6.1.2] and [GoLyS3, Definition 6.1.3].

Lemma 2.60. Let $G \in \mathcal{C}_{2}, t \in \operatorname{Aut}(G)$ be an involution such that $C_{G}(t)$ has a component $K \in \mathcal{C}_{2}$ with $Z(K) \neq 1$.
(a) We have that $G \in \mathcal{M}_{1}$.
(b) If $Z(K) \not \leq Z(G)$, then $G \in \mathcal{M}_{2}$.
(c) If $|Z(K)| \geq 4$, then $Z(K) \notin Z(G)$.

Proof. By Lemma $2.56 K / Z(K) \in \mathcal{M}$. Suppose first that $G / Z(G)$ is a group of Lie type in characteristic two. Then by Lemma $2.22 t$ is an outer automorphism and components have center of odd order. Hence $Z(K) \leq Z(G)$. In particular $Z(G) \neq 1$ and so by Lemma 2.56 $G / Z(G) \in \mathcal{M}$. Hence we have (a) if we can show that $G / Z(G) \not \approx$ $S p_{6}(2), S z(8), L_{3}(4), G_{2}(4)$ or $F_{4}(2)$. The first two groups do not have an involutory outer automorphism. As $G \in \mathcal{C}_{2}$ and $Z(G) \neq 1$, we now get $G \cong 2 L_{3}(4), 2^{2} L_{3}(4), 2 G_{2}(4)$ or $2 F_{4}(2)$. But $C_{G}(t)$ is nonsolvable and so by Lemma 2.25 we have that $K / Z(K)$ is of Lie type in characteristic two, which then is $L_{2}(4), L_{3}(2), G_{2}(2)^{\prime}$ or ${ }^{2} F_{4}(2)^{\prime}$. But then $K / Z(K) \notin \mathcal{M}$, a contradiction. Further in all cases we see that for $G / Z(G)$ a group of Lie type in characteristic two we also have (b).

Let next $G / Z(G)$ be sporadic. If $Z(K) \leq Z(G)$, we again get that $G / Z(G) \in \mathcal{M}$. Hence we have proved (a) if we can show that $G / Z(G) \neq$ M_{22}, M_{12}, J_{2} or HiS. But in these cases by [GoLyS3, Table 5.3] none of the components of $C_{G}(t)$ are in \mathcal{M}. So we have that $Z(K) \nsubseteq Z(G)$. Then we have a nonsimple component in a sporadic group and so by [GoLyS3, Table 5.3] $G / Z(G) \cong M(22), M(23), M(24)^{\prime}, F_{2}$ or F_{1}. This proves (a) and (b).

So we are left with $G / Z(G) \cong L_{3}(3), G_{2}(3), L_{4}(3), U_{4}(3), L_{2}(9)$ or $L_{2}(p)$. Now we may apply Lemma 2.20 . So we get $K / Z(K) \cong P S p_{4}(3)$, $L_{3}(3), U_{3}(3), L_{2}(9)$ or $L_{2}(8)$, which all are not in \mathcal{M}.

To prove (c) assume that $|Z(K)| \geq 4$ and $Z(K) \leq Z(G)$. Then by (a) $G \in \mathcal{M}_{1}$. In particular $G \cong 2^{2} \Omega_{8}^{+}(2), 2^{2} U_{6}(2)$ or $2^{2} .{ }^{2} E_{6}(2)$. By [GoLy, Theorem 9.1] the possible components $K / Z(K)$ are $S p_{6}(2)$ and $F_{4}(2)$. But then by Lemma $2.59 Z(K)$ is of order two, a contradiction. This proves (c).

Lemma 2.61. Let $G \in \mathcal{C}_{2}$. If some $K \in \mathcal{M}_{1}$ is a component of the centralizer of some involution in G, then $G / Z(G) \in \mathcal{M}_{2}$.

Proof. By Lemma 2.22 and Lemma 2.20 we have that $G / Z(G)$ must be sporadic. Now the assertion follows with [GoLyS3, Table 5.3].

Lemma 2.62. If $K \in \mathcal{M}_{2}$ and $G \in \mathcal{C}_{2}$ such that $G / N \cong K$ for some $N \leq Z(G)$, then $G \in \mathcal{M}_{2}$.

Proof. This of course is true if $N=1$. So assume that $N \neq 1$. Then by definition of \mathcal{C}_{2} we have that N is in the Schur multiplier of K and $|N|$ is a power of 2 . As the groups in \mathcal{M}_{2} are all sporadic and according to
[GoLyS3, Table 5.3] for every group in \mathcal{M}_{2} also any Schur extension by a 2 -group is contained in \mathcal{M}_{2}, the assertion follows.

Lemma 2.63. Let $G \in \mathcal{C}_{2}$. If $G / Z(G)$ is group of Lie type over $\operatorname{GF}(q)$, $q=2^{n}$, $n \geq 2$, such that $1 \neq Z(G) \leq G^{\prime}$. Then $G / Z(G) \cong L_{3}(4)$, $G_{2}(4)$ or $S z(8)$.

Proof. This follows with Lemma 2.56.
Lemma 2.64. If $G \in \mathcal{M}_{1}$ and $t \in \operatorname{Aut}(G)$ is an involution, then $C_{G / Z(G)}(t)$ has at most one component.

Proof. If $G / Z(G)$ is sporadic this follows with [GoLyS3, Table 5.3]. So assume now that $G / Z(G)$ is of Lie type in characteristic two. Then by Lemma 2.22 we have that $t \notin G$. Now with [GoLy, Theorem 9.1] we get the assertion.

Lemma 2.65. Let K, K_{1}, L be in \mathcal{M}_{1}. Suppose there is $1 \neq N \leq$ $Z\left(K_{1}\right)$ with $K_{1} / N=K$. Assume furthermore that for some noncentral involution $t \in \operatorname{Aut}(L)$ we have that $C_{L}(t)$ has a component K_{1}. Then $L \in \mathcal{M}_{2}$.

Proof. We have that K and K_{1} are described in Lemma 2.60. Furthermore both K and a nontrivial central extension of K has to be in \mathcal{M}_{1}. Inspection of the groups in Lemma 2.60 shows that $K_{1} \cong 2^{2}{ }^{2} E_{6}(2)$, $2^{2} U_{6}(2), 2^{2} \Omega_{8}^{+}(2), 2 M(22)$ or $2 F_{2}$. With Lemma 2.60 we get the assertion except when $\left|Z\left(K_{1}\right)\right|=2$ and $Z\left(K_{1}\right) \leq Z(L)$. In particular $K_{1} \cong 2 M(22)$ or $2 F_{2}$. As no group $L \in \mathcal{M}_{1}$ with $Z(L) \neq 1$ apart from $2 F_{2}$ has an order divisible by 2^{42} (see Lemma 2.58), we conclude that $K_{1} \not \neq 2 F_{2}$. The same order argument shows that $2 M(22)$ could only be contained in $2 C o_{1}$ or $2 \cdot{ }^{2} E_{6}(2)$. But by Lemma 2.17 there are no involutions in the automorphism groups of these groups which centralize a component $M(22)$.

Lemma 2.66. Let $G \in \mathcal{R}$. If t is some involutory automorphism G, then t centralizes elements of odd order in G.

Proof. If G is sporadic, we find the assertion in [GoLyS3, Table 5.3]. If G is of Lie type in characteristic two and t is some outer automorphism this is [GoLy, Theorem 9.1]. If it is an inner automorphism this is [AschSe3].

Lemma 2.67. (a) If $L \in \mathcal{R}$ and T is a Sylow 2-subgroup of L with $|Z(T)|>2$, then $L \cong M(23) F_{4}(2)$ or $S p_{6}(2)$.
(b) The class of a Sylow 2-subgroup for $L \in \mathcal{R}$ is at least three.

Proof. (a) Let T be a Sylow 2-subgroup of L. If T contains an extraspecial subgroup Q with $C_{T}(Q)=Z(Q)$, we have that $|Z(T)|=2$. By Lemma 2.28 this is true for $L \cong U_{6}(2), \Omega_{8}^{+}(2)$ and ${ }^{2} E_{6}(2)$. By [GoLyS3, Table $5.3 \mathrm{v}, \mathrm{y}, \mathrm{z}]$ this is also true for $L \cong M(24)^{\prime}, F_{2}$ and F_{1}. So we are left with $L \cong M(22)$ and ${ }^{2} F_{4}(2)$. In the latter the assertion follows with Lemma 2.31. If $L \cong M(22)$ there is a non 2 -central involution x in L such that $2 U_{6}(2) \cong C_{L}(x)$. Application of [GoLyS3, Table 5.3t] shows that the center of a Sylow 2-subgoup of $C_{L}(x)$ is of order 4 . As x is not 2 -central we have that $|Z(T)|=2$.
(b) Suppose that T is of class at most two. Then $T / Z(T)$ is abelian. But now using Lemma 2.28 and Lemma 2.31, we see that this is absurd for the groups of Lie type in \mathcal{R}. As the class of a Sylow 2-subgroup of $U_{6}(2)$ now is at least three and $2 U_{6}(2) \leq M(22) \leq M(23) \leq M(24)^{\prime}$ and $2 U_{6}(2)$ is also involved in F_{2}, which is involved in F_{1}, we get the assertion also for the sporadic groups in \mathcal{R}.

3. Examples

In this chapter we show under what circumstances the examples $\Omega_{7}(3), \Omega_{8}^{-}(3)$ and A_{12} in Theorem 1.4 arise.

Lemma 3.1. If G is a group of Lie type in odd characteristic which is of even type but not of even characteristic, then $G \cong \Omega_{7}(3)$ or $\Omega_{8}^{-}(3)$.

Proof. The structure of centralizers of involutions in G as far as needed in this proof can be found in [GoLyS3, Chapter 4.5]. By assumption $G \not \not L_{2}(q)$, as G is of even type. If G is a Ree group, then $C_{G}(z)=\langle z\rangle \times L_{2}(q)$, were $q=3^{2 n+1}, n \geq 1$, for all involutions z. As components are in \mathcal{C}_{2}, this is not possible. In the remaining cases we have some $S L_{2}(q)$ subnormal in $C_{G}(z)$ for some involution z. As there are no components $S L_{2}(q)$, as $S L_{2}(q) \notin \mathcal{C}_{2}$, this shows $q=3$. Now from [GoLyS3, Chapter 4.5] we get the following list:

Group		Component in some involutions centralizer	
$L_{n}(3)$,	$n \geq 5$	$S L_{n-2}(3)$,	n even
$S p_{2 n}(3)$,	$n \geq 3$	$S L_{n-1}(3)$,	n odd
$U_{n}(3)$,	$n \geq 5$	$S p_{2 n-2}(3)$	n even
$\Omega_{n}^{ \pm}(3)$,	$n \geq 11$	$S U_{n-2}(3)$,	n odd
$\Omega_{10}^{ \pm}(3)$		$S U_{n-1}(3)$,	
$\Omega_{9}(3)$		$\Omega_{n-4}^{ \pm}(3)$	
${ }^{3}(3)$	$\Omega_{8}^{ \pm}(3)$		
$F_{4}(3)$		$\Omega_{7}(3)$	
${ }^{2} E_{6}(3)$		$S L_{2}(27)$	
$E_{6}(3)$		$S p_{6}(3)$	
$E_{7}(3)$	$S U_{6}(3)$		
$E_{8}(3)$	$S L_{6}(3)$		
	$S O_{12}(3)$		
	$E_{7}(3)$		

We see that none of these components are in \mathcal{C}_{2}. Assume now that $G \nsupseteq \Omega_{7}(3)$ or $\Omega_{8}^{-}(3)$. Then what is left are the groups $G=L_{4}(3)$, $L_{3}(3), P S p_{4}(3), U_{4}(3), U_{3}(3), \Omega_{8}^{+}(3)$ and $G_{2}(3)$. In all these groups the centralizer of any 2 -central involution is solvable and so these groups are of even characteristic, hence they do not satisfy the assumption of this lemma. This proves the lemma.
A group X of even order is called tightly embedded in G if $\left|X \cap X^{g}\right|$ is even implies $X^{g}=X$.

Lemma 3.2. Let G be a simple group of of even type which is not of even characteristic. Assume that G possesses a subgroup X such that one of the following holds:
(1) X is a tightly embedded quaternion subgroup or;
(2) $X \cong S L_{2}(3)$ and is subnormal in $C_{G}(Z(X))$. Furthermore for any $g \in C_{G}(Z(X))$ we either have $X^{g} \cap X=Z(X)$ or $X^{g}=X$. Then $G \cong \Omega_{7}(3)$ or $\Omega_{8}^{-}(3)$.
Proof. By [Asch2] the simple groups G, which satisfy (1) or (2) are M_{11}, M_{12} or a group of Lie type in odd characteristic. As M_{11} and M_{12} both do not satisfy the assumptions of this lemma, we see that G is of Lie type in odd characteristic. Now Lemma 3.1 proves the assertion.
Definition 3.3. [GoLy, page 133] Let G be a group. A subgroup $L \in \mathcal{L}$ of G is called standard, if
(1) $C_{G}(L)$ is tightly embedded in G and
(2) $\left[L, L^{g}\right] \neq 1$ for all $g \in G$.

Lemma 3.4. Let G be a group of even type, which is not of even characteristic. Let $L \in \mathcal{C}_{2}$ be a standard subgroup of G. If $G \not \neq \Omega_{7}(3)$ or $\Omega_{8}^{-}(3)$, then $C_{G}(L)$ possesses an abelian Sylow $2-$ subgroup U. If $m_{2}(U)>1$, then U is elementary abelian.

Proof. If $m_{2}(U)>1$, the assertion follows from [Asch1, Theorem 4]. So assume $m_{2}(U)=1$ and U is quaternion. As there are no components $K \in \mathcal{C}_{2}$ with $m_{2}(K)=1$, we see that $C_{G}(L)$ is solvable. Further $O\left(C_{G}(Z(U))\right)=1$. But then either $C_{C_{G}(L)}(Z(U))=U$ or there is a subgroup $U_{1} \cong S L_{2}(3)$ which is normal in $C_{C_{G}(L)}(Z(U))$. But both cases are not possible by Lemma 3.2. Recall that in the first case U is tightly embedded in G.

Proposition 3.5. Let G be of even type but not of even characteristic. Let L be a standard subgroup of G such that $N_{G}(L)$ contains a Sylow 2 -subgroup of G. If $C_{G}(L)$ has elementary abelian noncyclic Sylow 2subgroups, then $G \cong A_{12}$.

Proof. Let U be a Sylow 2-subgroup of $C_{G}(L)$ and T_{1} be a Sylow 2subgroup of L. Assume first that L is some Bender group $B(q)$. Then $E=U \times \Omega_{1}\left(T_{1}\right)$ is an elementary abelian subgroup of order $q|U|$. By [Asch1, Theorem 2] there is $U^{g} \leq N_{G}(L)$ with $U^{g} \cap C_{G}(L)=1$. In particular as a Sylow 2-subgroup of $\operatorname{Out}(L)$ is cyclic and U is not, there is some $u \in U^{\sharp}$ such that $u^{g} \in E \backslash U$. We are going to apply Lemma 2.6 to E. For this we have to show that $\left(N_{G}(E) / C_{G}(E), E\right)$ is a Goldschmidt pair. We set $V_{1}=\Omega_{1}\left(T_{1}\right)$. Then in L there is a cyclic group acting transitively on V_{1}^{\sharp}. Furthermore for $V_{0}=U$, conditions (iii) and (iv) of Definition 2.5 hold. As $N_{G}(L)$ contains a Sylow 2-subgroup of G, we see that the number of conjugates of U under $N_{G}(E)$ is odd. As $|U|>2$, we have that Lemma 2.6(iv) cannot hold, so with Lemma 2.6 we see that U is normal in $N_{G}(E)$, in particular $g \notin N_{G}(E)$. Hence E cannot be the only elementary abelian subgroup of its order in S, S a Sylow 2-subgroup of $N_{G}(L)$ containing E. Furthermore there must be at least three of them in S. This gives that $L \cong U_{3}(q)$ and some involutory field automorphism is induced on L. But $\left[T_{1}, u^{g}\right]=1$, and E is the only elementary abelian subgroup of S of order $|E|$, which centralizes a special group of order q^{3}. Hence again $g \in N_{G}(E)$, a contradiction.

Assume now that $L \cong L_{3}\left(2^{n}\right)$. Then [AschSe1, (6.1)] shows $q=4$. Furthermore [AschSe2, (1.5)] gives that $N_{G}(L)$ does not contain a Sylow 2 -subgroup. If $L \cong G_{2}(4)$ we get with [AschSe2, (1.6)] that $N_{G}(L)$ does not contain a Sylow 2 -subgroup. For all the other cases of a group of Lie type in characteristic two, which is not alternating at the same time, we
get a contradiction with [AschSe1, (7.1)]. If L is of Lie type in odd characteristic but not alternating, we get a contradiction with [AschSe1, (4.9)]. If L is sporadic then [AschSe1, (17.1)] gives the contradiction. Hence we are left with L alternating. This shows that $L / Z(L) \cong A_{n}$. As $L \in \mathcal{C}_{2}$, we get $L \cong A_{5}, A_{6}, A_{8}$. Now we can quote [Asch3] which shows that $G \cong J_{2}, M_{12}, A_{9}, A_{10}$ or A_{12}. As G is not of even characteristic, we have $G \cong A_{12}$.

4. The standard subgroup

In this chapter we fix a Sylow 2-subgroup S of G and assume that G is of even type but not of even characteristic. This means by Lemma 2.1 that there is some $1 \neq z \in Z(S), z^{2}=1$, such that $C_{G}(z)$ possesses a component $A_{z} \in \mathcal{C}_{2}$. Further we assume that G is a counterexample to Theorem 1.4. This means that $G \neq \Omega_{7}(3), \Omega_{8}^{-}(3)$ or A_{12}. In particular by Lemma 3.2 G does not possess a tightly embedded quaternion subgroup or a subgroup $X \cong S L_{2}(3)$, which is subnormal in $C_{G}(Z(X))$ such that for any $g \in C_{G}(Z(X))$ we either have $X^{g} \cap X=Z(X)$ or $X^{g}=X$. By Proposition 3.5 we also have that there is no standard subgroup L such that $N_{G}(L)$ contains a Sylow 2-subgroup of G and $C_{G}(L)$ has noncyclic Sylow 2-subgroups. The aim of this chapter is to prove:

Proposition 4.1. There exists an involution $z \in Z(S)$ whose centralizer has a component $A_{z} \in \mathcal{C}_{2}$, such that A_{z} is standard and $C_{G}\left(A_{z}\right)$ has a cyclic Sylow 2-subgroup.

By \mathcal{L} we denote the set of all components of the involution centralizers of G. We first describe a procedure which will provide us with a standard subgroup in a centralizer of some involution in G.

Definition 4.2. Let $K, L \in \mathcal{L}$. We say $K \sqsubseteq L$ if $K=L$ or L is a component of $C_{G}(u)$ for some involution u and there is an involution $t \in C_{G}(u)$ such that $[L, t]=L$ and K is a component of $C_{L}(t)$. Let \leq^{*} be the transitive extension of \sqsubseteq.

This partial order \leq^{*} was investigated by M. Aschbacher in [Asch1].

Definition 4.3. Let $K \in \mathcal{L}$.
(a) By \mathcal{L}_{K}^{*} we denote the set of maximal elements in \mathcal{L} with respect to \leq^{*}, which contain K.
(b) By \mathcal{K}_{K} we denote the set of $L \in \mathcal{L}$ with $L \notin \mathcal{L}_{L}^{*}$, such that $L / N \cong K$ for some $N \leq Z(L)$.

Definition 4.4. Let $K, L \in \mathcal{L}$.
(a) We write $K \rightarrow L$ if there is some chain

$$
K=K_{1}, K_{2}, \ldots, K_{r}=L, K_{i} \in \mathcal{L} \text { for all } i,
$$

such that either $K_{i} \in \mathcal{L}_{K_{i-1}}^{*}$ or $K_{i-1} \in \mathcal{L}_{K_{i-1}}^{*}$ and $K_{i} \in \mathcal{K}_{K_{i-1}}$. We set further

$$
\overline{\mathcal{L}}_{K}=\{L \mid L \in \mathcal{L}, K \rightarrow L\}
$$

(b) We set

$$
\overline{\mathcal{L}}_{K}^{*}=\left\{L \mid L \in \overline{\mathcal{L}}_{K} \text { with } \overline{\mathcal{L}}_{L}=\{L\}\right\} .
$$

From now on components of centralizers of involutions are always in \mathcal{C}_{2}. As \mathcal{C}_{2} contains no elements K with $m_{2}(K)=1$, we get from [Asch1, Theorem 1]:
Proposition 4.5. If $L \in \mathcal{C}_{2}$ and $L \in \overline{\mathcal{L}}_{K}^{*}$, then L is a standard subgroup.

Our aim is to produce a standard subgroup which is normalized by a Sylow 2-subgroup of G. But even if we start with a component $K \in \mathcal{L}$ which is normalized by a Sylow 2-subgroup there is no reason why the standard subgroup $L \in \overline{\mathcal{L}}_{K}^{*}$ we get using Proposition 4.5 should have this property too. To get control over this standard subgroup we have to study the procedure more carefully. In particular we need information about the penultimate group in the construction. This will be done in the next lemmas.

Lemma 4.6. Let $K \in \mathcal{C}_{2}$ and $L \in \overline{\mathcal{L}}_{K}^{*}$. Then
(a) $|K|||L|$;
(b) if $K=K_{1}, \ldots, K_{r}=L$ is a chain for $K \rightarrow L$, then $L \notin \mathcal{K}_{K_{r-1}}$.

Proof. Let $K=K_{1}, \ldots, K_{r}=L$ be a chain as in (b). Let i be such that $|K|\left|\left|K_{i}\right|\right.$. Assume $i<r$. Now $K_{i+1} \in \mathcal{L}_{K_{i}}^{*}$ or $K_{i+1} \in \mathcal{K}_{K_{i}}$. In the first case $K_{i} \leq K_{i+1}$ and in the second case $K_{i+1} / N \cong K_{i}$ for some $N \leq Z\left(K_{i+1}\right)$. Hence in both cases $\left|K_{i}\right|\left|\left|K_{i+1}\right|\right.$ and so $| K\left|\left|\left|K_{i+1}\right|\right.\right.$. By induction we get (a).
For (b) assume $L \in \mathcal{K}_{K_{r-1}}$. Then $L \notin \mathcal{L}_{L}^{*}$. In particular $\overline{\mathcal{L}}_{L} \neq\{L\}$. But then $L \notin \overline{\mathcal{L}}_{K}^{*}$, a contradiction.
Lemma 4.7. Let $K \in \mathcal{C}_{2}, Z(K) \neq 1$. If $L \in \mathcal{C}_{2}$ with $K \sqsubseteq L$ and $K \neq L$, then $L \in \mathcal{M}_{1}$.

Proof. By Lemma 2.56 $K / Z(K) \in \mathcal{M}$. By Definition 4.2 there is some involution t such that $[L, t]=L$ and K is a component of $C_{L}(t)$. Then the assertion follows with Lemma 2.60.

Lemma 4.8. If $K \in \mathcal{M}_{2}$ and $K \sqsubseteq L$, then $L \in \mathcal{M}_{2}$. Further $\overline{\mathcal{L}}_{K}^{*} \subseteq$ \mathcal{M}_{2}.

Proof. If $K=L$ we are done. So we may assume that $K \sqsubseteq L, L \in \mathcal{C}_{2}$, with $K \neq L$. Then $C_{L}(t)$ has a component K for some involution t in $N_{G}(L)$. By Lemma $2.61 L \in \mathcal{M}_{2}$. As \mathcal{M}_{2} is closed under even Schur multipliers by Lemma 2.62, we get that $K \rightarrow L$ implies $L \in \mathcal{M}_{2}$, the assertion.

Lemma 4.9. If $K / Z(K) \in \mathcal{M}$ with $Z(K) \neq 1$ and $L \in \mathcal{L}_{K}^{*}, L \neq K$, then $L \in \mathcal{M}_{1}$.

Proof. Let $K \sqsubseteq L_{1} \sqsubseteq L_{2} \cdots \sqsubseteq L$. By Lemma 4.7 and induction on the length of a chain we may assume that $Z\left(L_{1}\right)=1$. Hence L_{1} possesses an involutory automorphism t such that $C_{L_{1}}(t)$ has a component K. Now application of Lemma 2.60 (b) implies $L_{1} \cong M(22), M(23), M(24)^{\prime}, F_{2}$ or F_{1}. So $L_{1} \in \mathcal{M}_{2}$. Then by Lemma 4.8 we have $L \in \mathcal{L}_{L_{1}}^{*} \subseteq \mathcal{M}_{2} \subseteq \mathcal{M}_{1}$, the assertion.

Lemma 4.10. If $K \in \mathcal{M}_{1}$ and $K \notin \overline{\mathcal{L}}_{K}^{*}$, then $\overline{\mathcal{L}}_{K}^{*} \subseteq \mathcal{M}_{2}$.
Proof. Let $L \in \overline{\mathcal{L}}_{K}^{*}$. Hence $K \rightarrow L$ with $K=K_{1}, K_{2}, \ldots, K_{r}=L$ the corresponding chain. By assumption $L \neq K$. So we may assume that $K \neq K_{2}$. Suppose first that $K_{2} \in \mathcal{L}_{K}^{*}$. Then we have $K \sqsubseteq L_{1} \sqsubseteq$ $L_{2} \cdots \sqsubseteq K_{2}$. We may assume $L_{1} \neq K$. By Lemma $2.61 L_{1} \in \mathcal{M}_{2}$. As $L \in \overline{\mathcal{L}}_{L_{1}}^{*}$ the assertion follows with Lemma 4.8.

So we may assume $K \notin \mathcal{L}_{K}^{*}$ and $K_{2} \in \mathcal{K}_{K}$. Hence there is $1 \neq N \leq$ $Z\left(K_{2}\right)$ such that $K_{2} / N \cong K$. By Lemma 4.7 we have $K_{2} \in \mathcal{M}_{1}$. By definition $K_{2} \notin \mathcal{L}_{K_{2}}^{*}$, in particular there is $K_{3} \in \mathcal{L}_{K_{2}}^{*}$. Now let again $K_{2} \sqsubseteq L_{1} \sqsubseteq L_{2} \cdots \sqsubseteq K_{3}$ and $K_{2} \neq L_{1}$. Then application of Lemma 2.65 yields $L_{1} \in \mathcal{M}_{2}$. As $L \in \overline{\mathcal{L}}_{L_{1}}^{*}$ the assertion follows with Lemma 4.8.
Lemma 4.11. If $K / Z(K) \in \mathcal{M}, Z(K) \neq 1$ and $K \in \mathcal{L}_{K}^{*} \backslash \overline{\mathcal{L}}_{K}^{*}$, then $\overline{\mathcal{L}}_{K}^{*} \subseteq \mathcal{M}_{2}$.

Proof. Let $L \in \overline{\mathcal{L}}_{K}^{*}$ and $K=K_{1}, K_{2}, \ldots, K_{r}=L$ be a chain corresponding to $K \rightarrow L$. As $K \in \mathcal{L}_{K}^{*}$, we have that $K_{2} \in \mathcal{K}_{K}$. So $K_{2} / N \cong$ K for some $1 \neq N \leq Z\left(K_{2}\right)$. Now $\left|Z\left(K_{2}\right)\right| \geq 4$. As $K_{2} \notin \overline{\mathcal{L}}_{K_{2}}^{*}$ by definition of \mathcal{K}_{K} (Definition 4.3) we get that $K_{2} \sqsubseteq L_{1}$. By Lemma 2.60 we see $L_{1} \in \mathcal{M}_{1}$ and as $\left|Z\left(K_{2}\right)\right| \geq 4$, we see with Lemma 2.60(c) and (b) that $L_{1} \in \mathcal{M}_{2}$. As $\overline{\mathcal{L}}_{K}^{*}=\overline{\mathcal{L}}_{L_{1}}^{*}$ we get the assertion with Lemma 4.10.

We will see that the elements in \mathcal{R} are terminal elements in our partial order \rightarrow, which cannot be reached from elements not in \mathcal{R}. For the definition of \mathcal{R} see Definition 2.55.
Lemma 4.12. Let $L \in \mathcal{C}_{2}$ with $L / Z(L) \in \mathcal{R}$ and $K \in \mathcal{C}_{2}$ with $K \sqsubseteq L$, then $K / Z(K) \in \mathcal{R}$. In particular if $L \in \mathcal{L}_{K}^{*}$ for some $K \in \mathcal{C}_{2}$, then $K / Z(K) \in \mathcal{R}$.

Proof. If $L=K$ we have nothing to prove. Otherwise there is some involution t with $L=[L, t]$ such that K is a component of $C_{L}(t)$. Now the assertion follows with [GoLyS3, Table 5.3] for the sporadic groups and [GoLy, Theorem 9.1] for the groups of Lie type.

Lemma 4.13. Let $L \in \mathcal{C}_{2}$ with $L / Z(L) \in \mathcal{R}$ and $K \in \mathcal{C}_{2}$ with $K \rightarrow L$, then $K / Z(K) \in \mathcal{R}$.

Proof. Let $K=K_{1}, \ldots, K_{r}=L$ be a chain which belongs to $K \rightarrow L$. We prove the lemma by induction on r. Hence it is enough to show that $K_{r-1} / Z\left(K_{r-1}\right) \in \mathcal{R}$. If $L \in \mathcal{L}_{K_{r-1}}^{*}$ this follows with Lemma 4.12. So let $L \in \mathcal{K}_{K_{r-1}}$. Then $K_{r-1} \cong L / N$, where $1 \neq N \leq Z(L)$. As L is perfect we have that $K_{r-1} / Z\left(K_{r-1}\right) \cong L / Z(L) \in \mathcal{R}$ again.
Lemma 4.14. Let $L \cong M(23)$. If $L \in \overline{\mathcal{L}}_{K}^{*}$, then $K=L$. Furthermore in this case L is not a component in the centralizer of a 2-central involution of G.

Proof. Suppose false. By Proposition 4.5 we have that L is standard. Let U be a Sylow 2 -subgroup of $C_{G}(L)$. By Lemma 3.4 we have that U is abelian.

Assume first that $m_{2}(U)=1$. Let $u \in U$ be an involution. As for all involutions x we have $O\left(C_{G}(x)\right)=1$ also $O\left(C_{G}(u)\right)=1$. As U is cyclic we have that $C_{G}(L)$ has a normal 2-complement and so $U=C_{C_{G}(L)}(u)$. By Lemma 2.11 we have that L possesses no nontrivial central extensions and no outer automorphism. Hence we get that $C_{G}(u)=U \times L$. Further $N_{G}(L)=O\left(N_{G}(L)\right) C_{G}(u)$. As U is cyclic we have that $u \notin C_{G}(u)^{\prime}$ but $x \in C_{G}(x)^{\prime}$ for all involutions $x \in L$ by Lemma 2.11, we get that

$$
\begin{equation*}
u^{G} \cap L=\emptyset . \tag{1}
\end{equation*}
$$

Let T be a Sylow 2-subgroup of $N_{G}(L)$ containing u. By Lemma 2.11 we have that all involutions in L are 2 -central and $Z(T) \cap L$ is of order 4. So we get that $Z(T)=\langle U, z, t\rangle$, where $\langle z, t\rangle=Z(T) \cap L$ is elementary abelian. Now as by (1) $u^{G} \cap(T \cap L)=\emptyset$, we get with Lemma 2.3 that u is not 2 -central. In particular $N_{G}(Z(T)) \not \leq C_{G}(u)$ and so $u^{N_{G}(Z(T))} \neq\{u\}$. As $\Phi(Z(T)) \leq\langle u\rangle$ we see $U=\langle u\rangle$.

By Lemma 2.11 $J(T)=F$ is elementary abelian of order 2^{12}. Furthermore with $E=F \cap L$ we have $N_{L}(F) / E \cong M_{23}$ and $N_{L}(E)$ induces on E^{\sharp} orbits of length 23,253 and 1771 . We have $Z(T) \leq F$ and as F is characteristic in T and T is not a Sylow 2-subgroup of G, we get $\left|N_{G}(F)\right|_{2}>\left|C_{G}(u)\right|_{2}$, hence $\left|u^{N_{G}(F)}\right|$ is even and $u^{G} \cap E=\emptyset$ by (1). In particular for $\left|u^{N_{G}(F)}\right|$ we get the possibilities $1+23,1+253,1+1771$ and $1+23+253+1771$. As $\left|u^{N_{G}(F)}\right|$ has to divide $\left|G L_{12}(2)\right|$ and 443 does not divide $\left|G L_{12}(2)\right|$ we see that $\left|u^{N_{G}(F)}\right| \neq 1+1771$.

Assume first that $\left|u^{N_{G}(F)}\right|=254$. Then

$$
\left|N_{G}(F) / C_{G}(F)\right|=2^{8} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23 \cdot 127 .
$$

For $\omega \in N_{L}(F), o(\omega)=23$, we have that $C_{F}(\omega)=\langle u\rangle$. Now we choose $t \in F$ such that $\left|t^{N_{L}(F)}\right|=23$. Then also 23 divides $\left|t^{N_{G}(F)}\right|$. This implies $\left|t^{N_{G}(F)}\right|=23,46,23 \cdot 127$ or $46 \cdot 127$. But the last two numbers cannot be written as a sum of some numbers from $23,23,253,1771$ and 1771. So we have $\left|t^{N_{G}(F)}\right|=23$ or 46. In both cases an element ν of order 127 has to centralize all conjugates of t. As $\left\langle t^{N_{G}(F)}\right\rangle \geq E$, we get the contradiction $[\nu, F]=1$.

Assume next that $\left|u^{N_{G}(F)}\right|=2^{11}$. As $u^{N_{G}(F)} \cap E=\emptyset$ and $|F \backslash E|=2^{11}$, this gives $u E=u^{N_{G}(F)}$ and so all elements in $F \backslash E$ are conjugate. This implies $E \unlhd N_{G}(F)$. Further

$$
\left|N_{G}(F) / F\right|=2^{11}\left|N_{C_{G}(u)}(F) / F\right|=2^{18} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11 \cdot 23 .
$$

According to Lemma 2.11 there is $t \in E$ such that $C_{L}(t) \cong 2 M(22)$. Now the possibilities for $\left|t^{N_{G}(F)}\right|$ are 23 or $23+253=276,23+1771=$ 1794 or $23+253+1771=2^{11}-1$. As $\left|t^{N_{G}(F)}\right|$ has to divide $\mid N_{G}(F)$: $C_{N_{L}(F)}(t) \mid$, we see that $\left|t^{N_{G}(F)}\right|$ has to divide $2^{18} .23$ and so $\left|t^{N_{G}(F)}\right|=23$. Hence 2^{18} divides $\left|C_{N_{G}(F)}(t) / F\right|$.

Suppose that $E\left(C_{G}(t)\right)=1$. As $F\left(C_{C_{G}(u)}(t)\right)=\langle t, u\rangle$, we get that $\langle u, t\rangle$ contains $C_{F\left(C_{G}(t)\right)}(u)$ and so by [KuSte, 5.3.10] $F\left(C_{G}(t)\right)$ is contained in a dihedral or semidihedral group. But $C_{L}(t)$ contains $2 M(22)$ and so a group $M(22)$ has to act faithfully on $F\left(C_{G}(t)\right)=F^{*}\left(C_{G}(t)\right)$, a contradiction. This shows that $E\left(C_{G}(t)\right) \neq 1$.

Let M be some component of $C_{G}(t)$. Suppose that $[M, u] \leq M$. Assume first $[u, M]=1$, then $M \cong 2 M(22)$. Now again $C_{C_{G}(M)}(u)=\langle t, u\rangle$. So $C_{G}(M)$ has dihedral or semidihedral Sylow 2-subgroups by [KuSte, 5.3.10]. This shows that $\left|N_{C_{G}(M)}(\langle t, u\rangle): C_{C_{G}(M)}(\langle t, u\rangle)\right| \leq 2$. From
$F \cap M=F \cap L=E$ and $F=E\langle u\rangle$, we conclude that $N_{C_{G}(t)}(F)=$ $N_{M}(E) N_{C_{G}(t)}(\langle u, t\rangle)$. As $N_{M}(F) / F \cong M_{22}$ by Lemma 2.11, we now see that $\left|N_{C_{G}(t)}(F) / F\right|$ divides $2 \cdot\left|M_{22}\right|$, which contradicts that 2^{18} divides $\left|C_{N_{G}(F)}(t) / F\right|$.

So $[M, u] \neq 1$. Assume next that $C_{M}(u)\langle t\rangle /\langle t\rangle$ has a component $M(22)$. As $C_{G}(u) \cap C_{G}(t)$ does not contain a subgroup $M(22)$, we see that $C_{L}(t) \leq M$ and so $t \in Z(M)$. Application of Lemma 2.56 shows $M / Z(M) \in \mathcal{M}$. By Lemma 2.58 we see that $M / Z(M) \cong{ }^{2} E_{6}(2), F_{2}$ or $M(22)$. But by Lemma 2.17 only $M \cong 2 M(22)$ is left, which shows that $[M, u]=1$, a contradiction. So we have $C_{M}(u) \leq\langle t, u\rangle$. Then first of all $t \in M$ and again by [KuSte, 5.3.10] $M\langle u\rangle$ has dihedral or semidihedral Sylow 2-subgroups. Furthermore as $t \in M$, we have by Lemma $2.56 M / Z(M) \in \mathcal{M}$. Furthermore we now have that $M / Z(M)$ has a dihedral Sylow 2-subgroup. But there are no groups with a dihedral or semidihedral Sylow 2 -subgroup in \mathcal{M}.

So we have that $M^{u} \neq M$. Then u centralizes a diagonal, which again shows that $M \cong 2 M(22), M M^{u}=M \times M^{u}$ and $C_{M M^{u}}(u) \leq L$. In particular $E \leq C_{M M^{u}}(u)$. Let E_{1} be the projection of E onto M and $E_{2}=E_{1}^{u}$. Then $\left[E_{1}, E_{2}\right]=1,\left[E, E_{1}\right]=1$ and $\left[u, E_{1}\right] \leq E$. Suppose $t \in E_{1} \cap E_{1}^{u}$. Then $\left|\left[E_{1}, u\right]\right|=2^{10}$ and is invariant under $N_{C_{L}(t)}(E)$. But by Lemma 2.11 there is no 10 -dimensional submodule in E. Hence we have that $E_{1} E_{1}^{u}=E_{1} \times E_{1}^{u}$. We have $E_{1} \leq N_{G}(F)$ and $\left|C_{N_{G}(F)}(E) / F\right| \geq\left|E_{1}\right|=2^{11}$. Furthermore as E is normal in $N_{G}(F)$, $N_{G}(F) / C_{N_{G}(F)}(E)$ involves M_{23} and $\left|N_{G}(F) / F\right|=2^{11}\left|M_{23}\right|$, we see that $E_{1} F=C_{N_{G}(F)}(E)$ Now we conclude that there is $E_{1} \leq N_{G}(F)$, E_{1} elementary abelian of order 2^{11} such that $u^{E_{1}}=u E$. This gives that

$$
N_{G}(F) / F \cong 2^{11} M_{23} .
$$

We set $F_{1}=O_{2}\left(N_{G}(F)\right)$. Then we see

$$
\left[F_{1}, E\right]=1
$$

We have that $F_{1}=\left(E_{1} \times E_{1}^{u}\right)\langle u\rangle$. So $N_{G}\left(F_{1}\right)=N_{G}\left(E_{1} \times E_{1}^{u}\right)$. As $u^{F_{1}}=u E$, we see that $N_{G}\left(F_{1}\right)=N_{G}(F)$. Hence

$$
\begin{equation*}
F_{1} \text { is a Syow 2-subgroup of } C_{G}(E) . \tag{*}
\end{equation*}
$$

Let now $K \rightarrow L$ and $K=K_{1}, \ldots, K_{r}=L$ be the corresponding chain. By Lemma 4.6(b) we have $K_{r-1} \leq^{*} L$. So let $L_{1} \sqsubseteq L$ with $L_{1} \neq L$ and $L_{1} \in \mathcal{C}_{2}$. By definition of \sqsubseteq there is some involution w such that L_{1} is a component of $C_{G}(w)$. By Lemma 2.11 we have $L_{1}=C_{L}(t)$ or
$L_{1} \cong 2^{2} U_{6}(2)$. In particular

$$
\begin{equation*}
\left|L_{1}\right|_{2} \leq 2^{18} \tag{**}
\end{equation*}
$$

In both cases $E \leq L_{1}$ and so $C_{G}\left(L_{1}\right) \leq C_{G}(E)$. So by (*) we may assume that $w \in F_{1}$. As $w \nsim u$, since $C_{G}(u)$ does not contain such components L_{1}, we see that $w \in E_{1} \times E_{1}^{u}$. But then $E_{1} \leq C_{G}(w)$ and as L_{1} is a component and as $\left[E, E_{1}\right]=1$, we see that $\left[E_{1}, L_{1}\right] \leq L_{1}$. As $C_{L_{1}}(E)=E$, we see that $E_{1} E=C_{L_{1} E_{1}}(E)$. In particular $N_{L_{1}}(E)$ acts on $E_{1} E / E$. As $N_{L_{1}}(E)$ acts on $E_{1} E / E$ the same way as on E, we see with Lemma 2.11 that $\left|\left[N_{L_{1}}(E), E_{1} E / E\right]\right| \geq 2^{9}$. As $\left[N_{L_{1}}(E), E E_{1}\right] \leq L_{1}$ this shows that $\left|E E_{1} \cap L_{1}\right| \geq 2^{19}$, contradicting (**).

So we have shown that

$$
\begin{equation*}
\left|u^{N_{G}(F)}\right|=24 . \tag{2}
\end{equation*}
$$

As $N_{L}(F)$ acts 4-fold transitively on $u^{N_{G}(F)} \backslash\{u\}$, we get that $N_{G}(F)$ acts 5 -fold transitively on u^{G}, so $N_{G}(F) / F \cong M_{24}$ by [Asch5, (18.10)]. Let S be a Sylow 2 -subgroup of $N_{G}(F)$ which contains T. As M_{24} does not posses a failure of factorization module by [GoLyS1, Theorem 32.2] we get with [GoLyS1, Theorem 8.6] that $J(S)=F$ again, and so S is a Sylow 2-subgroup of G. Furthermore by Lemma 2.12 the action on F is well defined and we have orbits of length $24,276,1771$ and 2024. So let now $s \in Z(S)$ be an involution, then $C_{N_{G}(F)}(s) / F \cong 2^{6} 3 \Sigma_{6}$ by Lemma 2.12 again. As by Lemma 2.13 we have that $S=N_{N_{G}(F)}(S)$ and we just have one orbit of odd length, we see $|Z(S)|=2$. As G is not of even characteristic, we have that $C_{G}(s)$ possesses a component M.

Suppose first that $N_{C_{G}(s)}(M) \cap N_{G}(F) \leq O_{2,3}\left(N_{C_{G}(s)}(F)\right)$. Then the Σ_{6} in $C_{N_{G}(F)}(s) / F$ acts nontrivially on $\left|M^{C_{G}(s)}\right|$ and so $\left|M^{C_{G}(s)}\right| \geq 6$. As $|S|=2^{22}$ and $\left|S: S \cap N_{C_{G}(s)}(M)\right| \geq 16$, we see $\left|\left\langle M^{C_{G}(s)}, s\right\rangle /\langle s\rangle\right|_{2} \leq 2^{17}$. As $\left|\left\langle M^{C_{G}(s)}, s\right\rangle /\langle s\rangle\right|_{2} \geq|M\langle s\rangle /\langle s\rangle|_{2}^{6}$, we get that $|M\langle s\rangle /\langle s\rangle|_{2}=4$. As a Sylow 2-subgroup of M cannot be a quaternion group of order 8 by the definition of \mathcal{C}_{2} then $s \notin Z(M)$. So S possesses an elementary abelian subgroup of order 2^{13}, which contradicts $F=J(S)$.

So we have that $O^{2}\left(C_{N_{G}(F)}(s)\right) \leq N_{G}(M)$. As the outer automorphism group of M is solvable, we get that $O^{2}\left(C_{N_{G}(F)}(s)\right)$ induces inner automorphisms. Suppose $O^{2}\left(C_{N_{G}(F)}(s)\right) \not \leq M$. By Lemma 2.12 we have that $\left|C_{N_{G}(F)}(s): O^{2}\left(C_{N_{G}(F)}(s)\right)\right| \leq 4$. Set $R=M C_{O^{2}\left(C_{N_{G}(F)}(s)\right)}(M)$. If $O^{2}\left(C_{N_{G}(F)}(s)\right) \not \leq R$, then $O^{2}\left(C_{N_{G}(F)}(s)\right) / O^{2}\left(C_{N_{G}(F)}(s)\right) \cap R$ involves a
group A_{6}. We have that

$$
2^{22} \geq\left|O^{2}\left(C_{N_{G}(F)}(s)\right)\right|_{2}\left|O^{2}\left(C_{N_{G}(F)}(s)\right) / C_{O^{2}\left(C_{N_{G}(F)}(s)\right)}(M)\right|_{2} .
$$

But the first factor is at least 2^{20} by Lemma 2.12 while the second factor is of order at least 8, as just seen. This contradiction shows $\left[O^{2}\left(C_{N_{G}(F)}(s)\right), M\right]=1$. Now as $|S|=2^{22}$ and $\left|O^{2}\left(C_{N_{G}(F)}(s)\right)\right|_{2}=2^{20}$, we get that $|M\langle s\rangle /\langle s\rangle|_{2}=4$. This gives that $|M|_{2}=4$ as $M \in \mathcal{C}_{2}$ and so $s \notin M$. But as S normalizes M, as $S \leq M O^{2}\left(C_{N_{G}(F)}(s)\right)$ and so $Z(S) \cap M \neq 1$, which contradicts $\langle s\rangle=Z(S) \not \leq M$. So we have that $O^{2}\left(C_{N_{G}(F)}(s)\right) \leq M$ and then $s \in M$. This shows $M / Z(M) \in \mathcal{M}$ by Lemma 2.56. As $\left|C_{N_{G}(F)}(s) / O^{2}\left(C_{N_{G}(F)}(s)\right)\right| \leq 4$, we get that $2^{19} \leq$ $|M /\langle s\rangle|_{2} \leq 2^{21}$. By Lemma 2.58 we see $M / Z(M) \cong C o_{1}$. But in $C o_{1}$ by [GoLyS3, Table 5.31] there is a unique elementary abelian subgroup \tilde{E} in $S \cap M /\langle s\rangle$ of order 2^{11} which is normalized by M_{24}. As $F=J(S)$, we get that $\tilde{E}=F /\langle s\rangle$. But this contradicts the structure of $C_{N_{G}(F)}(s)$. This final contradiction shows that the assumption $m_{2}(U)=1$ is false.

So we now assume that $m_{2}(U)>1$ and then by Lemma $3.4 U$ is elementary abelian. By [Asch1, Theorem 2] we get some $g \in G$ such that $U^{g} \leq N_{G}(L)$ and $U^{g} \cap C_{G}(L)=1$. Let T_{1} be a Sylow 2-subgroup of L, then $U \times T_{1}=T$ is a Sylow 2-subgroup of $N_{G}(L)$. By Lemma 2.11 all involutions in T are 2-central in $N_{G}(L)$. So we may assume that $U^{g} \cap Z(T) \neq 1$. Hence there is some $u \in U^{\sharp}$ such that $u \neq u^{g} \in Z(T)$. Then T is a Sylow 2-subgroup of $C_{G}\left(u^{g}\right)$ as well and so we may assume that $g \in N_{G}(T)$. In particular $U^{g} \leq Z(T)$.

Recall $Z\left(T_{1}\right)=\langle z, t\rangle$ by Lemma 2.11. Then as $U^{g} \cap U=1$, we get that $|U|=4$. Again by Lemma 2.11 there is some element ρ of order three in L such that $[\rho, z]=1$ but $[\rho, t] \neq 1$. Hence $C_{Z(T)}(\rho)=\langle U, z\rangle$. Now for some $u \in U^{\sharp}$ we have $[u, g] \in C_{Z(T)}(\rho)$, as $|[U, g]|=4$. Hence $\left(u^{g} u\right)^{\rho^{-1}}=u^{g} u$. This gives $u^{g}=u^{g \rho^{-1}}$ and then $u=u^{g \rho^{-1} g^{-1}}$. We obtain that $u^{g\left(g^{-1}\right)^{\rho}}=u$, and so $g\left(g^{-1}\right)^{\rho} \in C_{G}(u)$. We have that $C_{C_{G}(L)}(u) /\langle u\rangle$ has a Sylow 2-subgroup of order 2 and so has a normal 2-complement. As $O\left(C_{G}(u)\right)=1$, we get that $C_{G}(u)=U \times L$. This now shows that $\left[U, g\left(g^{-1}\right)^{\rho}\right]=1$. Choose $v \in U^{\sharp}$ arbitrarly. Then $v^{g \rho^{-1} g^{-1} \rho}=v$. So $v^{g \rho^{-1}}=v^{g}$, i.e. $\left[v^{g}, \rho\right]=1$. But then $U^{g} \leq C_{Z(T)}(\rho)$ and then $U^{g} \leq\langle U, z\rangle$, which gives $U \cap U^{g} \neq 1$, a contradiction.

Lemma 4.15. Let G be a group of even type, which is not of even characteristic. If G has a standard subgroup $L \cong 2 M(22)$, then $G \cong$ $M(23)$.

Proof. Application of [DaSo, (4.4)] shows that either $C_{G}(Z(L))=L$ and then by [Asch4, Theorem 32.1] we get $G \cong M(23)$, or $N_{G}(L) \cong$ $2 \operatorname{Aut}(M(22))$. In the latter [DaSo, (4.6)] shows that centralizers of $2-$ central involutions do not have components, so G would be of even characteristic, a contradiction.
Lemma 4.16. $2 M(22)$ is not in $\overline{\mathcal{L}}_{K}^{*}$ for any $K \in \mathcal{C}_{2}$. The same is true for $M(23)$ if we add that K is a component in $C_{G}(z)$ for some 2-central involution z.
Proof. The second assertion is Lemma 4.14. Let $2 M(22)$ in $\overline{\mathcal{L}}_{K}^{*}$. Then by Proposition $4.52 M(22)$ is a standard subgroup. By Lemma 4.15 we get that G is not a counterexample as it now possess a standard subgroup with cyclic centralizer, which belongs to a 2-central involution centralizer.
4.1. Nonsimple components. In this subsection we will show that there are standard subgroups for 2 -central involutions provided there are 2-central involutions with nonsimple components in their centralizer.

Hypothesis 4.17. There is $z \in \Omega_{1}(Z(S))^{\sharp}$ with $z \in Z\left(E\left(C_{G}(z)\right)\right)$. By A_{z} we denote some component of $C_{G}(z)$ with $Z\left(A_{z}\right) \neq 1$. Further we assume that if $z \in Z\left(A_{z}\right)$ we have that A_{z} is not standard.
Lemma 4.18. Assume Hypothesis 4.17 Then $\overline{\mathcal{L}}_{A_{z}}^{*} \cap \mathcal{M}_{2}=\emptyset$.
Proof. Suppose false. Pick $L \in \overline{\mathcal{L}}_{A_{z}}^{*} \cap \mathcal{M}_{2}$. Then $L / Z(L) \in \mathcal{R}$. By Lemma 4.13 we have $A_{z} / Z\left(A_{z}\right) \in \mathcal{R}$. As $Z\left(A_{z}\right) \neq 1$ we get $A_{z} / Z\left(A_{z}\right) \neq$ $M(23), M(24)^{\prime}$ or F_{1}. By Lemma $4.16 L \not \approx 2 M(22)$ or $M(23)$. We have $L / Z(L) \in \mathcal{R} \cap \mathcal{M}_{2}$, which gives

$$
\begin{equation*}
L \cong M(22), M(24)^{\prime}, F_{2}, 2 F_{2} \text { or } F_{1} . \tag{1}
\end{equation*}
$$

By Proposition 4.5 L is standard and so by Lemma 3.4 $C_{G}(L)$ has abelian Sylow 2 -subgroups U, which in fact are elementary abelian if $m_{2}(U)>1$.

Assume first that there is $u \in U, u \sim z$ in G. Denote by A_{u} the conjugate of A_{z} in $C_{G}(u)$. Then $Z\left(A_{u}\right) \neq 1$. But as $C_{G}(u) \leq N_{G}(L)$ we get $A_{u}=L$ as \mathcal{R} does not contain groups with abelian Sylow 2subgroups. This shows $L \cong 2 F_{2}$. Furthermore L and so also A_{z} are standard. Now A_{z} is normal in $C_{G}(z)$ and so $Z\left(A_{z}\right) \cap Z(S) \neq 1$. As A_{z} is standard we have a contradiction. So we have that

$$
z^{G} \cap U=\emptyset .
$$

Let now T be a Sylow 2-subgroup of $N_{G}(L)$ with $U \leq T$. By Lemma 2.67 we see that $|Z(T / U)|=2$, as $L \nsupseteq M(23)$. As $Z(S)$ is conjugate to a subgroup of $Z(T)$ there is $v \in Z(T) \backslash U$ such that $v \sim z$ in G. Again denote by A_{v} the component of $C_{G}(v)$ which is conjugate to A_{z}.

By (1)

$$
L \cong M(22), M(24)^{\prime}, F_{2}, 2 F_{2} \text { or } F_{1} .
$$

So by Lemma 2.10 we have in the corresponding order that

$$
\begin{gathered}
C_{L}(v) \cong 2 \cdot 2^{1+8} U_{4}(2): 2,2^{1+12} 3 U_{4}(3): 2,2^{1+22} C o_{2}, \\
2 \cdot 2^{1+22} C o_{2} \text { or } 2^{1+24} C o_{1} .
\end{gathered}
$$

Assume there is $u \in \Omega_{1}(U)^{\sharp}$ with $\left[A_{v}, u\right]=1$ or $A_{v}^{u} \neq A_{v}$. Then there is a component \tilde{L} in $C_{A_{v}^{u} A_{v}}(u)$ which is a component of $C_{C_{G}(u)}(v)$ and so it is in $C_{G}(L)$. As L is standard, $C_{G}(L)$ has abelian Sylow 2-subgroups. But then also $\tilde{L} / Z(\tilde{L}) \cong A_{v} / Z\left(A_{v}\right)$ now has abelian Sylow 2-subgroups. As $A_{v} / Z\left(A_{v}\right) \in \mathcal{R}$ we have a contradiction.

Hence we have $\left[A_{v}, u\right]=A_{v}$ for all $u \in \Omega_{1}(U)^{\sharp}$. Set

$$
X_{v}=O^{2}\left(C_{L}(v)\right) \text { and } L_{v}=\left\langle A_{v}^{X_{v}}\right\rangle
$$

Then $C_{L_{v}}(u) \cap X_{v} \unlhd X_{v}$. If $X_{v} \leq C_{L_{v}}(u)$, then $L_{v}=A_{v}$ and then even $X_{v} \leq A_{v}$. Now $\left|A_{z}\right|_{2}=\left|A_{v}\right|_{2} \geq|L|_{2} / 2$. But by Lemma 4.6(a) $|L|_{2} \geq\left|A_{z}\right|_{2}$. Recall that by (1) $L \cong M(22), M(24)^{\prime}, F_{2}, 2 F_{2}$ or F_{1}. So by Lemma 2.58 we see $\left|A_{z}\right|_{2}=2^{16}, 2^{17}, 2^{20}, 2^{21}, 2^{40}, 2^{41}, 2^{42}, 2^{45}$ or 2^{46}. As $\left|A_{z}\right|$ has to have a Sylow 2 -subgroup of order at least 2^{16} and $A_{z} / Z\left(A_{z}\right) \in \mathcal{R}$ and $Z\left(A_{z}\right)$ is not trivial we get with Lemma 2.59 that $A_{z} / Z\left(A_{z}\right) \cong U_{6}(2), F_{4}(2),{ }^{2} E_{6}(2), M(22)$ or F_{2}. Now the orders of the Sylow 2-subgroups of $A_{z} / Z\left(A_{z}\right)$ are $2^{15}, 2^{24}, 2^{36}, 2^{17}$ or 2^{41}. As $\left|Z\left(A_{z}\right)\right|$ is even, we get $\left|A_{z}\right|_{2}=2^{16}, 2^{25}, 2^{37}, 2^{18}$ or 2^{42}. If we compare with the orders above, we see that just $A_{z} \cong 2 U_{6}(2)$ or $2 F_{2}$ is possible. In the first case $L \cong M(22)$, while in the second $L=A_{z}$. Hence in the second case we get $z \in L$, a contradiction. So we have the first case. Now $C_{L}(v) \neq X_{v}$. As $Z\left(C_{L}(v)\right)$ is of order 2 , we have that $Z\left(A_{v}\right)$ is not normalized by $C_{L}(v)$. But X_{v} is normalized by $C_{L}(v)$ and so A_{v} is normalized by $C_{L}(v)$, which shows that $Z\left(A_{v}\right)$ is normalized by $C_{L}(v)$ too, a contradiction.

Hence $C_{L_{v}}(u) \cap X_{v} \leq O_{2,3}\left(X_{v}\right)$. Suppose that $C_{L_{v}}(u) \cap X_{v} \not \leq O_{2}\left(X_{v}\right)$. Then by Lemma $2.10 L \cong M(24)^{\prime}$ and $O_{2,3}\left(X_{v}\right) \leq L_{v}$. We have that $C_{A_{v}}(u) \cap X_{v}$ is a $\{2,3\}$-group and $C_{L_{v}}(u)=\left\langle C_{A_{v}}(u)^{X_{v}}\right\rangle$. As $O_{2,3}\left(X_{v}\right) / O_{2}\left(X_{v}\right)$ is cyclic we get again $A_{v}=L_{v}$ and so $O_{2,3}\left(X_{v}\right) \leq A_{v}$.

But then X_{v} induces inner automorphisms on A_{v} and so $\left|A_{v}\right|_{2} \geq 2^{20}$. As before this shows that $A_{v} / Z\left(A_{v}\right) \cong F_{4}(2),{ }^{2} E_{6}(2)$ or F_{2}. But $\left|A_{v}\right|_{2} \leq 2^{21}$ by Lemma 4.6(a), a contradiction.

So we have $C_{L_{v}}(u) \cap X_{v} \leq O_{2}\left(X_{v}\right)$. In particular $C_{L_{v}}(u) \leq C_{G}(L) O_{2}\left(X_{v}\right)$ for all $u \in \Omega_{1}(U)^{\sharp}$. We now choose $u \in \Omega_{1}(U)^{\sharp}$ with $\left|C_{L_{v}}(u)\right|_{2}$ maximal. Let T_{1} be a Sylow 2 -subgroup of $C_{L_{v}}(u)$. As $T_{1} U$ is normalized by X_{v} we see $T_{1} U \geq O_{2}\left(X_{v}\right)$ or $T_{1} U=U Z\left(O_{2}\left(X_{v}\right)\right)$. In particular $Z\left(T_{1} U\right) \leq U Z\left(O_{2}\left(X_{v}\right)\right)$. If $\left|\Omega_{1}(U)\right| \geq 8$, we get $N_{G}\left(T_{1} U\right) \leq N_{G}(U)$, as U is tightly embedded and $\left|Z\left(O_{2}\left(X_{v}\right)\right)\right| \leq 4$. Now choose $T_{2} \leq L_{v}$ with $\left|T_{2}: T_{1}\right|=2$ and $\left[U, T_{2}\right] \leq T_{1} U$. Then $T_{2} \leq N_{G}(U)$ and so there is some $1 \neq \tilde{u} \in U^{\sharp}$ with $\left[T_{2}, \tilde{u}\right]=1$, contradicting the maximality of $\left|C_{L_{v}}(u)\right|_{2}$. So we have that T_{1} is a Sylow 2 -subgroup of L_{v} and then $T_{1} \leq U O_{2}\left(X_{v}\right)$ has class at most two, a contradiction to $A_{v} / Z\left(A_{v}\right) \in \mathcal{R}$ and Lemma 2.67.

So we $\left|\Omega_{1}(U)\right| \leq 4$. Then $C_{C_{G}(L)}(u) /\langle u\rangle$ has cyclic Sylow 2-subgroups and so a normal 2 -complement, which shows $C_{C_{G}(L)}(u)=U$. In particular $C_{L_{v}}(u)$ is a 2 -group, which contradicts Lemma 2.66.
Lemma 4.19. Assume Hypothesis 4.17. Then $\mathcal{L}_{A_{z}}^{*}=\overline{\mathcal{L}}_{A_{z}}^{*}$.
Proof. By Lemma 2.56 we have $A_{z} / Z\left(A_{z}\right) \in \mathcal{M}$. Choose $L \in \mathcal{L}_{A_{z}}^{*}$ with $L \neq A_{z}$. Then by Lemma $4.9 L \in \mathcal{M}_{1}$. If $L \notin \overline{\mathcal{L}}_{L}^{*}$, then by Lemma 4.10 $\overline{\mathcal{L}}_{L}^{*} \subseteq \mathcal{M}_{2}$, which contradicts Lemma 4.18. So $L \in \overline{\mathcal{L}}_{L}^{*}$, i.e. $\mathcal{L}_{A_{z}}^{*}=\overline{\mathcal{L}}_{A_{z}}^{*}$.

So we are left with $\mathcal{L}_{A_{z}}^{*}=\left\{A_{z}\right\}$. Now choose $L \in \overline{\mathcal{L}}_{A_{z}}^{*}$. Let A_{z}, K, \cdots, L be a chain for $A_{z} \longrightarrow L$. Then we have that $K \in \mathcal{K}_{A_{z}}$. Hence $K / N \cong A_{z}$ for some $1 \neq N \leq Z(K)$. In particular $|Z(K)| \geq 4$, as $Z\left(A_{z}\right) \neq 1$. By definition $K \notin \overline{\mathcal{L}}_{K}^{*}$. Hence there is L_{1} with $K \sqsubseteq L_{1}$. By Lemma 2.60 (b) and (c) we have that $L_{1} \in \mathcal{M}_{2}$. Further $L \in \overline{\mathcal{L}}_{L_{1}}^{*}$. But then $L \in \mathcal{M}_{2}$ by Lemma 4.10, contradicting Lemma 4.18.
Lemma 4.20. Assume Hypothesis 4.17. If $L \in \overline{\mathcal{L}}_{A_{z}}^{*}$, then $Z(L) \cap$ $Z\left(A_{z}\right) \neq 1$.
Proof. By Lemma 4.19 we have $L \in \mathcal{L}_{A_{z}}^{*}$. By Lemma 2.56 we have $A_{z} \in \mathcal{M}$. Then by Lemma 4.9 we get $L \in \mathcal{M}_{1}$. By Lemma 4.18 we have $L \notin \mathcal{M}_{2}$. Then $Z(L) \neq 1$. By Lemma 4.19 we have $A_{z} \leq L$. If $Z(L) \cap Z\left(A_{z}\right)=1$, we have a quasisimple component in the centralizer of an involution in $L / Z(L)$, which is not simple. By Lemma 2.60(b) we then get $L / Z(L) \in \mathcal{M}_{2}$. This also implies $L \in \mathcal{M}_{2}$, a contradiction.
Lemma 4.21. Let $z \in \Omega_{1}(Z(S))^{\sharp}$ with $Z\left(E\left(C_{G}(z)\right)\right) \neq 1$, then there is $t \in \Omega_{1}(Z(S))^{\sharp}$ with $t \in Z\left(E\left(C_{G}(t)\right)\right)$.

Proof. Choose $1 \neq t \in \Omega_{1}(Z(S)) \cap Z\left(E\left(C_{G}(z)\right)\right)$. As

$$
\begin{aligned}
& {\left[E\left(C_{G}(z)\right), O_{2}\left(C_{G}(t)\right)\right] \leq O_{2}\left(C_{G}(t)\right) \cap E\left(C_{G}(z)\right)} \\
& \quad \leq O_{2}\left(E\left(C_{G}(z)\right)\right) \leq Z\left(E\left(C_{G}(z)\right)\right)
\end{aligned}
$$

we get with the 3 -subgroup lemma that $\left[E\left(C_{G}(z)\right), O_{2}\left(C_{G}(t)\right)\right]=1$. So we have that $E\left(C_{G}(t)\right) \neq 1$.

Let L be some component of $E\left(C_{G}(z)\right)$. Assume first $L \cap E\left(C_{G}(t)\right) \leq$ $Z(L)$. Choose $\rho \in L, o(\rho)=p>2, p$ prime. Assume there is a component K of $C_{G}(t)$ with $K^{\rho} \neq K$. Then $K^{\langle\rho\rangle}=K_{1} K_{2} \cdots K_{p}$. Now choose $1 \neq x_{1} \in S \cap K_{1}, x_{1} \notin Z\left(K_{1}\right)$. Then $\left\langle x_{1}^{\langle\rho\rangle}\right\rangle$ is a 2 -group and $\left\langle x_{1}^{\langle\rho\rangle}\right\rangle \neq$ $\left\langle x_{1}\right\rangle$. As $x_{1} \in S$ we have $x_{1} \in C_{G}(z)$. So $\rho^{-1} \rho^{x_{1}} \in L L^{x_{1}}$. As $\left[x_{1}, \rho\right]$ is a 2-element we have that $L^{x_{1}}=L$ and so $\left[L, x_{1}\right] \leq L \cap E\left(C_{G}(t)\right) \leq Z(L)$, but then $\left[x_{1}, \rho\right]=1$, a contradiction.

This shows that L normalizes any component of $C_{G}(t)$. As L centralizes $O_{2}\left(C_{G}(t)\right)$, we see that

$$
L F^{*}\left(C_{G}(t)\right)=F^{*}\left(C_{G}(t)\right) C_{L F^{*}\left(C_{G}(t)\right)}\left(F^{*}\left(C_{G}(t)\right)\right)=F^{*}\left(C_{G}(t)\right)
$$

So we have $L \leq E\left(C_{G}(t)\right)$. This gives $E\left(C_{G}(z)\right) \leq E\left(C_{G}(t)\right)$ and so $t \in Z\left(E\left(C_{G}(t)\right)\right)$.
Proposition 4.22. Suppose that there is some $z \in \Omega_{1}(Z(S))^{\sharp}$ such that $Z\left(E\left(C_{G}(z)\right)\right) \neq 1$. Then we may choose z and some component A_{z} of $C_{G}(z)$ with $z \in Z\left(A_{z}\right)$ and A_{z} is standard.

Proof. By Lemma 4.21 we can choose z such that $z \in Z\left(E\left(C_{G}(z)\right)\right)$. Denote by A_{z} some component of $C_{G}(z)$ with $Z\left(A_{z}\right) \neq 1$. If A_{z} is standard, we have that $\Omega_{1}(Z(S)) \cap Z\left(A_{z}\right) \neq 1$ and so we may assume $z \in A_{z}$. Hence we just have to show that A_{z} is standard. So assume false. Then Hypothesis 4.17 is satisfied.

By Lemma $4.20 Z\left(A_{z}\right) \cap Z(L) \neq 1$ for $L \in \overline{\mathcal{L}}_{A_{z}}^{*}$. So let $1 \neq t \in$ $Z\left(A_{z}\right) \cap Z(L)$ be an involution. By Proposition $4.5 L$ is standard. Then we may assume that t is not 2-central in G. Now $N_{G}(L) \geq C_{G}(t)$ and so $E\left(C_{G}(z)\right) \leq C_{G}(t) \leq N_{G}(L)$. Assume first that A_{z} is normalized by $C_{G}(z)$. Then $Z\left(A_{z}\right)$ contains a 2 -central involution and so we may assume that $z \in Z\left(A_{z}\right)$. As $A_{z} \leq L$ and $z \notin Z(L)$, we have a component in $C_{L / Z(L)}(z Z(L))$. By Lemma 4.9 we have $L \in \mathcal{M}_{1}$. But by Lemma 2.60(b) now $L \in \mathcal{M}_{2}$, contradicting Lemma 4.18.

So we have A_{z} is not normal in $C_{G}(z)$. We have $\left\langle A_{z}^{C_{G}(z)}\right\rangle \leq N_{G}(L)$ and $C_{G}(L) \cap\left\langle A_{z}^{C_{G}(z)}\right\rangle$ is normal in $\left\langle A_{z}^{C_{G}(z)}\right\rangle$. But by Lemma $2.57 A_{z}$
has nonabelian Sylow 2 -subgroups. So we get that $C_{G}(L) \cap\left\langle A_{z}^{C_{G}(z)}\right\rangle \leq$ $Z\left(\left\langle A_{z}^{C_{G}(z)}\right\rangle\right)$. In particular $C_{L / Z(L)}(z Z(L))$ has more than one component, a contradiction to Lemma 2.64.
4.2. Simple components. Now we show that there is always some 2-central involution whose centralizer contains a standard subgroup. By Proposition 4.22 we may work under the following assumption:

Hypothesis 4.23. Let S be a Sylow 2-subgroup of G. Assume that for all $z \in \Omega_{1}(Z(S))^{\sharp}$ we have $Z\left(E\left(C_{G}(z)\right)\right)=1$. Furthermore if A_{z} is a component of $C_{G}(z)$, then A_{z} is not a standard subgroup.

For the remainder, we fix $z \in \Omega_{1}(Z(S))^{\sharp}$ with $E\left(C_{G}(z)\right) \neq 1$, and we fix a choice of component A_{z} of $C_{G}(z)$. When $v \in z^{G}$, we shall denote by A_{v} a fixed G-conjugate of A_{z}.

Lemma 4.24. Assume Hypothesis 4.23. Then $\left|\Omega_{1}(Z(S))\right| \geq 4$.
Proof. We have that

$$
\Omega_{1}(Z(S)) \cap O_{2}\left(C_{G}(z)\right) \neq 1 \text { and } \Omega_{1}(Z(S)) \cap E\left(C_{G}(z)\right) \neq 1
$$

Lemma 4.25. Assume Hypothesis 4.23. If $L \in \overline{\mathcal{L}}_{A_{z}}^{*}$, then $L / Z(L) \in$ $\operatorname{Chev}(2)$ or $L \cong L_{4}(3)$. Furthermore $L \nsubseteq S p_{4}(2)^{\prime} \cong A_{6}$.

Proof. By Proposition 4.5 L is standard. So by Hypothesis $4.23 C_{G}(L)$ does not contain 2-central involutions. Let U be a Sylow 2-subgroup of $C_{G}(L)$ and T_{1} be a Sylow 2-subgroup of $N_{G}(L)$ with $U \leq T_{1}$. Let furthermore $T_{1} \leq T, T$ a Sylow 2 -subgroup of G. We have that $Z(T) \cap$ $U=1$. As $C_{G}(L)$ is tightly embedded, we see that $Z(T) \leq T_{1}$. So by Lemma $4.24\left|\Omega_{1}\left(Z\left(T_{1}\right)\right): \Omega_{1}\left(Z\left(T_{1}\right)\right) \cap U\right| \geq 4$. Hence $\left|\Omega_{1}\left(Z\left(T_{1} / U\right)\right)\right| \geq$ 4. This gives by Lemma 2.34 that $L \in \operatorname{Chev}(2), L_{4}(3)$, or $L_{2}(9)$. Recall that $L \cong M(23)$ is not possible by Lemma 4.14. As $L \neq A_{z}$, we see that $\operatorname{Aut}(L)$ contains an involution with nonsolvable centralizer. So we get $L \not \neq L_{2}(9)$.

Lemma 4.26. Assume Hypothesis 4.23. If $L \in \overline{\mathcal{L}}_{A_{z}}^{*}$, then $L \not \approx L_{4}(3)$.
Proof. Suppose $L \cong L_{4}(3)$. As in the proof of Lemma 4.25 we have some Sylow $2-$ subgroup T of G which contains a Sylow 2 -subgroup T_{1} of $N_{G}(L)$ and so $Z(T) \leq T_{1}$. As $\left|\Omega_{1}(Z(T))\right| \geq 4$ and $Z(T) \cap C_{G}(L)=1$ by Hypothesis 4.23, we have by Lemma 2.19 some outer automorphism x of L, where $x \in Z(T)$ such that $C_{L}(x) \cong P S p_{4}(3): 2$. Set $U=$ $T \cap C_{G}(L)$. Then $[U, x]=1$. As U is abelian by Lemma 3.4, we get $\left|\Omega_{1}\left(Z\left(T_{1}\right)\right)\right|=|U| \cdot 4$. As U does not contain 2 -central involutions, we have that $T_{1} \neq T$ and so there is $t \in N_{T}\left(T_{1}\right)$ with $U \cap U^{t}=1$.

This shows $|U| \leq 4$ and as $Z\left(T_{1} / U\right)$ is elementary abelian again by Lemma 2.19, we have that U is elementary abelian. In particular:
$(*)$ For each $u \in U^{\sharp}$, we have that $C_{G}(u)=U \times L_{4}(3): 2 \leq N_{G}(L)$.
As $L \in \overline{\mathcal{L}}_{A_{z}}^{*}$ and $A_{z} \neq L$, we have a chain $A_{z}=K_{1}, \ldots, K_{r}=L$ belonging to $A_{z} \rightarrow L$, where $r>1$. We have $K_{r-1} \leq^{*} L$. Hence there is $L_{1} \neq L$ with $L_{1} \sqsubseteq L$. This now shows that $L_{1} \cong P S p_{4}(3)$. Furthermore either $L_{1}=K_{r-1} \cong P S p_{4}(3)$ or $K_{r-1} \cong L_{2}(9)$. In the second case we have $A_{z}=K_{r-1}$.

So we have

$$
A_{z} \cong P S p_{4}(3) \text { or } L_{2}(9)
$$

Now we choose $v \in Z\left(T \cap N_{G}(L)\right)$ with $v \sim z$ in G. Let $T_{2} \leq T$ with $\left|T_{2}: T_{1}\right|=2$. We have that $T_{1}^{\prime} \leq L$ by $(*)$. By Lemma 2.19 we have $\left|Z\left(T_{1} \cap L\right)\right|=2$ and so $Z\left(T_{1} \cap L\right)$ is centralized by T_{2}. As $C_{T_{1}}\left(T_{2}\right)=Z(T)$ and $C_{T_{1}}\left(T_{1}\right)=U \times Z(T)$, we have that $Z(T) \cap L \neq 1$. So we see that $U L \cap Z(T) \leq L$. This gives that either $v \in L$ or v induces an outer automorphism on L.

Let A_{v} be some component of $C_{G}(v)$, which is conjugate to A_{z}. Suppose first $v \in L$. Then by Lemma $2.19 C_{L}(v)$ contains $S L_{2}(3) * S L_{2}(3)$. Further $C_{L}(v)$ acts irreducibly on $O_{2}\left(C_{L}(v)\right) / Z\left(O_{2}\left(C_{L}(v)\right)\right)$. Set

$$
L_{v}=\left\langle A_{v}^{C_{L}(v)}\right\rangle .
$$

As $L_{v} \cap C_{L}(v)$ is normal in $C_{L}(v)$ and $v \notin L_{v}$ as $Z\left(E\left(C_{G}(v)\right)\right)=1$, we see that $C_{L}(v) \cap L_{v}=1$.

Choose $u \in U^{\sharp}$ and set $X_{u}=C_{A_{v}^{u} A_{v}}(u)$. As $X_{u} \leq C_{G}(u) \cap C_{G}(v)$, we get that X_{u} is solvable. So $\left[A_{v}, u\right]=A_{v}$. As $C_{L}(v) \cap A_{v}=1$, we have that $C_{A_{v}}(u) \leq U \times Z(T)$ and so is elementary abelian of order at most 16. But neither $L_{2}(9)$ nor $P p_{4}(3)$ has such an automorphism u by Lemma 2.18.

So we have shown that v induces an outer automorphism on L and then $C_{L}(v) \cong P S p_{4}(3): 2$. Again choose $u \in U^{\sharp}$.

Assume first that $\left[u, A_{v}\right]=1$. Then $A_{v} \leq L$ and is normal in $C_{L}(v)$, so $A_{v} \cong P S p_{4}(3)$. Now $C_{N_{G}(L)}\left(A_{v}\right)=C_{G}(L) \times\langle v\rangle$.

Suppose $|U| \geq 4$. Then $U \times\langle v\rangle$ is a Sylow 2-subgroup of $C_{N_{G}(L)}\left(A_{v}\right)$. As U is a TI-group in $U \times\langle v\rangle$, we see that this is a Sylow 2-subgroup
of $C_{G}\left(A_{v}\right)$. As $A_{v} \cong P S p_{4}(3)$ does not have elementary abelian Sylow 2-subgroups, we see that $A_{v}^{T}=A_{v}$. But then T normalizes $C_{T}\left(A_{v}\right)=$ $U \times\langle v\rangle$ and so U contains 2-central involutions, a contradiction.

So we have that $|U|=2$. Then $C_{C_{G}\left(A_{v}\right)}(u)=\langle u, v\rangle$ and then by [KuSte, 5.3.10] $C_{G}\left(A_{v}\right)$ has dihedral or semidihedral Sylow 2-subgroups. As $v \in Z\left(C_{G}\left(A_{v}\right) \cap C_{G}(v)\right)$, we see that $C_{G}\left(A_{v}\right) \cap C_{G}(v)$ cannot have components by Hypothesis 4.23 and so is solvable. Hence as $O\left(C_{G}(v)\right)=1$, we have with Lemma 2.7 that $C_{G}(v) \cap C_{G}\left(A_{v}\right)$ is dihedral, semidihedral or contains a normal subgroup $S L_{2}(3)$. The latter is not possible by Lemma 3.2.

As A_{v} does not have dihedral or semidihedral Sylow 2-subgroups we get that $A_{v} \unlhd C_{G}(v)$. Let now $w \in A_{v}$ be a 2 -central involution. Then $\langle w\rangle=O_{2}\left(C_{A_{v}}(w)\right)^{\prime}$ by Lemma 2.19. As $w \notin Z\left(E\left(C_{G}(w)\right)\right)$ we get $O_{2}\left(C_{A_{v}}(w)\right) \cap E\left(C_{G}(w)\right)=1$.

Suppose $E\left(C_{G}(w)\right) \neq 1$ and choose some component A_{w} of $C_{G}(w)$. We have that T has a subgroup of index two, which is a direct product of a dihedral or semidihedral group and a Sylow 2 -subgroup of $P S p_{4}(3)$. In particular T has no abelian section of rank greater than 6. As $w \notin\left\langle A_{w}^{C_{G}(w)}\right\rangle$ we get that A_{w} has at most two conjugates in $C_{G}(w)$. Hence $O^{2}\left(C_{G}(w) \cap C_{G}(u)\right)$ normalizes A_{w}. By Lemma $2.54 O_{2}\left(C_{A_{v}}(w)\right)$ induces inner automorphisms on A_{w}. If $C_{O_{2}\left(C_{A_{v}}(w)\right)}\left(A_{w}\right)=\langle w\rangle$, there is an elementary abelian section of order 2^{8} in $A_{w} O_{2}\left(C_{A_{v}}(w)\right)$, a contradiction. So we get that $A_{w} \leq C_{G}\left(O_{2}\left(C_{A_{v}}(w)\right)\right)$. The structure of $C_{G}(v)$ shows that a Sylow 2-subgroup of $C_{G}\left(O_{2}\left(C_{A_{v}}(w)\right)\right)$ is the same as of $C_{G}\left(A_{v}\right)$ and so is dihedral or semidihedral. Hence a Sylow 2-subgroup of A_{w} is dihedral or semidihedral. In particular as $u \nsim v$, we must have dihedral Sylow 2-subgroups. As $A_{w} \in \mathcal{C}_{2}$, we get $A_{w} \cong L_{2}(p)$, p prime, or $L_{2}(9)$. This now shows that even $O^{2}\left(C_{A_{v}}(w)\right)$ centralizes A_{w} and then $C_{G}(w)$ has a normal subgroup $A_{w} \times S L_{2}(3) * S L_{2}(3)$ and so has a subnormal subgroup $S L_{2}(3)$, contradicting Lemma 3.2, recall that $O^{2}\left(C_{A_{v}}(w)\right)$ cannot be contained in a component as $w \notin E\left(C_{G}(w)\right)$.

So we have $E\left(C_{G}(w)\right)=1$. If $C_{G}(w) \leq C_{G}(v)$ we again have a subnormal $S L_{2}(3)$, a contradiction to Lemma 3.2. So we have $C_{G}(w) \not \leq C_{G}(v)$.

If $\Omega_{1}(Z(T))=\Omega_{1}\left(Z\left(O_{2}\left(C_{G}(w)\right)\right)\right)$ then $Z(T)=\langle w, v\rangle$ is normal in $C_{G}(w)$ and so $C_{G}(w) \leq C_{G}(v)$, a contradiction. So we deduce that $\Omega_{1}\left(Z\left(O_{2}\left(C_{G}(w)\right)\right)\right)>\langle v, w\rangle$. We have that $O_{2}\left(C_{G}(w)\right) \leq C_{T}\left(A_{v}\right) \times$
$O_{2}\left(C_{A_{v}}(w)\right)$. As we have $C_{G}\left(O_{2}\left(C_{G}(w)\right)\right) \leq O_{2}\left(C_{G}(w)\right)$ we get that $O_{2}\left(C_{A_{v}}(w)\right) \leq O_{2}\left(C_{G}(w)\right)$. This now gives $O_{2}\left(C_{G}(w)\right) \cong V_{4} \times Q_{8} * Q_{8}$. As $C_{G}(w) \nsubseteq C_{G}(v)$, there is some 3-element ρ which acts nontrivially on $\Omega_{1}\left(Z\left(O_{2}\left(C_{G}(w)\right)\right)\right.$ and $[\rho, w]=1$. Set

$$
X_{w}=\left\langle O_{2,3}\left(C_{A_{v}}(w)\right) / O_{2}\left(C_{A_{v}}(w)\right), \rho\right\rangle
$$

Then X_{w} acts on $O_{2}\left(C_{G}(w)\right) / Z\left(O_{2}\left(C_{G}(w)\right)\right)$. Hence we may choose ρ such that $\left[\rho, O_{2}\left(C_{G}(w)\right)\right]=\left[\Omega_{1}\left(Z\left(O_{2}\left(C_{G}(w)\right)\right)\right), \rho\right]$. This gives that Sylow 3-subgroups of X_{w} are elementary abelian and so $\left[\rho, O_{2}\left(C_{A_{v}}(w)\right)\right]=$ 1. This then implies $O_{2,3}\left(C_{G}(w)\right) \cong A_{4} \times S L_{2}(3) * S L_{2}(3)$ and $C_{G}(w)=$ $O_{2,3}\left(C_{G}(w)\right)\left(C_{G}(v) \cap C_{G}(w)\right)$. Then we have a subnormal $S L_{2}(3)$ contradicting Lemma 3.2.

Hence we have a final contradiction for $\left[u, A_{v}\right]=1$. This implies $\left[u, A_{v}\right] \neq$ 1 for all $u \in U^{\sharp}$. Set

$$
L_{v}=\left\langle A_{v}^{C_{L}(v)}\right\rangle
$$

Suppose that $C_{L}(v) \cap L_{v}=1$. As $C_{L_{v}}(u)$ is normalized by $C_{L}(v)$, we then have that $C_{L_{v}}(u)=U$. But this contradicts Lemma 2.18 and $A_{v} \cong A_{z} \cong L_{2}(9)$ or $P S p_{4}(3)$. So we have that $C_{L}(v) \cap C_{L_{v}}(u) \neq 1$ and so $C_{L}(v)^{\prime} \leq L_{v}$. If $\left[u, A_{v}\right] \leq A_{v}$ we get $C_{L}(v)^{\prime} \leq A_{v}$ and so $L_{v}=A_{v}=C_{L}(v)^{\prime}$, as $A_{v} \cong L_{2}(9)$ or $P S p_{4}(3)$. But this contradicts $\left[u, A_{v}\right] \neq 1$.

So we have that $A_{v}^{u} \neq A_{v}$. Then $E\left(C_{G}(\langle v, u\rangle)\right) \geq C_{A_{v}^{u} A_{v}}(u) \cong A_{v}$ and so $A_{v} \cong P \operatorname{Pp}_{4}(3)$. As $\left[C_{A_{v}^{u} A_{v}}(u), U\right]=1$, we see that U normalizes $A_{v}^{u} A_{v}$ and so $|U|=2$. We have that $A_{v} A_{v}^{u}=E\left(C_{G}(v)\right)$ as $C_{C_{G}(u)}\left(C_{A_{v} A_{v}^{u}}(u)\right)=\langle u\rangle$. Hence $\left|T: N_{T}\left(A_{v}\right)\right|=2$.

As $O\left(N_{G}(L)\right) C_{G}(u)=N_{G}(L)$, we see that $\left|C_{G}(u)\right|_{2}=2^{9}$. Let x be an involution in $C_{C_{G}(v)}\left(A_{v} A_{v}^{u}\right) A_{v} A_{v}^{u}$. Then $\left|C_{G}(x)\right|_{2} \geq 2^{10}$ and so $x \nsim u$ in G. Suppose that x is an involution which acts on A_{v} as an outer automorphism. Then we have $\left|C_{A_{v}}(x)\right|_{2} \geq 2^{4}$ by Lemma 2.18 and so again $\left|C_{A_{v} A_{v}^{u}}(x)\right|_{2} \geq 2^{8}$. As $[v, x]=1$ and $v \notin A_{v} A_{v}^{u}$ by Hypothesis 4.23 we get $\left|C_{G}(x)\right|_{2} \geq 2^{10}$. So u is not conjugate to any involution in $N_{T}\left(A_{v}\right)$. By Lemma 2.3 we get a subgroup of index 2 in G, a contradiction.
Lemma 4.27. Assume Hypothesis 4.23. If $L \in \overline{\mathcal{L}}_{A_{z}}^{*}$, then $L \not \approx L_{2}(q)$, q even.
Proof. Suppose false. Then as $L \in \overline{\mathcal{L}}_{A_{z}}^{*}$ and outer automorphisms of L just centralize $L_{2}(r)$, we see that $A_{z} \cong L_{2}(r)$ for some r. As $r \geq 4$, we also see that $q \geq 16$. Finally there is some involution $x \in N_{G}(L)$ such
that $C_{L}(x) \cong L_{2}(t), t^{2}=q$. Hence

$$
L \cong L_{2}\left(t^{2}\right), A_{z} \cong L_{2}(r), r \leq t
$$

Let U be a Sylow 2 -subgroup of $C_{G}(L)$. Then by Hypothesis 4.23 we have that U does not contain 2 -central involutions. Let T_{1} be a Sylow 2 -subgroup of L. As $\left|T_{1}\right| \geq 16$, we see that $U \times T_{1}$ is a characteristic abelian subgroup in $T \cap N_{G}(L)$, where T is a Sylow 2-subgroup of G containing a Sylow 2 -subgroup of $N_{G}(L)$ which contains $U \times T_{1}$. This shows U is elementary abelian. Further

$$
C_{G}\left(U \times T_{1}\right)=U \times T_{1} .
$$

Now we may apply O'Nan's lemma (Lemma 2.6) to $U \times T_{1}$ with $\rho \in$ $N_{L}\left(T_{1}\right), o(\rho)=q-1$. This gives that either $U \sim T_{1}$ in G or all elements in $U \times T_{1} \backslash T_{1}$ are conjugate to elements in U. Recall that as $\left|T_{1}\right| \geq 16$ the other possibilities of O'Nan's lemma do not appear.

Now let $v \in U \times T_{1} \cap Z(T), v \sim z$ in G and let A_{v} be the component in $C_{G}(v)$ conjugate to A_{z}. Let further $u \in U^{\sharp}$. Suppose that either $\left[A_{v}, u\right]=1, A_{v}^{u} \neq A_{v}$ or $\left[A_{v}, u\right]=A_{v}$ and $C_{A_{v}}(u)$ is nonsolvable. Then $C_{A_{v} A_{v}^{u}}(u) \leq\left(C_{G}(u) \cap C_{G}(v)\right)^{\infty} \leq C_{G}(L)$. Hence we may assume that there is some $1 \neq \tilde{u} \in U$, with $\tilde{u} \in C_{A_{v} A_{v}^{u}}(u)$. We have $E\left(C_{G}(v)\right)=$ $A_{v} A_{v}^{u} C_{E\left(C_{G}(v)\right)}(\tilde{u})$. Now also $C_{E\left(C_{G}(v)\right)}(\tilde{u}) \leq C_{G}(L)$ as it is nonsolvable. But as T normalizes $E\left(C_{G}(v)\right)$ and $U \leq T$, then $1 \neq Z(T) \cap E\left(C_{G}(v)\right) \leq$ $C_{A_{v} A_{v}^{u}}(u) C_{E\left(C_{G}(v)\right)}(\tilde{u})$, contradicting $Z(T) \cap C_{G}(L)=1$ by Hypothesis 4.23.

So we have that

$$
\left[A_{v}, u\right]=A_{v} \text { and } C_{A_{v}}(u) \text { is solvable. }
$$

Suppose that some $u \in U^{\sharp}$ induces a field automorphism on A_{v}. Set $X_{v}=C_{A_{v}}(u)$. Then X_{v} is solvable and so $A_{v} \cong L_{2}(4), X_{v} \cong \Sigma_{3}$. In particular $|U| \leq 4$ and then $U=C_{C_{G}(L)}(u)$. By Lemma $2.23 O_{3}\left(X_{v}\right) \leq$ L. Then $C_{U L}\left(O_{3}\left(X_{v}\right)\right)=U \times R, R$ of odd order. But X_{v} is centralized by $\langle v, u\rangle \leq U L$, a contradiction. So we have that

$$
\begin{aligned}
& {\left[A_{v}, u\right]=A_{v} \text { for all } u \in U^{\sharp} \text { and any }} \\
& u \text { induces an inner automorphism. }
\end{aligned}
$$

Let X_{v} be a Sylow 2-subgroup of A_{v}, which is centralized by U. In particular $\left|X_{v}\right| \geq|U|$. As $X_{v} \leq N_{G}(L) \cap C(v)$, and $T_{1} U$ is of index two in $\Omega_{1}\left(T \cap N_{G}(L)\right)$, we see that T_{1} centralizes a subgroup of index two in X_{v}. If $\left[T_{1}, X_{v}\right] \neq 1$, then as $q \geq 16$, we have that $\left|T_{1}: C_{T_{1}}\left(X_{v}\right)\right| \geq 4$ and so
T_{1} induces a fours group of outer automorphisms on A_{v}, contradicting $A_{v} \cong L_{2}(r)$. This shows that

$$
\left[T_{1}, X_{v}\right]=1 \text { and then } X_{v} \leq U \times T_{1}
$$

Suppose first that $|U|=\left|T_{1}\right|$. Then as $\left|X_{v}\right| \geq|U|$, we have $A_{v} \cong L_{2}(r)$, $r \geq q$, a contradiction. So we have that $|U|<\left|T_{1}\right|$. In particular by O'Nan's lemma we now have that all elements in $U \times T_{1} \backslash T_{1}$ are conjugate to elements in U, which gives that just the involutions in T_{1} are 2-central.

Suppose that X_{v} does not contain 2-central involutions. Then $X_{v} \cap T_{1}=$ 1 and so $\left|X_{v}\right|=|U|$. As X_{v} is a Sylow 2-subgroup of A_{v} we see that T cannot normalize A_{v}. Hence there is some $y \in T$ with $A_{v}^{y} \neq A_{v}$. Now we could also have chosen A_{v}^{y} instead of A_{v}. Then also $X_{v}^{y} \leq T_{1} \times U$ and so $X_{v} X_{v}^{y} \cap T_{1} \neq 1$. Hence all involutions in $X_{v} X_{v}^{y} \backslash\left(X_{v} \cup X_{v}^{y}\right)$ are 2 -central. But the set of 2 -central involutions in $T_{1} \times U$ is closed under multiplication, a contradiction.

So we have that X_{v} contains 2 -central involutions and so $X_{v} \leq T_{1}$. Now we choose $\nu \in N_{A_{v}}\left(X_{v}\right)$, which acts transitively on X_{v}^{\sharp}. We have $\left[C_{C_{G}(v)}\left(A_{v}\right), \nu\right]=1$. As $U T_{1}=C_{U T_{1}}\left(A_{v}\right) \times X_{v}$ we have that ν normalizes $U T_{1}$ and $\left[U T_{1}, \nu\right]=X_{v}$. Now there is some $w \in U T_{1}$ with $[w, \nu]=1$ and $w \sim u \in U^{\sharp}$ in G. Let $g \in G$ with $u^{g}=w$. Then $U \times T_{1} \leq C_{G}(w)$ and so $U \times T_{1}$ is a Sylow 2-subgroup of $C_{G}\left(L^{g}\right) L^{g}$, as $U T_{1}$ was the only abelian subgroup of its order in a Sylow 2-subgroup of $N_{G}(L)$. But as T_{1}^{\sharp} is the set of 2-central involutions in $U \times T_{1}$, we get that T_{1} is a Sylow 2-subgroup of L^{g}. As ν normalizes L^{g} it now acts nontrivially on L^{g}. As $\left|X_{v}\right|<\left|T_{1}\right|$ and $\left[T_{1}, \nu\right]=X_{v}$, we see that ν induces a field automorphism on L^{g}. As $o(\nu)$ is odd, this implies $\left|\left[T_{1}, \nu\right]\right|>t$, where $q=t^{2}$. But $\left|X_{v}\right| \leq t$, as $A_{v} \cong L_{2}(r), r \leq t$, a contradiction.
Lemma 4.28. Assume Hypothesis 4.23. If $L \in \overline{\mathcal{L}}_{A_{z}}^{*}$, then $L \not \approx S p_{2 n}(2)$.
Proof. Assume false. Let $A_{z}=K_{1}, \ldots, K_{r}=L$ be a chain belonging to $A_{z} \rightarrow L$. By Hypothesis 4.23 we have $A_{z} \neq L$. Hence by Lemma 4.6(b) there is some involution t in $\operatorname{Aut}(L)$ such that $C_{L}(t)$ has a component K_{r-1}, which contradicts Lemma 2.25.

We fix the following notation: Let $L \in \overline{\mathcal{L}}_{A_{z}}^{*}$ and U be a Sylow 2subgroup of $C_{G}(L)$. Furthermore let T be a Sylow 2 -subgroup of G such that $T \cap N_{G}(L)$ is a Sylow 2 -subgroup of $N_{G}(L)$ containing U.

By Lemma 4.25 and Lemma 4.26 we may assume that $L \in \operatorname{Chev}(2)$ and by Proposition $4.5 L$ is standard. Further by Lemma $2.25 L$ does not possess an outer automorphism centralizing a Sylow 2 -subgroup of L. By Hypothesis $4.23 Z(T) \cap U=1$. As $\left|\Omega_{1}(Z(T))\right| \geq 4$ by Lemma 4.24, we get that

$$
\left|\Omega_{1}(Z(T \cap L))\right| \geq 4
$$

This gives that either L is defined over $\operatorname{GF}(q), q \geq 4$, or $L \cong F_{4}(2)$ by Lemma 4.28. This we now collect in the following lemma

Lemma 4.29. Assume Hypothesis 4.23. Then L is defined over $\operatorname{GF}(q)$, $q>2$.

Proof. Let $L \cong F_{4}(2)$ and $A_{z}=K_{1}, \ldots, K_{r}=L$ be a chain belonging to $A_{z} \rightarrow L$. By Lemma 4.6(b) and Hypothesis 4.23 we have that K_{r-1} is a component in the centralizer of some involution t of $\operatorname{Aut}(L)$. By Lemma 2.25 we get $K_{r-1}={ }^{2} F_{4}(2)^{\prime}$. We have $t \in T$. As $Z(T) U / U$ is a fours group, we get that this group is centralized by t. But then $Z\left(T \cap K_{r-1}\right)$ must contain a fours group, a contradiction.

Lemma 4.30. Assume Hypothesis 4.23 with $L \in \overline{\mathcal{L}}_{A_{z}}^{*}$.
(a) Assume $L \cong S p_{2 n}(q)$, or $F_{4}(q), q=2^{n}, n \geq 2$. Then $A_{z} \cong$ $S p_{2 n}(r), F_{4}(r),{ }^{2} F_{4}(r)^{\prime}$ or $S z(r), r=2^{t}, r \leq q$, where in the first two cases even $r^{2} \leq q$. Finally $A_{z} \cong S p_{2 n}(r)$ just occurs for $L \cong S p_{2 n}(q)$ and $A_{z} \cong F_{4}(r)$ or ${ }^{2} F_{4}(r)^{\prime}$ just occure for $L \cong F_{4}(q)$.
(b) $L \not \approx S z(q)$ or ${ }^{2} F_{4}(q)^{\prime}$.
(c) If $L \cong L_{3}(q)$ or $U_{3}(q), q=2^{n}$, then $A_{z} \cong L_{2}(r), L_{3}(r)$ or $U_{3}(r)$, $r=2^{t}$, where $t \leq n$ in the first case and $2 t \leq n$ in the last two cases.

Proof. (a) Let first K be a central extension of one of the groups $S p_{2 n}(r), F_{4}(r),{ }^{2} F_{4}(r)^{\prime}$ or $S z(r)$ and $K_{1} \in \mathcal{C}_{2}$ with $K_{1} \sqsubseteq K$. Then there is some involution t normalizing K such that $C_{K}(t)$ has a component K_{1}. Now by Lemma $2.25(3) K_{1} \cong S p_{2 n}(s), F_{4}(s),{ }^{2} F_{4}(r)$, or $S z(r)$ in case of $K \cong S p_{4}(r)$, or a central extension of such a group, where $s^{2} \leq r$. Furthermore $F_{4}(s)$ and ${ }^{2} F_{4}(r)$ just occure for $F_{4}(r)$. Hence we see that if $A_{z} \rightarrow L$, then A_{z} is a central extension of one of the groups of the assertion. As $Z\left(A_{z}\right)=1$ by Hypothesis 4.23, we have the assertion.

Suppose finally that $L \cong S z(q)$. Then $L=A_{z}$ as $\operatorname{Aut}(L)$ contains no involution with nonsolvable centralizer by Lemma 2.25.

Similarly one gets (c) by quoting Lemma 2.25(5) again.

For the remainder of this section we fix the following notation. We choose $v \sim z, v \in Z(T)$. Recall that T is a Sylow 2-subgroup of G containing a Sylow 2-subgroup of $N_{G}(L)$, which contains U.

Lemma 4.31. If $L / Z(L) \cong L_{3}(4)$ or $G_{2}(4)$, then $Z(L)=1, L \cong L_{3}(4)$, $A_{v} \cong A_{5}$ and A_{v} is normalized by $T \cap N_{G}(L)$.

Proof. Assume false. Let $A_{z}=K_{1}, \ldots, K_{r}=L$ be the chain belonging to $A_{z} \rightarrow L$. Then there is some involution $t \in T \cap N_{G}(L)$ such that $[L, t]=L$ and t centralizes $Z(T \cap L / Z(L))$, which is a fours group by Lemma 2.41 and Lemma 2.52. As by Lemma $2.52 G_{2}(4)$ just has field automorphisms, which of course do not centralize $Z(T \cap L / Z(L))$, we see that $L / Z(L) \nsubseteq G_{2}(4)$. Hence $L / Z(L) \cong L_{3}(4)$ and in particular $C_{L / Z(L)}(t) \cong A_{5}$ by [GoLyS5, Lemma 10.2.1]. This shows $K_{r-1} \cong A_{5}$. Now we get $A_{z}=K_{r-1}$. We have that $v \in U L$. Further we have that t induces a graph automorphism and $T \cap N_{G}(L)=(T \cap U L)\langle t\rangle$. Let A_{v} be the component corresponding to A_{z} in $C_{G}(v)$. Then $A_{v} \cong A_{5}$.

Let $T_{1} \leq T$ with $\left|T_{1}: T \cap N_{G}(L)\right|=2$. Then $U \cap U^{g}=1$ for $g \in T_{1} \backslash N_{T}(L)$. As $\left|T \cap N_{G}(L): C_{T \cap N_{G}(L)}(u)\right| \leq 2$ for all $u \in U^{\sharp}$, we get that the same is true for all $u^{g} \in U^{g}$. As by Lemma 2.52(b) $\left|T \cap N_{G}(L): C_{T \cap N_{G}(L)}(x)\right| \geq 2^{4}$ for any $x \in T$, which induces a graph automorphism on L, we see that $U^{g} \leq U L$. But then $U^{g} U / U$ is a subgroup of the root group of $T \cap L / Z(L)$, which is of order 4. Hence U is elementary abelian of order at most 4.

Let $1 \neq u \in U$. As $O\left(C_{G}(u)\right)=1$, we get that $C_{G}(u) \cap C_{G}(L)=U$. As by Lemma $2.41 C_{C_{G}(u)}(v)$ is solvable, we see that $\left[A_{v}, u\right]=A_{v}$.

Now set

$$
L_{v}=\left\langle A_{v}^{T \cap N_{G}(L)}\right\rangle .
$$

Suppose $A_{v}=L_{v}$. Then $T \cap N_{G}(L)$ induces a group of automorphisms isomorphic to a subgroup of D_{8} on A_{v}. Suppose $Z(L) \neq 1$. We have that $Z(L) \leq U$. By Lemma 2.42(b) we then get that $Z(L) \cap C_{T}\left(A_{v}\right) \neq 1$, a contradiction. Hence $Z(L)=1$. So we may assume that $A_{v} \neq L_{v}$. We have that $C_{A_{v}}(u)$ either is a fours group or isomorphic to Σ_{3}. As $A_{v} \cong A_{5}$ there is no direct product of groups isomorphic to Σ_{3}, which is normalized by $T \cap L$, we see that $C_{A_{v}}(u)$ is a fours group. As $L_{3}(4)$ by Lemma 2.41 does not contain elementary abelian subgroups of order greater than 16 , there is no elementary abelian subgroup of order 2^{8} in $C_{G}(u)$. Hence we have that L_{v} is a direct product of two copies of A_{v}.

Now $\left\langle v, C_{L_{v}}(u)\right\rangle$ is an elementary abelian group of order 32, which is normalized by $T \cap N_{G}(L)$, contradicting Lemma 2.42.

Lemma 4.32. We have $Z(L)=1$.
Proof. By Lemma 4.29 we have that L is defined over $\mathrm{GF}(q), q>2$. If $Z(L) \neq 1$, we have with Lemma 2.63 that $L \cong L_{3}(4), G_{2}(4)$ or $S z(8)$. By Lemma $4.31 L / Z(L) \nsubseteq G_{2}(4)$ and $Z(L)=1$ for $L / Z(L) \cong$ $L_{3}(4)$. As centralizers of involutions in $\operatorname{Aut}(S z(8))$ are solvable (see Lemma $2.25(3)$), we have that $L / Z(L) \not \approx S z(8)$.

By Lemma 4.32 we now have that $L C_{G}(L)=L \times C_{G}(L)$. Let U and v be as before. Let R be a long root subgroup in L, if $L \neq S p_{2 n}(q)$. Let R be a short root subgroup in L if $L \cong S p_{2 n}(q)$. Let $X_{R}=C_{L}(R)$, $Q_{R}=O_{2}\left(X_{R}\right)$ and choose notation such that $\left[v, Q_{R}\right]=1$. The structure of X_{R} and Q_{R} is given in Lemma 2.28 and will be used freely in the sequel.

Lemma 4.33. Assume Hypothesis 4.23. If $v \in U R$, then $\left[A_{v}, u\right]=A_{v}$ for all $u \in U^{\sharp}$.
Proof. As $v \in U R$ we have that $\left[v, X_{R}\right]=1$. Let $u \in U^{\sharp}$ and assume that $C_{A_{v}^{u} A_{v}}(u) \cong A_{v}$. Then $\left\langle C_{A_{v}^{u} A_{v}}(u)^{X_{R}}\right\rangle$ is a product of quasisimple groups isomorphic to A_{v} and normalized by X_{R}. So it is contained in $C_{G}(L)$. Hence we may assume that $U \cap C_{A_{v}^{u} A_{v}}(u) \neq 1$. We have $E\left(C_{G}(v)\right)=A_{v} A_{v}^{u} C_{E\left(C_{G}(v)\right)}\left(U \cap C_{A_{v}^{u} A_{v}}(u)\right)$. As seen before all components of $E\left(C_{G}(v)\right)$ which are in $C_{E\left(C_{G}(v)\right)}\left(U \cap C_{A_{v}^{u} A_{v}}(u)\right)$ are in fact in $C_{G}(L)$. So we have that $C_{A_{v} A_{v}^{u}}(u) C_{E\left(C_{G}(v)\right)}\left(U \cap C_{A_{v}^{u} A_{v}}(u)\right) \leq C_{G}(L)$. As $T \leq C_{G}(v)$ we see that $Z(T) \cap C_{A_{v} A_{v}^{u}}(u) C_{E\left(C_{G}(v)\right)}\left(U \cap C_{A_{v}^{u} A_{v}}(u)\right) \neq 1$. But then $C_{G}(L) \cap \Omega_{1}(Z(T)) \neq 1$, a contradiction to Hypothesis 4.23. Hence we have that $\left[A_{v}, u\right]=A_{v}$ for all $u \in U^{\sharp}$.

Lemma 4.34. Assume Hypothesis 4.23. If $v \in U R$, then $\left[R, A_{v}\right] \neq 1$.
Proof. Suppose false. As $v \in U R$ we have that $\left[v, X_{R}\right]=1$. Let $u \in U^{\sharp}$. By Lemma 4.33 we have

$$
\left[A_{v}, u\right]=A_{v} \text { for all } u \in U^{\sharp} .
$$

Set

$$
L_{v}=\left\langle A_{v}^{X_{R}}\right\rangle .
$$

As $\left[R, A_{v}\right]=1$ by assumption, we have $\left[R, L_{v}\right]=1$. As $Z\left(E\left(C_{G}(v)\right)\right)=$ 1 , we have that $R \cap L_{v}=1$. As $C_{L_{v}}(u)$ is X_{R}-invariant and does not contain R, we have with Lemma 2.39 that $C_{L_{v}}(u) \cap X_{R}$ is contained in $C_{L_{v}}(u) \cap R=1$. So we get that $\left[X_{R}, C_{L_{v}}(u)\right] \leq X_{R} \cap C_{L_{v}}(u)=1$. This
shows with Lemma $2.37 C_{L_{v}}(u) \leq C_{G}(L) R$ and further $L_{v}=A_{v}$.
By Lemma 4.29 we have that $|R|>2$. Hence there is some $\rho \in L$, $o(\rho)=|R|-1$, such that ρ acts transitively on R^{\sharp}. Then ρ acts on $\langle v, R\rangle$. Set

$$
L_{\rho}=\left\langle A_{v}^{\rho}\right\rangle
$$

Then L_{ρ} is a direct product of conjugates of A_{v}, as $A_{v} \leq E\left(C_{G}(\langle v, R\rangle)\right)$. Further as X_{R} normalizes A_{v} and ρ normalizes X_{R}, we see that $C_{L_{\rho}}(u)$ is X_{R}-invariant. Hence again by Lemma 4.33 we get that $C_{L_{\rho}}(u) \leq$ $C_{G}(L) R$. As $[U, \rho]=1$ we have that ρ acts on $C_{L_{\rho}}(u)$. As $\left[\rho, C_{G}(L) R\right]=$ $R, C_{C_{G}(L) R}(\rho)=C_{G}(L)$ and $R \cap L_{\rho}=1$, we get $C_{L_{\rho}}(u) \leq C_{G}(L)$. Hence also $C_{A_{v}}(u) \leq C_{G}(L)$. Thus there is $1 \neq \tilde{u} \in U \cap A_{v}$ and so $E\left(C_{G}(v)\right)=$ $A_{v} C_{E\left(C_{G}(v)\right)}(\tilde{u})$. Now $C_{E\left(C_{G}(v)\right)}(\tilde{u})$ is normalized by X_{R} and so again $C_{E\left(C_{G}(v)\right)}(\tilde{u}) \leq C_{G}(L)$. But then $U \cap Z(T) \neq 1$, a contradiction.
Lemma 4.35. Assume Hypothesis 4.23. We have $v \notin U R$.
Proof. Assume $v \in U R$. By Lemma 4.34 we have that $\left[R, A_{v}\right] \neq 1$. By Lemma 4.27 we have that $L \neq L_{2}(q)$. Set

$$
L_{v}=\left\langle A_{v}^{X_{R}}\right\rangle
$$

and

$$
Y_{R}=C_{X_{R}}\left(L_{v}\right)
$$

Then Y_{R} is normal in X_{R}. Now by Lemma 2.39 we get that

$$
\begin{equation*}
Y_{R}<R \tag{*}
\end{equation*}
$$

By Lemma 4.33 we have that $A_{v}=\left[A_{v}, u\right]$ for all $u \in U^{\sharp}$. Suppose $L_{v} \neq A_{v}$. We have that $C_{L_{v}}(u)=\left\langle C_{A_{v}}(u)^{X_{R}}\right\rangle$. Suppose furthermore that $C_{L_{v}}(u) \cap X_{R} \not \leq O_{2}\left(X_{R}\right)$. Then by Lemma $2.38 F^{*}\left(\left(C_{L_{v}}(u) \cap\right.\right.$ $\left.\left.X_{R}\right) O_{2}\left(X_{R}\right) / O_{2}\left(X_{R}\right)\right)$ is normal in $X_{R} / O_{2}\left(X_{R}\right)$ and so a product of quasisimple groups and at most one cyclic group and each is normal in $X_{R} / O_{2}\left(X_{R}\right)$. But as $A_{v} \neq L_{v}$, we have that $F^{*}\left(\left(C_{L_{v}}(u) \cap\right.\right.$ $\left.\left.X_{R}\right) O_{2}\left(X_{R}\right) / O_{2}\left(X_{R}\right)\right)$ is a product of at least two groups on which X_{R} acts transitively, a contradiction. So we have that $C_{L_{v}}(u) \cap X_{R} \leq$ $O_{2}\left(X_{R}\right)=Q_{R}$.

Suppose that $C_{A_{v}}(u) \cap X_{R} \not \leq Z\left(Q_{R}\right)$. By Lemma 2.43 either $Q_{R} \leq L_{v}$, or $L \cong L_{n}(q)$ and $C_{L_{v}}(u) \cap X_{R}$ is elementary abelian of order q^{n-1}, or $L \cong L_{3}(q)$ and $\Omega_{1}\left(C_{A_{v}}(u)\right) \leq R$ by Lemma 2.43. (Recall that $L \not \approx L_{3}(4)$ by Lemma 4.31). In the latter case $1 \neq R \cap A_{v}$ is centralized by X_{R}, contradicting $L_{v} \neq A_{v}$. Assume now $Q_{R} \not \leq L_{v}$. Let $x \in X_{R}$ with $A_{v}^{x} \neq A_{v}$. Then in $C_{L_{v}}(u) \cap X_{R}$ we have at least two X_{R}-orbits, one with representative in $C_{A_{v}}(u)$ and one with representative in $C_{A_{v} A_{v}^{x}}(u) \backslash A_{v}$. On
$\left(C_{L_{v}}(u) \cap X_{R}\right)^{\sharp}$ we see that X_{R} has exactly $q-1$ orbits of length 1 , the elements in R^{\sharp}, and one orbit of length $q^{n-1}-q$, the elements which are not in R. This implies that one of the orbits of length one must be in $A_{v} A_{v}^{x}$. This then shows $L_{v}=A_{v} A_{v}^{x}$. In particular $\left|X_{R}: N_{X_{R}}\left(A_{v}\right)\right|=2$. With Lemma 2.44 we now get a contradiction.

So we have $Q_{R} \leq L_{v}$. As L_{v} normalizes A_{v}, we get that $\left[C_{A_{v}}(u) \cap\right.$ $\left.X_{R}, Q_{R}\right]=R \leq A_{v}$, as $C_{A_{v}}(u) \cap Q_{R} \not \leq Z\left(Q_{R}\right)$. But then $A_{v}^{x} \cap A_{v} \geq R$ for all $x \in X_{R}$ and so $A_{v}=L_{v}$, a contradiction.

So we have that $C_{A_{v}}(u) \cap X_{R} \leq Z\left(Q_{R}\right)$ and so $C_{L_{v}}(u) \cap X_{R} \leq Z\left(Q_{R}\right)$. As $L_{v} \neq A_{v}$ we have that $C_{A_{v}}(u) \cap X_{R} \not \leq R$. In particular $Z\left(Q_{R}\right)>$ R, i.e. $L \cong S p_{2 n}(q)$ or $F_{4}(q)$. Now $A_{v} \cong S p_{2 n}(r), S z(r), F_{4}(r)$ or ${ }^{2} F_{4}(r)^{\prime}$ by Lemma 4.30. Assume $t \in C_{L_{v}}(u) \cap T, t \notin L C_{G}(L)$. Then $\left[t, X_{R}\right] \leq X_{R} \cap C_{L_{v}}(u) \leq Z\left(Q_{R}\right)$. Application of Lemma 2.45 yields that $L \cong S p_{4}(q)$. Now Lemma 2.16 shows that t has to induce a field automorphism on L. But then it also has to induce a field automorphism on X_{R} / Q_{R} and so on $L_{2}(q)$, which implies $\left[t, X_{R}\right] \not \leq Z\left(Q_{R}\right)$. So we have that $U Z\left(Q_{R}\right)$ contains a Sylow 2-subgroup of $C_{L_{v}}(u)$. But by Lemma 2.25 none of the groups A_{v} has an automorphism whose centralizer has abelian Sylow 2-subgroups.

We have shown that $L_{v}=A_{v}$. Now X_{R} / Y_{R} acts faithfully on A_{v}. By Lemma 4.31 we have that $A_{v} \cong A_{5}$ in case of $L \cong L_{3}(4)$. But then X_{R} / Y_{R} cannot act faithfully on A_{v}. So we have that $L \not \not L_{3}(4)$ or $S z(q)$. We also know by $(*)$ that Y_{R} is a proper subgroup of R and $O^{2^{\prime}}\left(X_{R}\right)$ contains a Sylow 2 -subgroup of L. If $L \not \approx U_{3}(q)$ or $L_{3}(q)$, i.e. X_{R} is nonsolvable, then A_{v} contains a subgroup R_{v} which is isomorphic to $O^{2^{\prime}}\left(X_{R} / Y_{R}\right)$. Furthermore a central extension of A_{v} is isomorphic to a subgroup of L, as $L \in \overline{\mathcal{L}}_{A_{z}}^{*}$. So a central extension of R_{v} is a subgroup of L and so contained in a parabolic, which then has to be isomorphic to X_{R}. This shows that $X_{R} \cong R_{v}$. As $L \in \overline{\mathcal{L}}_{A_{z}}^{*}$, we now see that L has an involutory automorphism t whose centralizer in L has a component and t centralizes a Sylow 2-subgroup of L, contradicting Lemma 2.25.

So we are left with $L \cong L_{3}(q)$ or $U_{3}(q)$. Now by Lemma 4.30 we see that A_{v} might be $L_{2}(r), L_{3}(r)$ or $U_{3}(r)$, where $r \leq \sqrt{q}$ in the last two cases and $r \leq q$ in the first one. But no such group has an automorphism group of order $\left|X_{R} / Y_{R}\right| \geq 2 q^{2}$ by Lemma 2.53.

Lemma 4.36. Assume Hypothesis 4.23. Then $L \cong S p_{2 n}(q)$ or $F_{4}(q)$ and $A_{v} \cong S p_{2 n}(r), S z(r), F_{4}(r)$ or ${ }^{2} F_{4}(r)^{\prime}$.

Proof. By Lemma 4.35 we have $v \notin U R$. Hence $Z(T) \nsubseteq U R$. Then $Z(T \cap L)>R$. Now by Lemma 2.32 we have that $L \cong S p_{2 n}(q)$ or $F_{4}(q)$. The assertion follows with Lemma 4.30.
Lemma 4.37. Assume Hypothesis 4.23. Then $L \cong S p_{4}(q)$.
Proof. Assume $L \not \approx S p_{4}(q)$. Set $T_{R}=C_{L}(\langle R, v\rangle)^{\infty}$. As $L \not \approx S p_{4}(q)$, and $L \cong S p_{2 n}(q)$ or $F_{4}(q)$, we have by Lemma 2.29 or Lemma 2.28 that $T_{R} \neq 1$. We collect some properties of T_{R} which can be read of from Lemma 2.29 or Lemma 2.28.
(1) $T_{R} / Q_{R} \cong S p_{2 n-4}(q)$ in case of $L \cong S p_{2 n}(q)$.
(2) If $L \cong F_{4}(q)$ we have that $T_{R} / O_{2}\left(T_{R}\right) \cong S p_{4}(q)$. Furthermore we have
(i) $O_{2}\left(T_{R}\right)=Q_{R} Q_{R_{1}}$, where R_{1} is a root group such that

$$
Z(T \cap L)=R R_{1}
$$

(ii) $O_{2}\left(T_{R}\right)^{\prime} \leq Q_{R} \cap Q_{R_{1}}$.

Set

$$
L_{v}=\left\langle A_{v}^{T_{R}}\right\rangle
$$

and

$$
Y_{R}=C_{T_{R}}\left(L_{v}\right) .
$$

Assume first $\left[R, A_{v}\right]=1$. Then $R \cap L_{v}=1$ by Hypothesis 4.23. Furthermore for $u \in U^{\sharp}$ we have that $X_{R} \cap C_{L_{v}}(u) \leq Z\left(Q_{R}\right)$ by Lemma 2.46 and so $C_{A_{v}}(u)$ has a Sylow 2-subgroup in $Z\left(Q_{R}\right) U$. Hence $C_{A_{v}}(u)$ has abelian Sylow 2-subgroups, a contradiction to Lemma 2.25.

So we have $\left[R, A_{v}\right] \neq 1$. Still $C_{L_{v}}(u)$ is normalized by T_{R} and so it cannot have a subgroup isomorphic to A_{v} as this subgroup has to be in $C_{G}(L)$ but A_{v} does not have abelian Sylow 2 -subgroups. So we have that $A_{v}=\left[A_{v}, u\right]$ for all $u \in U^{\sharp}$.

We have $Y_{R} \unlhd T_{R}$. As $R \not \leq Y_{R}$, we see with Lemma 2.46 that $Y_{R} \leq$ $Z\left(Q_{R}\right)$. So we obtain that:

$$
\begin{equation*}
\left[R, A_{v}\right] \neq 1 \text { and } Y_{R} \leq Z\left(Q_{R}\right) \tag{1}
\end{equation*}
$$

Suppose first $L_{v} \neq A_{v}$. As $T_{R} / O_{2}\left(T_{R}\right) \cong S p_{2 n-4}(q)$ or $S p_{4}(q)$ is simple, recall that by Lemma $4.29 q>2$, we get $C_{L_{v}}(u) \cap T_{R} \leq O_{2}\left(T_{R}\right)$. If $R \cap A_{v} \neq 1$, then as $\left[R \cap A_{v}, T_{R}\right]=1$, we get a contradiction to $A_{v} \neq L_{v}$. So

$$
\begin{equation*}
R \cap A_{v}=1 \tag{2}
\end{equation*}
$$

Firstly we consider $L \cong S p_{2 n}(q)$. Assume $A_{v} \cap Q_{R} \not \leq Z\left(Q_{R}\right)$. As $\left[L_{v} \cap Q_{R}, A_{v} \cap Q_{R}\right] \leq Q_{R}^{\prime}=R$, we see with (2) that $A_{v} \cap Q_{R}$ is centralized by $L_{v} \cap Q_{R}$ and so $L_{v} \cap Q_{R}$ is abelian. As $L_{v} \cap Q_{R} \unlhd T_{R}$ we have
that $Q_{R} \not \leq N_{G}\left(A_{v}\right)$. Let $t \in Q_{R}$ with $A_{v}^{t} \neq A_{v}$. As $1 \neq\left[A_{v} \cap Q_{R}, t\right] \leq$ $Q_{R}^{\prime}=R$, we have $R \cap A_{v} A_{v}^{t} \neq 1, R \cap A_{v} A_{v}^{t}$ is centralized by T_{R} so $A_{v} A_{v}^{t}=L_{v}$. In particular $\left|Q_{R}: N_{Q_{R}}\left(A_{v}\right)\right|=2$. But then by (2) we have that $N_{Q_{R}}\left(A_{v}\right)$ centralizes $A_{v} \cap Q_{R}$, which contradicts $q>2$. So we have that $A_{v} \cap Q_{R} \leq Z\left(Q_{R}\right)$ and thus $Q_{R} \cap L_{v} \leq Z\left(Q_{R}\right)$. But now also $O_{2}\left(T_{R}\right) \cap L_{v} \leq Z\left(\bar{Q}_{R}\right)$. So $C_{A_{v}}(u)$ has a Sylow 2-subgroup contained in $U Z\left(Q_{R}\right)$, which contradicts Lemma 2.25

Hence we have that $L \cong F_{4}(q)$. As $T_{R} \cap L_{v}$ is contained in a parabolic subgroup of L_{v} by Lemma 4.36 and the Borel-Tits-Theorem 2.15 we see with Lemma 4.30 that $T_{R} \cap L_{v} \leq O_{2}\left(T_{R}\right)$. As $A_{v} \neq L_{v}$ and $\left[Z(T \cap L), T_{R}\right]=1$, we obtain

$$
\begin{equation*}
Z(T \cap L) \cap A_{v}=1 \tag{3}
\end{equation*}
$$

If $Q_{R} \leq L_{v}$, then as $Z(T \cap L) \cap A_{v}=1$ we conclude $Q_{R} \cap A_{v} \leq Z\left(Q_{R}\right) \cap$ A_{v}. Let $t \in C_{A_{v}}(u)$. Then $\left[t, Q_{R}\right] \leq Z\left(Q_{R}\right)$ and as $Q_{R} \cap A_{v} \leq Z\left(Q_{R}\right)$ we get $t \in Q_{R} U$ and then $t \in Z\left(Q_{R}\right) U$, which gives that $C_{A_{v}}(u)$ has an abelian Sylow 2-subgroup, a contradiction to Lemma 2.25.

So we have that

$$
\begin{equation*}
Q_{R} \not \leq L_{v} \text { and then } O_{2}\left(T_{R}\right) \not \leq L_{v} \tag{4}
\end{equation*}
$$

We further have that $C_{A_{v}}(u)$ does not have an elementary abelian Sylow 2-subgroup. Hence $O_{2}\left(T_{R}\right) \cap A_{v}$ is not abelian. As $Z(T \cap L) \cap A_{v}=1$ by (3), we have that $Q_{R} \cap A_{v}$ is elementary abelian.

Assume first that $Q_{R} \cap A_{v}=1$. As $O_{2}\left(T_{R}\right)^{\prime} \leq Q_{R}$, we get that $O_{2}\left(T_{R}\right) \cap A_{v}$ is abelian, a contradiction. So we have that

$$
\begin{equation*}
Q_{R} \cap A_{v} \neq 1 \tag{5}
\end{equation*}
$$

Suppose that $O_{2}\left(T_{R}\right)$ normalizes A_{v}. Then $Z\left(O_{2}\left(T_{R}\right)\right) \cap A_{v} \neq 1$. But $Z\left(O_{2}\left(T_{R}\right)\right)=Z(T \cap L)$, a contradiction. As $O_{2}\left(T_{R}\right)=Q_{R} Q_{R_{1}}$, where R_{1} is a root group different from R in $Z(T \cap L)$, we may assume that Q_{R} does not normalize A_{v}. In this case we see that $Z\left(Q_{R}\right) \cap A_{v}=$ 1 , as Q_{R} centralizes this group. As $A_{v} \cap Q_{R} \neq 1$ by (5), and [$Q_{R} \cap$ $\left.A_{v}, N_{Q_{R}}\left(A_{v}\right)\right]=1$ by (3), we see that $\left|Q_{R}: N_{Q_{R}}\left(A_{v}\right)\right| \geq q$. As $\left[Q_{R}, Q_{R} \cap A_{v}\right] \leq R$, we have that $\left|\left\langle\left(Q_{R} \cap A_{v}\right)^{Q_{R}}\right\rangle\right| \leq q\left|Q_{R} \cap A_{v}\right|$. On the other hand we have at least q conjugates of A_{v} under Q_{R}, so

$$
\left|\left\langle\left(Q_{R} \cap A_{v}\right)^{Q_{R}}\right\rangle\right| \geq\left|Q_{R} \cap A_{v}\right|^{q}
$$

This shows $\left|Q_{R} \cap A_{v}\right|^{q-1} \leq q$. As $q>2$ and $\left|Q_{R} \cap A_{v}\right| \neq 1$, this is a contradiction.

So we have shown that

$$
\begin{equation*}
A_{v}=L_{v} \tag{6}
\end{equation*}
$$

By (1) there is some subgroup W of $Z\left(Q_{R}\right)$ such that T_{R} / W acts faithfully on A_{v}. As T_{R} / W possess no solvable factor groups and the outer automorphism group of A_{v} is solvable we get that T_{R} / W acts as a group of inner automorphism. As $\left|T_{R} / Z\left(Q_{R}\right)\right|_{2}=q^{n^{2}-4}$ in case of $L \cong S p_{2 n}(q)$ and $\left|T_{R} / Z\left(Q_{R}\right)\right|_{2}=q^{17}$ in case of $L \cong F_{4}(q)$, we get $\left|A_{v}\right|_{2} \geq q^{n^{2}-4}$ in case of $S p_{2 n}(q)$ and $\left|A_{v}\right|_{2} \geq q^{17}$ in case of $F_{4}(q)$. On the other hand by Lemma 4.30 we have that $A_{v} \cong S p_{2 n}(r), F_{4}(r),{ }^{2} F_{4}(r)^{\prime}$ or $S z(r)$. Hence in this ordering we get $\left|A_{v}\right|_{2}=r^{n^{2}}, r^{24}, r^{12}$, or 2^{11}, or r^{2}. Furthermore $\left|A_{v}\right|_{2} \leq|L|_{2}$ by Lemma 4.6. If $A_{v} \cong S z(r)$, then $q=r$ which violates the inequalities above. If $L \cong S p_{2 n}(q)$, we have $\left|A_{v}\right| \leq q^{n^{2}}$. On the other hand for $A_{v} \cong S p_{2 n}(r)$ we get $r^{2} \leq q$, so $\left|A_{v}\right|_{2}=r^{n^{2}} \leq q^{n^{2} / 2}$. Then $n^{2}-4 \leq n^{2} / 2$, which gives the contradiction $n \leq 2$. As $F_{4}(r)$ and ${ }^{2} F_{4}(r)^{\prime}$ do not show up for $L \cong S p_{2 n}(q)$, we have to deal with $L \cong F_{4}(q)$ in which case $\left|A_{v}\right|_{2} \geq q^{17}$. Suppose $A_{v} \cong F_{4}(r)$, then again $r^{2} \leq q$ and so $\left|A_{v}\right|_{2}=r^{24} \leq q^{12}$, a contradiction. If $\left|A_{v}\right| \cong$ ${ }^{2} F_{4}(r)$, then $r \leq q$ and $\left|A_{v}\right| \leq r^{12} \leq q^{12}$, a contradiction.

Lemma 4.38. Hypothesis 4.23 does not hold.
Proof. Suppose Hypothesis 4.23 holds. Then by Lemma 4.37 we have that $L \cong S p_{4}(q), q>2$. Further $A_{v} \cong S p_{4}(r)$ or $S z(r)$ by Lemma 4.30. By Lemma $4.35 v \notin U R$. Now set

$$
L_{v}=\left\langle A_{v}^{T \cap L}\right\rangle
$$

Then we have that $C_{L_{v}}(u)$ is normalized by $T \cap L$ for $u \in U^{\sharp}$. As $T \cap L$ does not centralizes any perfect subgroup of $N_{G}(L)$ which is centralized by $\langle u, v\rangle$, and A_{v} has nonabelian Sylow 2-subgroups, we get that $\left[A_{v}, u\right]=A_{v}$ for all $u \in U^{\sharp}$. Further by Lemma $2.25 C_{A_{v}}(u)$ has a Sylow 2 -subgroup, which is not elementary abelian.

Suppose first that $A_{v} \neq L_{v}$. Then as before

$$
\begin{equation*}
Z(L \cap T) U \cap A_{v}=1 \tag{1}
\end{equation*}
$$

Further we may assume that $T \cap N_{G}(L)$ contains a Sylow 2-subgroup of $C_{A_{v}}(u)$. Assume $T \cap L \cap A_{v}=1$. Then $\left[N_{T \cap L}\left(A_{v}\right), T \cap C_{A_{v}}(u)\right]=1$. Choose $1 \neq x \in T \cap C_{A_{v}}(u)$. As for any outer automorphism $x \in T$ of L, we have by Lemma 2.49 that $\left|T \cap L: C_{T \cap L}(x)\right| \geq q^{2}$, we get that $\left|T \cap L: N_{T \cap L}\left(A_{v}\right)\right| \geq q^{2}$. Hence now there are at least q^{2} conjugates of
A_{v} under the action of $T \cap L$. So we get

$$
\left|N_{G}(L) \cap T \cap A_{v}\right|^{q^{2}} \leq\left|N_{G}(L) \cap T \cap A_{v}\right| q^{2},
$$

which is impossible.
So we have that $T \cap L \cap A_{v} \neq 1$. As $(T \cap L)^{\prime}=Z(T \cap L)$ by Lemma 2.48, we get with (1) that $N_{T \cap L}\left(A_{v}\right)$ is elementary abelian, and so $\mid T \cap L$: $N_{T \cap L}\left(A_{v}\right) \mid \geq q$ by Lemma 2.48. Now we have at least q conjugates of A_{v} under the action of $T \cap L$, which yields

$$
\left|T \cap L \cap A_{v}\right|^{q} \leq\left|T \cap A_{v} \cap L\right| q^{2} .
$$

This gives $q=4$ and $\left|T \cap L \cap A_{v}\right|=2$. As $U Z(T \cap L) \cap A_{v}=1$ by (1), we see that $\left|N_{G}(L) \cap T \cap A_{v}\right| \leq 4$, which gives that $C_{A_{v}}(u)$ has abelian Sylow 2-subgroups, a contradiction. This shows

$$
A_{v}=L_{v}
$$

Assume $\left[Z(T \cap L), A_{v}\right]=1$ As $T \cap L$ normalizes A_{v} we get $[T \cap L \cap$ $\left.A_{v}, T \cap L\right] \leq Z(T \cap L) \cap A_{v} \leq Z\left(A_{v}\right)=1$ by Hypothesis 4.23. Then we have hat $T \cap L \cap A_{v} \leq Z(T \cap L) \cap A_{v} \leq Z\left(A_{v}\right)=1$. But then $C_{A_{v}}(u) \leq Z(T \cap L) C_{G}(L)$ and so it has abelian Sylow 2-subgroups, a contradiction. So we have

$$
\left[Z(T \cap L), A_{v}\right] \neq 1
$$

As by Lemma $2.48 Z(T \cap L)$ is a product of two root groups, we may assume $\left[R, A_{v}\right] \neq 1$. First assume $A_{v} \cong A_{6}$. Then we have that $C_{A_{v}}(u)$ is cyclic of order 4 or dihedral of order 8 . But by Lemma 2.50 no such group can be normalized by $T \cap L$. So we have that $A_{v} \cong S p_{4}(r)$ or $S z(r)$ with $r>2$. In particular $q>4$. As $C_{T \cap L}\left(A_{v}\right) \unlhd T \cap L$, we get with Lemma 2.50(ii) that $\left|T \cap L: C_{T \cap L}\left(A_{v}\right)\right| \geq q^{2} / 2$.

Suppose first that $A_{v} \cong S p_{4}(r), r>2$. We will show that $\bar{T}=$ $T \cap L / C_{T \cap L}\left(A_{v}\right)$ satisfies the assumptions of Lemma 2.51. Assumption (i) is clear as $T \cap L$ is generated by involutions according to Lemma 2.48. Furthermore T and so \bar{T} is of class two and so if it contains a Sylow 2-subgroup of A_{v} it is a Sylow 2-subgroup of A_{v}, as otherwise by Lemma 2.16 it would also contain a field automorphism of A_{v} and so cannot be of class two. Hence we have $|\bar{T}| \leq r^{4}$. As $r^{2} \leq q$ we have hat $|\bar{T}| \geq r^{4} / 2$. Hence (ii) is satisfied. Furthermore $q^{2} / 2 \leq|\bar{T}| \leq q^{2}$ and so the assumptions of Lemma 2.50(ii) are satisfied, which implies that Lemma 2.51(iii) and (iv) are satisfied. Now application of Lemma 2.51 yields the contradiction $r=2$.

So we have that $A_{v} \cong S z(q), q=r^{2}$. Then $T \cap L$ just induces inner automorphism on A_{v}. In particular $T \cap L / C_{T \cap L}\left(A_{v}\right)$ is isomorphic to a subgroup of index one or two of a Sylow 2-subgroup of A_{v}. But T is generated by involutions, a contradiction to $\left|\Omega_{1}(T \cap L)\right|=q$.

Proposition 4.39. There is some $1 \neq z \in \Omega_{1}(Z(S))$ such that $C_{G}(z)$ possesses a standard component L.

Proof. We have the assertion with Proposition 4.22 in case of $1 \neq$ $Z\left(E\left(C_{G}(z)\right)\right.$ for at least one $1 \neq z \in \Omega_{1}(Z(S))$ and with Lemma 4.38 otherwise.

Proposition 4.40. Let z, L be as in Proposition 4.39. Then $C_{G}(L)$ has cyclic Sylow 2-subgroups and $C_{C_{G}(L)}(u)$ is a 2 -group for any involution $u \in C_{G}(L)$.

Proof. By Proposition 3.5 we have $m_{2}\left(C_{G}(L)\right)=1$. By Lemma 3.2 we have that $C_{G}(L)$ has a cyclic Sylow 2-subgroup. As $O\left(C_{G}(u)\right)=1$ for any involution $u \in C_{G}(L)$, we get that $C_{C_{G}(L)}(u)$ is a 2-group.

Now Proposition 4.39 and Proposition 4.40 prove Proposition 4.1. From this also Theorem 1.4 follows.

References

[Asch1] M. Aschbacher, On finite groups of component type, Ill. J. Math. 19 (1975), 87-115.
[Asch2] M. Aschbacher, A characterization of Chevalley groups over fields of odd order, I, II, Ann. of Math. 106 (1977), 353-468, Correction, Ann. of Math. 111 (1980), 411-414.
[Asch3] M. Aschbacher, Standard components of alternating type centralized by a 4-group, J. Algebra 319 (2008), 595-616.
[Asch4] M. Aschbacher, 3-Transposition Groups, Cambridge Universtity Press, 1997.
[Asch5] M. Aschbacher, Sporadic groups, Cambridge University Press, 1994.
[Asch6] M. Aschbacher, The uniqueness case for finite groups I, II, Ann. Math. 117 (1983), 383 -454, 455-551.
[AschSe1] M. Aschbacher, G. Seitz, On finite groups with a standard component of known type, Osaka J. Math. 13 (1976), 439-482.
[AschSe2] M. Aschbacher, G. Seitz, On finite groups with a standard component of known type II, Osaka J. Math. 18 (1981), 703 - 723.
[AschSe3] M. Aschbacher, G. Seitz, Involutions in Chevalley groups over fields of even order, Nagoya Math. J. 63 (1976), 1 - 91; Correction, Nagoya Math. J. 72 (1978), 135-136.
[AS] M. Aschbacher, S. Smith, The classification of quasithin groups I, II, Mathematical Surveys and Monographs 111, 112, AMS 2004.
[AzBaSei] H. Azad, M. Barry, G. Seitz, On the structure of parabolic subgroups, Comm. Algebra 18 (1990), 551-562.
[CCNPW] J. Conway, R. Curtis, S. Norton, R. Parker, R. Wilson, Atlas of finite groups, Clarendon Press, Oxford 1985.
[CurKaSei] C. Curtis, W. Kantor, G. Seitz, The 2-Transitive Permutation Representations of the Finite Chevalley Groups, Trans. of the AMS 218 (1976), 1-59.
[DaSo] S. Davis, R. Solomon, Some sporadic characterizations, Comm. Algebra 9 (1981), 1725-1742.
[DeSte] A. Delgado, D. Goldschmidt, B. Stellmacher, "Groups and Graphs: New Results and Methods, DMV Seminar 6 (1985), Birkhäuser.
[FT] W. Feit, J. Thompson, Solvability of groups of odd order, Pac. J. Math. 13 (1963), 775-1029.
[Glau] G. Glaubermann, Central elements in core-free groups, J. Algebra 4 (1966), 403-421.
[GoLy] D. Gorenstein, R. Lyons, Finite groups of characteristic 2 type, Mem. of AMS 276, 1983.
[GoLyS1] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Amer. Math. Soc. Surveys and Monographs 40 (1) (1994).
[GoLyS2] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Amer. Math. Soc. Surveys and Monographs 40 (2) (1996).
[GoLyS3] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Amer. Math. Soc. Surveys and Monographs 40 (3) (1998).
[GoLyS4] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Amer. Math. Soc. Surveys and Monographs 40 (4) (1999).
[GoLyS5] D. Gorenstein, R. Lyons, R. Solomon, The classification of the finite simple groups, Amer. Math. Soc. Surveys and Monographs 40 (6) (2000).
[GM] R.M. Guralnick, G. Malle, Classification of 2F-Modules, I, J. Algebra 257, 2002, 348-372.
[GM1] R.M. Guralnick, G. Malle, Classification of 2F-Modules, II, J. Algebra 257, 2002, 348-372.
[GLM] R. M. Guralnick, R. Lawther, G. Malle, The 2F-modules for nearly simple groups, J. Algebra 207 (2007), 643-676. (2008), 621-629.
[Hu] B. Huppert, Endliche Gruppen I, Springer 1967.
[Ja] Z. Janko, A new finite simple group with abelian 2-Sylow subgroup and its characterization, J. Alg. 3 (1966), 147-186.
[KuSte] H. Kurzweil, B. Stellmacher, The theory of finite groups, An introduction, Springer 2004.
[MeStStr] U. Meierfrankenfeld, B. Stellmacher, G. Stroth, The structure theorem for finite groups with a large p-subgroup, Memoirs of AMS, to appear.
[Shi] K. Shinoda, Conjugacy classes of Chevalley groups of type (F_{4}), J. of Faculty of Science Univ. Tokyo 21, (1974), 133-159.
[Sm] S. Smith, Irreducible modules and parabolic subgroups, J. Algebra 75, 286-289, 1982.
[We] R. Weiss, The automorphism group of ${ }^{2} F_{4}(2)^{\prime}$, Proc. AMS 66 (1977), 208-210.

Kay Magaard, School of Mathematics, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom

E-mail address: k.magaard@bham.ac.uk
Gernot Stroth, Institut für Mathematik, Universität Halle - Wittenberg, Theordor Lieser Str. 5, 06099 Halle, Germany

E-mail address: gernot.stroth@mathematik.uni-halle.de

[^0]: Date: February 5, 2015.

