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On the character degrees of Sylow p-subgroups of
Chevalley groups G(p”) of type E

Tung Le and Kay Magaard

Communicated by Karl Strambach

Abstract. Let IF, be a field of characteristic p with g elements. It is known that the degrees
of the irreducible characters of the Sylow p-subgroup of GL(IF,) are powers of g. On the
other hand Sangroniz (2003) showed that this is true for a Sylow p-subgroup of a classical
group defined over [F, if and only if p is odd. For the classical groups of Lie type B, C
and D the only bad prime is 2. For the exceptional groups there are others. In this paper
we construct irreducible characters for the Sylow p-subgroups of the Chevalley groups
D4(q) with ¢ = 27 of degree ¢3/2. Then we use an analogous construction for Eg(q)
with ¢ = 3/ to obtain characters of degree g7 /3, and for Eg(q) with g = 5/ to obtain
characters of degree ¢'°/5. This helps to explain why the primes 2, 3 and 5 are bad for the
Chevalley groups of type E in terms of the representation theory of the Sylow p-subgroup.

Keywords. Irreducible characters, root system, Lie type.

2010 Mathematics Subject Classification. 20C33, 20C15.

1 Introduction

Let G be a Chevalley group defined over a field I, of order g and characteristic
p > 0. By g we denote the highest root of the root system ¥ of G. It is well
known that o is a positive integral linear combination of the fundamental roots
of . So without loss of generality, o = Z;=1 a;o; where the o; are fundamental
roots of 2. Recall that p is a bad prime for G if p is a divisor of some a; .

It is well known that if G classical, then the only possible bad prime for G is 2.
On the other hand if G is exceptional of type E, then the primes 3 and 5 are also
bad. The “badness” of the prime evidences itself in the classification of the unipo-
tent conjugacy classes of G. Here we aim to explain why the primes 3 and 5 are bad
for groups of type E in terms to the representation theory of the Sylow p-subgroup
of G = E¢(q) with prime 3 and G = Eg(q) with prime 5. Let UE(q) denote
the unipotent radical of the standard Borel subgroup of Ej(g) for k = 6 and 8,
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i.e. the subgroup generated by all the positive root groups of G. By U, we denote
the quotient UE (q)/ Kx—1, where Kj_1 is the normal subgroup of UE (q) gen-
erated by all root groups Xy such that o has height k — 1 or more. Clearly any
character of Uy inflates to a character of UE} (g). Abusing terminology slightly
we call the image under the natural projection of a root group of UE(g), a root
group of Uj. We observe that Z(Uy) is generated by the root groups of height
k — 2 and hence | Z(Ug)| = ¢*~!. We define the family

Fr :={y e r(Uy) : Xo & ker(y) for all X, C Z(Uy)}.

Theorem 1.1. The following statements are true.

(a) Ifq = 37, then for all y € F¢ we have y(1) € {q”.,q" /3}. Moreover F¢ con-
tains exactly (q — 1)°(q? — (q — 1)/2) characters of degree q” and exactly
32(q — 1)°/2 characters of degree q” /3.

(b) If ¢ = 57, then for all y € Fg we have y(1) € {q'®,q®/5}. Moreover Fg
contains exactly (¢ — 1)3(q® + q® + q + 3/4) characters of degree q'® and
exactly 25(q — 1)8/4 characters of degree q'©/5.

We remark that 9(g—1)¢/2, (g—1)°(¢2—(g—1)/2), (g—1)8(¢3 +¢>+q+3/4)
and 25(g — 1)8/4 are not in Z[g]. On the other hand we remark also that | Fg| =
(9 — 1)°g? € Z[q] and every character in F¢ has degree g7 whenever p # 3, and
that |Fg| = (¢ — 1)7¢* € Z|[q] and every character in g has degree ¢'® when-
ever p # 5. Taken together these remarks provide evidence for a generalization of
Higman’s conjecture for groups of type UE;(q), i = 6,7, 8, see for example [2],
namely that |Irr(UE; (q))| € Z[q] if and only if p is a bad prime for E;(q).

To prove our main theorem we begin by analyzing our construction of the ir-
reducible characters of the Sylow 2-subgroup of D4(2/) from [3]. Our starting
point is the quotient of UD4(q)/ K4 where UD4(q) is the unipotent radical of the
standard Borel subgroup of the universal Chevalley group D4(g) and K4 is the
normal subgroup of UD4(g) generated by the root groups of roots of height 4
and 5. We showed that when p = 2, there exists a UD4(g) family of characters of
degree g3 /2 of size 4(q — 1)*. As UD4(q) is a quotient of UE;(q) fori = 6,7, 8,
we also see families of irreducible characters of degree ¢3/2 for groups of type
UE;(q), wherei = 6,7, 8 and ¢ is even.

Our construction is fairly elementary. Starting with large elementary abelian
normal subgroups, we construct our characters via induction, using Clifford the-
ory. To compute the necessary stabilizers we critically use Proposition 1.3 and
Lemma 1.5. Throughout this paper we fix a nontrivial homomorphism

¢:(Fy,+) > C*.
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For each a € I;, we define ¢, (x) := ¢(ax) for all x € F,, and denote
Fy :=TF, —{0}.

Hence, {¢, :a € F ;} are all non-principal irreducible characters of IF,.

Definition 1.2. For a € F,, we define T, := {t? —a?" 't : 1 € F,}.

We note that Ty = [Fy.

Proposition 1.3. The following statements are true.
(@) tP —aP~lt = [leer, & —ca).
(b) Ifa € F}, then Ty is an additive subgroup of Fy of index p.

(c) Foreacha € I, there exists b € F such that bT, = ker(¢). Furthermore,
cbTq = ker(¢) iff c € Fy.

(d) {Tq:a e FJ} = {ker(¢q) : a € F} are all subgroups of index p in .
Proof. See Section 5.1. O
Definition 1.4. For each a € IF;, we pick ag such that ag T, = ker(¢).

By Proposition 1.3 (¢), ag exists and but is only determined up to a scalar in
the prime field. In the definition above we make an arbitrary choice which is fixed
throughout the paper.

Throughout we fix notation as follows. Let G be a group. Set G* := G — {1},
denote by Irr(G) the set of all complex irreducible characters of G, and Irr(G )™ :=
Irr(G) — {l1g}. For H, K < G, and § € Irr(H ), define

Irr(G/K) := {y € Irr(G) : K C ker(y)},
Ir(G.§) := {x € I(G) : (x.§) # 0},
Irr(G/ K, €) := Irr(G/K) N 1re (G §).
Furthermore, for a character y of G, we denote its restriction to H by y|g.
Lemma 1.5. Let N < G and 1 € X be a transversal of N in G. Suppose N is of
the form N = ZYM whereY <N, Z C Z(N), M < N and X C Ng(ZY). If

thereis A € Itt(ZY) such that Y C ker(A), and %A # VA forallu # v € X, then
the following are true.

(a) For all y e Irr(N/Y,X), x© € Irr(G). Moreover, if x1 # x2 € Irr(N/ Y, 1),
then 19 # x2©.
(b) The induction map from Irc(N/ Y, X) to Irr (G, A) is bijective.

Proof. See Section 5.2. |
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We recall that a p-group P is monomial, i.e. for each y € Irr(P), there exist a
subgroup H of P and a linear character A of H such that y = A®. To construct
irreducible characters whose degrees are not powers of ¢ = pf , f > 1, we con-
struct subgroups H I P and T < P such that 7 is a transversal of H. Then we
find a linear character A of H such that the order of the stabilizer Stabz (1) of T
is not a power of ¢. Moreover we insure that A is extendable to the inertial group
Ip(A) = HStabr(A). Let A; denote some extension of A to /p(A). By Clifford
theory the induction of A; to P is irreducible and of degree not a power of g. The
existence of a suitable pair (H, A) is based on Proposition 1.3. The reason being
that a polynomial of the form x? + a? ~lx, witha # 0, appears in the formulae
of the action of elements of 7" on the characters of H.

We will now highlight the main steps of the constructions of our characters. We
have deferred all of our proofs to Section 5.

2 Sylow 2-subgroups of the Chevalley groups D4(2/)

Let F, be a field of order g and characteristic 2. Let X := (o1, a2, &3, 0t4) be the
root system of type D4, see Carter [1, Chapter 3]. The Dynkin diagram of X is

o2

o1 o3 (67}

The positive roots are those roots which can be written as positive integral linear
combinations of the simple roots o1, a2, @3, oz4. We write >+ for the set of positive
roots. We use the notation

I 21

for the root a7 + a» + 203 + o4 and we use a similar notation for the remaining
positive roots. The 12 positive roots of X are given in Table 1.
For o € ¥ we denote the corresponding root subgroup of the Chevalley group G
by X, whose elements we label by x4 (f) where t € ;. Note that Xy = (Fy, +).
We recall the commutator formula

Xqg+p(—=Cqgrs), ifa+peX,
1, otherwise,

[Xe(r). xp(s)] = {

see Carter [1, Theorem 5.2.2]. In IF, it is the case that 1 = —1, since p = 2, and
thus all non-zero coefficients C, g are equal to 1. For positive roots, we use the ab-
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Height | Roots

1
5 o1y =

1271 2

1

4 o] =

== 1
3 og = ! g = 0 o10 = !

871 10 T 1 0-=9 14
2 o5 1= 0 Ug ‘= ! o7 = 0

ST 10 =0 10 T 0 11
1 o1 (0% o3 o4

Table 1. Positive roots of the root system X of type Dy4.

breviation x; (¢) := xq, (t),1 = 1,2, ..., 12. All nontrivial commutators are given
in Table 2.

x1(2), x6(u)] = xg(1u),

x1(t), x10(u)] = x11(tu),

[x1(), x3(w)] = xs5(tu), [

[x1(), x7(w)] = xo(tu), [

[x2(2), x3(w)] = x6(1u),  [x2(1), x5(u)] = xg(tu),

[x2(2), x7(u)] = x10(tu),  [x2(7), xo ()] = x11(tu),

[x3(1), xa(u)] = x7(tu),  [x3(2), x11(w)] = x12(tu),

[xa(2), xs(u)] = xo(tu),  [x4(r), x6(u)] = x10(tu),

[xa(r), xg(u)] = x11(tu),  [x5(2), x10(W)] = x12(U),
[

[x6(1), xo(u)] = x12(tu), [x7(2), x3(u)] = x12(tu).
Table 2. Commutator relations for type Dy.
The group UD4 generated by all X, for o € =7 is a Sylow 2-subgroup of the
Chevalley group D4(g). Each element u € UD4 can be written uniquely as
u = x1(11)x2(12)x4(t4)x3(13)x5(15) - - - x12(t12) ~ where x; (;) € X;.

So we write 1—[11 il x;(¢;) as this order. We note that our ordering of the roots is
slightly non-standard as the positions of x3 and x4 are reversed.
We define

Fa = {x € rr(UD4(q)) : xlx; = x(1)¢gq, for each ag,ag,aio € F,}.
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If W is a representation affording y € ¥4, then
W([xs(13). xa(14)]) = [W(xg(t3)), W(x4(14))]
= [fas (1) W (1), W(xa(t4)] = (1) forall 14,15 € Fy.

Therefore, X117 = [Xs, X4] C ker(y), and similarly X1, = [Xs, X7] C ker(y).
Thus only the factor group U = UD4/X12X11 acts on a module affording y.
Therefore, we may work with U which has order ¢!°, and Z(U) = XgXoX1o.

asg a6 a0
a5 - [oa]
oo

Figure UD4(q). Relations of roots.

Let H :=[U,U]l = X5X6X7XgX9X10,and T := X1 X2 X4. Itis clear that H,
HX3 and T are elementary abelian. The group U can be visualized as in the figure
above. The roots in boxes are in 7', oz which is neither in 7" nor in H is in a circle,
whereas all other roots are in H. The broken lines indicate where the hooks, as
defined in [3], centered at central roots are; for example o + a5 = o + 001 = o3.
The hooks centered at ag, a9 and a1 intersect pairwise in sets of size two so as to
form a triangle.

To study the characters y € F4 we start with a linear character A of H such that
Alx; # lx, fori = 8,9, 10.

Definition 2.1. For ag,aq,a19 € IF; and bs, bg, b7 € Fy, we define
@ AgE o (1 2s xi (@) == (] =s biti + 225 ajt)).
(b) Ss67 := {x567(¢) := x5(ar0t)x6(ast)x7(asgt) : t € Fy}.
(©) Si24 := {X124(l) = xl(alot)xz(agt)X4(a8t) 1 e Fq}.
(d) A :=agagaipandty := %(bsalo + bgag + brasg).
(e) Fi24 := {1, x124(t0)}
(f) F3:={1}iftyg =0, and F3 := {1,)@(%)} otherwise.
It is easy to check that Ss¢7, S124, F124, F3 are subgroups of U. If 19 = 0, then

F124 = F3 = {1}, otherwise F124 = F3 = (IF2, +). Since S124, Ss567 = (Fg, +),
their linear characters are of the form

¢p, (xi (1)) = ¢(bit) wherei € {124,567} for all b;,t € [F,.
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For each & € Irr(F124), § = ¢p,,,| Fyoy fOr some ¢y ,, € Irr(S124), b124 € Fy. If
F124 is nontrivial, we choose b124 € {0,a124} = (F3, +) where ¢ (a124t0) = —
The same for F3 < X3, for each § € Irr(F3), § = ¢p,|F; for some ¢y, € Irr(X3)
and b3 € {0,a3} = (F», +) such that

o)
if (f)¢ exists.

For each ag,aq9,a19 € IF , there are ¢> linear characters A“S’“" 410 of H. By
definition of ¢, there are q of them such that fo = 0 and g% (g — 1) such that to # 0.
Therefore, there are q cases where Fjs4, F5 are trivial and qz(q —1) cases where
F124, F5 are of order 2.

For all x1(t1)x2(t2)x4(t4) € T, we have

xl(tl)xz(l‘z)X4(t4)(Aa8,a9,010) — )98:49:410

bs,b6,b7 bs+astrtaoty,bs+asti+ajots,b7+asti +aiotz’
Hence, T acts on the set of linear characters {198:99:410} It is easy to check that
to is invariant under this action. The following lemma establishes some facts con-

ag,aq,a
cerning A bi bz b710'

Lemma 2.2. Set A := A392%10 The following statements are true.
bs.,be,b7

(a) S124 = Stabyr (A1) and Ss67 = {x € X5XecX7: |AU(x)| = XU(I)}. Moreover,
AY 556, = AY (Dpare.

(b) A extends to HX3F124 and HF3S124. Let A1 and Ay be extensions of A to
H X3 Fi24. The inertia groups Iy (A1) = HX3F124.

© MY =227 € n(U) iff 2a|Fy = AalFy and Aa|Fiyy = A2l Py
Proof. See Section 5.3.1. |

Remark. When ¢ is odd, both sets {x € X5XsX7 : [AV(x)] = AY (1) = ¢*} and
Stab7 () are trivial. Thus, A extends to HX3 and each extension induces irre-
ducibly to U of degree ¢3.

When £y # 0, the statement in Lemma 2.2 (¢c) makes sense since the dihedral
subgroup (Fy24, F3) C Iy (A1). By Lemma 2.2 (b), X3, S124 C Iy (L) but A does
not extend to H X3S124 as [X3, S124] & ker(1).

By Lemma 2.2 (a) the action of T acts on the set of ¢ linear A48:99:410 has g
orbits, each of size q By Lemma 2.2 (b), all q3 linears A98:99:410 extend to HX 3
and thus we obtain ¢* linear extensions. For ¢ of these tg = 0 and whereas to #0
for the other ¢3(q — 1) characters.
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If to = 0, F124 is trivial. By Lemma 2.2 (b), A extends to Iy (1) = HX3 < U,
as 1. The group 7T is a transversal of HX3 in U and acts regularly on these g3
linears 7 with o = 0. Therefore, the character n¥ € Irr(U) of degree ¢ only de-
pends on ag, ag, a9, s0 we denote it by Xag,a196a10 € Irr(U). This character is the
unique y € 4 of degree ¢ such that y| Xx; = =x( )¢a; wherei = 8,9, 10. Further-
more, by Lemma 2.2 (a), this is the unique constituent y of (A|x, x,x 10) such that
Sse7 C ker(y).

If to # 0, then F1,4 and F3 are isomorphic to IFZ By Lemma 2.2 (b), A extends
to HX3F124 as A1, and AlU e Irr(U) of degree %-. For each 9 # 0, by Lem-
ma 2.2 (c), all constituents A1Y of AU only depend on the restrictions of 11 to
Fi24 and F3. Therefore, we denote these constituents of AV by

b124,b3,t0,a8,a9,a10

3 where bio4, b3 € Fy, 19, ag, ag, aqo EFqX.
8,9,10,%-

For each ag, ag, a9 € .S, there are 4(q — 1) characters y € 54 of degree such
that y|x, = x(1)¢a; wherei = 8,9, 10.

The next theorem lists the generic character values of all y € Irr(U) such that
xlx; = x(1)¢q, wherei = 8,9, 10.

Theorem 2.3. For as, ag, a0 € ¥, suppose y € Irr(U) such that x|x, = x(1)¢a;
wherei = 8,9,10. Set Z = F1245567X3X9X10 and the Kronecker

1, ifi =],
8i,j = :
0, otherwise.

The following statements are true.

(@) If x(1) = ¢, then

_ ,48,a9,a10
= XS 9,10,q93
and
10 10
3
X (1_[ Xi (ti)) = 80,t1 80,t280,t450,t3Sagts,a10t78agt6,a9t7q ¢ (Z aiti) .
i=1 i=8
3
— 4
(b) If x(1) = 5 then
y = Xb124,b3,t0,08,a9,010 for some biza, by € Fa, to € F;

3
q
8,9,10,%
and

(l_[ x; (t;) ) = <b124_ + AtO— + Zalzl)

i=1
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if T1}2, xi(t) € Z, and

10 2
q
X (l_[ Xi ([i)) = 8a8t1 ,a10t48a8t2,a9t48t3,;g’ 7

i=1

X ¢(b124— + b3tz + Ato— () + Zazlz)

s+ e +

otherwise, where 1§ = (t°)¢’ and (x) = (t0)¢ an fl;)

Proof. See Section 5.3.2. O

3 Sylow 3-subgroups of the Chevalley groups E¢(3/)

Let IF, be a field of order g and characteristic 3. We study E¢(q) from the point of
view of its Lie root system. Let ¥ := (1, 2, @3, a4, 05, 0g) be the root system
of E¢, see Carter [1, Chapter 3]. The Dynkin diagram of X is

(%)

o1 o3 Oy 021 g

The positive roots are those roots which can be written as nonnegative integral
linear combinations of the simple roots o1, &z, . . . , ag. We write 7 for the set of
positive roots. Here, |~ 1| = 36. We use the notation

2
1 2 321

for the root o1 + 202 + 2a3 + 34 + 205 + g and we use a similar notation
for the remaining positive roots. Let Xy 1= (xq(?) : t € ;) be the root subgroup
corresponding to & € X. The group generated by all X, for @ € £ is a Sylow
3-subgroup of the Chevalley group Eg(g), which we call UEs.

In this section, we will construct irreducible characters of degree % which are
members of the following family of irreducible characters of U E¢ which is defined
as follows:

= {x € In(UEs) : xlx, = x(1)¢pa. hi(e) = 4, a € FJ}.

Let ¥ be a representation affording some y € Fg. As in Section 2 we see that
Xao C ker(y) for all positive roots o with height greater than 4. Let K5 be the nor-
mal subgroup of UEg generated by all root subgroups of height greater than 4.
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Thus only the factor group U := UE¢/ K5 acts on a module affording y. If & is a
root of hight at most 4, then the restriction of the canonical projection from UE¢ to
U is an injective and thus we may identify the root group X, with its image in U.
There are 21 roots o« € X+ with ht(ar) < 4. These 21 positive roots are given in Ta-
ble 3. Therefore, the group U has order q21 and Z(U) = X17X18X19X20X21 =

(X : ht(B) = 4).

For positive roots, we use the abbreviation x;(f) = x4, (¢), i = 1,2,...,21.

Each element u € U can be written uniquely as

u = x2(t2)x1(t1)x3(13)xa(t4)x5(t5) - -+ x21(t21) where x; (¢;) € X;.

So we write ]—[lzil x; (t;) in the order as above. We note that in our order the term

X, precedes x.

Height ‘ Roots

4 oo = ! w1 = 0

227090111 T o1 111

V=0 1100 BTy 1010 P70 11
3 o5 1= 0 A16 = 0

B0 1110 "1 700 111

(07 = 0 (07 = ! o = !

279 1 100 "B 7T 01 100 M 0 11
2 oy = 0 1] = 0

=05 0110 """ "0 o0 011

71 1000 870 0 100 70 1 100
1 ‘012 (03] a3 04 o5 (67

Table 3. Positive roots of the root system X of type E.

For all o, 8 € ¥ the length of an «-chain through B is at most 1. Thus the
Chevalley commutator formula, see Cater [1, Theorem 5.2.2], yields

[xa(r). xg(s)] = {1

Xa+B (_Ca,ﬂ rs),

otherwise.

ifa + B € X,
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For each extraspecial pair (e, 8), we choose the coefficient Cy g := —1. By com-
puting directly or using MAGMA [5] with the following codes, all nontrivial com-
mutators are given in Table 4.
W:=RootDatum("E6");
R:=PositiveRoots(W); A:=R[1..21];
foriin [7..21] do
for jin [1..(G-1)] do
if (R[i]-R[j]) in A then
k:=RootPosition(W,R[i]-R[j]);
if k le j then print k,"+",j,"=",1,"(",LieConstant_C(W,1,1,k,j),")"; end if;
end if;
end for;
end for;

[x1(7), x3(u)]
[x3(2), xa(u)]
[x5(2), x6(u)] =

]

]

]

X
X
X
[x4(2), x7(1)] = x12(—tu),
X
X
X

x2(1), xa(u)] = xg(tu),
x4(t), xs(u)] = x10(1u),
x1(1), xo(w)] = x12(tu),
x2(1), xo(u)] = x13(tu),

o(tu),
11(tu),

[

[

[

[
[x3(2), xs ()] = x13(tu), [x2(1), x10(W)] = x14(tu),
[x5(), xg ()] = x14(—tu),  [x3(2), x10(1)] = x15(700),
[x5(2), xo(u)] = x15(—tu),  [x4(t), x11 ()] = x16(101),
[x6(), x10(W)] = x16(—1u), [x1(2), x13(0)] = x17(700),
[x7(2), xg ()] = x17(tu), [x2(1), x12(u)] = x17(tu),
[x1(1), x15(w)] = x18(tu),  [x7(2), x10(w)] = x18(100),
[x5(), x12(W)] = x18(—tu), [x2(2), x15(w)] = x19(700),
[x3(), x14(W)] = x19(7u),  [x5(2), x13(W)] = x19(—1U),
[x2(2), x16()] = x20(tu),  [x5(2), x11(u)] = x20(tu),
[x6(t), x14(W)] = x20(—tu), [x3(2), X16(1)] = x21(7u0),
[xo (), x11 ()] = x21(tu),  [x6(2), x15(w)] = x21(—tu).

Table 4. Commutator relations for type Es.

Let H := (Xq:04 #a € 21, (a,04) > 0) = HyH3z H, where

16 10
Hy:=2(U), Hy:=[] Xi. Hy:=]]X.
=12 i=8
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and
T := (X2, X1,X3, X5, X6) = X2 X1 X3X7X5X6X11.

It is clear that |H| = ¢'3, |T| = q”, Hy is generated by all root groups of root
height k in H, and T is a transversal of H X4 in U. Both H and H X4 are elemen-
tary abelian and normal in U, and T is isomorphic to UA»(q) x UA2(q) x UA1(q),
where UAy(q) is the unipotent subgroup of the standard Borel subgroup of the
general linear group GLg1(g). We can visualize the group U in the following
figure. The roots in boxes are in T, the others outside are in H, and a4 not in both
H and T is in a circle. The dotted lines demonstrate the relations between roots to
give a sum root in center, e.g. ®7 + @19 = ®18, &7 + ®g = ®17,.... In addition,
we have two triangles, as same as in Section 2 of UD4(q), namely (o717, @18, ®19)
and (a9, @29, @21). These two triangles share a common pair of roots (o2, ®15)
where oy + o015 = 9.

010 )
o Co3t
s
a3 ois
'0‘—1,7577 - 0%8, o 150!20' -

Figure UE4(q). Relations of roots.

We consider A € Irr(H ) such that A|x;, = ¢4, # lx, for 17 <i < 21. Since the
maximal split torus of Eg(q) acts transitively on @1_2;17 Irr(X;)™, we may assume
that A|x; = ¢ for 17 <i < 21. So we set

_ 1 b12,b13,b14,b15,b16
A= Abg,bty,blo € Irr(H)

such that A|y;, = ¢p, where b; € Fy forall 8 <i <16,i # 11.
Definition 3.1. For bg, bg, blo, b]z, b13, b14, b15, b16 (S Fq, we define

(@ Sp:={s1(t,r,8) 1= x2()x1()x3(=1)x5(t)x6(—1)x7(r)x11(5) 1 2,7, 5 € Fy}.
(b) Sa:={s2(t) := 51(¢,2t%,21%) : t € F}.
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(©) R3 :={r3(t) := x12(t)x13(=1)x14(=1)x15(t)x16(2) : t € Fy}.
(d) Ry :={ra(t) := xg(—t)x9(t)x10(t) : t € Fq}.

(¢) B3 :=bi2 —bi3 —bia+ bi5 + bie.

() Bz :=bio + by —bs.

(g) If By =c? € F, F> := {1,s2(xc)} and Fy := {1, xa(Z£cp)}-

We note that Ry < Hy fork =2,3, F, <8, <81 <T,and F4 < X4. Since
Ry = F,, foreacha € [, we define ¢, (ri(¢)) = ¢4(t) forall ri () € Ry. Hence,
Irr(Rg) = {¢q : a € Fy}. Since Sy = [F,;, we can define ¢, (s2(t)) = ¢4 (¢) for all
s2(t) € S2. When B = c? ¢ [, for each linear character £ € Irr(F2) there is
by € {0, £as} =~ (F3, +) such that

§ = ¢p,|F, Wwhere ¢y, € Irr(S2) and ¢ (azc) # 1.
Using the same argument for Fy, we find that for each character ¢ € Irr(Fy4) there
is by € {0, £aq} = (I3, +) such that
¢ = ¢p,|F,, where ¢p, € Irr(X4) and ¢p(ascy) # 1.

We first outline the induction process of A up to U, thereby explaining some
of the notation in Definition 3.1. Later we give the detailed conditions that are
necessary for each step of our construction.

— _ .2
H: A B3 =0 HX48 By=c EF; HX5S,

33#0 327502 bz,b4EIF3
. ba,B3 B> b>,b4,B>
Ut X, Xy )@
No: (¢ — g (g+1)/2 9 —1)/2

Figure UEs(g). Summary on the branching rules of A.

Let H3 be the normal closure of Hz in HX4S;. Since H X4 is abelian, it fol-
lows that X4 C Stabg (A). The main properties of A = /\2;21’7[;1;;?4’[)15’1)‘6 are as

follows.

Lemma 3.2. The following statements are true.

(@) Ry ={x e H3: |A\Y(x)| =AY (1)} and Sy = Stabr (A| g, g5). Moreover, we
have \Y |g, = AV (1)¢p,.

(b) If B3 # 0O, then Stabr (1) = {1}. Hence, if n is an extension of A to HX 4, then
Iy(n) = HXs.
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(c) If B3 = 0, then there exists x € T such that
x) = 0,0.0,0,0
bg.by,b1g
for some bg, by, by, € Fy. Furthermore, H3 C ker(*A) X451 gnd the induc-
tion map from Irr(HX4S1,*A) to Irr(U, A) is bijective.

Proof. See Section 5.4.1. |

Remark. If gcd(q,3) = 1, then {x € Hs : |AY(x)] = AY (1)} and Stabz (1) are
trivial. Thus A extends to H X4 and hence induces up to U irreducibly.

By Lemma 3.2 (a), it is easy to see that B3 = B3(A) is T invariant, i.e., we have
B3(A) = B3(*A) for all x € T. As above we fix the actions of Alx;, = ¢,17 <
i <21. Now H has ¢ linear characters. On ¢’ of these B3 = 0, whereas B3 # 0
on the g7 (¢ — 1) remaining characters.

Case B3 # 0: By Lemma 3.2 (b), each of the ¢’ (g — 1) linear characters of
H with B3 # 0 extends to HX, in ¢ different ways, yielding ¢®(¢ — 1) linear
characters. Each of these induces irreducibly thereby partitioning the ¢%(g — 1)
characters into families of size [U : HX4] = q’. Therefore when B3 # 0, there
are % = ¢(gq — 1) irreducible characters of U lying over A. They are param-
eterized by (b4, B3), and we denote them by XZ@’B*’, where by € Fy and B3 € /.

Case B3 = 0: As H U, wehave A,*A € Irr(H) and Irr(U, A) = Irr (U, * )
for all x € T. Hence, by Lemma 3.2 (c), we may assume that A := Agﬁ;;;”%’loo.
Since [U : HX4S1] = ¢g* and character induction map from HX,4S; to U pre-
serves irreducibility, those ¢’ linear characters of H with B3 = 0 are partitioned
into g3 sets each of size g*. Each of these sets contains a unique H X4S;-character

0,0,0,0,0
of the form Abg,bg,blo'

Lemma 3.3. The following statements are true.
(@) Ry ={x € Hy: |AXa51(x)| = AHX451(1)} and S, = Stabg, (1). Moreover
AHXaS1 gy = AHXaS1(1)gp,.

(b) If By ¢ {c?:cc F;'} and let n be an extension of A to HX4, then we have
Iax,s, (n) = HX4. Therefore, S acts transitively and faithfully on all exten-
sions of A to HX4.

(c) If B =c? e F;, then A extends to HX4F> and HF4S,. Let A1, Ao be exten-
sions of A to HX4F». Then Igx,s, (A1) = HX4F>. Moreover,

HX HX .
AP HXSU = J HXSSE g 3 e = Aalp, and Ay |F, = Aal .

Proof. See Section 5.4.2. |
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Remark. When B, = ¢2 # 0, we see that
HX4F; <U and HF4S; AU,

and both have index ; in q By Lemma 3.2 (c) and Lemma 3.3 (c) all con-
stltuents of AY have degree %-. Hence, if 7 is an extension of A to HF4S, then
77 € Irr(U, A). We have X4, S2 C Iy (L) and A extends to HX4F3 and HF4S5,

but A does not extend to H X4S5.

The group H X4 has g* linear characters A such that

Met = A
Since F ¢ is even and cyclic, we see that for M of these By ¢ {c?:c € Fj ),
and for 4°9=2) (q D of them B> € {2 : c € F}.

Case Bz ¢l{c?:ce F;}: By Lemma 3.3 (b), there are % = % irre-
ducibles of degree |S1| = ¢3 which are parameterized by B, ¢ {¢?:c € IFX}
By Lemma 3.2 (c), we obtam L irreducibles of degree ¢3[U : HX4S81] = ¢7,
which are denoted by )( 5 where ByeFy;—{c?:ce F7}

Therefore, together w1th characters y 5 4’B3 as computed above, ¥ has exactly
(g— g + % irreducible characters )(qof degree ¢ such that y|x;, = x(1)¢ for
all X; c Z(U).

Case B e{c?:cc F;} By Lemma 3.3 (c), let A; be an extenswn of A to
HX4F,, then )tlHX“S‘ is irreducible of degree [HX4S1 : HX4F>] = q . These
A XS only depend on B, and thelr restrictions to F> and Fy. Hence, by Lem-
ma 3.2(c), 1Y € Irr(U) of degree %- is denoted by sz,b4,Bz where by, by € F3
and By € {c?:c € Fj}.

Therefore, F¢ has exactly
x()e forall X; C Z(U).

By the transitivity of the conjugate action of the maximal split torus Ty of the
Chevalley group Eg(g) on @1—17 Irr(X,)X there are (¢ — 1)°(¢> — g + %)
characters y € g of degree ¢/, and A q D° characters y € F¢ of degree % such
that x|x, = x(1)¢q,, where a; € IFX 17 <i < 21. This gives the proof for the
next theorem.

w irreducibles of degree % such that |y, =

Theorem 3.4. Let y € Fg. The following statements are true.

@) If x(1) = q’, then there exists t € Ty such that 'y is either )(b“’B3

someb4€IFq,B3eIF and B, € Fy —{c? CGIFX}

or)( 7,for

®) If x(1) = %, then there exists t € T such that 'y = )(b27’b4’32, for some

b3,b4e]F3ana’Bze{cz:ceIF;}. 3
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4 Sylow 5-subgroups of the Chevalley groups Eg(5/)

Let IF,; be a field of order ¢ and characteristic 5. We study Eg(q) from the point
of view of its root system. Let ¥ := (a1, a2, a3, 04, 05, 06, @7, &g} be the root
system of Eg, see Carter [1, Chapter 3]. The Dynkin diagram of X is

o2

o1 a3 (07} o5 (07 o7 g

The positive roots are certain non-negative integral combinations of the sim-
ple roots a1, oz, . .., ag. We write > for the set of positive roots and note that
|= | = 120. We use the notation

3
2 4 65432

for the root 201 + 3a + 403 + 604 + 505 + 4otg + 307 + 2ag and similar notation
for the remaining positive roots. Let Xy := (xq(?) : t € Fy) be the root subgroup
corresponding to o € X. The group generated by all X, for o € £ is a Sylow
5-subgroup of the Chevalley group Eg(q), which we call UEg. 6

In this section, we are going to construct irreducible characters y of degree q?
by considering the following family of irreducible characters of UEg:

Fg :={x € Ir(UEs) : x|x, = x(D¢a. ht(@) = 6, a € F}.

Let ¢ be a representation affording some y € Fg. Using the same argument as
in Section 2 we see that X, C ker()y) for all positive roots o with height greater
than 6. Let K5 be the normal subgroup of UEg generated by all root subgroups of
root heights greater than 6. Clearly the representation v is a module for the factor
group U := UEg/K7. The restriction of the canonical projection from UEg to
U to Xy is injective whenever o has hight 6 or less. Thus, in this case, we may
identify X, with its image in U. To remind the reader that U is a factor group
of UEg we denoted it by Eg in the tables below. Recall that | <] has exactly 43
positive roots of height less than or equal 6, which are listed in Table 5.

For positive roots, we use the abbreviation x;(¢) = xq,;(¢), i = 1,2,...,43.
Hence, Z(U) = X37X38X39X40X41X42X43 = (Xﬁ - ht(B) = 6). Each element
u € U can be written uniquely as

u = x2(t2)x1(t1)x3(13)X4(t4)x5(t5) - - - X43(t43) where x; (¢;) € X;.

So we write ]_[?il x; (t;) in the order as above. We note that in our order the term
X, precedes x.
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Height | Roots

6 043 =
0
0 1 11111
040 = 041 = 042 =
1 1 1
01 21100 01 11110 0 0 11111
037 = o3g = o039 =
1 1 0
1 1 21000 1 1 11100 1 1 11110
5 03 =
0
0 0 11111
o33 = 034 = o35 =
1 1 0
01 11100 0 0 11110 01 11110
30 = 31 = o3y =
1 0 1
1 1T 11000 1 1 11100 01 21000
4 0p9 =
0
0 0 01111
O = Op7 = Org =
1 0 0
0 0 11100 01 11100 0 0 11110
023 = 024 = Q25 =
1 0 1
1 1 10000 1 1 11000 01 11000

To be continued
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Height | Roots

3 Oy =
0
0 0 00111
19 = Q20 = Q21 =
0 0 0
01 11000 0 0 11100 0 0 01110
Ui = 17 = aig =
0 1 1
1 1 10000 01 10000 0 0 11000
2 o5 =
0
0 0 00011
012 = o413 = ®14 =
0 0 0
0 0 11000 00 01100 00 00110
09 = X0 = o1 =
0 1 0
1 1 00000 00 10000O0 01 10000
1 (6% (03] o3 0y (07 g (0% og

Table 5. Positive roots of the root system X of type E;.

For all o, B € X the length of an «-chain through B is at most 1. Thus the
Chevalley commutator formula, see Carter [1, Theorem 5.2.2], yields

Xg+p(=Cqpgrs), ifa+peX,
1, otherwise.

[Xa(r). xg(s)] = {

For each extraspecial pair («, 8), we choose the coefficient C, g := —1. By direct
computation or using MAGMA [5], we record the nontrivial commutators are in
Table 6 below.
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x1(t), x3(u)] = xo(tu),
x3(t), x4(u)] = x11(tu),
x5(1), x6(u)] = x13(tu),
x7(1), xg(u)] = x15(tu),
x4(1), x9(u)] = x16(—1u),

x3(1), x10(u)] = x17(tu),
xs5(1), x10(m)] = x18(—1u),
x5(1), x11(u)] = x19(—1u),
x6(1), x12(u)] = x20(—11)
x7(1), x13(u)] = x21(—1u)
xg(1), x14(u)] = x22(—tu),
x2(1), x16(1)] = x23(tu)
x1(1), x19(u)] = x24(1u)
x9(1), x12(u)] = x24(tu),
x3(1), x18(u)] = x25(tu),
X26(tu),

x10(7), x13(1)] = x26(tu),
x6(1), x19(u)] = x27(—1u),
x4(1), x21(u)] = x28(tu),
x12(7), Xx14(1)] = x28(tu),
xg(t), x21(u)] = x29(—tu),
x1(1), x25 ()] = x30(tu),
x5(1), x23(u)] = x30(—1u),
x1(1), x27(u)] = x31(tu),
x9(1), x20(u)] = x31(tu),
x4(1), x25(u)] = x32(tu),

x11(2), x18(u)] = x32(—tu),

x2(1), x27(u)] = x33(tu),
x6(1), x25(u)] = x33(—1u),
X2(t), x28(u)] = x34(tu),

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[x2(2), x20(u)] =
[
[
[
[
[
[
[
[
[
[
[
[
[
[

x2(1), x4(u)] = x10(tu),
x4(t), xs5(u)] = x12(tu),
x6(t), x7(1)] = x14(tu),
x1(1), x11 ()] = x16(tu),
x2(1), x11(w)] = x17(tu),
x2(1), x12(u)] = x18(1u),
x3(1), x12(w)] = x19(tu),
x4(1), x13(u)] = x20(tu),
x5(1), x14(u)] = x21(tu),

]
1=
]
]
]
]
x6(1), x15(u)] = x22(tu),
]
1=
1=
1=
1=
1=

[

[

[

[

[

[

[

[

[

[

[x1(1), x17(u)] = x23(tu),
[xo(1), x10(u)] = x23(tu),
[x5(1), x16(1)
[x2(2), x19(u)
[x5(2), x17(u)
[x6(1), x18(u)] = x26(—1u1),
[x3(1), x20(u)] = x27(tu),
[x11(2), x13(u)] = x27(tu),
[x7(1), x20(W)] = x28(—1u),
[x5(1), x22(u)] = x29(tu),
[x13(2), x15(u)] = x29(1u),
[x2(1), x24 ()] = x30(tu),
[xo(1), x18(u)] = x30(tu),
[x6(1), x24 ()] = x31(—1u),
[
[
[
[
[
[

x13(1), x16(u)] = x31(—tu),
x10(1), x19(u)] = x32(—tu),
x12(1), x17(u)] = x32(—tu),

x3(1), x26(u)] = x33(tu),

x13(2), x17(w)] = x33(—1u),

x7(1), x26(u)] = x34(—tu),

To be continued
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x10(7), x21(1)] = x34(tu),
x3(1), x28(u)] = x35(tu),
x11(1), x21 ()] = x35(1u),
x4(1), x20(u)] = x36(tu),
x12(1), x22 ()] = x36(1u),
x1(1), x32(u)] = x37(tu),

x10(2), x24(u)] = x37(—1u),
x16(t), x18(u)] = x37(—tu),

[

[

[

[

[

[

[

[

[x2(1), x31 ()] = x38(tu),
[x9(7), x26(1)] = x38(tu),
[x1(1), x35(u)] = x39(tu),
[xo(7), x28(u)] = x39(tu),
[x16(2), x21 ()] = x39(1u),
[x6(1), x32(u)] = xa0(—1u),
[
[
[
[
[
[
[
[
[

x11(2), X26(u)] = x40(—tu),

x2(1), x35(u)] = x41(tu),

x7(1), x33(u)] = x41(—1u),
x17(1), x21(u)] = x41(tu),
xg(1), x34(u)] = xa2(—tu),

X15(1), x26(1)] = x42(—1u),

x3(1), x36(u)] = x43(tu),
x11(), x29(u)] = x43(tu),
X19(1), x22(u)] = x43(tu),

[x14(2), x18 ()] = x34(—tu0),
[x7(1). x27(u)] = x35(—1u),
[x14(2), x19 ()] = x35(—tu),
[xs(1), x28(u)] = x36(—1u),
[x15(1), x20 ()] = x36(—1u),
[xa(1), x30(u)] = x37(tu),
[x12(2), x23 ()] = x37(—tu),
[x1(1), x33(u)] = x38(tu),
[x6(1), x30(u)] = x38(—1u),
[x13(2), x23 ()] = x38(—tu),
[x7(1), x31 ()] = x39(—1u),
[x14(2), x24 ()] = x39(—tu),
[xa(2), x33(u)] = xa0(tu),
[x10(2), x27 ()] = xa0(—tu),
[x17(7), x20(u)] = Xa0(tu),
[x3(1), x34(u)] = x41(tu),
[x14(2), x25 ()] = x41(—tu),
[x2(1). x36 ()] = xa2(tu),
[x10(2), x20 ()] = x42(1u),
[x18(7), x22(u)] = xa2(tu),
[xs(2), x35(u)] = xa3(—1u),
[x15(1), x27 ()] = xa3(—tu),

Table 6. Commutator relations for type E;.

Let H = (Xy:a4#ae€XT, (a,a5) > 0) = HgHsHy H3z H, where (—, —)
denotes the definite bilinear form of R® with respect to which the roots of ¥ have
length 1,

36 29
He:=Z(U). Hs:= []| Xi. Ha:=[] Xi,

=30 i=24

21
H3 = 1_[ Xl', H2 = X12X13.

i=18
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LetT := (Xl,X3, X4, X2,X6, X7,X8) = T4T3T2T1 where

Ty := X23, T3 := X16X17X22,

T = XoX10X11X14X15, T1:= X1X3X4X2X6X7X5s.
It is clear that | H| = ¢2°, |T| = ¢'°, Hy, is generated by all root groups in H of
root height k, just as for T}, generated by all root subgroups in 7" of height k, and
T is a transversal of HXs in U. Both H and H X5 are elementary abelian and
normal in U. The group T is isomorphic to UA4(q) x UA3(q), where UAy(q) is
the unipotent subgroup of the standard Borel subgroup of the general linear group
GLg +1(g). We note that if {81, B2, B3, B4} are the simple roots of type A4, then
the map from (X1, X3, X4, X2) to UA4(q) that sends x1(t) to xg, (1), x3(¢) to
xp, (1), x4(t) to xg,(t), and x2(t) to xg,(—t) for all t € F; induces an isomor-
phism.

We consider linear characters A € Irr(H ) such that A|y;, = ¢g; for 37 <i <43
and A|x, = ¢p, for all appropriate j < 36 where a; € F and b; € [F4. Since the
max1ma1 split torus of the Chevalley group Eg(q) acts transitively on the product
Q72 47 Irr(X;), it suffices to suppose that Aly, = ¢ forall 37 < i < 43.

Definition 4.1. For b; € F, where i € [12..13,18..21,24..36] we define
(@) Bs :=b3o + b31 — b3z — b33z —2b3a + 2b35 + 2b36.

(b) B4 :=2bz4 —2bys + bag — b7 — bag + bao.

(¢) B3 :=big —bi19 —bzo + D21.

(d) Bz :=b12 — b13.

(©) Rs :={rs(v) := x30(v)x31(v)x32(=v)x33(=v)x34(=2v) x35(2v) x36(2V) :
vely,}.

() Raq:={ra(v) := x24(2v)x25(—20)X26 (V) x27(—v)X28(—V)X29(v) : v € Fy}.
(8) R3 :={r3(v) := x13(v)x19(—v)x20(—v)x21(v) : v € Fy}.
(h) Ry :={r2(v) := x12(v)x13(—v) 1 v € Fy}.

1) L1 :={1i(u) :=x2Qu)x1 (w)x3(—2u)x4(u)xe(u)x7Qu)xg(—2u) :u € Fy},
Sl = L1T2T3T4.

() Lz = {l2(u) := I (u)xo(u?)x10(—u?)x11 u?)x14(—u?)x15(2u?) 1 1 € Fy},
S2 = L2T3T4.

(k) L3 :={l3(u) := L(u)x16(4u>)x17(2u?)x20(3u?) s u € Fy}, S3 1= L3Ty
() Sq = {la(u) := I[3(u)x23(3u*) 1 u € Fy}.
(m) If By = c¢* € F)X, Fy := {s4(uc) : u € Fs} and Fs := {x5(vcy) : v € Fs}.
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It is easy to check that for k € [2..5], Ry < Hy of order ¢, Sy < Sp_1 <T
with S5 = {1}, and F4 < S4, F5 < X5 of order 5. It is noted that all B; are defined
for each A as above, hence B; = B;(A). Since Ry = I, for each a € [F; we de-
fine ¢ (rr (1)) = Pa(t) for all ri () € Ry. Hence, Irr(Ry) = {¢q : a € F,}. Since
S4 = Ty, we can define ¢q (s4(1)) = Pa(t) forall s4(¢) € S4. When By = c* € FY,
for each linear character § € Irr(Fy) there is by € {tas : t € F5} =~ (IF5, +) such
that § = ¢y, | F, where ¢p, € Irr(S4) and ¢ (asc) # 1. Use the same argument for
Fs5 < X5, for each & € Irr(Fs) there is bs € {tas : t € F5} =~ (Fs, +) such that
§ = ¢ps| F5, where ¢p. € Irr(Xs) and ¢p(ascy) # 1.

We first outline the induction process of A up to U, thereby explaining some
of the notation in Definition 4.1. Later we give the detailed conditions that are
necessary for each step of our construction.

H: 2 B5=0_ pgx.5, B+=0 px.5 B3=0 HX5S3
Bs #£0 B4 #0 B3 #0 By # ¢4 By =c* e F)
bs,B>,B3,B bs,B>,B bs,B B bs,bs5,B
R e e o e A
No: (¢ —Dg®> (¢ —1)g? (g— g 3(g—-1)/4  25(g—1)/4

Figure UEg(g). Summary on the branching rules of A.

Let Hs be the normal closure of Hs in HX5S;. Clearly X5 C Staby (1). The
important properties of the A’s are the following.

Lemma 4.2. The following statements are true.

(@ Rs={xe Hs:[AY(x)| =AY (1)} and S, = Stab7 (A| g Hs). Moreover, we
have AY|gs = 2Y (1)¢ps.

(b) If Bs # 0, then Stabr (1) = {1}. Hence, if n is an extension of A to H X5, then
Iy (n) = HXs. Furthermore, if 1, 1 are two extensions of M| g, Hs H, to HXs5,
then ¥ = 'V iff Bi(n) = B; () fori = 2,3 and nxs = 1'|xs.

(c) If Bs =0, then there exists x € T such that *A|x; = lx; for all X; C Hs.
Furthermore, we have the inclusion Hs C ker(*A)®X55\ and the induction
map from Irr(H X5S1,* M) to Irr (U, M) is bijective.

Proof. See Section 5.5.1. O
Remark. When (¢, 5) = 1, both R5 and Stabr (1) are trivial. Hence, A extends to

H X5 and each extension induces irreducibly to U, yielding a family of characters
of degree [U : HXs] = ¢q'®.
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Lemma 4.2 (a) can be deduced from the following figure.

039
' a3
o35—
s | |
043 sl Q41 38 %30. 37
7 47 2%} 33— »
a3z 034 (6] a3
42 040

Figure UEg(q). Relations of between root heights 5in H and 1in T'.

We have ¢!° linear characters A of H such that Ay, = ¢ for all X; C Z(U).
In these, there are ¢ '8 linears with Bs = 0 and ¢'3(¢ — 1) linears with Bs # 0.

Case Bs # 0: Lemma 4.2 (a) implies that Bs = Bs(A) is invariant under the
action of the group T'. Therefore, by Lemma 4.2 (b), these ¢ '8(g — 1) linears with
Bs # 0 extend to HX5 and each extension induces irreducibly to U. Thus, we
obtain Lﬁlﬁ_l) = ¢3(q — 1) irreducible characters of U of degree ¢'® which are
parameterized by (bs, B2, B3, Bs) where bs, B2, B3 € F; and Bs € ]F;. We de-
note them by XS?EBLB:;,BS .

Case Bs = 0: Since [U : HX5S1] = ¢°, Lemma 4.2 (c) implies that the ¢!®
linear characters of H lying over A with Bs = 0 are partitioned into ¢!2 fami-
lies each of size ¢®. Each family contains a unique member A € Irr(H) such that
Alx; = ¢ for all X; C He, Alx; = lx; for all X; C Hs, and Alx;, = ¢, for all
X; C H4H3H> where b; € ;. Let A € Irr(H) be one of these q12 representa-
tives. Now we describe how A induces up to HX5S;. Let Hs H4 be the normal

closure of Hs Hs in HX5S5.

Lemma 4.3. The following statements are true.

() Ry ={x € Hy: |AIXs51(x)| = AHXsS1(1)} and S, = Stabs, (M| He s H.)-
Moreover, VAX551|p - = AHX5S1(1)gp,.

(b) If B4 # 0, then Stabg, (A) = {1}. Hence, if 1) is an extension of A to HXs, then
Imxss, (n) = HXs. Furthermore, if 0,1 are two extensions of M| H, Hs H, Hs
to HXs, then nf1Xs51 = yHXsS1 i By () = Ba(n') and n)xs = 1'|xs.



24 T. Le and K. Magaard

(c) If B4 = O, then there exists x € Sy suchthat*Alx, = lx, forall X; C HsHj.
Furthermore, we have the inclusion HsHy C ker(*A)H X582 and the induc-
tion map from Irr(H X5S2,*A) to Irr(H X581, A) is bijective.

Proof. See Section 5.5.2. o

The main idea of Lemma 4.3 (a) can be visualized in the following figure.

043 o 0‘29 3 ”157 VVVVV 042 0538
- T / 28
'— . 0Z26 : )
' T
a7 - o P10
L 024 @25
o40 a3z o4

Figure UEg(q). Relations of between root heights 4 in H and 2 in 7.

Recall that we have ¢'2 linear characters A of H such that Ay, = ¢ for all
X; C Z(U) and Ay, = ly, for all X; C Hs. For ¢! of these we have By = 0
whereas B4 # 0 for the remaining ¢! (g — 1).

Case B4 # 0: Lemma 4.3 (a) implies that B4 = B4(A) is invariant under the
action of S;. Therefore, by Lemma 4.3 (b), these ¢'!(¢ — 1) linear characters
with B4 # 0 extend to H X5 and each extension induces irreducibly to HX5S;.
Thus, we obtain % = ¢%(q — 1) irreducible characters of HX4S; of de-
gree |S1| = ¢'° which are parameterized by (bs, By, Bs) where bs, By € F, and
B4 € IF;. Now Lemma 4.2 (c) implies that we obtain g2(q — 1) characters of U of
degree ¢'®. We denote these by )(251’632’34.

Case B4 = 0: By Lemma 4.3 (¢) the induction map from H X5S, to HX5S] is
bijective. Thus our ¢!! linear characters of H with B4 = 0 can be partitioned into
q® families each of which has a unique representative A such that A| x; = ¢ for
all X; C He, Alx; = lx; forall X; C HsHy, and A|x, = ¢p, forall X; C H3 H>
where b; € [F;. Let A € Irr(H ) be one of above q® linears of H. Thus it suffices
to describe how A induces up to HX5S,. Let Hs Hq H3 be the normal closure of
H5H4H3 in HX5S3.

Lemma 4.4. The following statements are true.

(@) R3 = {x € Hy: |[MHXs52(x)| = AFX552(1)), S5 = Stabs, (A e Hs 1y 13-
Moreover, MVAX552|p - = JHX552(1)gp..
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(b) If B3 # O, then Stabgs, (A) = {1}. Hence, if n is an extension of A to HXs,
then Igxss,(n) = HXs. Furthermore, if n and ' are two extensions of A to
HXs, then nHX552 = o HXsS2 i = /|y

(¢) If B3 = 0, then there exists x € Sy such that
“Ax; = lx; forall X; C HsH4Hj.

Furthermore, we have the inclusion Hs HyHz C ker(x/l)HXSS3 and the in-
duction map from Irr(H X5S3,*A) to Irr(H X582, 1) is bijective.

Proof. See Section 5.5.3. O

The main idea of Lemma 4.4 (a) can be described as follows.

¥43 Q42 @37 U39 41 Q40

1o X22 ais *16 s X17 20
Figure UEg(q). Relations of between root heights 3 in H and 3in T'.

Recall that we have ¢ linear characters A of H such that A| x; = ¢ for all
X; CZ(U)and Ay, = ly, forall X; C HsHj. Of these, there are g° with B3 =0
and ¢°(q — 1) with B3 # 0.

Case B3 # 0: Lemma 4.4 (a) implies that B3 = B3(A) is invariant under the
action of S. Therefore, by Lemma 4.4 (b), these ¢°(q — 1) linears with B3 # 0
extend to H X5 and each extension induces irreducibly to H X5S,. Thus, we ob-
tain % = g(q — 1) irreducible characters of HX4S, of degree |S>| = ¢°
which are parameterized by (bs, B3) where bs € Fy and B3 € . Thus using

Lemma 4.3 (c) and Lemma 4.2 (c), we obtain g(q — 1) characters of U of de-
bs,B
e
Case B3 = 0: Lemma 4.4 (c) implies that ¢° linear characters of H with B3 = 0

can be partitioned in g2 families of characters each of which is represented by a
A of H such that A|y, = ¢ for all X; C He, Alx;, = lx, forall X; C HsH4H3,
and Aly;, = ¢p, for all X; C Hy where b; € F;. Let A € Irr(H) be one of above
g? linears of H . It suffices to consider how A induces up to HX5S3.

gree ¢'®. We denote these by y

Lemma 4.5. The following statements are true.

(@) Ry ={x € Hy : [A1X553(x)| = AHX553(1)} and S, = Stabg, (A). Moreover,
AHXs53| g, = AHXSS3 (1),



26 T. Le and K. Magaard

() If B € {c*:cc F;'} and let n be an extension of A to HXs, then we have
IHxs55(n) = HXs. Therefore, S4 acts transitively and faithfully on all exten-
sions of A to HXs.

() If B =c*e ]F;, then A extends to HXs5F4 and HF5S4. Let A1, Ay be two
extensions of A to HXs5F4. Then Igxss,(A1) = HXs5F4. Moreover,

AlHXSSa — XZHX5S3 iff l1|F4 — 12|F4 and/h|F5 — A2|F5~

Proof. See Section 5.5.4. o

It is noted that Stabg, (1) = Stabr(A). The main idea of Lemma 4.5 (a) can be
visualized in the following figure.

Q37 @38

06712 01 13
Figure UE3(g). Relations of between root heights 2 in H and4in T'.

Recall that we have g2 linear characters A of H such that Aly, = ¢ for all
X; CZU) and Ay, = ly, for all X; C HsH4H3. Lemma 4.5 (a) implies that
B> = B5(A) is invariant under the action of S3. Since IF; is cyclic, we have

-1
et e e FXY = qT
Therefore, there are @ linears with B, € {c4 ic € IFqX}, and there are
linears with B, & {c* : c € Fj}.
Case B &{c*:ce [/ }: These linears with B> dic*:ce [/} extend to HX5
and each extension induces irreducibly to HX5S3 of degree |S3| = ¢2. By Lem-

3q(g—1)
4

ma 4.4 (c), Lemma 4.3 (¢c) and Lemma 4.2 (c), we obtain @ characters of U
of degree ¢ which we denote by y52 .
The irreducibles of degree ¢! lie in the families
bs,B>,B3,B bs5,B>,B bs5,B B
X?sz P X?62 : X%z’ and X126~

Therefore, 3 contains exactly ¢3(g—1)+g%(g—1)+q(g—1)+ 29— 3(q D characters
x of U of degree g1 such that y|x, = x(1)¢ forall X; C Z(U).

Case B e {c*:ceF >(} By Lemma 4.5 (c), if A; is an extension of the charac—
ter A to HX5Fy, then MHXSS3 is irreducible of degree [H X553 : HX5F4] =
These /llH X583 only depend on B, and their restrictions to F4, F5. Hence, Lem—

ma 4.4 (c), Lemma 4.3 (c) and Lemma 4.2 (c) imply that Al € Irr(U) is of de-
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16 .
gree q?. We denote the characters so obtained by

Xl,)ﬁ’sbs’Bz where by, bs € Fs and B, € {c* 1 c € ).
5

irreducibles of degree a° such that

Therefore, g has exactly %_1) 5

xlx; = x(D¢ forall X; C Z(U).

The maximal split torus Ty of the Chevalley group Eg(g) acts transitively via
conjugation on @?237 Irr(X;)*, and thus there are (—1)3(¢3 +¢%>+q+ %) char-
25(¢—D* q'f

4

acters y € Fg of degree ¢'°, and characters y € Fg of degree = such

that y|x; = x(1)@a;, where a; € F,37 < i < 43. This proves our next theorem.
Theorem 4.6. Let y € Fg. The following statements are true.
@) If x(1) = q', then there exists t € Ty such that 'y is an element of

b5,B>,B3 bs,B> _bs B>
{qu »quc vqua’que-

() If x(1) = q'©/5, then there exists t € Ty such that 'y = )(S‘ﬁ’(,bs’Bz.

5

5 All proofs

In all proofs, we use the following technique:

(a) For all the decomposition of the commutator formula into product, we apply
the formula [a, bc] = [a, c][a, b]°¢.

(b) For H < G and L < G, foreach A € Irr(L), Stabg(A) :={x € G : *A = A},
and Stabg (1) C Stabg(A|g) =: K, hence, Stabg (1) = Stabg (1).

(¢) For K < G and H < G, to extend a linear character A of H to HK, we check
if [ HK, HK] C ker(}).

5.1 Proof of Proposition 1.3

Leta € IF;. Part (a) is clear since the degree of the polynomial t? — a?~ 1t is p
and the [F,-multiples of a are clearly zeros. As I, is of characteristic p, the map
pa : Fg — Fy defined by pg(1) = t? —aP~ !¢ is Fp-linear. By part (a) the kernel
of the map is 1-dimensional and thus (b) follows. Evidently (d) follows from (c).
Now we are going to prove (c).
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To prove (c) we note that the set T, defined before Proposition 1.3 is the im-
age of the above [F,,-homomorphism p,. The kernel of p, is alF,, and T, is an
Fp-hyperplane of . Since ged(g — 1, p) = 1, for b € F there exists s € F
such that b = s?. We have

b(t? —a? ') = sP(t? —aP? ') = (s1)? — (sa)? Vst € Tyq = im(psa).

Hence, F acts on {T, : a € F}. The first claim follows as left multiplication
of ]F; on itself is transitive on IF;, hence on [Fj,-one spaces, and thus by dual-
ity also on Fp-hyperplanes. The second claim follows as the stabilizer of each
[Fp-hyperplane in this action of F is IF . o

5.2 Proof of Proposition 1.5

(a) Suppose x € Irr(N/Y, A), we are going to show that y¢ € Irr(G) by showing
that the inertia group Ig(y) = N.

Since Y C ker(y) and Z C Z(N),wehave y|zy = y(1)A.As X C Ng(ZY),
foreach x € X,*A € Irr(ZY). Hence, for any u # v € X we have

“YXizy = x()A # x(D) A ="xlzy, ie Yy #"x

Therefore, x € X such that * y = y iff x = 1. Since X is a transversal of N in G,
this shows that the inertia group Ig(y) = N.

The above argument also proves that for y1, y2 € Iir(N/Y,A)andu #v € X
we have ¥ y; # V2. So by Mackey’s formula for the double coset N\G/N =
G/ N represented by X, we have

(119229 = iCIn.x2) = D Crix2) = (. x2) =

0, otherwise.
xeX

{1, if Y1 = 22,
(b) It is enough to show that the induction map is surjective, i.e. for each char-
acter £ € Irr(G, 1) there exists y € Irr(N/Y, 1) such that § = y©.
Suppose &y = >, s aixi where a; € N* and S C Irr(H). By Frobenius
reciprocity,

0# (8,19 = (Elzy. A).

there exists at least a constituent yo of &|n such that (yo|zy,A) # 0, i.e. we have
xo € Irr(N, A).

Since Aly = A(1)1y and (yoly.,Aly) = (xolzy.A) > 0, we have that yq is a
constituent of 1y ™. Since ¥ <1 N, all constituents of 1y are Irr(N/Y). There-
fore, yo € Irr(N/Y, 1). By (a), 0@ € Irr(G), hence it forces £ = y©. |
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5.3 Proofs of Section “Sylow 2-subgroups of D4(27)”
5.3.1 Proof of Lemma 2.2

__148,a9,a10
Set A = ’\b3,b5,b6,b7 for the whole proof.

(a) First we show that Stab7 (1) = S124. Since YA(x) = A(x) iff A(x"1x?) =
A([x,y]) =1 and XsX9 X190 C Z(U), it suffices to check for [X5X¢ X7, T]. For
all #;,s; € Fy, we have

[x5(t5)x6(t6)x7(27), x1(51)X2(52)X4(54)]

= xg(t6S1 + 1552)x9(t751 + t554)x10(t752 + t654).

Therefore, x1(s1)x2(s2)x4(s4) € Stabr (A) iff for all 15, t6, 17 € Fy,

1 = ¢(ag(tes1 + t552) + ag(t751 + t554) + aio(t752 + t654))
= ¢(ts5(agsz + aoss) + te(agsi + ai054) + t7(aosi + aios2))

iff agsy + agsSs = agsy + aioss = agsy + ajpszy = 0, ie. 3L = 2 — 2—‘;. So

aio ag
StabT(/\) = S124.

We first find all elements of X5X¢X7 which act scalarly on a module afford-
ing AV. As X3T is a transversal of H in U and [X3, X5XeX7] = {1}, it is enough
to find the ones of X5X¢gX7 which commute with 7, i.e. find x5x6x7 € X5X¢X7
such that A([x5xex7, x1x2x4]) = 1 for all x;xpx4 € T. This shows that for all
s; € Fy, we need

1 = ¢(as(tes1 + tss52) + ao(t751 + t554) + aio(t752 + tesa))
= ¢(s1(aste + aoty) + s2(asts + aiot7) + sa(asts + aiote))

iff agte + aot7 = agts + ajot7 = asts + ajote = 0, i.e. atTSo = ;—69 = 2—78. Hence,
7 t
[Ti=sxi(ti) = xs67(;%) € Ss67. So

Sse7 = {x € XsXeX7: AV (x)| = AV (1)}.

Now, to prove that )tU|S567 = q*Pay,, it suffices to check that A(xs67(t)) =
@41, (1). For each x567(¢t) = xs(a1ot)xe(ast)x7(ast) € Sse7, we have

AMxs67(1)) = ¢ (t(bsaro + beag + brag)) = ¢(tAtg) = Pas,(1).

(b) We study Irr(U, 1) in two ways. Let

K1 = HX3F124 and K2 = HSlz4F3.
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Since H = [U, U], itis clear that Hy, K; < U.

H
e N
HX3 HS124
A \
K1 = HX3F124 K> = HS124F3
N v
U

Since H X3 is abelian, A extends to H X3 as n1. By (a), S124 = Stabr (1), for
all x € H,x124 € S124, A([x, x124]) = 1, hence A extends to HSj24 as 1nz. To
show that A extends to K and K>, we prove that [Ky, K1] C ker(n1), [K2, K2] C
ker(n,). We have

[x3(23), x1(s1)x2(52)x4(54)]
= X5(5113)X6(5213)x7(5413) X8 (515213) X9 (515413) X10(525413),
and
A(x5(s113)X6(5213)x7(5413) X8 (515213) X9 (515413) X10(525413))
= ¢(13(bss1 + besa + b7sa + agsis2 + agsi154 + a105254)) = ().
Plug s1 = ajot, s2 = aot, s4 = agt into (), we have
(%) = ¢(13(t(bsaro + beas + bras) + t*agasaro)) = ¢(13A1(to + 1)).

Now we distinguish two cases, to = 0 and tg # 0. First, if tg = 0, ¢ (t34t%) = 1
for all ¢35 iff ¢+ = 0, hence, Stabr (1) = {1} = Fi24, i.c.

Iy(m) = HX3.
And ¢(13A1%) = 0 for all ¢ iff 3 = 0, hence, Staby, (12) = {1} = F3, i.e.
Iy (n2) = HS124.

Ifto # 0, then ¢ (13 At (to + t)) = 1 forall t3 iff ¢t € {0, #o}. Therefore, we have
[K1, K1] C ker(A). For each n € Irr(H X3, A), Stabr (1) = {1, x124(t0)} = F124.

We have ¢(13At(t + 1)) = 1 for all 7 iff 15 € {0, {22}, by Proposition 1.3.
Hence, K>, K»] C ker(A). For each y € Irr(H S124, 1),

Staby, (y) = {l,xg,(%)} = F3.

So A extends to K; and K. Now foreach A; € Irr(K;, A), [y(A;) = K;,i =1,2.
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(c)Let A1, A> be extensions of A to K. Let n be an extension of A to K5. By (b),
we have MU, /\zU, nU € Irr(U, A).

We choose 1 € S C T as a representative set of the double coset K1\U/K>.
By Mackey’s formula, since K1 N K = HF3F134 and K1 < U, we have

M%) =D CMlskinks. nlskink,)

seS

= Z(SA1|HF3F1247 77|HF3F124)'

seS
For each s € S, if *A1|HF3F120 = NlHF3F24- then *At|g = n|g. Since both
are extensions of A from H, we have *A = A, i.e. s € Staby (1) = S124. There is
aunique s = 1 € SN S124 since S is a representative set of K1\U/K>. Therefore,
(AIU» 77U) = (A1|HF3F124’ 772|HF3F124) =1 iff)kllFi = 77|Fi7i € {124,3}.
So Y =Y =AY e r(U, 1) iff A1 |F, = Ao, i € {124,3). o

We remark that since K1, K» < U, the double coset K1\U/ K> equals
U/K1K2 = U/HX35124.
Hence we see that S = X X» is a transversal of U/ K K>.

5.3.2 Proof of Theorem 2.3

. __1@8,49,410
Fix ag,ag,a19 € IF; and set A = ’\bs,bﬁ,b7 for some bs, bg, b7 € I, throughout

the whole proof. By Lemma 2.2 and using the same notation, we mostly find the
generic character values: in (a)

ag,ag,ayo _ . U _
Xs6.1043 =M whereto =0,
and in (b)
bi24,b3.t
g124031008:09.010 — U where byayg, by € By, 1o € Fy.

3
q
8,9,10,%

(a) Suppose top = 0 and Fy24 = {1}. Call  an extension of A to HX3. By Lem-
ma 2.2 (b), Iy (n) = HX3. Therefore, we have nV € Irr(U) and nY (1) = ¢3. By
Lemma 2.2 (a), S567Xg X9 X109 C Z(T]U), hence

|nU(x)| =¢> forall x € Ss67X3X0X10.

We have |Ss67 X Xo X10lq3¢> = ¢'° = |U]|. As the scalar product (n¥, nY) = 1,
we see that nU(x) =0if x ¢ S567XgX9X10. So we have derived the stated for-
mula.
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(b) Suppose t9 # 0, and |F3| = |F124| = 2. By Lemma 2.2 (b), let n1, 12 be
extensions of A to K; := HX3F14 and K, := H S124 F3 respectively such that
nlr, = n2|lF; = ¢p;, where b; € 5, i € {124, 3}. The proof of Lemma 2.2 (c)
implies that ;Y = Y.

We choose V C T as a transversal of K7 in U, and 1 € § C X3 such that
SX1X5 is a transversal of K, in U, so |S| = ¢/2. Since K; < U, we have

10 10
mU(Hx,') = me(l_[x,') =0 ifxixyxq € K;.

i=1 xeV i=1
Since T is abelian, it follows that [x, y] = 1 forall x € V and y € Fj,4. There-
fore, F124 C Z(nlU) and hence

10 10
t
m? (l_[ Xi 0:’)) = 8a8tl,alot4gast2,a9t4¢(b124$)n1[] <x3(t3) [ (ti)).

i=1 i=5
Since K, < U, we have
10 10
nY (x3 Hxi) = Z xﬁz(x3 nxi) =0 ifx3¢ F3.
i=5 xeSX1 Xz i=5

Since XgXoX19 C Z(U), we need to compute the two following cases:

7 7
n2U<l—[ x,-) and Y (X3 l_[x,-) with x3 € F5'.
i=5

i=5
Since [X3, X5X¢X7] = {1}, we have
U _ X _ 4 X
m¥(sxexy) = ), Fmlxsxex) = Y “m(rsxexs).
xeSX | X x1x2€X1X>

Now (x5x6x7)*1%2 = x5x6x7[x5, X2][X6, x1][x7, X1][X7, x2], so substituting with
x5(t5)x6(16)X7(t7) and x1(s1)x2(s2), yields

7
772U<l_[ Xi (li))
i=5

= 43" ma(xsts)xs(i0)x7 (1) 1552 + 16510 (1751)x10(752)

51,52

= %UZ(XS(ZS)X6(I6)X7(I7)) > $las(issz + tes1) + astys1 + ai0t752)

S1,82

= L (s(ts)xo(10)x1(17)) Y $(s1(@sto + asts) + sa(asts + arotr)).

S1,852
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Since ZteF @) =0, we obtain non zero values only if agtg + agt7 = 0 and

1
agts + ajot7 = 0. Hence, ;2 = [& = [T and [1/—s xi(t;) = x567(2L) € Ss67.

By Lemma 2.2 (a), we have

7 3
q I7
v (1_[ Xi ([i)) = 5(182‘5,al()l‘78(18t6,l19l7 7772 (X567 (a))
i=5

q’ 7
= 5tlsls,alol78a8t6,a9l7 ¢(AZO )
2 ag

Therefore, we have 172U(]_[l_1 xi (1)) = 2 ¢(b124 Ly Az —|— Z —gait;)

aio
if ]_[l_1 x;(t;) € F1245567X3X9X10 = Z, as stated in the theorem

Now we compute 72Y (x3 ]_[l=5 x;) with x3 € FJ* = {x3(t )W, to — (lo)d> As
Iy (n2) = K> < U and SX; X» is a representative set of U/ K>,

Cm)? =0V elr(U) forall x € SX1 Xo.
For each x5 (s) € X5, we have

¥, (x5(1)) = na(xs(t)xs(t5)) = ¢(bst + asts) = $(t(bs + ass)).

So instead of choosing s = 2—25;, we suppose that 7, has bs = 0, i.e. n2(x5) =1
for all x5 € Xs. It is easy to check that to, 72| Fy,, = ¢p,,, and 2| F; = ¢p, are
invariant under conjugation.

We have

[x3(23)x5(t5)x6(t6)x7(t7), X1(51)x2(52)]
= x3(13)x5(t5 + t351)x6(t6 + t352)x7(t7)

x xg(t35152 + t552 + t6S51)Xo(t751)x10(1752).

Therefore,

n2Y (x3(t3)x5(t5)x6(t6)x7(t7))

= Z n2(x3(t3)x5(t5)x6(t6)X7(17))

xeSX 1 X

:% Z 2(x3(t3)x5(t5)x6(t6)X7(17))

xeX1X>

q
=5 2 m(x3(t3)xs(ts + 1351)x6(t6 + 1352)x7(t7)
$1,52
X xg(t35152 + 1552 + t651)X9(t751)X10(t752))
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7
= %7;2 (x3(t3) 1135 Xj (ti))

x Y §(bstssy + ag(t3s152 + ts52 + L651) + aotzs1 + a10t752)

§1,852

= % n2(x3(t3)x6(t6)x7(t7))

X Z ¢ (s1(agtzsa + agte + aot7) + s2(bsts + ajot7 + asts)).

51,52

Set C(ts,t6,17) = )5, .5, P(s1(astzsa+aste+aoty)+s2(bstz+aioty+asts)).

We have

Clts.16,0) = Y ¢(s1(t352 + le)as + s2(bel3 + asls))

51,52

=q Z ¢(2 (bst3 + asls))

asgltst
= C]¢(b616 + 835 6)

Therefore, we get

U i q° agltsle
n2° (x3(13)x5(t5)x6(ts)) = —Uz(x3(l3)x6(l6))¢ betes + n

= %Uz(x3(l3))¢( 8t5[6)

Since

aioly agly 17
xs(t3)x6(t6)x7(17) = xs (ls + K) ( .t —8))6567(—),

where

and

t t t t
X567 (_7) = X5 (010—7)3% ((19—7))67 (a8_7) € S124 C Z(UZU)
as as as as
17 t7
n2 (X567 (—)) = P4y (—)
as as
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we have

n2Y (x3(t3)x5(t5) X6 (t6) X7 (t7))

t aiot aol
= Qi (—7) 772U(X3(f3)x5 (ls + 7)x6 (l‘e + —7))
as as as
t 2 a aot aot
= ¢(Azo—7)q—nz(x3(r3))¢ (—8 (rs + =2 7) (r6 + ﬂ))
ag) 2 13 as as
2 2
Iz agdod aiol aogl
q—¢(b3t3 + Atg—- + S22 (ts + -2 7)(t6 + 27 7))
2 asg (t0)¢ asg ag
2 2
t A t t ! t
- q—¢(b3z§’+Azo—7+ (—5+—7)(—6+—7)). o
2 ag  (to)p \a1o ag)\ao ag

5.4 Proof of Section “Sylow 3-subgroups of E¢(3/)”

5.4.1 Proof of Lemma 3.2

Set A = /\Zéfl;l;fg;ﬁ”’bls’b‘é throughout the whole proof.

(a) Recall H3 = 1‘1212 X; < H is elementary abelian and H4H3 < U. First,
we show that R3 = {x € H3 : |AY(x)] = AY (1)} and AY (r3(2)) = ¢3¢, (¢) for
all r3(¢) € Rs.

Since A is linear and A(x) € C for all x € H, the induction formula gives that
IAY(x) =AY (1) iff YA(x) = A(x) for all y € TX4, where TX4 is a transversal
of H inU. Since Y A(x) = A(x) iff A([x, y]) = 1, we are going to find all x € H3
such that A([x, y]) = 1 for all y € TX4. It is clear that

[X;, X4] = {1} = [X;, X7X11] foralll2 <i < 16.

Here, we write ]—[?Zl xi(u;) € T with ug = 0. It suffices to check that statement
forall y = ]_[J6-=1 xj(u;) € T.Fort;,u; € Fy, we have

16 6
[1‘[ xi). [ ] x,-(u,-)}

i=12 j=1

= [x12(112), x2(u2)][x15(115), X2 (U2)][x16(116), X2 (U2)][x13(113), X1 (u1)]
x [x15(t15), x1(u1)][x14(f14), X3(u3)][x16(f16), X3(u3)][X12(112), X5(u5)]
x [x13(t13), X5(us)][x14(t14), X6 (u6)][X15(t15), X6 (U6)]

= x17(=t12u2)x19(—t15U2)X20(—t16U2)X17(—t13U1)X18(—t15U1)X19(—114U3)

X Xx21(—t16u3)X18(t12U5)X19(t13U5)X20(14U6)X21(t15Us).
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Since A(x;(t)) = ¢(¢), 17 <i <21, forall u; € Fy, we force
(—t12 —t15 — tie)uz + (—t13 — t15)u1 + (—=t1a — tie)u3
+ (t12 + t13)us + (t14 + t15)ue = 0.

So we have a system with variables ¢;:

—ti2 — 15—t =0,
—t13—1t15=0,
—tig — 116 =0,
tia +113 =0,
tia +t15 = 0.
Since gecd(q, 3) = 3, we have
iy = tie = t15,113 = t14 = —t15 foralltys =1 € .

So x € Hj satisfies |AY (x)| = AV (1) iff
x = x12(t)x13(—1)x14(—1)x15(t)x16(t) = r3(t) € R3 fort € [y,

ie. Ry ={x e Hy: [AY(x)| =AY (1)}
The computation that shows that AU | Ry = /\U(l)qbl;3 also shows that it is suf-
ficient to check that A(r3(t) = ¢p,(¢). For each r3(¢) € R3, we have

A(r3(2)) = ¢(t(b12 — b1z — b1a + D15 + b16)) = ¢B5(1).

Now we show that S; = Stab7 (A|g, #;). Since [Hy, T] = [H3, X7X11] = {1},
it suffices to find y € X5 X1 X3X5Xe such that A([x, y]) = 1 forall x C H3. Us-
ing the computation of [Hiliu xi(t;), ]_[j6~=1 x;(u;)] above, we see that

(—uz +us)tyz + (—uy +us)tis + (—u3z + ug)tis
+ (U1 +uz —ue)tis + (—uz —uz)tie =0

forall z; € IF;. So we have a system with variables u;:

—up +us =0,
—u; +us =0,
—usz +ug =0,

—uyp —uz +ug =0,

—Uy — U3z = 0.

Asgcd(q,3) =3, wehaveu; = us = u,u3z = ueg = —up forallu, =1 € Iy.
S0 [T5=y xj (u)) = x2(t)x1(1)x3(=1)x5(t)x6(—1) = 51(1) € Sy.
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(b) Since H = Z(U)H3XgX9X19, to find Staby (1) C Stabr (A |, H;) = S1,
by (a), it is enough to find 57 € S; such that S1A(x;) = A(x;) for i = 8,9, 10.
Again, for each x;(t;) € X;,1 =8,9,10, and s; = s1(¢,7,5) € S1, we compute
[xi,s1]:

[xs(1s). s1] = x20(tgs)x17(—l8r)x14(181)X20(—t317)x13(I5t)x10(1517),
[xo(to). s1] = x21(tos)x15(tot)x21 (—191)x12(—tot)x18(—lot>)x13(—lol)
x x19(—tot*)x17(tot?),
[X10(t10). 51] = x18(—t107)X16(—t101)X15(t101)X21 (—t101%)X14(—t101)
x x20(t101%)x19(—11017).

Since A(x; (¢)) = ¢ (bit), 12 <i <16, and A(x;(¢)) = ¢(¢), 17 <i <21, from
A([x9(19), s1]) = A([x10(t10), 51]) = 1 for all 19,219 € Fy, we have

s =22 + biat + b1zt —bis5t and r = 2¢2 — b1at + b1s5t — byet.

From A([xs(tg),s1]) = 1foralltg € F,;, we have s —r + b14t + b13t = 0. There-
fore, s; € Stabr (A) iff r, s are as above and

S —7 + biat + byt = 2t% + biat + bist — bist — (2t% — biat + bist — bigt)
+ b1at + by3t
= 1(b12 — b13 — b1a + b15 + b16)
=1tB3 =0.

Therefore, if B3 # 0, then Staby (1) = {1}.

(c) By (a), T/S acts faithfully on the set of all extensions of A|g, to H4sH3
with the same B3. Since |T/S1| = g* = |Hs/R3|, it follows that this action is
transitive. Therefore, with Bz = 0, there exists x € T such that *A = )&2;0;]9’%’,0
for some by, by, b}, € Fy. §7orIo
1 = 20:0.0,00

ba.bobio’ and H3 is the normal closure of Hz in HX4S1. To

Now set
show that

H; C ker(MW X451y < HX, S,

it suffices to show that H3 C ker(A#X451), By (a), Stabrx, (A|m,H5) = S1X4
which is a transversal of H in H X4S, the claim holds by the induction formula
and Hz C ker(1).

By Lemma 1.5 above for G = U with N = M = HX4S1, X = X1X3X5Xs,
Y = H; and Z = H,, the induction map from Irr(H X4S1/H3, A) to Irr(U, 1) is
bijective. Since Hz C AHXaS1 Irr(HX4Sl/F3, A) =TIrr(HX4S1,A). O
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5.4.2 Proof of Lemma 3.3

Recall that Ry = {ra(t) := xg(—t)x9(t)x10(¢) : t € ]Fq} < Hy; = XgX9X19 and

A= 0,0,0,0,0
bg,bo,b10°

By Lemma 3.2 (c), it suffices to work with the quotient group HX4S;/Hs.

(a) The fact that S = Stabg, (1) is a direct consequence of Lemma 3.2 (b) with
B3 = 0. Recall that X4 is a transversal of H in HX4S; and [H», X4] = {1}.
So to show that Ry = {x € Hy : |AHXaS1(x)| = AHX4S1(1)} we find all x € H,
such that A([x, y]) = 1 for all y € Sy. Since H < HX4S; is abelian, using the
computation in Lemma 3.2 (b), for s1 (¢, r, s) € S1 and xg(t3)x9(t9)x10(¢10) € H>»
we have

[xs(28)Xo(t9)X10(t10), $1(2, 7, )]
= [xg(tg),s1(t, 1, 5)][x9(t9), s1(¢, 1, 5)][x10(£10), 51(¢, 1, 5)]
= x20(tgs)x17(—187)x20(—181%)x19(181%)x21 (195)x21 (—101?)
x x18(—to1?)x10(—tot*)x17(t917)x18(—t107)X21 (—t10%)
x x20(t101%)X19(—11017).
Therefore, with A|x;, = ¢ forall 17 <i < 21, forall¢,7,s € F; we need
(ts + to)s — (ts + t10)r + (tg —t10)t> =0

Sotg =tip =uandtg = —u forallu € Fy,ie. x = rp(u) € Ro.
To show that A X451 R, = AHXaS) (1)¢B,, it is enough to check that

AMra(1)) = ¢B, (1)

For each r,(¢) € R, we have
A(r2(t)) = ¢(t(—=bg + by + b10)) = ¢, (7).

(b) Suppose that B, & {c? : ¢ € F7}. Let n be an extension of A to HXy. By
(a), we have S» = Stabg, (1), hence Stabg, (n|g) = S». Since S is a tranversal
of HX4 in HX4S1, to find Stabg, (1), it is enough to find all s5(¢) € S> such that
n([x4, s2(¢)]) = 1 for all x4 € X4. For each s5(t) € S», we have

[X4(t4), 52(t)] = X10(tat)xo(ta1)X21 (2141°)X21 (—tat>)xg(—1at)
X X20(—21417)x17(21417) x20 (141 ) x19(—1417).

Since n(x; (t)) = ¢(bit), 8 <i < 10, and n(x;(t)) = ¢(t),17 < i < 21, for all
t4 € Fg, n([x4(ta),s3(t)]) = 1 forces

14(t3 — Bat) = t4(t> — Bat) € ker(¢h).
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Since t4(t3— Bat) € ker(¢) forallt4 € Fy, we have 0 = 13— Byt = 1(t>—B»).
Since By ¢ {c%:c e [/}, the equation 1(t?—B,) = 0 has only the trivial solution
t = 0in Fy. Therefore, s>(t) = 1, i.e. Stabg, (1) = {1}. Hence,

Iax,s,(n) = HX4.

(c) Suppose By = c? € ]F; and let 1 be an extension of A to HX4. Using the
computation in (b), we continue with the analysis for the solutions of ¢ to obtain
t4t(t> — B>) € ker(¢) for all 14 € Fy. So it forces t(t> — B,) = 0. This equation
has three solutions {0, =c}. Hence, Stabg, (7) = {1, s2(£c)} = F>. So

Tax,s,(n) = HX4F5.
By the above argument,
[HX4F>, HX4F>] C ker(n),

hence 1 extends to Igx,s, (1).

To show that A extends to H F4.S>, we check [H F4S2, HF4S>] C ker(1). Us-
ing the same argument, it is enough to check that [s5(¢), x4(t4)] € ker(1). By the
computation in (b), we need 74(t3 — Bat) = 14(1® — c?t) € ker(¢) forall 1 € Fy.
By Proposition 1.3, since 74 € {0, £cg}, the claim holds.

Let A1, A, be two extensions of A to HX4F,, and y an extension ofzk to
HF4S5. Since the degree of all the irreducible constituents of AHX4S1 §g %, we
have /\1HX4SI, )tzHX“S‘, )/HX4Sl € Irr(HX481,A).

Choose 1 € S C S as a representative set of the double coset

HF4S;\HX4S1/HX4F;.
As HF4S N HX4F; = HF4F; and HX4F> < HX4S1, by Mackey’s formula,
(AlHX4S1’

HX4S
y XS =N CM s (X4 PN HFs S0 V5 (HX4 PN HESS,)
seS

=Y CMIHEF- VIHEF)-

seS

For each s € S, if *A1|gF,F, = Y|HF,F,. then *A1|g = y|g. Since both are
extensions of the character A, we have A = A, i.e. s € Stabg, (1) = S>. There is
aunique 1 € S N S, since S is a representative set of HF4S>\HX4S1/HX4F>.
So

(A.]HX“SI, HX4Sl) —

14 AMHEF - VIHEF,) = Liff A1|F, = y|F,. 1 € {2,4}.

Therefore, A1 X451 = p HXaS1 — 0, HX4Stif 3 1o = Ay|F,i € (2,4). O



40 T. Le and K. Magaard

5.5 Proofs of Section “Sylow 5-subgroups of Eg(5/)”
5.5.1 Proof of Lemma 4.2

(a) First we find all x € Hs such that |AY (x)| = AY(1). Since T X5 is a transversal
of HinU, we get [Hs, X5] = {1} = [Hs, Ty] forallk > 2,and Y A(x) = A(x) iff
A([x, ¥]) = 1, it suffices to find all x € Hs5 such that A([y, x]) = 1 where y € Tj.
For each y = ]_[?=1 xi(u;) € Ty with us = 0, and x = r[j3-6=30 x;j(v;) € Hs, to
abbreviate our notation we write x; for x; (—) and plug in the parameters in (—) as
need be. We have

36 8
{1‘[ X (v)), Hxi(u,-)}

=30 i=1
= [x30, x4][x30, X6][x31, X2][x31, X7][x32, X1][x32, X6][x33, x1]
x [x33, x4][x33, X7][x34, X3][x34, X8][35, x2][x35, X1][x35, X8]
x [x36, X2][x36, X3]
= x37(—v30u4)x38(v30U6)X38(—V31U2)x39(V31U7)X37(—V3201)
X x40(V32U6)X38(—V33U1)X40(—V33U4)X41(V33U7)
X x41(—v34u3)x42(V34U8)X41(—V35U2)X39(—V35U1)

X X43(V35U8)X42(—V36U2)X43(—V36U3).

Since Alx; = ¢ forall i € [37..43], for all 5; we need

(—v31 — V35 — V3)U2 + (—V32 — V33 — V35)U1 + (—V34 — V36)U3
+ (—v30 — v33)us + (v30 + V32)us + (V31 + V33)U7

+ (v34 + v35)ug = 0.
Therefore, we obtain a system with variables v; as follows:

—v31 — VU35 — V36 = 0,
—v32 — V33 — V35 =0,
—v34 — V36 =0,

—v30 —v33 =0,

v30 + v32 =0,

v31 +v33 =0,

v34 + v35 = 0.
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Since ged(q, 5) = 5, we have
(v30, V31, V32, V33, V34, V35, V36) = (v, v, —v, —v,—2v, 20, 2v)

forall v € IF,. Hence, x = r5(v) € Rs,i.e. Rs = {x € Hs : AV () =AYV ).
To show that AV | g, = AV (1)¢p., it suffices to check that A(r5(v)) = ¢p. (v).
For each r5(v) € Rs, we have
A(rs(v)) = ¢(v(b3o + b31 — b3z — b3z — 2b3a + 2b35 + 2b36)) = ¢Bs(v).

To show that S1 = Stab7 (A| g, Hs), we find all y € T such that A([x, y]) =1
for all x € HgHs. Since Hg = Z(U) and [Hs, T] = {1} for all k > 2, it is suf-
ficient to find y € T; such that A([x, y]) = 1 for all x € Hs. Using the above
computation of []_[/3230 xj(v)), ]_[?=1 x;(u;)], we find u; such that for all v;

(—us + ue)vzo + (—uz + u7)va1 + (—u1 + ue)vzz + (—u1 —us + u7)vss

+ (—u3 + ug)vza + (—uz —uy + ug)vszs + (—uz —u3)vze = 0.
Therefore, we obtain a system with variables u; as follows:
—ug +ug =0,
—us +u7 =0,
—u; +ug =0,
—ui1 —ug4 +u7; =0,
—usz +ug =0,

—uy —uy +ug =0,

—up —u3z = 0.

Since ged(q, 5) = 5, we have

(up, U1, U3, ug, ug, u7,ug) = Qu,u, —2u,u,u,2u, —2u)

forallu e Fy;. Soy =[1(u) € Ly,i.e. S1 = Stabr (A | g Hs)-

(b) Suppose Bs # 0. To show that Staby (1) = {1}, we are going to show that

Stabs, (A|HsHsH,) = T374,
Stabrs 1, (A He Hs HyHy) = T4,

Stabr, (A) = {1}.

First, we show that Stabs, (A|g,HsH,) = T374. By considering root heights,
itis clear that [He Hs H4, T3T4] = {1}, hence, T3T4 C Stabs, (A|g,HsH,)- It suf-
fices to show that Staby,, 1, (A | g Hs H,) = {1}, 1.e. there is no nontrivial y € L7,
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such that A([k, y]) = 1 for all h € Hs H4. For each

15
y=[]xi@)eLiTs

i=1

(with us = u12 = u13 = 0 and ]_[?21 x;i(u;) = 11 (u)), and

36
h= [] %)) € HsHa.
j=24
we have
36 15
[H xj (v)), l_[xi(”i)i|
Jj=24 i=1

= [x24, X10][X24. X14][X25, X14][X26. X15][X26. X0][X26, X11][X27, X15]
X [x27, x10][X29. X11][X24, X2][[*24., X2], X6][[x24, X2]. x4]
X [x24., X6][[X24. X6]. X7][x25., x1][[*25. X1]. X4][[x25. X1]. X6]

X [x25, x4][[x25, Xa], X6][x25, X6][[X25, X6]. X7][X26, X3]

x [[x27, x2], x1][[x27, x2], x4][[x27, x2], X7][x27, X1]

[
[
X [[x26, x3], x4][[x26, x3]. x7][x26, x7][[x26. X7], X8][x27., Xx2]
[
x [[x27, x1], x7][x27, X7][[x27, X7], x8][x28, X2][[x28, X2], X3]
X [[x28, x2], x8][x28, x3][[x28, x3], x8][x28, x8][x29, X4]
= x37(v24U10)X39 (V24U 14) X41 (V25U 14)X42 (V26U 15)X38(—V26U9)

X X40(v26U11)X43(V27U15)X40 (V27U 10)X39(—V28U9)

X X42(—v20U10)X43(— V29U 11)X30 (—20241) X358 (—20241>)

X x37(2v24u2)x31(v24u)x39(v242u2)x30(—v25u)x37(v25u2)

x x38(—v25u%)X32(—v251)X40(—v25u>)x33(V25U) Xa1 (20251°)

X X33(20261)X40(—2V2617)x41 (4v26U”) X34 (20261)

X X42(—4v26u”)X33(—2v27u) X38 (2v27U) X40 (2v27U?)

X X41(—4v27u%) X31 (—v271)x30(—2027U7) X35 (V2721)

X x43(—4v27u?)x34(—2v281) X471 (—4v28u?) X 42 (4v25u?)

X x35(2v281)Xa3(—4v28u%) X36(—V282u) X 36 (—V20U).
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Since A|x;, = ¢ foralli € [37..43] and A|x, = ¢, for the others, after evaluat-
ing the above at A and setting this to 1, for all v 7, we need

v24(u10 + Urs — 2bzou + b3yu + 2u?)
+ va5(u14 — b3ou — b3ou + byzu + u?)
+ v26(t15 — Ug + U1 + 2b33u — 2u® 4 2b34u)
+ va7(u1s + Uro — 2b33u — b3u + 2basu — u?)
+ vog(—ug — 2b3qu + 2b3s5u + u? — 2b3gu)
+ va9(—u19 —u11 — bzeu) = 0.
Hence, we have a system with variables u; and u :
u1o + w14 — 2bzou + baju +2u* =0,
u14 — baou — baou + b3zu +u* =0,
Uls —Ug + ui1 + 2b33u — 2u? + 2bszau = 0,
u1s + uro — 2b3zu — b3ju + 2bzsu —u* = 0,
—ug — 2b3au + 2b3su + u? — 2bszeu = 0,
—u10 —u11 — bzeu =0,
which is equivalent to
ug = u? + (3b34 + 2b3s + 3bze)u,
uro = —u> + (bzo — b3y — baz + baz)u,
ury = u® + (=b3o + b1 + bsz — baz — bae)u, i
urs = —u> + (bzo + bz — b3z)u,
urs = 2u® + (—bso + 2b31 + b3z + bz + 3bas)u,
(b3o + b31 — b3y — b3z — 2b34 + 2b35 + 2b3g)u = 0.

The last equation is actually Bsu = 0. Since Bs # 0, we have
u=0 and ug =ujo=u11 =u1s =uis =0,

i.e. StabL, TZ(A|H6H5H4) = Stale T (A|H6H5H4) = {1}.

Thus 71T acts faithfully on the set of all extensions of A|g, to HeHsHs with
the same Bs # 0, which is invariant under the action of T, i.e. B5s(A) = Bs(*})
forall x € T. Since |Hs Hy/Rs| = q'? = |T} T5|, this action is transitive. There-
fore, we choose Aly;, = ¢ foralli € [37..43], A|x;, = ¢B/2,and Alx; = lx; for
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the others X; C HsH4. By the root heights, we have

43 35
Rs 1_[ X; C Z(HXs5T4T3), HXsTsTz <U, H, ]_[ X; < HXsT4Ts.
=37 i=30

By Lemma 1.5 for G = U with N = M = HX5T3T4, X = T1T>, Z = HgR5
andY = Hy ]_[1-3230 Xi, the induction map from Irr(HX5T4T3/ Y, A) to Irr(U, 1) is
bijective. As XsT4T3 = Staby.7(A|gsHsH,) is a transversal of H in HXsT4T3,
we have AHXsTaT3 |y — [HX5T4Ts : H|A|ly = |X5T4T3|1y. Hence,

Irr(HX5T4T3/Y, )t) = II’I‘(HXsT4T3, )t)

Now we find StabT4T3 (A|H6H5H4H3)~ Since [H6H5H4H3, T3T4] = [H3, T3],
we find y € T3 such that A([x, y]) = 1 for all x € H3. For each

21
y = 1_[ xj(uj)eT; and x = 1_[ xi(v;) € H3
j=16,17,22 i=18

we have

[x,y] = [x18, x16][*18, X22][X19, X22][X20. X17][X20. X16][X21. X17]
= x37(v18U16)X42(V18U22)X43(V19U22) X40(—V20U17)

X X39(—v21U16)X41(—V21U17).
Since A|x;, = ¢ foralli € [37..43], for all v; we need
v1g(U16 + U22) + VioU2p — V2oU17 + V21(—U17 —U16) = O.

The only solutionis (416, u17. U22) = (0,0,0), i.e. Stabr, 15 (A|H  HsH, H;) = T4.
Next, we find Stabr, (A). Since [H, T4] = [H2, T4], we find y € T4 such that
A([x,y]) = 1 for all x € H,. For each

y =x23(u23) € T4 and x = x12(v12)x13(v13) € H>
we have
[x12(v12)X13(v13), X23(U23)] = [X12. X23][X13, X23]
= x37(—v12U23)X38(—V13U23).

Evaluate with A, for all v; we need (—vi3—v13)uz3 = 0. Therefore, the only solu-
tion is w3 = 0, i.e. Stabr, (A) = {1}. So we finish the proof of Stabr (1) = {1}.
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Let , ' be two extensions of A| g, Hs i, to HXs. By the bijection of the induc-
tion map from Irr(H X5T4 T3, A) to Irr(U, 1), it suffices to show that nHXsTaT3 —
nHXsTaTs jff nlr;, = n'|r, for j = 2,3 and n|xs = 1'|xs. By Mackey’s formula
and the fact that the double coset HXs\HX5T4T35/HX5 = HX5T4T3/HX5 is
represented by 7475 we have

(nHX5T4T3’ n/HX5T4T3) — Z (yi’], 7’/)
YET4T3

Since [X5,T3T4] C Hy ]_[1-3230 X; C ker(1), we have Yn|x; = n|xs. Therefore,
the restrictions to X5 of both 7, 1’ are clear for the proof. To show for the restric-
tions to Ry with k = 2, 3, we are going to prove that

RaR3 = {x € HyHs : |MXST4T5 ()| = AHXTaT5 (1),
and
T4T3 = StabT4T3 (A|R2R3)-

Then by Stabr, 1,(A) = {1} and |T4T3| = g* = |H3H>/ R, R3|, the claim holds.
By the above computations of [H3, T3] and [H», T4] we find all x € Hy H3
such that A([x, y]) = 1 forall y € T4T3. For

Yy = x16(U16)x17(U17)X22(U22)X23(U23) € T3T4

and
21

x = x12v12)x13(v13) [ xi(vi) € HoHs,
i=18
we solve for v; in the following:
u16(v1g — v21) + U17(—v20 — V21) + U22(V18 + V19) + U23(—V12 —V13) = 0.
We obtain a system with variables v;:
v1g —v21 =0,
—Vy9 — V21 = 0,
v1g +v19 =0,
—V12 — V13 = 0.
We obtain solutions
(1)187 V19, V20, U21) = (Ua -V, —V, v) and (U127 U13) = (Sa _S) for all v,Ss € IE‘q

Therefore, x € R R3. Hence, YA|gr, Ry = A|R,R, forall y € T4T3.
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(c) Suppose that Bs = 0. By (a), T/ S1 acts faithfully on the set of all extensions
of A| g, to He Hs with the same Bs. Since |Hs|/|Rs| = g% = |T /S|, this action
is transitive. Hence, there exists x € T such that *A|x, = lx, for all X; C Hs.
Let A be this linear. So S1Xs = Stabrxs(A|H.Hs). a transversal of H in H X557,
and A X551 |Hs = AHXsS) (DA|ns, ie. Hs C ker(A X551 and so is its normal
closure Hs in HX5S].

ByLemma l.5withG =U,N =M = HX5S1, X = ]_[?=1 XiX¢X7,Z = Hs
and Y = Hs, the induction map from Irr(H X5S; /Hs, 1) to Irr(U, 1) is bijective.
Since Hs C ker(A1Xs51) we have Irr(HX5S1/Hs,A) = Ir(HX5S1,A). O

5.5.2 Proof of Lemma 4.3

Recall that A is a linear character of H such that Aly, = ¢ for all X; C He,
Alx; = lx, forall X; C Hs, and Alx, = ¢, for the others X; C Hy4 H3 H> where
b; € F,. By Lemma 4.2 (c), we work with the quotient group H X5S;/Hs. Abus-
ing the notation of root groups, we call them root groups in the quotient group.

(a) By computation (x) in Lemma 4.2 (b) with B5 = 0,

SZ = StabS] (A|H6H5H4)-
Now we show the identity R4 = {x € Hy : |AX551(x)| = A#X551(1)}. For each
11y2y3y4 € L1 T T5T4 = Sl and h4 € Hy4, we have [h4,11y2y3y4] = [/’l4,11y2].
Hence, we are going to find all elements /4 € Hy4 such that A([hy4, 1 y2]) = 1 for
all /1y, € L1T». Using the computation of []_[J3.224 x; (v;), T112, i (u;)] in Lem-
ma 4.2 (b) with b; = 0 for j € [30..36], we solve for v; in the following equation:
U9 (—v26 — V2g) + U10(v24 + V27 — V29) + U11(V26 — V29) + U14(V24 + V25)
+ u15(v26 + v27) + 1 (2024 + V25 — 2026 — V27 + V2g) = 0.
So we obtain a system with variables v;:

—V26 — V28 =0,

V24 + V27 — V29 = 0,

V26 — V29 = 0,

Va4 + V25 = 0,

V26 + V27 =0,

2v24 4 V25 — 2v26 — V27 + V28 = 0.

Thus, (va24, V25, V26, V27, V28, V29) = (2v, —2v, v, —v, —, v) is a solution for all
[US] Fq, i.e. /\([]’l4, llyz]) =1 for all llyz e 1T, iffh4 = r4(v) € Ry.
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It is clear that A X551 (74 (v)) = A H X551 (D ¢p, (v) forall 74(v) € R4 by check-
ing directly that A(r4(v)) = ¢, (v).

(b) Suppose that B4 # 0. Since Stabr(A|gyusH,) = S2 = L2T3T4, we are
going to show that Stabg, (A|g4 Hs 1, H;) = T4, and then Stabr, (1) = 1 is done
by using the same argument in Lemma 4.2 (b). This means that we find all y € S»
such that A([x, y]) = 1 for all x € H3 since A([HeHsHy, S3]) = {1}.

Itis clear that Ty C Stabs, (A| g, s H,H5)- So by (a) and |H3| = ¢* = |L, T3/,
it suffices to show that L, T3 acts faithfully on the set of all extensions of A| g, Hs H,
to HeHs H4Hs3, i.e. Stabr, 15 (A|HoHs HyH;) = {1}. By the root heights and the
fact that H is abelian, [H3, L,T3] = [H3, T3][H3, L2], where [H3, T3] is com-
puted in Lemma 4.2 (b). Since we work with H X5 /75, for each

21 11 17
X = H xi(v;) € H3 and y = l_[ xj(uj) l_[ xj(uj)xa2(uz2) € LaT3,
=18 j=1 j=14
we have

[x, y] = [x, x16x17x22][x18, X3][[[X18. X3], X4, X6][[[x18, X3], X6], X7]
x [[x18, x3], x14][x18, X6][[[X18. X6], X7], x8][[*18, x6], X15]
x [[x18, x6], X11][[*18, X6]. Xo][x19, x2][[[x19, X2], X1], X4]
x [[[x19. x2]. x1], x6][[[x19, x2]. x4], x6][[x19. X2], xe]. x7]

[
|
[x19,x2], X14][x19, X1][[[*19, X1], X6], X7][[x19, X1], X10]
[
[
[

X

x [[x19, x1], x14][x19, X6][[[X19. X6]. X7], x8][[x19, X6], X10]

[
[
[
[ ]
x [[x19, x6], x15][x20, X2][[[x20, X2], x3], x4][[[x20, x2], x3], x7]
x [[[x20. x2], x7]. x8][[x20, x2], x15][[x20, X2]. X11][[*20. X2], x0]
x [x20, x3][[[x20, x3], x7], x8][[x20. x3], x10][[x20, x3]. X15]
X [x20, x7][[x20, x7], Xo][x21, Xa][[x21, Xa], xo][x21, Xs]
x [[x21, xs], x10][[*21, x8]. X11]
= x37(V18U16)X42(V18U22)X43(V19U22)X40(—V20%17)X39(—V21U16)
X X41(—v21117)X25(2018U) Xa0(—20181° ) x41 (4v181°)
x X41(—2v181%)X26 (V18U) Xa2 (—4v18U”) X42 (20181) X40 (V18U°)
x X38(—v18U°)X25(—2v10U) X37(—2v10U>) X35 (2V10U°)
x x20(2v19u>)X41(—4v10u>)x41 (2v10U>)x24 (—V10U)

x x39(—2v19u°)x37(V10U>) X309 (V10U?)X27 (V1oU) X3 (—4V10U>)



48 T. Le and K. Magaard

X X40(—V19u>)X43 (2010 X26(—2v201) x40 (4v20u>)

x X41(—8v201>) X42(8v201 ) x42(—4v201> ) x40 (—2v201")

x X38 (20201 )x27(2v20U) X43(—8v201>) x40 (—2v201 )

X X43 (40201 )x28(20201) X390 (—2020u>) X28 (—v21U) X309 (V211>

X X20(—2v211)X42(—2v211>)X43 (2v211°).

Evaluating at A and setting the result equal to 1, we see that the following equa-
tion is true for all v;:

vis(u16 + U2z + 2basu + bagu — 2u’)
4+ v19(uzz — bogu — 2basu + by7u — 3u3)
+ vao(—u17 — 2boeu + 2by7u + 2bagu — 3u3)
+ va1(—u16 — U17 — bagu — 2byou + u?) = 0.
So we obtain a system with variables u; and u:
U1e + U2z + 2basu + bagu — 2u> = 0,
Uy — boatt — 2basu + baqu — 3u’ = 0,
—u17 — 2bagut + 2ba7u + 2bogu — 3u> =0,
~U16 — U17 — bagut — 2byou +u> =0,
which is equivalent to:
Uza = 3u> + (baa + 2bys — ba7)u,
u17 = 2u> + (3bag + 2ba7 + 2bag)u,
u16 = 4u> + (2bz6 — 2ba7 — 3bag)u.
(2b24 — 2b25 + bag — ba7 — bag + bag)u = 0.

The last equation in the system is actually Bsu = 0. Since B4 # 0, the only
solution of this system is (116,17, U22) = (0,0,0), i.e.

Staby, 75 (A e Hs HyHS) = {1}

Hence, Stabs, (A|g, HsH,H;) = T4 and Stabg, (1) = {1}.
The above argument also proves that L7573 acts transitively on the set of all
extensions of A|g, gsH, to HeHsHyH3 with the same B4 # 0. The number of
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these extensions is | H4 H3|/|R4|. Therefore, there exists an element x € L7573
such that *A|x, = ¢ forall X; C He, *A|x,, = ¢B,, “Alx;, = lx, for the others
X; C HsH4qHs3. Let A be this linear character. By Lemma 1.5 with G = H X551,
N =M = HXs5Ty, X = L1T2T3, Z = HeR4, Y = H3[[72,, X;, the induc-
tion map from Irr(H X574/ Y, L) to Irr(H X551, A) is bijective. Let 1, n be two ex-
tensions of A | g, Hs H, H; t0 HXs. We have nHXsS2 pHXsS> ¢ 1rr(HX5S,/Y, A).
Using the same argument in Lemma 4.2 (b), we obtain (r;HXSSZ, r;/HX5S2) = 1iff
R, = 1'lr, and nlxs = 1'lxs.

(c) Suppose that B4 = 0. By (a), S1/S> acts faithfully on the set of all exten-
sions of A| g p5 to He Hs H4 with the same By. Since |S1/S2| = g° = |Hy/ Ry,
it follows that this action is transitive. Hence, with B4 = 0, there exists an element
x € Sy such that *A|x, = 1y, for all X; C HsHj. Let A be this linear character.
Since S2 X5 = Stabg, x5 (A|HsHsH,) is a transversal of H in HX5S5, we have

AHXSS2 )y — [HX5Sy : HIA|g, = | X5S2|14,.

SoHy4 C ker()LHXSSZ). ByLemma 1.5forG = HX5S; with N = M = HX5S5,
X =T,,Y = Hy and Z = Hg, the induction map from Irr(H X552/ HsH4, A)
to Irr(H X581, A) is bijective where HsHy is the normal closure of HsH4 in
HX5S5. Since Hs Hy C ker(Af1X552) we have

II'I‘(HX5SQ/H5H4,/X) = II‘I'(HX5S2,A). O

5.5.3 Proof of Lemma 4.4

Recall that A is a linear character of H such that Alyx, = ¢ for all X; C He,
Alx; = lx; forall X; C HsHy, and A|x, = ¢y, for the others X; C H3 H where
b; € F4. By Lemma 4.3 (c), we work with the quotient group HXs5S,/HsHj.
Abusing language slightly, we call the images of root groups in a quotient group
root groups also.

(a) By the computation in Lemma 4.3 (b) with B4 = 0, it is clear that

S3 = Stabs, (A |HyHs HLH3)-

Now we show that R3 = {x € Hz : |A\X552(x)| = AHX552(1)}. Since X5, is
a transversal of H in HX5S,, we are going to find x € Hj3 such that A([x, y]) = 1
forall y € S,. Since [H3, X5] = {1} = [H3, T4], itis enough to work with x € H3
and y € S»73. For each

21 11 17

X = 1_[ xi(v;) € H3 and y = l_[ x;j(uj) l_[ xj(uj)x22(uz2) € S273,
=18 ji=1 j=14
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by the computation in Lemma 4.3, we find (v;);[13..21] satisfying for all u; and
u in the following equation:
u16(vis — v21) + u17(—v20 — v21) + u22(vig + v19)
+ u?(—2v18 — 3v19 — 329 + v21) = 0.
We have a system with variables v;:
vig —v21 =0,
—v20 — V21 =0,
v1s + v19 =0,
—2v18 — 3v19 — 3v29 + v21 = 0.

Its solutions are (v1s, V19, V20, v21) = (4, —u,—u,u) for all u € Fy, i.e. we
have x = r3(u) € R3. Now to show that )tHXSS2|R3 = [HXs5S> : H]pp,, it is
enough to check A(r3(¢)) = ¢, (¢) which is clear.

(b) Suppose that B3 # 0. By (a) we have Stabs, (A| gy Hs HyHy) = S3 = L3T4.
To show that Stabgs, (1) = {1}, since |L3T4| = g> = |H,|, we show that L3Ty
acts faithfully on the set of all extensions of A|g,HsH, H, to H, i.e. proving that
there is no nontrivial y € L3T4 such that A([x, y]) = 1 for all x € H>.

By the root heights, [Hy, L3T4] = [Ha, T4][H2, L3], where [H», T4] is com-
puted in Lemma 4.2 (b). For

x = x12(v12)x13(v13) € H2 and y = I3(u)x23(u23) € L3Tx,

we have

[x, y] = [x, x23][x, [3]
= [x12, x23][x12, x2][[[[*12, *2], x3], x4], x6][[[[*12, x2], X3], X6], x7]
x [[[[x12, x2], x6], x7], x8][x12, x3][[[[X12, X3], X6], x7], xs]
x [x12, X6][[[x12, X2], x3], x14][[[*12. X2], x6]. Xo]
x [[[*12, x2], x6], x11][[[*12, X2], x6], x15][[[*12, X3], x6], X10]
x [[[x12, x3], x6], x15][[[*12, X6], X7], Xo][[x12, x2], X22]
x [[x12, x2], x16][[*12, X3], x22][[X12, X6], X17]
X [[x12, x9], x10][[xX12, X0], X14][x13, X23][x13, x4][x13, X7]
x [[[x13, xa], x7], Xo][[[x12, X7], x8], X10][[[*13, X7], x8], x11]
x [[x13, xa]. x17]{[x13. x7], x16][[x13, x7], X17][[*X13, X10]. X15]
[l

x [[x13, x10]s X11][[*13, X11], X15]
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= x37(—v12U23)X18(—2v121) x40 (4v12u*) x41 (—8v12u*) x4 (Bv12u*)

x x19(20121)x43(—8v12u*)x20 (V12U) Xa1 (4v12u*)x38 (2U12u*)
x X40(—2v12u*) x40 (—4v12u*) x40 (—2v12u*)x43(4v12u*)
x x39(—2v12u*) X4 (—6v12u*)x37(—8v12u*)x43(6v12u")
x X40(—2v12u*)x37(V12u*)x30 (V12u*) X358 (—V13U23)
x X20(—v13U)X21 (2v13U)X30 2u13u*) x42(—4v13u?)
x x43(4v13u™*)x40(2v13u*)x30 (—8v13u*) x4t (—4v130%)
x x42(2v13u*)xa0(v13u*)xa3(—2v13u").

Evaluating A and setting the result equal to 1, we obtain in the following equa-

tion:
vi2(—$23 — 2b1su + baou + 2byou — 2u®)
+ v13(—u23 — baou + 2by1u — 2u*) = 0.

We have a system with variables u; and u :

—Up3 — 2b1gu + boou + 2b1ou — 2ut = 0,
—U33 — bzou + 2b21u — 2144 =0.

It is equivalent to

uzz = 3u* + (—=2b1s + bao + 2b1o)u,
(b1g — b2o — b19 + ba1)u = 0.

The last equation is actually Bsu = 0. Since B3 # 0, it follows that the only
solution is (123, u) = (0,0), i.e. Stab,,7, (A) = {1} or L3 T} acts faithfully on the
set of all extensions of A| g, HsH, H, to H. Hence, we also get Stabg, (1) = {1}.

Therefore, there is an element x € L374 such that *A|x;, = ¢ forall X; C Hs,
*Alx,, = @B, *Alx; = lx; for the others X; C HsH4Hj3. Let A be this linear.
By Lemma 1.5 with G = HX5S2, N =M = HXs5, X = S5, ¥ =[[72 5 X;
and Z = HgX>1, the induction map from Irr(HX5/Y,A) to Irr(HX5S3,A) is
bijective. Using the same method as in Lemma 4.2 (c), we see that the rest of the
statement holds.

(c) Suppose B3z = 0. By (a), S»/S3 acts faithfully on the set of all extensions
of AMuyHsH, to HeHs H4 H3 with the same B3. Since |S2/S3| = q3 = |H3/R3],
this action is transitive. Hence, there exists x € S> such that *A|x, = 1y, for all
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X; C HsH4Hs3. Let A be this linear. Since X553 is a transversal of H in HX5S3
and S3 = Stabg, (A|g,HsH, H;), We have

HX HX
A 5S3|H5[141‘I3 =2 553(1)A|H5H4H3~

Therefore,
HsHyHz C ker(Af1X553),

so is its normal closure Hs H4 H3 in HX5S53.

By Lemma 1.5 with G = HX5S8,, N = M = HX5S3, X = T3,Y = Hj and
Z = Hg, the induction map from Irr(H X5S3/Y, A) to Irr(H X555, A). Since we
have Y C ker(AfX553) it follows that Irr(H X553/ Y, A) = Ir(HX5S3,1). O

5.5.4 Proof of Lemma 4.5

Recall that A is a linear character of the group H such that A|x; = ¢ for all
Xi CHe = Z(U), Alx; = lyx; for all X; C HsH4H3, and Alx;, = ¢y, for the
others X; C H» where b; € F;. By Lemma 4.3 (c), we work with the quotient
group HX5S3/HsH4H3. Abusing language slightly, we call the images of root
groups in a quotient group root groups also.

(a) By the computation in Lemma 4.4 (b) with B3 = 0, S4 = Stabg,(4).
Now we show that R, = {x € Hy : [AHX553(x)| = AHX553(1)). Since X583 is
a transversal of H in H X553, we are going to find x € H; such that A([x, y]) = 1
for all y € S3. As [H», X5] = {1}, it is enough to work with x € H, and y € Sy4.
For each x = ]_[l-lil2 xi(vi) € Hp and y = I3(u)x33(u23) € S374, by the com-
putation in Lemma 4.4 (b), we find (v13, v13) satisfying for all us3 and u in the
following equation:

u23(—v12 — v13) + 2u(—v12 —v13) = 0.

So (vi2,v13) = (v, —v) forall v € Fy, i.e. x = r2(v). Since A(r2(v)) = ¢, (v)
for all r(v) € Ry, we have )tHXSS3|H2 =[HX5S3 : H]¢p,.

(b) Suppose that By € Fy —{c*: c € F7}. Let 1) be an extension of A to HXs.
Since S4 = Stabg,(4), to get Igxss,(n) = HXs, we show that S4 acts transi-
tively on the set of all extensions of A to HX5. Hence, we find all /4 € S4 such
that A([hxs,l4]) = 1 forallh € H and x5 € Xs. Since S4 = Stabg, (1), we have
A([h,l4]) = 1 forall h € H, l4 € S4. Thus we compute [xs,/4]. Since we work
with HX5S3/HsH4Hs3, for each x5(vs) € X5 and [4(u) € S4, we have

[x5(vs), la(u)] = [x5, xa][[[x5. x4], X0, x10][[[X5, X4]. Xo], X14]
x [[[[xs. xa]., x6]. x7], xol[[[xs. x4], X6]. x17][[X5, Xa]. x23]

x [x5, x6][[[x5, x6], x10], X11][[[x5, X6], X10], X15]
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x [[[xs, x6], x11]. x15][[[[x5, X6], x7]. x8]. X10]
x [[[[x5, x6]. x7], x8], x11][[[x5, X6], x7]. X16]
x [[[xs, x6], x7], x17][[*x5, X6], X23][[X5, X14], X16]
x [[x5, x14], x17]{[x5, X11], x22][[X5, X10]. X16]
x [[x5, x10], X22]
= x12(—vsu)x37(—vsu°)x30(—v5u°) X390 (205U ) x40 (205U”)
x x37(3vs1°)x13(V5U)Xa0 (V51 ) x42 (205U ) X43(—2v51°)
X Xa2(—4vs5u”) x43(4v5u°) x30 (—8vs1°) x41 (—4v5U°)
x x38(—3vsu°)x30 (4vs51°)x41 (2V51° )x43(—3vV51°)
x x42(3vsu”)x37(4vsu°).
Evaluating with A to get 1, for all vs we need
vs(—(b12 — b13)u + u’) € ker(¢).

which is vs(u® — Bou) € ker(¢) for all vs. Hence, we solve for u: u(u*—B;) = 0.
Since B, € [y — {¢*:ce IF;}, this equation only has one trivial solution u = 0,
ie. StabS4(77) = {1} or ]HX5S3(’7) = HXs.

(c) Suppose B, = c* ¢ [FX Let 1 be an extension of the character A to HXs.
Continue the computation in part (b), the equation u(u* — By) = 0 has five solu-
tions u € {ac : a € Fs}, i.e. [4(u) € F4. Hence, we have Igxss,(n) = HXs5F4.
Since [H X5, F4] C ker(n), n extends to H X5 Fy,i.e. A extends to H X5 Fy.

Since S4 = Stabg,(A) = I, we have

[H, Sa4] C ker(A).

So A extends to HS4 < HX5S3. Let A’ be an extension of A to HS4. We find
THxss5(A'). Since Staby,s,(A') C Staby.s,(A'|i) = X584, it is enough to find
all x5 € X5 such that A'([xs, hl4]) = 1 for all hly € HS4. Since HX5 is abelian,
we have

[x5,hls] = [x5,14].

For each x5(vs) € X5 and l4(u) € S4, by the computation in (b), we need
vs(u® — Bou) € ker(¢) forallu € IF,.

By Proposition 1.3, there are five solutions vs € {acg : a € Fs},i.e. x5(vs) € Fs.
Hence, Igx,s;(A) = HF5S4. Since [Fs, S4] C ker(1'), A’ extends to HF5Sy,
i.e. A extends to HF5S4.
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Let A1, A, be two extensions of A to H X5 Fy4, and let y be an extensizon of A to
H F5S3. Since the degree of all irreducible constituents of AH X583 4g %, we have

A XS5 ), HX58s o HXSs ¢ Iir(H X553, ).
Choose 1 € S C S3 as a representative set of the double coset
HF5S4\HX5S3/HXsFj4.
As HF5S4 N HX5F4 = HF5F4 and HX5F4 < HX5S3, by Mackey’s formula,

HXsSs . HXsS
O e e Z(SA1|A“(HX5F4)DHF5S4aV|A‘(HX5F4)OHF5S4)

seS

=Y Cilursra-VIHEE)-

seS

Foreachs € S, if A|gFsF, = Y|HFsF,, then *A1|g = y|g. Since both are
extensions of A, we have A = A, i.e. s € Stabg,(A) = S4. There is a unique
1 € § N Sy since S is a representative set of HF5S4\HX5S3/HX5F4. So

(A X553y HXSS3y — (i \gpor,. vIEFsF,) = 1 iff Ai|F, = y|F. i € {4,5).

Therefore, A X553 =y HXsS3 — 3, HXsS3 4 ) | |5 = As|F i € {4,5). O
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