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On the character degrees of Sylow p-subgroups of
Chevalley groups G.pf / of type E

Tung Le and Kay Magaard

Communicated by Karl Strambach

Abstract. Let Fq be a field of characteristic p with q elements. It is known that the degrees
of the irreducible characters of the Sylow p-subgroup of GL.Fq/ are powers of q. On the
other hand Sangroniz (2003) showed that this is true for a Sylow p-subgroup of a classical
group defined over Fq if and only if p is odd. For the classical groups of Lie type B , C
and D the only bad prime is 2. For the exceptional groups there are others. In this paper
we construct irreducible characters for the Sylow p-subgroups of the Chevalley groups
D4.q/ with q D 2f of degree q3=2. Then we use an analogous construction for E6.q/
with q D 3f to obtain characters of degree q7=3, and for E8.q/ with q D 5f to obtain
characters of degree q16=5. This helps to explain why the primes 2, 3 and 5 are bad for the
Chevalley groups of typeE in terms of the representation theory of the Sylow p-subgroup.

Keywords. Irreducible characters, root system, Lie type.
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1 Introduction

Let G be a Chevalley group defined over a field Fq of order q and characteristic
p > 0. By ˛0 we denote the highest root of the root system † of G. It is well
known that ˛0 is a positive integral linear combination of the fundamental roots
of†. So without loss of generality, ˛0 D

Pr
iD1 ai˛i where the ˛i are fundamental

roots of †. Recall that p is a bad prime for G if p is a divisor of some ai .
It is well known that if G classical, then the only possible bad prime for G is 2.

On the other hand if G is exceptional of type E, then the primes 3 and 5 are also
bad. The “badness” of the prime evidences itself in the classification of the unipo-
tent conjugacy classes ofG. Here we aim to explain why the primes 3 and 5 are bad
for groups of typeE in terms to the representation theory of the Sylow p-subgroup
of G D E6.q/ with prime 3 and G D E8.q/ with prime 5. Let UEk.q/ denote
the unipotent radical of the standard Borel subgroup of Ek.q/ for k D 6 and 8,

The first author was supported in part by a grant of the NAFOSTED.
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2 T. Le and K. Magaard

i.e. the subgroup generated by all the positive root groups of G. By Uk we denote
the quotient UEk.q/=Kk�1, where Kk�1 is the normal subgroup of UEk.q/ gen-
erated by all root groups X˛ such that ˛ has height k � 1 or more. Clearly any
character of Uk inflates to a character of UEk.q/. Abusing terminology slightly
we call the image under the natural projection of a root group of UEk.q/, a root
group of Uk . We observe that Z.Uk/ is generated by the root groups of height
k � 2 and hence jZ.Uk/j D qk�1. We define the family

Fk WD ¹� 2 Irr.Uk/ W X˛ 6� ker.�/ for all X˛ � Z.Uk/º:

Theorem 1.1. The following statements are true.

(a) If q D 3f , then for all � 2 F6 we have �.1/ 2 ¹q7; q7=3º. Moreover F6 con-
tains exactly .q � 1/5.q2 � .q � 1/=2/ characters of degree q7 and exactly
32.q � 1/6=2 characters of degree q7=3.

(b) If q D 5f , then for all � 2 F8 we have �.1/ 2 ¹q16; q16=5º. Moreover F8
contains exactly .q � 1/8.q3 C q2 C q C 3=4/ characters of degree q16 and
exactly 25.q � 1/8=4 characters of degree q16=5.

We remark that 9.q�1/6=2, .q�1/5.q2�.q�1/=2/, .q�1/8.q3Cq2CqC3=4/
and 25.q � 1/8=4 are not in ZŒq�. On the other hand we remark also that jF6j D
.q � 1/5q2 2 ZŒq� and every character in F6 has degree q7 whenever p ¤ 3, and
that jF8j D .q � 1/7q4 2 ZŒq� and every character in F8 has degree q16 when-
ever p ¤ 5. Taken together these remarks provide evidence for a generalization of
Higman’s conjecture for groups of type UEi .q/, i D 6; 7; 8, see for example [2],
namely that jIrr.UEi .q//j 62 ZŒq� if and only if p is a bad prime for Ei .q/.

To prove our main theorem we begin by analyzing our construction of the ir-
reducible characters of the Sylow 2-subgroup of D4.2f / from [3]. Our starting
point is the quotient of UD4.q/=K4 where UD4.q/ is the unipotent radical of the
standard Borel subgroup of the universal Chevalley group D4.q/ and K4 is the
normal subgroup of UD4.q/ generated by the root groups of roots of height 4
and 5. We showed that when p D 2, there exists a UD4.q/ family of characters of
degree q3=2 of size 4.q � 1/4. As UD4.q/ is a quotient of UEi .q/ for i D 6; 7; 8,
we also see families of irreducible characters of degree q3=2 for groups of type
UEi .q/, where i D 6; 7; 8 and q is even.

Our construction is fairly elementary. Starting with large elementary abelian
normal subgroups, we construct our characters via induction, using Clifford the-
ory. To compute the necessary stabilizers we critically use Proposition 1.3 and
Lemma 1.5. Throughout this paper we fix a nontrivial homomorphism

� W .Fq;C/! C�:
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On the character degrees of Sylow p-subgroups of E.pf / 3

For each a 2 Fq , we define �a.x/ WD �.ax/ for all x 2 Fq , and denote

F�q WD Fq � ¹0º:

Hence, ¹�a W a 2 F�q º are all non-principal irreducible characters of Fq .

Definition 1.2. For a 2 Fq , we define Ta WD ¹tp � ap�1t W t 2 Fqº.

We note that T0 D Fq .

Proposition 1.3. The following statements are true.

(a) tp � ap�1t D
Q
c2Fp .t � ca/.

(b) If a 2 F�q , then Ta is an additive subgroup of Fq of index p.

(c) For each a 2 F�q , there exists b 2 F�q such that bTa D ker.�/. Furthermore,
cbTa D ker.�/ iff c 2 F�p .

(d) ¹Ta W a 2 F�q º D ¹ker.�a/ W a 2 F�q º are all subgroups of index p in Fq .

Proof. See Section 5.1.

Definition 1.4. For each a 2 F�q , we pick a� such that a�Ta D ker.�/.

By Proposition 1.3 (c), a� exists and but is only determined up to a scalar in
the prime field. In the definition above we make an arbitrary choice which is fixed
throughout the paper.

Throughout we fix notation as follows. Let G be a group. Set G� WD G � ¹1º,
denote by Irr.G/ the set of all complex irreducible characters ofG, and Irr.G/� WD
Irr.G/ � ¹1Gº. For H;K � G, and � 2 Irr.H/, define

Irr.G=K/ WD ¹� 2 Irr.G/ W K � ker.�/º;

Irr.G; �/ WD ¹� 2 Irr.G/ W .�; �G/ ¤ 0º;

Irr.G=K; �/ WD Irr.G=K/ \ Irr.G; �/:

Furthermore, for a character � of G, we denote its restriction to H by �jH .

Lemma 1.5. Let N E G and 1 2 X be a transversal of N in G. Suppose N is of
the form N D ZYM where Y E N , Z � Z.N/, M � N and X � NG.ZY /. If
there is � 2 Irr.ZY / such that Y � ker.�/, and u� ¤ v� for all u ¤ v 2 X , then
the following are true.

(a) For all � 2 Irr.N=Y; �/, �G 2 Irr.G/. Moreover, if �1 ¤ �2 2 Irr.N=Y; �/,
then �1G ¤ �2G .

(b) The induction map from Irr.N=Y; �/ to Irr.G; �/ is bijective.

Proof. See Section 5.2.
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4 T. Le and K. Magaard

We recall that a p-group P is monomial, i.e. for each � 2 Irr.P /, there exist a
subgroup H of P and a linear character � of H such that � D �P . To construct
irreducible characters whose degrees are not powers of q D pf , f > 1, we con-
struct subgroups H E P and T � P such that T is a transversal of H . Then we
find a linear character � of H such that the order of the stabilizer StabT .�/ of T
is not a power of q. Moreover we insure that � is extendable to the inertial group
IP .�/ D HStabT .�/. Let �I denote some extension of � to IP .�/. By Clifford
theory the induction of �I to P is irreducible and of degree not a power of q. The
existence of a suitable pair .H; �/ is based on Proposition 1.3. The reason being
that a polynomial of the form xp C ap�1x, with a ¤ 0, appears in the formulae
of the action of elements of T on the characters of H .

We will now highlight the main steps of the constructions of our characters. We
have deferred all of our proofs to Section 5.

2 Sylow 2-subgroups of the Chevalley groups D4.2f /

Let Fq be a field of order q and characteristic 2. Let † WD h˛1; ˛2; ˛3; ˛4i be the
root system of type D4, see Carter [1, Chapter 3]. The Dynkin diagram of † is

t t t
t

˛1 ˛3 ˛4

˛2

The positive roots are those roots which can be written as positive integral linear
combinations of the simple roots ˛1; ˛2; ˛3; ˛4. We write†C for the set of positive
roots. We use the notation

1

1 2 1

for the root ˛1 C ˛2 C 2˛3 C ˛4 and we use a similar notation for the remaining
positive roots. The 12 positive roots of † are given in Table 1.

For ˛ 2 †we denote the corresponding root subgroup of the Chevalley groupG
by X˛ whose elements we label by x˛.t/ where t 2 Fq . Note that X˛ Š .Fq;C/.

We recall the commutator formula

Œx˛.r/; xˇ .s/� D

´
x˛Cˇ .�C˛;ˇ rs/; if ˛ C ˇ 2 †,
1; otherwise;

see Carter [1, Theorem 5.2.2]. In Fq it is the case that 1 D �1, since p D 2, and
thus all non-zero coefficients C˛;ˇ are equal to 1. For positive roots, we use the ab-
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On the character degrees of Sylow p-subgroups of E.pf / 5

Height Roots

5 ˛12 WD
1

1 2 1

4 ˛11 WD
1

1 1 1

3 ˛8 WD
1

1 1 0
˛9 WD

0

1 1 1
˛10 WD

1

0 1 1

2 ˛5 WD
0

1 1 0
˛6 WD

1

0 1 0
˛7 WD

0

0 1 1

1 ˛1 ˛2 ˛3 ˛4

Table 1. Positive roots of the root system † of type D4.

breviation xi .t/ WD x˛i .t/, i D 1; 2; : : : ; 12. All nontrivial commutators are given
in Table 2.

Œx1.t/; x3.u/� D x5.tu/, Œx1.t/; x6.u/� D x8.tu/,

Œx1.t/; x7.u/� D x9.tu/, Œx1.t/; x10.u/� D x11.tu/,

Œx2.t/; x3.u/� D x6.tu/, Œx2.t/; x5.u/� D x8.tu/,

Œx2.t/; x7.u/� D x10.tu/, Œx2.t/; x9.u/� D x11.tu/,

Œx3.t/; x4.u/� D x7.tu/, Œx3.t/; x11.u/� D x12.tu/,

Œx4.t/; x5.u/� D x9.tu/, Œx4.t/; x6.u/� D x10.tu/,

Œx4.t/; x8.u/� D x11.tu/, Œx5.t/; x10.u/� D x12.tu/,

Œx6.t/; x9.u/� D x12.tu/, Œx7.t/; x8.u/� D x12.tu/.

Table 2. Commutator relations for type D4.

The group UD4 generated by all X˛ for ˛ 2 †C is a Sylow 2-subgroup of the
Chevalley group D4.q/. Each element u 2 UD4 can be written uniquely as

u D x1.t1/x2.t2/x4.t4/x3.t3/x5.t5/ � � � x12.t12/ where xi .ti / 2 Xi .

So we write
Q12
iD1 xi .ti / as this order. We note that our ordering of the roots is

slightly non-standard as the positions of x3 and x4 are reversed.
We define

F4 WD ¹� 2 Irr.UD4.q// W �jXi D �.1/�ai for each a8; a9; a10 2 F�q º:
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6 T. Le and K. Magaard

If ‰ is a representation affording � 2 F4, then

‰.Œx8.t8/; x4.t4/�/ D Œ‰.x8.t8//; ‰.x4.t4//�

D Œ�a8.t8/‰.1/;‰.x4.t4//� D ‰.1/ for all t4; t8 2 Fq .

Therefore, X11 D ŒX8; X4� � ker.�/, and similarly X12 D ŒX8; X7� � ker.�/.
Thus only the factor group U D UD4=X12X11 acts on a module affording �.
Therefore, we may work with U which has order q10, and Z.U / D X8X9X10.

˛8 ˛2 ˛6 ˛10

˛5

˛1

˛9

˛7

˛4n˛3

Figure UD4.q/. Relations of roots.

LetH WD ŒU; U � D X5X6X7X8X9X10, and T WD X1X2X4. It is clear thatH ,
HX3 and T are elementary abelian. The group U can be visualized as in the figure
above. The roots in boxes are in T , ˛3 which is neither in T nor inH is in a circle,
whereas all other roots are in H . The broken lines indicate where the hooks, as
defined in [3], centered at central roots are; for example ˛2C˛5 D ˛6C˛1 D ˛8.
The hooks centered at ˛8, ˛9 and ˛10 intersect pairwise in sets of size two so as to
form a triangle.

To study the characters � 2 F4 we start with a linear character � ofH such that
�jXi ¤ 1Xi for i D 8; 9; 10.

Definition 2.1. For a8; a9; a10 2 F�q and b5; b6; b7 2 Fq , we define

(a) �a8;a9;a10
b5;b6;b7

.
Q10
iD5 xi .ti // WD �.

P7
iD5 bi ti C

P10
jD8 aj tj /.

(b) S567 WD ¹x567.t/ WD x5.a10t /x6.a9t /x7.a8t / W t 2 Fqº.

(c) S124 WD ¹x124.t/ WD x1.a10t /x2.a9t /x4.a8t / W t 2 Fqº.

(d) A WD a8a9a10 and t0 WD 1
A
.b5a10 C b6a9 C b7a8/.

(e) F124 WD ¹1; x124.t0/º.

(f) F3 WD ¹1º if t0 D 0, and F3 WD ¹1; x3.
.t0/�
A
/º otherwise.

It is easy to check that S567, S124, F124, F3 are subgroups of U . If t0 D 0, then
F124 D F3 D ¹1º, otherwise F124 Š F3 Š .F2;C/. Since S124; S567 Š .Fq;C/,
their linear characters are of the form

�bi .xi .t// D �.bi t / where i 2 ¹124; 567º for all bi ; t 2 Fq .
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On the character degrees of Sylow p-subgroups of E.pf / 7

For each � 2 Irr.F124/, � D �b124 jF124 for some �b124 2 Irr.S124/, b124 2 Fq . If
F124 is nontrivial, we choose b124 2 ¹0; a124º Š .F2;C/where �.a124t0/ D �1.
The same for F3 � X3, for each � 2 Irr.F3/, � D �b3 jF3 for some �b3 2 Irr.X3/
and b3 2 ¹0; a3º Š .F2;C/ such that

�

�
a3
.t0/�

A

�
D �1

if .t0/� exists.
For each a8; a9; a10 2 F�q , there are q3 linear characters �a8;a9;a10�;�;� of H . By

definition of t0, there are q2 of them such that t0 D 0 and q2.q�1/ such that t0 ¤ 0.
Therefore, there are q2 cases where F124; F3 are trivial and q2.q�1/ cases where
F124; F3 are of order 2.

For all x1.t1/x2.t2/x4.t4/ 2 T , we have

x1.t1/x2.t2/x4.t4/.�
a8;a9;a10
b5;b6;b7

/ D �
a8;a9;a10
b5Ca8t2Ca9t4;b6Ca8t1Ca10t4;b7Ca9t1Ca10t2

:

Hence, T acts on the set of linear characters ¹�a8;a9;a10�;�;� º. It is easy to check that
t0 is invariant under this action. The following lemma establishes some facts con-
cerning �a8;a9;a10

b5;b6;b7
.

Lemma 2.2. Set � WD �a8;a9;a10
b5;b6;b7

. The following statements are true.

(a) S124 D StabT .�/ and S567 D ¹x 2 X5X6X7 W j�U .x/j D �U .1/º. Moreover,
�U jS567 D �

U .1/�At0 .

(b) � extends to HX3F124 and HF3S124. Let �1 and �2 be extensions of � to
HX3F124. The inertia groups IU .�1/ D HX3F124.

(c) �1U D �2U 2 Irr.U / iff �1jF3 D �2jF3 and �1jF124 D �2jF124 .

Proof. See Section 5.3.1.

Remark. When q is odd, both sets ¹x 2 X5X6X7 W j�U .x/j D �U .1/ D q4º and
StabT .�/ are trivial. Thus, � extends to HX3 and each extension induces irre-
ducibly to U of degree q3.

When t0 ¤ 0, the statement in Lemma 2.2 (c) makes sense since the dihedral
subgroup hF124; F3i � IU .�1/. By Lemma 2.2 (b), X3; S124 � IU .�/ but � does
not extend to HX3S124 as ŒX3; S124� ª ker.�/.

By Lemma 2.2 (a), the action of T acts on the set of q3 linear �a8;a9;a10�;�;� has q
orbits, each of size q2. By Lemma 2.2 (b), all q3 linears �a8;a9;a10�;�;� extend toHX3
and thus we obtain q4 linear extensions. For q3 of these t0 D 0 and whereas t0 ¤ 0
for the other q3.q � 1/ characters.
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8 T. Le and K. Magaard

If t0 D 0, F124 is trivial. By Lemma 2.2 (b), � extends to IU .�/ D HX3 E U ,
as �. The group T is a transversal of HX3 in U and acts regularly on these q3

linears � with t0 D 0. Therefore, the character �U 2 Irr.U / of degree q3 only de-
pends on a8; a9; a10, so we denote it by �a8;a9;a10

8;9;10;q3
2 Irr.U /. This character is the

unique � 2 F4 of degree q3 such that �jXi D �.1/�ai where i D 8; 9; 10. Further-
more, by Lemma 2.2 (a), this is the unique constituent � of .�jX8X9X10/

U such that
S567 � ker.�/.

If t0 ¤ 0, then F124 and F3 are isomorphic to F2. By Lemma 2.2 (b), � extends
to HX3F124 as �1, and �1U 2 Irr.U / of degree q3

2
. For each t0 ¤ 0, by Lem-

ma 2.2 (c), all constituents �1U of �U only depend on the restrictions of �1 to
F124 and F3. Therefore, we denote these constituents of �U by

�
b124;b3;t0;a8;a9;a10

8;9;10;q
3

2

where b124; b3 2 F2, t0; a8; a9; a10 2 F�q .

For each a8; a9; a10 2 F�q , there are 4.q�1/ characters � 2 F4 of degree q
3

2
such

that �jXi D �.1/�ai where i D 8; 9; 10.
The next theorem lists the generic character values of all � 2 Irr.U / such that

�jXi D �.1/�ai where i D 8; 9; 10.

Theorem 2.3. For a8; a9; a10 2 F�q , suppose � 2 Irr.U / such that �jXi D �.1/�ai
where i D 8; 9; 10. Set Z D F124S567X8X9X10 and the Kronecker

ıi;j D

´
1; if i D j;
0; otherwise:

The following statements are true.

(a) If �.1/ D q3, then
� D �

a8;a9;a10
8;9;10;q3

and

�

 
10Y
iD1

xi .ti /

!
D ı0;t1ı0;t2ı0;t4ı0;t3ıa8t5;a10t7ıa8t6;a9t7q

3�

 
10X
iD8

ai ti

!
:

(b) If �.1/ D q3

2
, then

� D �
b124;b3;t0;a8;a9;a10

8;9;10;q
3

2

for some b124; b3 2 F2, t0 2 F�q

and

�

 
10Y
iD1

xi .ti /

!
D
q3

2
�

 
b124

t1

a10
C At0

t7

a8
C

10X
iD8

ai ti

!
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On the character degrees of Sylow p-subgroups of E.pf / 9

if
Q10
iD1 xi .ti / 2 Z, and

�

 
10Y
iD1

xi .ti /

!
D ıa8t1;a10t4ıa8t2;a9t4ıt3;t

�
0

q2

2

� �

 
b124

t1

a10
C b3t3 C At0

t7

a8
C .�/C

10X
iD8

ai ti

!
;

otherwise, where t�0 D
.t0/�
A

and .�/ D A2

.t0/�
. t5
a10
C

t7
a8
/. t6
a9
C

t7
a8
/.

Proof. See Section 5.3.2.

3 Sylow 3-subgroups of the Chevalley groups E6.3f /

Let Fq be a field of order q and characteristic 3. We study E6.q/ from the point of
view of its Lie root system. Let † WD h˛1; ˛2; ˛3; ˛4; ˛5; ˛6i be the root system
of E6, see Carter [1, Chapter 3]. The Dynkin diagram of † is

t t t t t
t

˛1 ˛3 ˛4 ˛5 ˛6

˛2

The positive roots are those roots which can be written as nonnegative integral
linear combinations of the simple roots ˛1; ˛2; : : : ; ˛6. We write†C for the set of
positive roots. Here, j†Cj D 36. We use the notation

2

1 2 3 2 1

for the root ˛1 C 2˛2 C 2˛3 C 3˛4 C 2˛5 C ˛6 and we use a similar notation
for the remaining positive roots. Let X˛ WD hx˛.t/ W t 2 Fqi be the root subgroup
corresponding to ˛ 2 †. The group generated by all X˛ for ˛ 2 †C is a Sylow
3-subgroup of the Chevalley group E6.q/, which we call UE6.

In this section, we will construct irreducible characters of degree q7

3
which are

members of the following family of irreducible characters ofUE6 which is defined
as follows:

F6 WD ¹� 2 Irr.UE6/ W �jX˛ D �.1/�a; ht.˛/ D 4; a 2 F�q º:

Let  be a representation affording some � 2 F6. As in Section 2 we see that
X˛ � ker.�/ for all positive roots ˛ with height greater than 4. Let K5 be the nor-
mal subgroup of UE6 generated by all root subgroups of height greater than 4.
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10 T. Le and K. Magaard

Thus only the factor group U WD UE6=K5 acts on a module affording �. If ˛ is a
root of hight at most 4, then the restriction of the canonical projection from UE6 to
U is an injective and thus we may identify the root group X˛ with its image in U .
There are 21 roots ˛ 2 †C with ht.˛/ � 4. These 21 positive roots are given in Ta-
ble 3. Therefore, the group U has order q21 and Z.U / D X17X18X19X20X21 D
hXˇ W ht.ˇ/ D 4i.

For positive roots, we use the abbreviation xi .t/ D x˛i .t/, i D 1; 2; : : : ; 21.
Each element u 2 U can be written uniquely as

u D x2.t2/x1.t1/x3.t3/x4.t4/x5.t5/ � � � x21.t21/ where xi .ti / 2 Xi .

So we write
Q21
iD1 xi .ti / in the order as above. We note that in our order the term

x2 precedes x1.

Height Roots

4 ˛20 WD
1

0 0 1 1 1
˛21 WD

0

0 1 1 1 1

˛17 WD
1

1 1 1 0 0
˛18 WD

0

1 1 1 1 0
˛19 WD

1

0 1 1 1 0

3 ˛15 WD
0

0 1 1 1 0
˛16 WD

0

0 0 1 1 1

˛12 WD
0

1 1 1 0 0
˛13 WD

1

0 1 1 0 0
˛14 WD

1

0 0 1 1 0

2 ˛10 WD
0

0 0 1 1 0
˛11 WD

0

0 0 0 1 1

˛7 WD
0

1 1 0 0 0
˛8 WD

1

0 0 1 0 0
˛9 WD

0

0 1 1 0 0

1 ˛2 ˛1 ˛3 ˛4 ˛5 ˛6

Table 3. Positive roots of the root system † of type E6.

For all ˛; ˇ 2 † the length of an ˛-chain through ˇ is at most 1. Thus the
Chevalley commutator formula, see Cater [1, Theorem 5.2.2], yields

Œx˛.r/; xˇ .s/� D

´
x˛Cˇ .�C˛;ˇ rs/; if ˛ C ˇ 2 †;
1; otherwise:
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On the character degrees of Sylow p-subgroups of E.pf / 11

For each extraspecial pair .˛; ˇ/, we choose the coefficient C˛;ˇ WD �1. By com-
puting directly or using MAGMA [5] with the following codes, all nontrivial com-
mutators are given in Table 4.

WWDRootDatum("E6");
RWDPositiveRoots(W); AWDR[1..21];
for i in [7..21] do

for j in [1..(i-1)] do
if (R[i]-R[j]) in A then

kWDRootPosition(W,R[i]-R[j]);
if k le j then print k,"+",j,"=",i,"(",LieConstant_C(W,1,1,k,j),")"; end if;

end if;
end for;

end for;

Œx1.t/; x3.u/� D x7.tu/, Œx2.t/; x4.u/� D x8.tu/,
Œx3.t/; x4.u/� D x9.tu/, Œx4.t/; x5.u/� D x10.tu/,
Œx5.t/; x6.u/� D x11.tu/, Œx1.t/; x9.u/� D x12.tu/,
Œx4.t/; x7.u/� D x12.�tu/, Œx2.t/; x9.u/� D x13.tu/,
Œx3.t/; x8.u/� D x13.tu/, Œx2.t/; x10.u/� D x14.tu/,
Œx5.t/; x8.u/� D x14.�tu/, Œx3.t/; x10.u/� D x15.tu/,
Œx5.t/; x9.u/� D x15.�tu/, Œx4.t/; x11.u/� D x16.tu/,
Œx6.t/; x10.u/� D x16.�tu/, Œx1.t/; x13.u/� D x17.tu/,
Œx7.t/; x8.u/� D x17.tu/, Œx2.t/; x12.u/� D x17.tu/,
Œx1.t/; x15.u/� D x18.tu/, Œx7.t/; x10.u/� D x18.tu/,
Œx5.t/; x12.u/� D x18.�tu/, Œx2.t/; x15.u/� D x19.tu/,
Œx3.t/; x14.u/� D x19.tu/, Œx5.t/; x13.u/� D x19.�tu/,
Œx2.t/; x16.u/� D x20.tu/, Œx8.t/; x11.u/� D x20.tu/,
Œx6.t/; x14.u/� D x20.�tu/, Œx3.t/; x16.u/� D x21.tu/,
Œx9.t/; x11.u/� D x21.tu/, Œx6.t/; x15.u/� D x21.�tu/.

Table 4. Commutator relations for type E6.

Let H WD hX˛ W ˛4 ¤ ˛ 2 †C; .˛; ˛4/ > 0i D H4H3H2 where

H4 WD Z.U /; H3 WD

16Y
iD12

Xi ; H2 WD

10Y
iD8

Xi ;

Brought to you by | Wayne State University
Authenticated | 141.217.20.120

Download Date | 10/27/12 7:05 AM



12 T. Le and K. Magaard

and
T WD hX2; X1; X3; X5; X6i D X2X1X3X7X5X6X11:

It is clear that jH j D q13, jT j D q7, Hk is generated by all root groups of root
height k inH , and T is a transversal ofHX4 in U . BothH andHX4 are elemen-
tary abelian and normal in U , and T is isomorphic to UA2.q/�UA2.q/�UA1.q/,
where UAk.q/ is the unipotent subgroup of the standard Borel subgroup of the
general linear group GLkC1.q/. We can visualize the group U in the following
figure. The roots in boxes are in T , the others outside are inH , and ˛4 not in both
H and T is in a circle. The dotted lines demonstrate the relations between roots to
give a sum root in center, e.g. ˛7 C ˛10 D ˛18, ˛7 C ˛8 D ˛17; : : : . In addition,
we have two triangles, as same as in Section 2 of UD4.q/, namely .˛17; ˛18; ˛19/
and .˛19; ˛20; ˛21/. These two triangles share a common pair of roots .˛2; ˛15/
where ˛2 C ˛15 D ˛19.

˛10
˛18

˛15

˛21
˛9

˛12

˛13

˛19

˛8 ˛20

˛16

˛14

˛17

˛7

˛1

˛5

˛2

˛3

˛6

˛11

n˛4

�
�	

@
@R

@
@I

�
��

Figure UE6.q/. Relations of roots.

We consider � 2 Irr.H/ such that �jXi D �ai ¤ 1Xi for 17 � i � 21. Since the
maximal split torus ofE6.q/ acts transitively on

L21
iD17 Irr.Xi /�, we may assume

that �jXi D � for 17 � i � 21. So we set

� D �
b12;b13;b14;b15;b16
b8;b9;b10

2 Irr.H/

such that �jXi D �bi where bi 2 Fq for all 8 � i � 16; i ¤ 11.

Definition 3.1. For b8; b9; b10; b12; b13; b14; b15; b16 2 Fq , we define

(a) S1 WD ¹s1.t; r; s/ WD x2.t/x1.t/x3.�t /x5.t/x6.�t /x7.r/x11.s/ W t; r; s 2 Fqº.

(b) S2 WD ¹s2.t/ WD s1.t; 2t2; 2t2/ W t 2 Fqº.

Brought to you by | Wayne State University
Authenticated | 141.217.20.120

Download Date | 10/27/12 7:05 AM



On the character degrees of Sylow p-subgroups of E.pf / 13

(c) R3 WD ¹r3.t/ WD x12.t/x13.�t /x14.�t /x15.t/x16.t/ W t 2 Fqº.

(d) R2 WD ¹r2.t/ WD x8.�t /x9.t/x10.t/ W t 2 Fqº.

(e) B3 WD b12 � b13 � b14 C b15 C b16.

(f) B2 WD b10 C b9 � b8.

(g) If B2 D c2 2 F�q , F2 WD ¹1; s2.˙c/º and F4 WD ¹1; x4.˙c�/º.

We note that Rk � Hk for k D 2; 3, F2 � S2 � S1 � T , and F4 � X4. Since
Rk Š Fq , for each a 2 Fq we define �a.rk.t// D �a.t/ for all rk.t/ 2 Rk . Hence,
Irr.Rk/ D ¹�a W a 2 Fqº. Since S2 Š Fq , we can define �a.s2.t// D �a.t/ for all
s2.t/ 2 S2. When B2 D c2 2 F�q , for each linear character � 2 Irr.F2/ there is
b2 2 ¹0;˙a2º Š .F3;C/ such that

� D �b2 jF2 where �b2 2 Irr.S2/ and �.a2c/ ¤ 1:

Using the same argument for F4, we find that for each character � 2 Irr.F4/ there
is b4 2 ¹0;˙a4º Š .F3;C/ such that

� D �b4 jF4 ; where �b4 2 Irr.X4/ and �.a4c�/ ¤ 1.

We first outline the induction process of � up to U , thereby explaining some
of the notation in Definition 3.1. Later we give the detailed conditions that are
necessary for each step of our construction.

U W

No:

H W � -B3 D 0

?

B3 ¤ 0

�
b4;B3
q7

.q � 1/q

HX4S1 -B2 D c
2 2 F�q

?

B2 ¤ c
2

�
B2
q7

.q C 1/=2

HX5S2

?

b2; b4 2 F3

�
b2;b4;B2
q7

3

9.q � 1/=2

Figure UE6.q/. Summary on the branching rules of �.

Let H3 be the normal closure of H3 in HX4S1. Since HX4 is abelian, it fol-
lows that X4 � StabU .�/. The main properties of � D �b12;b13;b14;b15;b16

b8;b9;b10
are as

follows.

Lemma 3.2. The following statements are true.

(a) R3 D ¹x 2 H3 W j�U .x/j D �U .1/º and S1 D StabT .�jH4H3/. Moreover, we
have �U jR3 D �

U .1/�B3 .

(b) If B3 ¤ 0, then StabT .�/ D ¹1º. Hence, if � is an extension of � toHX4, then
IU .�/ D HX4.
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14 T. Le and K. Magaard

(c) If B3 D 0, then there exists x 2 T such that

x� D �
0;0;0;0;0

b0
8;b

0
9;b

0
10

for some b08; b
0
9; b
0
10 2 Fq . Furthermore, H3 � ker.x�/HX4S1 and the induc-

tion map from Irr.HX4S1; x�/ to Irr.U; �/ is bijective.

Proof. See Section 5.4.1.

Remark. If gcd.q; 3/ D 1, then ¹x 2 H3 W j�U .x/j D �U .1/º and StabT .�/ are
trivial. Thus � extends to HX4 and hence induces up to U irreducibly.

By Lemma 3.2 (a), it is easy to see that B3 D B3.�/ is T invariant, i.e., we have
B3.�/ D B3.

x�/ for all x 2 T . As above we fix the actions of �jXi D �; 17 �

i � 21. NowH has q8 linear characters. On q7 of these B3 D 0, whereas B3 ¤ 0
on the q7.q � 1/ remaining characters.

Case B3 ¤ 0: By Lemma 3.2 (b), each of the q7.q � 1/ linear characters of
H with B3 ¤ 0 extends to HX4 in q different ways, yielding q8.q � 1/ linear
characters. Each of these induces irreducibly thereby partitioning the q8.q � 1/
characters into families of size ŒU W HX4� D q7. Therefore when B3 ¤ 0, there
are q

8.q�1/

q7
D q.q � 1/ irreducible characters of U lying over �. They are param-

eterized by .b4; B3/, and we denote them by �b4;B3
q7

, where b4 2 Fq and B3 2 F�q .
Case B3 D 0: As H E U , we have �; x� 2 Irr.H/ and Irr.U; �/ D Irr.U; x�/

for all x 2 T . Hence, by Lemma 3.2 (c), we may assume that � WD �0;0;0;0;0
b8;b9;b10

.
Since ŒU W HX4S1� D q4 and character induction map from HX4S1 to U pre-
serves irreducibility, those q7 linear characters of H with B3 D 0 are partitioned
into q3 sets each of size q4. Each of these sets contains a uniqueHX4S1-character
of the form �

0;0;0;0;0
b8;b9;b10

.

Lemma 3.3. The following statements are true.

(a) R2 D ¹x 2H2 W j�HX4S1.x/j D �HX4S1.1/º and S2 D StabS1.�/. Moreover,
�HX4S1 jR2 D �

HX4S1.1/�B2 .

(b) If B2 … ¹c2 W c 2 F�q º and let � be an extension of � to HX4, then we have
IHX4S1.�/ D HX4. Therefore, S2 acts transitively and faithfully on all exten-
sions of � to HX4.

(c) If B2 D c2 2 F�q , then � extends toHX4F2 andHF4S2. Let �1; �2 be exten-
sions of � to HX4F2. Then IHX4S1.�1/ D HX4F2. Moreover,

�1
HX4S1 D �2

HX4S1 iff �1jF2 D �2jF2 and �1jF4 D �2jF4 :

Proof. See Section 5.4.2.
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On the character degrees of Sylow p-subgroups of E.pf / 15

Remark. When B2 D c2 ¤ 0, we see that

HX4F3 E U and HF4S2 µ U ;

and both have index q7

3
in U . By Lemma 3.2 (c) and Lemma 3.3 (c) all con-

stituents of �U have degree q7

3
. Hence, if � is an extension of � to HF4S2, then

�U 2 Irr.U; �/. We have X4; S2 � IU .�/ and � extends to HX4F3 and HF4S2,
but � does not extend to HX4S2.

The group HX4 has q4 linear characters � such that

�jH D �
0;0;0;0;0
b8;b9;b10

:

Since F�q is even and cyclic, we see that for q
3.qC1/
2

of these B2 … ¹c2 W c 2 F�q º,
and for q

3.q�1/
2

of them B2 2 ¹c
2 W c 2 F�q º.

Case B2 … ¹c2 W c 2 F�q º: By Lemma 3.3 (b), there are q3.qC1/
2jS1j

D
qC1
2

irre-
ducibles of degree jS1j D q3 which are parameterized by B2 … ¹c2 W c 2 F�q º.
By Lemma 3.2 (c), we obtain qC1

2
irreducibles of degree q3ŒU W HX4S1� D q7,

which are denoted by �B2
q7

where B2 2 Fq � ¹c2 W c 2 F�q º.
Therefore, together with characters �b4;B3

q7
as computed above, F6 has exactly

.q � 1/q C qC1
2

irreducible characters � of degree q7 such that �jXi D �.1/� for
all Xi � Z.U /.

Case B2 2 ¹c2 W c 2 F�q º: By Lemma 3.3 (c), let �1 be an extension of � to
HX4F2, then �1HX4S1 is irreducible of degree ŒHX4S1 W HX4F2� D

q3

3
. These

�1
HX4S1 only depend on B2 and their restrictions to F2 and F4. Hence, by Lem-

ma 3.2 (c), �1U 2 Irr.U / of degree q7

3
is denoted by �b2;b4;B2

q7

3

where b2; b4 2 F3
and B2 2 ¹c2 W c 2 F�q º.

Therefore, F6 has exactly 9.q�1/
2

irreducibles of degree q7

3
such that �jXi D

�.1/� for all Xi � Z.U /.
By the transitivity of the conjugate action of the maximal split torus T0 of the

Chevalley group E6.q/ on
L21
iD17 Irr.Xi /�, there are .q � 1/5.q2 � q C qC1

2
/

characters � 2 F6 of degree q7, and 9.q�1/6

2
characters � 2 F6 of degree q7

3
such

that �jXi D �.1/�ai , where ai 2 F�q , 17 � i � 21. This gives the proof for the
next theorem.

Theorem 3.4. Let � 2 F6. The following statements are true.

(a) If �.1/ D q7, then there exists t 2 T0 such that t� is either �b4;B3
q7

or �B2
q7

, for
some b4 2 Fq , B3 2 F�q , and B2 2 Fq � ¹c2 W c 2 F�q º.

(b) If �.1/ D q7

3
, then there exists t 2 T0 such that t� D �b2;b4;B2

q7

3

, for some
b3; b4 2 F3 and B2 2 ¹c2 W c 2 F�q º.
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16 T. Le and K. Magaard

4 Sylow 5-subgroups of the Chevalley groups E8.5f /

Let Fq be a field of order q and characteristic 5. We study E8.q/ from the point
of view of its root system. Let † WD h˛1; ˛2; ˛3; ˛4; ˛5; ˛6; ˛7; ˛8i be the root
system of E8, see Carter [1, Chapter 3]. The Dynkin diagram of † is

t t t t t t t
t

˛1 ˛3 ˛4 ˛5 ˛6 ˛7 ˛8

˛2

The positive roots are certain non-negative integral combinations of the sim-
ple roots ˛1; ˛2; : : : ; ˛8. We write †C for the set of positive roots and note that
j†Cj D 120. We use the notation

3

2 4 6 5 4 3 2

for the root 2˛1C3˛2C4˛3C6˛4C5˛5C4˛6C3˛7C2˛8 and similar notation
for the remaining positive roots. Let X˛ WD hx˛.t/ W t 2 Fqi be the root subgroup
corresponding to ˛ 2 †. The group generated by all X˛ for ˛ 2 †C is a Sylow
5-subgroup of the Chevalley group E8.q/, which we call UE8.

In this section, we are going to construct irreducible characters � of degree q16

5

by considering the following family of irreducible characters of UE8:

F8 WD ¹� 2 Irr.UE8/ W �jX˛ D �.1/�a; ht.˛/ D 6; a 2 F�q º:

Let  be a representation affording some � 2 F8. Using the same argument as
in Section 2 we see that X˛ � ker.�/ for all positive roots ˛ with height greater
than 6. Let K7 be the normal subgroup of UE8 generated by all root subgroups of
root heights greater than 6. Clearly the representation  is a module for the factor
group U WD UE8=K7. The restriction of the canonical projection from UE8 to
U to X˛ is injective whenever ˛ has hight 6 or less. Thus, in this case, we may
identify X˛ with its image in U . To remind the reader that U is a factor group
of UE8 we denoted it by fE8 in the tables below. Recall that j†Cj has exactly 43
positive roots of height less than or equal 6, which are listed in Table 5.

For positive roots, we use the abbreviation xi .t/ D x˛i .t/, i D 1; 2; : : : ; 43.
Hence,Z.U / D X37X38X39X40X41X42X43 D hXˇ W ht.ˇ/ D 6i. Each element
u 2 U can be written uniquely as

u D x2.t2/x1.t1/x3.t3/x4.t4/x5.t5/ � � � x43.t43/ where xi .ti / 2 Xi .

So we write
Q43
iD1 xi .ti / in the order as above. We note that in our order the term

x2 precedes x1.

Brought to you by | Wayne State University
Authenticated | 141.217.20.120

Download Date | 10/27/12 7:05 AM



On the character degrees of Sylow p-subgroups of E.pf / 17

Height Roots

6 ˛43 WD
0

0 1 1 1 1 1 1

˛40 WD
1

0 1 2 1 1 0 0

˛41 WD
1

0 1 1 1 1 1 0

˛42 WD
1

0 0 1 1 1 1 1

˛37 WD
1

1 1 2 1 0 0 0

˛38 WD
1

1 1 1 1 1 0 0

˛39 WD
0

1 1 1 1 1 1 0

5 ˛36 WD
0

0 0 1 1 1 1 1

˛33 WD
1

0 1 1 1 1 0 0

˛34 WD
1

0 0 1 1 1 1 0

˛35 WD
0

0 1 1 1 1 1 0

˛30 WD
1

1 1 1 1 0 0 0

˛31 WD
0

1 1 1 1 1 0 0

˛32 WD
1

0 1 2 1 0 0 0

4 ˛29 WD
0

0 0 0 1 1 1 1

˛26 WD
1

0 0 1 1 1 0 0

˛27 WD
0

0 1 1 1 1 0 0

˛28 WD
0

0 0 1 1 1 1 0

˛23 WD
1

1 1 1 0 0 0 0

˛24 WD
0

1 1 1 1 0 0 0

˛25 WD
1

0 1 1 1 0 0 0

To be continued
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18 T. Le and K. Magaard

Height Roots

3 ˛22 WD
0

0 0 0 0 1 1 1

˛19 WD
0

0 1 1 1 0 0 0

˛20 WD
0

0 0 1 1 1 0 0

˛21 WD
0

0 0 0 1 1 1 0

˛16 WD
0

1 1 1 0 0 0 0

˛17 WD
1

0 1 1 0 0 0 0

˛18 WD
1

0 0 1 1 0 0 0

2 ˛15 WD
0

0 0 0 0 0 1 1

˛12 WD
0

0 0 1 1 0 0 0

˛13 WD
0

0 0 0 1 1 0 0

˛14 WD
0

0 0 0 0 1 1 0

˛9 WD

0

1 1 0 0 0 0 0

˛10 WD
1

0 0 1 0 0 0 0

˛11 WD
0

0 1 1 0 0 0 0

1 ˛2 ˛1 ˛3 ˛4 ˛5 ˛6 ˛7 ˛8

Table 5. Positive roots of the root system † of type fE8.

For all ˛; ˇ 2 † the length of an ˛-chain through ˇ is at most 1. Thus the
Chevalley commutator formula, see Carter [1, Theorem 5.2.2], yields

Œx˛.r/; xˇ .s/� D

´
x˛Cˇ .�C˛;ˇ rs/; if ˛ C ˇ 2 †;
1; otherwise.

For each extraspecial pair .˛; ˇ/, we choose the coefficient C˛;ˇ WD �1. By direct
computation or using MAGMA [5], we record the nontrivial commutators are in
Table 6 below.
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On the character degrees of Sylow p-subgroups of E.pf / 19

Œx1.t/; x3.u/� D x9.tu/, Œx2.t/; x4.u/� D x10.tu/,
Œx3.t/; x4.u/� D x11.tu/, Œx4.t/; x5.u/� D x12.tu/,
Œx5.t/; x6.u/� D x13.tu/, Œx6.t/; x7.u/� D x14.tu/,
Œx7.t/; x8.u/� D x15.tu/, Œx1.t/; x11.u/� D x16.tu/,
Œx4.t/; x9.u/� D x16.�tu/, Œx2.t/; x11.u/� D x17.tu/,
Œx3.t/; x10.u/� D x17.tu/, Œx2.t/; x12.u/� D x18.tu/,
Œx5.t/; x10.u/� D x18.�tu/, Œx3.t/; x12.u/� D x19.tu/,
Œx5.t/; x11.u/� D x19.�tu/, Œx4.t/; x13.u/� D x20.tu/,
Œx6.t/; x12.u/� D x20.�tu/, Œx5.t/; x14.u/� D x21.tu/,
Œx7.t/; x13.u/� D x21.�tu/, Œx6.t/; x15.u/� D x22.tu/,
Œx8.t/; x14.u/� D x22.�tu/, Œx1.t/; x17.u/� D x23.tu/,
Œx2.t/; x16.u/� D x23.tu/, Œx9.t/; x10.u/� D x23.tu/,
Œx1.t/; x19.u/� D x24.tu/, Œx5.t/; x16.u/� D x24.�tu/,
Œx9.t/; x12.u/� D x24.tu/, Œx2.t/; x19.u/� D x25.tu/,
Œx3.t/; x18.u/� D x25.tu/, Œx5.t/; x17.u/� D x25.�tu/,
Œx2.t/; x20.u/� D x26.tu/, Œx6.t/; x18.u/� D x26.�tu/,
Œx10.t/; x13.u/� D x26.tu/, Œx3.t/; x20.u/� D x27.tu/,
Œx6.t/; x19.u/� D x27.�tu/, Œx11.t/; x13.u/� D x27.tu/,
Œx4.t/; x21.u/� D x28.tu/, Œx7.t/; x20.u/� D x28.�tu/,
Œx12.t/; x14.u/� D x28.tu/, Œx5.t/; x22.u/� D x29.tu/,
Œx8.t/; x21.u/� D x29.�tu/, Œx13.t/; x15.u/� D x29.tu/,
Œx1.t/; x25.u/� D x30.tu/, Œx2.t/; x24.u/� D x30.tu/,
Œx5.t/; x23.u/� D x30.�tu/, Œx9.t/; x18.u/� D x30.tu/,
Œx1.t/; x27.u/� D x31.tu/, Œx6.t/; x24.u/� D x31.�tu/,
Œx9.t/; x20.u/� D x31.tu/, Œx13.t/; x16.u/� D x31.�tu/,
Œx4.t/; x25.u/� D x32.tu/, Œx10.t/; x19.u/� D x32.�tu/,
Œx11.t/; x18.u/� D x32.�tu/, Œx12.t/; x17.u/� D x32.�tu/,
Œx2.t/; x27.u/� D x33.tu/, Œx3.t/; x26.u/� D x33.tu/,
Œx6.t/; x25.u/� D x33.�tu/, Œx13.t/; x17.u/� D x33.�tu/,
Œx2.t/; x28.u/� D x34.tu/, Œx7.t/; x26.u/� D x34.�tu/,

To be continued
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20 T. Le and K. Magaard

Œx10.t/; x21.u/� D x34.tu/, Œx14.t/; x18.u/� D x34.�tu/,
Œx3.t/; x28.u/� D x35.tu/, Œx7.t/; x27.u/� D x35.�tu/,
Œx11.t/; x21.u/� D x35.tu/, Œx14.t/; x19.u/� D x35.�tu/,
Œx4.t/; x29.u/� D x36.tu/, Œx8.t/; x28.u/� D x36.�tu/,
Œx12.t/; x22.u/� D x36.tu/, Œx15.t/; x20.u/� D x36.�tu/,
Œx1.t/; x32.u/� D x37.tu/, Œx4.t/; x30.u/� D x37.tu/,
Œx10.t/; x24.u/� D x37.�tu/, Œx12.t/; x23.u/� D x37.�tu/,
Œx16.t/; x18.u/� D x37.�tu/, Œx1.t/; x33.u/� D x38.tu/,
Œx2.t/; x31.u/� D x38.tu/, Œx6.t/; x30.u/� D x38.�tu/,
Œx9.t/; x26.u/� D x38.tu/, Œx13.t/; x23.u/� D x38.�tu/,
Œx1.t/; x35.u/� D x39.tu/, Œx7.t/; x31.u/� D x39.�tu/,
Œx9.t/; x28.u/� D x39.tu/, Œx14.t/; x24.u/� D x39.�tu/,
Œx16.t/; x21.u/� D x39.tu/, Œx4.t/; x33.u/� D x40.tu/,
Œx6.t/; x32.u/� D x40.�tu/, Œx10.t/; x27.u/� D x40.�tu/,
Œx11.t/; x26.u/� D x40.�tu/, Œx17.t/; x20.u/� D x40.tu/,
Œx2.t/; x35.u/� D x41.tu/, Œx3.t/; x34.u/� D x41.tu/,
Œx7.t/; x33.u/� D x41.�tu/, Œx14.t/; x25.u/� D x41.�tu/,
Œx17.t/; x21.u/� D x41.tu/, Œx2.t/; x36.u/� D x42.tu/,
Œx8.t/; x34.u/� D x42.�tu/, Œx10.t/; x29.u/� D x42.tu/,
Œx15.t/; x26.u/� D x42.�tu/, Œx18.t/; x22.u/� D x42.tu/,
Œx3.t/; x36.u/� D x43.tu/, Œx8.t/; x35.u/� D x43.�tu/,
Œx11.t/; x29.u/� D x43.tu/, Œx15.t/; x27.u/� D x43.�tu/,
Œx19.t/; x22.u/� D x43.tu/,

Table 6. Commutator relations for type fE8.

LetH WD hX˛ W ˛4 ¤ ˛ 2 †C; .˛; ˛5/ > 0i D H6H5H4H3H2 where .�;�/
denotes the definite bilinear form of R8 with respect to which the roots of † have
length 1,

H6 WD Z.U /; H5 WD

36Y
iD30

Xi ; H4 WD

29Y
iD24

Xi ;

H3 WD

21Y
iD18

Xi ; H2 WD X12X13:
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On the character degrees of Sylow p-subgroups of E.pf / 21

Let T WD hX1; X3; X4; X2; X6; X7; X8i D T4T3T2T1 where

T4 WD X23; T3 WD X16X17X22;

T2 WD X9X10X11X14X15; T1 WD X1X3X4X2X6X7X8:

It is clear that jH j D q26, jT j D q16, Hk is generated by all root groups in H of
root height k, just as for Tk generated by all root subgroups in T of height k, and
T is a transversal of HX5 in U . Both H and HX5 are elementary abelian and
normal in U . The group T is isomorphic to UA4.q/ � UA3.q/, where UAk.q/ is
the unipotent subgroup of the standard Borel subgroup of the general linear group
GLkC1.q/. We note that if ¹ˇ1; ˇ2; ˇ3; ˇ4º are the simple roots of type A4, then
the map from hX1; X3; X4; X2i to UA4.q/ that sends x1.t/ to xˇ1.t/, x3.t/ to
xˇ2.t/, x4.t/ to xˇ3.t/, and x2.t/ to xˇ4.�t / for all t 2 Fq induces an isomor-
phism.

We consider linear characters � 2 Irr.H/ such that �jXi D �ai for 37 � i � 43
and �jXj D �bj for all appropriate j � 36 where ai 2 F�q and bj 2 Fq . Since the
maximal split torus of the Chevalley group E8.q/ acts transitively on the productN43
iD37 Irr.Xi /�, it suffices to suppose that �jXi D � for all 37 � i � 43.

Definition 4.1. For bi 2 Fq where i 2 Œ12::13; 18::21; 24::36� we define

(a) B5 WD b30 C b31 � b32 � b33 � 2b34 C 2b35 C 2b36.

(b) B4 WD 2b24 � 2b25 C b26 � b27 � b28 C b29.

(c) B3 WD b18 � b19 � b20 C b21.

(d) B2 WD b12 � b13.

(e) R5 WD ¹r5.v/ WD x30.v/x31.v/x32.�v/x33.�v/x34.�2v/x35.2v/x36.2v/ W

v 2 Fqº.

(f) R4 WD ¹r4.v/ WD x24.2v/x25.�2v/x26.v/x27.�v/x28.�v/x29.v/ W v 2 Fqº.

(g) R3 WD ¹r3.v/ WD x18.v/x19.�v/x20.�v/x21.v/ W v 2 Fqº.

(h) R2 WD ¹r2.v/ WD x12.v/x13.�v/ W v 2 Fqº.

(i) L1 WD ¹l1.u/ WD x2.2u/x1.u/x3.�2u/x4.u/x6.u/x7.2u/x8.�2u/ W u 2 Fqº,
S1 WD L1T2T3T4.

(j) L2 WD ¹l2.u/ WD l1.u/x9.u2/x10.�u2/x11.u2/x14.�u2/x15.2u2/ W t 2 Fqº,
S2 WD L2T3T4.

(k) L3 WD ¹l3.u/ WD l2.u/x16.4u3/x17.2u3/x22.3u3/ W u 2 Fqº, S3 WD L3T4

(l) S4 WD ¹l4.u/ WD l3.u/x23.3u4/ W u 2 Fqº.

(m) If B2 D c4 2 F�q , F4 WD ¹s4.uc/ W u 2 F5º and F5 WD ¹x5.vc�/ W v 2 F5º.
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22 T. Le and K. Magaard

It is easy to check that for k 2 Œ2::5�, Rk � Hk of order q, Sk � Sk�1 � T
with S5 D ¹1º, and F4 � S4, F5 � X5 of order 5. It is noted that allBi are defined
for each � as above, hence Bi D Bi .�/. Since Rk Š Fq , for each a 2 Fq we de-
fine �a.rk.t// D �a.t/ for all rk.t/ 2 Rk . Hence, Irr.Rk/ D ¹�a W a 2 Fqº. Since
S4 Š Fq , we can define �a.s4.t//D �a.t/ for all s4.t/ 2 S4. WhenB2 D c4 2 F�q ,
for each linear character � 2 Irr.F4/ there is b4 2 ¹ta4 W t 2 F5º Š .F5;C/ such
that � D �b4 jF4 where �b4 2 Irr.S4/ and �.a4c/ ¤ 1. Use the same argument for
F5 � X5, for each � 2 Irr.F5/ there is b5 2 ¹ta5 W t 2 F5º Š .F5;C/ such that
� D �b5 jF5 , where �b5 2 Irr.X5/ and �.a5c�/ ¤ 1.

We first outline the induction process of � up to U , thereby explaining some
of the notation in Definition 4.1. Later we give the detailed conditions that are
necessary for each step of our construction.

U W

No:

H W � -B5 D 0

?

B5 ¤ 0

�
b5;B2;B3;B5
q16

.q � 1/q3

HX5S1 -B4 D 0

?

B4 ¤ 0

�
b5;B2;B4
q16

.q � 1/q2

HX5S2 -B3 D 0

?

B3 ¤ 0

�
b5;B3
q16

.q � 1/q

HX5S3
�
�
�
��

B2 ¤ c
4
A
A
A
AU

B2 D c
4 2 F�q

�
B2
q16

3.q � 1/=4

�
b4;b5;B2
q16

5

25.q � 1/=4

Figure UE8.q/. Summary on the branching rules of �.

Let H5 be the normal closure of H5 in HX5S1. Clearly X5 � StabU .�/. The
important properties of the �’s are the following.

Lemma 4.2. The following statements are true.

(a) R5 D ¹x 2 H5 W j�U .x/j D �U .1/º and S1 D StabT .�jH6H5/. Moreover, we
have �U jR5 D �

U .1/�B5 .

(b) If B5 ¤ 0, then StabT .�/ D ¹1º. Hence, if � is an extension of � toHX5, then
IU .�/ D HX5. Furthermore, if �; �0 are two extensions of �jH6H5H4 toHX5,
then �U D �0U iff Bi .�/ D Bi .�0/ for i D 2; 3 and �jX5 D �

0jX5 .

(c) If B5 D 0, then there exists x 2 T such that x�jXi D 1Xi for all Xi � H5.
Furthermore, we have the inclusion H5 � ker.x�/HX5S1 and the induction
map from Irr.HX5S1; x�/ to Irr.U; �/ is bijective.

Proof. See Section 5.5.1.

Remark. When .q; 5/ D 1, both R5 and StabT .�/ are trivial. Hence, � extends to
HX5 and each extension induces irreducibly to U , yielding a family of characters
of degree ŒU W HX5� D q16.
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On the character degrees of Sylow p-subgroups of E.pf / 23

Lemma 4.2 (a) can be deduced from the following figure.

˛43

˛42

˛41 ˛38 ˛37

˛40

˛39

˛35 -

?

˛1�

?

˛2

6

� ˛33

6

-

˛34

˛3

˛7 ˛31

˛30

˛6 ˛32

˛4

˛36

˛8

Figure UE8.q/. Relations of between root heights 5 in H and 1 in T .

We have q19 linear characters � of H such that �jXi D � for all Xi � Z.U /.
In these, there are q18 linears with B5 D 0 and q18.q � 1/ linears with B5 ¤ 0.

Case B5 ¤ 0: Lemma 4.2 (a) implies that B5 D B5.�/ is invariant under the
action of the group T . Therefore, by Lemma 4.2 (b), these q18.q � 1/ linears with
B5 ¤ 0 extend to HX5 and each extension induces irreducibly to U . Thus, we
obtain q19.q�1/

q16
D q3.q � 1/ irreducible characters of U of degree q16 which are

parameterized by .b5; B2; B3; B5/ where b5; B2; B3 2 Fq and B5 2 F�q . We de-
note them by �b5;B2;B3;B5

q16
.

Case B5 D 0: Since ŒU W HX5S1� D q6, Lemma 4.2 (c) implies that the q18

linear characters of H lying over � with B5 D 0 are partitioned into q12 fami-
lies each of size q6. Each family contains a unique member � 2 Irr.H/ such that
�jXi D � for all Xi � H6, �jXi D 1Xi for all Xi � H5, and �jXi D �bi for all
Xi � H4H3H2 where bi 2 Fq . Let � 2 Irr.H/ be one of these q12 representa-
tives. Now we describe how � induces up to HX5S1. Let H5H4 be the normal
closure of H5H4 in HX5S2.

Lemma 4.3. The following statements are true.

(a) R4 D ¹x 2 H4 W j�HX5S1.x/j D �HX5S1.1/º and S2 D StabS1.�jH6H5H4/.
Moreover, �HX5S1 jR4 D �

HX5S1.1/�B4 .

(b) IfB4 ¤ 0, then StabS1.�/ D ¹1º. Hence, if � is an extension of � toHX5, then
IHX5S1.�/ D HX5. Furthermore, if �; �0 are two extensions of �jH6H5H4H3
to HX5, then �HX5S1 D �0HX5S1 iff B2.�/ D B2.�0/ and �jX5 D �

0jX5 .
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24 T. Le and K. Magaard

(c) IfB4 D 0, then there exists x 2 S1 such that x�jXi D 1Xi for allXi � H5H4.
Furthermore, we have the inclusion H5H4 � ker.x�/HX5S2 and the induc-
tion map from Irr.HX5S2; x�/ to Irr.HX5S1; �/ is bijective.

Proof. See Section 5.5.2.

The main idea of Lemma 4.3 (a) can be visualized in the following figure.

˛43 ˛29 ˛15 ˛42

˛11

˛27

˛40

˛10

˛26

˛37 ˛41

˛38

˛39

˛9

˛28

˛24 ˛14 ˛25

Figure UE8.q/. Relations of between root heights 4 in H and 2 in T .

Recall that we have q12 linear characters � of H such that �jXi D � for all
Xi � Z.U / and �jXi D 1Xi for all Xi � H5. For q11 of these we have B4 D 0
whereas B4 ¤ 0 for the remaining q11.q � 1/.

Case B4 ¤ 0: Lemma 4.3 (a) implies that B4 D B4.�/ is invariant under the
action of S1. Therefore, by Lemma 4.3 (b), these q11.q � 1/ linear characters
with B4 ¤ 0 extend to HX5 and each extension induces irreducibly to HX5S1.
Thus, we obtain q12.q�1/

jS1j
D q2.q � 1/ irreducible characters of HX4S1 of de-

gree jS1j D q10 which are parameterized by .b5; B2; B4/ where b5; B2 2 Fq and
B4 2 F�q . Now Lemma 4.2 (c) implies that we obtain q2.q�1/ characters of U of
degree q16. We denote these by �b5;B2;B4

q16
.

Case B4 D 0: By Lemma 4.3 (c) the induction map from HX5S2 to HX5S1 is
bijective. Thus our q11 linear characters ofH with B4 D 0 can be partitioned into
q6 families each of which has a unique representative � such that �jXi D � for
all Xi � H6, �jXi D 1Xi for all Xi � H5H4, and �jXi D �bi for all Xi � H3H2
where bi 2 Fq . Let � 2 Irr.H/ be one of above q6 linears of H . Thus it suffices
to describe how � induces up to HX5S2. Let H5H4H3 be the normal closure of
H5H4H3 in HX5S3.

Lemma 4.4. The following statements are true.

(a) R3 D ¹x 2 H3 W j�HX5S2.x/j D �HX5S2.1/º, S3 D StabS2.�jH6H5H4H3/.
Moreover, �HX5S2 jR3 D �

HX5S2.1/�B3 .
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On the character degrees of Sylow p-subgroups of E.pf / 25

(b) If B3 ¤ 0, then StabS2.�/ D ¹1º. Hence, if � is an extension of � to HX5,
then IHX5S2.�/ D HX5. Furthermore, if � and �0 are two extensions of � to
HX5, then �HX5S2 D �0HX5S2 iff �jX5 D �

0jX5 .

(c) If B3 D 0, then there exists x 2 S2 such that

x�jXi D 1Xi for all Xi � H5H4H3.

Furthermore, we have the inclusion H5H4H3 � ker.x�/HX5S3 and the in-
duction map from Irr.HX5S3; x�/ to Irr.HX5S2; �/ is bijective.

Proof. See Section 5.5.3.

The main idea of Lemma 4.4 (a) can be described as follows.

˛43 ˛42 ˛37 ˛39 ˛41 ˛40

˛19 ˛22 ˛18 ˛16 ˛21 ˛17 ˛20

Figure UE8.q/. Relations of between root heights 3 in H and 3 in T .

Recall that we have q6 linear characters � of H such that �jXi D � for all
Xi �Z.U / and �jXi D 1Xi for allXi �H5H4. Of these, there are q5 withB3 D 0
and q5.q � 1/ with B3 ¤ 0.

Case B3 ¤ 0: Lemma 4.4 (a) implies that B3 D B3.�/ is invariant under the
action of S2. Therefore, by Lemma 4.4 (b), these q5.q � 1/ linears with B3 ¤ 0
extend to HX5 and each extension induces irreducibly to HX5S2. Thus, we ob-
tain q6.q�1/

jS2j
D q.q � 1/ irreducible characters of HX4S2 of degree jS2j D q5

which are parameterized by .b5; B3/ where b5 2 Fq and B3 2 F�q . Thus using
Lemma 4.3 (c) and Lemma 4.2 (c), we obtain q.q � 1/ characters of U of de-
gree q16. We denote these by �b5;B3

q16
.

CaseB3 D 0: Lemma 4.4 (c) implies that q5 linear characters ofH withB3 D 0
can be partitioned in q2 families of characters each of which is represented by a
� of H such that �jXi D � for all Xi � H6, �jXi D 1Xi for all Xi � H5H4H3,
and �jXi D �bi for all Xi � H2 where bi 2 Fq . Let � 2 Irr.H/ be one of above
q2 linears of H . It suffices to consider how � induces up to HX5S3.

Lemma 4.5. The following statements are true.

(a) R2 D ¹x 2H2 W j�HX5S3.x/j D �HX5S3.1/º and S4 D StabS3.�/. Moreover,
�HX5S3 jR2 D �

HX5S3.1/�B2 .
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26 T. Le and K. Magaard

(b) If B2 62 ¹c4 W c 2 F�q º and let � be an extension of � to HX5, then we have
IHX5S3.�/ D HX5. Therefore, S4 acts transitively and faithfully on all exten-
sions of � to HX5.

(c) If B2 D c4 2 F�q , then � extends to HX5F4 and HF5S4. Let �1; �2 be two
extensions of � to HX5F4. Then IHX5S3.�1/ D HX5F4. Moreover,

�1
HX5S3 D �2

HX5S3 iff �1jF4 D �2jF4 and �1jF5 D �2jF5 .

Proof. See Section 5.5.4.

It is noted that StabS3.�/ D StabT .�/. The main idea of Lemma 4.5 (a) can be
visualized in the following figure.

˛37 ˛38

˛12 ˛23 ˛13

Figure UE8.q/. Relations of between root heights 2 in H and 4 in T .

Recall that we have q2 linear characters � of H such that �jXi D � for all
Xi � Z.U / and �jXi D 1Xi for all Xi � H5H4H3. Lemma 4.5 (a) implies that
B2 D B2.�/ is invariant under the action of S3. Since F�q is cyclic, we have

j¹c4 W c 2 F�q ºj D
q � 1

4
:

Therefore, there are q.q�1/
4

linears withB2 2 ¹c4 W c 2 F�q º, and there are 3q.q�1/
4

linears with B2 62 ¹c4 W c 2 F�q º.
CaseB2 62 ¹c4 W c 2 F�q º: These linears withB2 62 ¹c4 W c 2 F�q º extend toHX5

and each extension induces irreducibly to HX5S3 of degree jS3j D q2. By Lem-
ma 4.4 (c), Lemma 4.3 (c) and Lemma 4.2 (c), we obtain 3.q�1/

4
characters of U

of degree q16 which we denote by �B2
q16

.
The irreducibles of degree q16 lie in the families

�
b5;B2;B3;B5
q16

; �
b5;B2;B4
q16

; �
b5;B3
q16

; and �
B2
q16
:

Therefore, F8 contains exactly q3.q�1/Cq2.q�1/Cq.q�1/C 3.q�1/
5

characters
� of U of degree q16 such that �jXi D �.1/� for all Xi � Z.U /.

CaseB2 2 ¹c4 W c 2 F�q º: By Lemma 4.5 (c), if �1 is an extension of the charac-
ter � toHX5F4, then �1HX5S3 is irreducible of degree ŒHX5S3 W HX5F4� D

q2

5
.

These �1HX5S3 only depend on B2 and their restrictions to F4; F5. Hence, Lem-
ma 4.4 (c), Lemma 4.3 (c) and Lemma 4.2 (c) imply that �1U 2 Irr.U / is of de-
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gree q16

5
. We denote the characters so obtained by

�
b4;b5;B2
q16

5

where b4; b5 2 F5 and B2 2 ¹c4 W c 2 F�q º:

Therefore, F8 has exactly 25.q�1/
4

irreducibles of degree q16

5
such that

�jXi D �.1/� for all Xi � Z.U /.

The maximal split torus T0 of the Chevalley group E8.q/ acts transitively via
conjugation on

L43
iD37 Irr.Xi /�, and thus there are .q�1/8.q3Cq2CqC 3

4
/ char-

acters � 2 F8 of degree q16, and 25.q�1/8

4
characters � 2 F8 of degree q16

5
such

that �jXi D �.1/�ai , where ai 2 F�q , 37 � i � 43. This proves our next theorem.

Theorem 4.6. Let � 2 F8. The following statements are true.

(a) If �.1/ D q16, then there exists t 2 T0 such that t� is an element of

¹�
b5;B2;B3
q16

; �
b5;B2
q16

; �
b5
q16
; �
B2
q16
º:

(b) If �.1/ D q16=5, then there exists t 2 T0 such that t� D �b4;b5;B2
q16

5

.

5 All proofs

In all proofs, we use the following technique:

(a) For all the decomposition of the commutator formula into product, we apply
the formula Œa; bc� D Œa; c�Œa; b�c .

(b) ForH � G and L E G, for each � 2 Irr.L/, StabG.�/ WD ¹x 2 G W x� D �º,
and StabG.�/ � StabG.�jH / DW K, hence, StabG.�/ D StabK.�/.

(c) ForK � G andH E G, to extend a linear character � ofH toHK, we check
if ŒHK;HK� � ker.�/.

5.1 Proof of Proposition 1.3

Let a 2 F�q . Part (a) is clear since the degree of the polynomial tp � ap�1t is p
and the Fp-multiples of a are clearly zeros. As Fq is of characteristic p, the map
�a W Fq ! Fq defined by �a.t/ D tp � ap�1t is Fp-linear. By part (a) the kernel
of the map is 1-dimensional and thus (b) follows. Evidently (d) follows from (c).
Now we are going to prove (c).
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28 T. Le and K. Magaard

To prove (c) we note that the set Ta defined before Proposition 1.3 is the im-
age of the above Fp-homomorphism �a. The kernel of �a is aFp, and Ta is an
Fp-hyperplane of Fq . Since gcd.q � 1; p/ D 1, for b 2 F�q there exists s 2 F�q
such that b D sp. We have

b.tp � ap�1t / D sp.tp � ap�1t / D .st/p � .sa/p�1st 2 Tsa D im.�sa/:

Hence, F�q acts on ¹Ta W a 2 F�q º. The first claim follows as left multiplication
of F�q on itself is transitive on F�q , hence on Fp-one spaces, and thus by dual-
ity also on Fp-hyperplanes. The second claim follows as the stabilizer of each
Fp-hyperplane in this action of F�q is F�p .

5.2 Proof of Proposition 1.5

(a) Suppose � 2 Irr.N=Y; �/, we are going to show that �G 2 Irr.G/ by showing
that the inertia group IG.�/ D N .

Since Y � ker.�/ andZ � Z.N/, we have �jZY D �.1/�. AsX � NG.ZY /,
for each x 2 X , x� 2 Irr.ZY /. Hence, for any u ¤ v 2 X we have

u�jZY D �.1/
u� ¤ �.1/ v� D v�jZY ; i.e. u� ¤ v�.

Therefore, x 2 X such that x� D � iff x D 1. Since X is a transversal of N in G,
this shows that the inertia group IG.�/ D N .

The above argument also proves that for �1; �2 2 Irr.N=Y; �/ and u ¤ v 2 X
we have u�1 ¤

v�2. So by Mackey’s formula for the double coset NnG=N D
G=N represented by X , we have

.�1
G ; �2

G/ D .�1
G
jN ; �2/ D

X
x2X

.x�1; �2/ D .�1; �2/ D

´
1; if �1 D �2;
0; otherwise:

(b) It is enough to show that the induction map is surjective, i.e. for each char-
acter � 2 Irr.G; �/ there exists � 2 Irr.N=Y; �/ such that � D �G .

Suppose �jN D
P
�i2S

ai�i where ai 2 N� and S � Irr.H/. By Frobenius
reciprocity,

0 ¤ .�; �G/ D .�jZY ; �/;

there exists at least a constituent �0 of �jN such that .�0jZY ; �/ ¤ 0, i.e. we have
�0 2 Irr.N; �/.

Since �jY D �.1/1Y and .�0jY ; �jY / � .�0jZY ; �/ > 0, we have that �0 is a
constituent of 1Y N . Since Y E N , all constituents of 1Y N are Irr.N=Y /. There-
fore, �0 2 Irr.N=Y; �/. By (a), �0G 2 Irr.G/, hence it forces � D �0G .
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5.3 Proofs of Section “Sylow 2-subgroups of D4.2f /”

5.3.1 Proof of Lemma 2.2

Set � D �a8;a9;a10
b3;b5;b6;b7

for the whole proof.
(a) First we show that StabT .�/ D S124. Since y�.x/ D �.x/ iff �.x�1xy/ D

�.Œx; y�/ D 1 and X8X9X10 � Z.U /, it suffices to check for ŒX5X6X7; T �. For
all ti ; sj 2 Fq , we have

Œx5.t5/x6.t6/x7.t7/; x1.s1/x2.s2/x4.s4/�

D x8.t6s1 C t5s2/x9.t7s1 C t5s4/x10.t7s2 C t6s4/:

Therefore, x1.s1/x2.s2/x4.s4/ 2 StabT .�/ iff for all t5; t6; t7 2 Fq ,

1 D �.a8.t6s1 C t5s2/C a9.t7s1 C t5s4/C a10.t7s2 C t6s4//

D �.t5.a8s2 C a9s4/C t6.a8s1 C a10s4/C t7.a9s1 C a10s2//

iff a8s2 C a9s4 D a8s1 C a10s4 D a9s1 C a10s2 D 0, i.e. s1
a10
D

s2
a9
D

s4
a8

. So
StabT .�/ D S124.

We first find all elements of X5X6X7 which act scalarly on a module afford-
ing �U . AsX3T is a transversal ofH in U and ŒX3; X5X6X7� D ¹1º, it is enough
to find the ones of X5X6X7 which commute with T , i.e. find x5x6x7 2 X5X6X7
such that �.Œx5x6x7; x1x2x4�/ D 1 for all x1x2x4 2 T . This shows that for all
si 2 Fq , we need

1 D �.a8.t6s1 C t5s2/C a9.t7s1 C t5s4/C a10.t7s2 C t6s4//

D �.s1.a8t6 C a9t7/C s2.a8t5 C a10t7/C s4.a9t5 C a10t6//

iff a8t6C a9t7 D a8t5C a10t7 D a9t5C a10t6 D 0, i.e. t5
a10
D

t6
a9
D

t7
a8

. Hence,Q7
iD5 xi .ti / D x567.

t7
a8
/ 2 S567. So

S567 D ¹x 2 X5X6X7 W j�
U .x/j D �U .1/º:

Now, to prove that �U jS567 D q4�At0 , it suffices to check that �.x567.t// D
�At0.t/. For each x567.t/ D x5.a10t /x6.a9t /x7.a8t / 2 S567, we have

�.x567.t// D �.t.b5a10 C b6a9 C b7a8// D �.tAt0/ D �At0.t/:

(b) We study Irr.U; �/ in two ways. Let

K1 WD HX3F124 and K2 WD HS124F3:
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30 T. Le and K. Magaard

Since H D ŒU; U �, it is clear that H1; K1 E U .

H

. &

HX3 HS124

# #

K1 D HX3F124 K2 D HS124F3

& .

U

Since HX3 is abelian, � extends to HX3 as �1. By (a), S124 D StabT .�/, for
all x 2 H; x124 2 S124, �.Œx; x124�/ D 1, hence � extends to HS124 as �2. To
show that � extends toK1 andK2, we prove that ŒK1; K1� � ker.�1/; ŒK2; K2� �
ker.�2/. We have

Œx3.t3/; x1.s1/x2.s2/x4.s4/�

D x5.s1t3/x6.s2t3/x7.s4t3/x8.s1s2t3/x9.s1s4t3/x10.s2s4t3/;

and

�.x5.s1t3/x6.s2t3/x7.s4t3/x8.s1s2t3/x9.s1s4t3/x10.s2s4t3//

D �.t3.b5s1 C b6s2 C b7s4 C a8s1s2 C a9s1s4 C a10s2s4// D .�/:

Plug s1 D a10t; s2 D a9t; s4 D a8t into .�/, we have

.�/ D �.t3.t.b5a10 C b6a9 C b7a8/C t
2a8a9a10// D �.t3At.t0 C t //:

Now we distinguish two cases, t0 D 0 and t0 ¤ 0. First, if t0 D 0, �.t3At2/ D 1
for all t3 iff t D 0, hence, StabT .�1/ D ¹1º D F124, i.e.

IU .�1/ D HX3:

And �.t3At2/ D 0 for all t iff t3 D 0, hence, StabX3.�2/ D ¹1º D F3, i.e.

IU .�2/ D HS124:

If t0 ¤ 0, then �.t3At.t0 C t // D 1 for all t3 iff t 2 ¹0; t0º. Therefore, we have
ŒK1; K1� � ker.�/. For each � 2 Irr.HX3; �/, StabT .�/ D ¹1; x124.t0/º D F124.

We have �.t3At.t0 C t // D 1 for all t iff t3 2 ¹0;
.t0/�
A
º, by Proposition 1.3.

Hence, ŒK2; K2� � ker.�/. For each  2 Irr.HS124; �/,

StabX3./ D
²
1; x3

�
.t0/�

A

�³
D F3:

So � extends toK1 andK2. Now for each �i 2 Irr.Ki ; �/, IU .�i / D Ki , i D 1; 2.
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(c) Let �1; �2 be extensions of � toK1. Let � be an extension of � toK2. By (b),
we have �1U ; �2U ; �U 2 Irr.U; �/.

We choose 1 2 S � T as a representative set of the double coset K1nU=K2.
By Mackey’s formula, since K1 \K2 D HF3F124 and K1 E U , we have

.�1
U ; �U / D

X
s2S

.s�1jsK1\K2 ; �jsK1\K2/

D

X
s2S

.s�1jHF3F124 ; �jHF3F124/:

For each s 2 S , if s�1jHF3F124 D �jHF3F124 , then s�1jH D �jH . Since both
are extensions of � from H , we have s� D �, i.e. s 2 StabT .�/ D S124. There is
a unique s D 1 2 S\S124 since S is a representative set ofK1nU=K2. Therefore,
.�1

U ; �U / D .�1jHF3F124 ; �2jHF3F124/ D 1 iff �1jFi D �jFi , i 2 ¹124; 3º.
So �1U D �U D �2U 2 Irr.U; �/ iff �1jFi D �2jFi ; i 2 ¹124; 3º.

We remark that since K1; K2 E U , the double coset K1nU=K2 equals

U=K1K2 D U=HX3S124:

Hence we see that S D X1X2 is a transversal of U=K1K2.

5.3.2 Proof of Theorem 2.3

Fix a8; a9; a10 2 F�q and set � D �a8;a9;a10
b5;b6;b7

for some b5; b6; b7 2 Fq throughout
the whole proof. By Lemma 2.2 and using the same notation, we mostly find the
generic character values: in (a)

�
a8;a9;a10
8;9;10;q3

D �1
U where t0 D 0;

and in (b)

�
b124;b3;t0;a8;a9;a10

8;9;10;q
3

2

D �1
U where b124; b3 2 F2, t0 2 F�q .

(a) Suppose t0 D 0 and F124 D ¹1º. Call � an extension of � toHX3. By Lem-
ma 2.2 (b), IU .�/ D HX3. Therefore, we have �U 2 Irr.U / and �U .1/ D q3. By
Lemma 2.2 (a), S567X8X9X10 � Z.�U /, hence

j�U .x/j D q3 for all x 2 S567X8X9X10.

We have jS567X8X9X10jq3q3 D q10 D jU j. As the scalar product .�U ; �U / D 1,
we see that �U .x/ D 0 if x … S567X8X9X10. So we have derived the stated for-
mula.

Brought to you by | Wayne State University
Authenticated | 141.217.20.120

Download Date | 10/27/12 7:05 AM



32 T. Le and K. Magaard

(b) Suppose t0 ¤ 0, and jF3j D jF124j D 2. By Lemma 2.2 (b), let �1; �2 be
extensions of � to K1 WD HX3F124 and K2 WD HS124F3 respectively such that
�1jFi D �2jFi D �bi , where bi 2 F2, i 2 ¹124; 3º. The proof of Lemma 2.2 (c)
implies that �1U D �2U .

We choose V � T as a transversal of K1 in U , and 1 2 S � X3 such that
SX1X2 is a transversal of K2 in U , so jS j D q=2. Since K1 E U , we have

�1
U

 
10Y
iD1

xi

!
D

X
x2V

x�1

 
10Y
iD1

xi

!
D 0 if x1x2x4 … K1.

Since T is abelian, it follows that Œx; y� D 1 for all x 2 V and y 2 F124. There-
fore, F124 � Z.�1U / and hence

�1
U

 
10Y
iD1

xi .ti /

!
D ıa8t1;a10t4ıa8t2;a9t4�

�
b124

t1

a10

�
�1
U

 
x3.t3/

10Y
iD5

xi .ti /

!
:

Since K2 E U , we have

�2
U

 
x3

10Y
iD5

xi

!
D

X
x2SX1X2

x�2

 
x3

10Y
iD5

xi

!
D 0 if x3 … F3.

Since X8X9X10 � Z.U /, we need to compute the two following cases:

�2
U

 
7Y
iD5

xi

!
and �2

U

 
x3

7Y
iD5

xi

!
with x3 2 F �3 .

Since ŒX3; X5X6X7� D ¹1º, we have

�2
U .x5x6x7/ D

X
x2SX1X2

x�2.x5x6x7/ D
q

2

X
x1x22X1X2

x�2.x5x6x7/:

Now .x5x6x7/
x1x2 D x5x6x7Œx5; x2�Œx6; x1�Œx7; x1�Œx7; x2�, so substituting with

x5.t5/x6.t6/x7.t7/ and x1.s1/x2.s2/, yields

�2
U

 
7Y
iD5

xi .ti /

!

D
q

2

X
s1;s2

�2.x5.t5/x6.t6/x7.t7/x8.t5s2 C t6s1/x9.t7s1/x10.t7s2//

D
q

2
�2.x5.t5/x6.t6/x7.t7//

X
s1;s2

�.a8.t5s2 C t6s1/C a9t7s1 C a10t7s2/

D
q

2
�2.x5.t5/x6.t6/x7.t7//

X
s1;s2

�.s1.a8t6 C a9t7/C s2.a8t5 C a10t7//:
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Since
P
t2Fq �.t/ D 0, we obtain non-zero values only if a8t6C a9t7 D 0 and

a8t5 C a10t7 D 0. Hence, t5
a10
D

t6
a9
D

t7
a8

, and
Q7
iD5 xi .ti / D x567.

t7
a8
/ 2 S567.

By Lemma 2.2 (a), we have

�2
U

 
7Y
iD5

xi .ti /

!
D ıa8t5;a10t7ıa8t6;a9t7

q3

2
�2

�
x567

�
t7

a8

��

D ıa8t5;a10t7ıa8t6;a9t7
q3

2
�

�
At0

t7

a8

�
:

Therefore, we have �2U .
Q10
iD1 xi .ti // D

q3

2
�.b124

t1
a10
CAt0

t7
a8
C
P10
iD8 ai ti /

if
Q10
iD1 xi .ti / 2 F124S567X8X9X10 D Z, as stated in the theorem.

Now we compute �2U .x3
Q7
iD5 xi / with x3 2 F �3 D ¹x3.t

�
0 /º, t

�
0 D

.t0/�
A

. As
IU .�2/ D K2 E U and SX1X2 is a representative set of U=K2,

.x�2/
U
D �2

U
2 Irr.U / for all x 2 SX1X2.

For each x2.s/ 2 X2, we have

x2.s/�2.x5.t// D �2.x5.t/x8.ts// D �.b5t C a8ts/ D �.t.b5 C a8s//:

So instead of choosing s D b5
a8

, we suppose that �2 has b5 D 0, i.e. �2.x5/ D 1
for all x5 2 X5. It is easy to check that t0, �2jF124 D �b124 and �2jF3 D �b3 are
invariant under conjugation.

We have

Œx3.t3/x5.t5/x6.t6/x7.t7/; x1.s1/x2.s2/�

D x3.t3/x5.t5 C t3s1/x6.t6 C t3s2/x7.t7/

� x8.t3s1s2 C t5s2 C t6s1/x9.t7s1/x10.t7s2/:

Therefore,

�2
U .x3.t3/x5.t5/x6.t6/x7.t7//

D

X
x2SX1X2

x�2.x3.t3/x5.t5/x6.t6/x7.t7//

D
q

2

X
x2X1X2

x�2.x3.t3/x5.t5/x6.t6/x7.t7//

D
q

2

X
s1;s2

�2.x3.t3/x5.t5 C t3s1/x6.t6 C t3s2/x7.t7/

� x8.t3s1s2 C t5s2 C t6s1/x9.t7s1/x10.t7s2//
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34 T. Le and K. Magaard

D
q

2
�2

 
x3.t3/

7Y
iD5

xi .ti /

!

�

X
s1;s2

�.b6t3s2 C a8.t3s1s2 C t5s2 C t6s1/C a9t7s1 C a10t7s2/

D
q

2
�2.x3.t3/x6.t6/x7.t7//

�

X
s1;s2

�.s1.a8t3s2 C a8t6 C a9t7/C s2.b6t3 C a10t7 C a8t5//:

SetC.t5; t6; t7/ D
P
s1;s2

�.s1.a8t3s2Ca8t6Ca9t7/Cs2.b6t3Ca10t7Ca8t5//.
We have

C.t5; t6; 0/ D
X
s1;s2

�.s1.t3s2 C t6/a8 C s2.b6t3 C a8t5//

D q
X
s2D

t6
t3

�

�
t6

t3
.b6t3 C a8t5/

�

D q�

�
b6t6 C

a8t5t6

t3

�
:

Therefore, we get

�2
U .x3.t3/x5.t5/x6.t6// D

q2

2
�2.x3.t3/x6.t6//�

�
b6t6 C

a8t5t6

t3

�
D
q2

2
�2.x3.t3//�

�
a8t5t6

t3

�
:

Since

x5.t5/x6.t6/x7.t7/ D x5

�
t5 C

a10t7

a8

�
x6

�
t6 C

a9t7

a8

�
x567

�
t7

a10

�
;

where

x567

�
t7

a8

�
D x5

�
a10

t7

a8

�
x6

�
a9
t7

a8

�
x7

�
a8
t7

a8

�
2 S124 � Z.�2

U /

and

�2

�
x567

�
t7

a8

��
D �At0

�
t7

a8

�
;
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we have

�2
U .x3.t3/x5.t5/x6.t6/x7.t7//

D �At0

�
t7

a8

�
�2
U

�
x3.t3/x5

�
t5 C

a10t7

a8

�
x6

�
t6 C

a9t7

a8

��
D �

�
At0

t7

a8

�
q2

2
�2.x3.t3//�

�
a8

t3

�
t5 C

a10t7

a8

��
t6 C

a9t7

a8

��
D
q2

2
�

�
b3t3 C At0

t7

a8
C
a28a9a10

.t0/�

�
t5 C

a10t7

a8

��
t6 C

a9t7

a8

��
D
q2

2
�

�
b3t

�
0 C At0

t7

a8
C

A2

.t0/�

�
t5

a10
C
t7

a8

��
t6

a9
C
t7

a8

��
:

5.4 Proof of Section “Sylow 3-subgroups of E6.3f /”

5.4.1 Proof of Lemma 3.2

Set � D �b12;b13;b14;b15;b16
b8;b9;b10

throughout the whole proof.

(a) Recall H3 D
Q16
iD12Xi E H is elementary abelian and H4H3 E U . First,

we show that R3 D ¹x 2 H3 W j�U .x/j D �U .1/º and �U .r3.t// D q8�B3.t/ for
all r3.t/ 2 R3.

Since � is linear and �.x/ 2 C for all x 2 H , the induction formula gives that
j�U .x/j D �U .1/ iff y�.x/ D �.x/ for all y 2 TX4, where TX4 is a transversal
ofH in U . Since y�.x/ D �.x/ iff �.Œx; y�/ D 1, we are going to find all x 2 H3
such that �.Œx; y�/ D 1 for all y 2 TX4. It is clear that

ŒXi ; X4� D ¹1º D ŒXi ; X7X11� for all 12 � i � 16:

Here, we write
Q6
jD1 xi .uj / 2 T with u4 D 0. It suffices to check that statement

for all y D
Q6
jD1 xj .uj / 2 T . For ti ; uj 2 Fq , we have"

16Y
iD12

xi .ti /;

6Y
jD1

xj .uj /

#
D Œx12.t12/; x2.u2/�Œx15.t15/; x2.u2/�Œx16.t16/; x2.u2/�Œx13.t13/; x1.u1/�

� Œx15.t15/; x1.u1/�Œx14.t14/; x3.u3/�Œx16.t16/; x3.u3/�Œx12.t12/; x5.u5/�

� Œx13.t13/; x5.u5/�Œx14.t14/; x6.u6/�Œx15.t15/; x6.u6/�

D x17.�t12u2/x19.�t15u2/x20.�t16u2/x17.�t13u1/x18.�t15u1/x19.�t14u3/

� x21.�t16u3/x18.t12u5/x19.t13u5/x20.t14u6/x21.t15u6/:
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36 T. Le and K. Magaard

Since �.xi .t// D �.t/, 17 � i � 21, for all uj 2 Fq , we force

.�t12 � t15 � t16/u2 C .�t13 � t15/u1 C .�t14 � t16/u3

C .t12 C t13/u5 C .t14 C t15/u6 D 0:

So we have a system with variables ti :8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�t12 � t15 � t16 D 0;

�t13 � t15 D 0;

�t14 � t16 D 0;

t12 C t13 D 0;

t14 C t15 D 0:

Since gcd.q; 3/ D 3, we have

t12 D t16 D t15; t13 D t14 D �t15 for all t15 D t 2 Fq .

So x 2 H3 satisfies j�U .x/j D �U .1/ iff

x D x12.t/x13.�t /x14.�t /x15.t/x16.t/ D r3.t/ 2 R3 for t 2 Fq;

i.e. R3 D ¹x 2 H3 W j�U .x/j D �U .1/º.
The computation that shows that �U jR3 D �

U .1/�B3 also shows that it is suf-
ficient to check that �.r3.t/ D �B3.t/. For each r3.t/ 2 R3, we have

�.r3.t// D �.t.b12 � b13 � b14 C b15 C b16// D �B3.t/:

Now we show that S1 D StabT .�jH4H3/. Since ŒH4; T � D ŒH3; X7X11� D ¹1º,
it suffices to find y 2 X2X1X3X5X6 such that �.Œx; y�/ D 1 for all x � H3. Us-
ing the computation of Œ

Q16
iD12 xi .ti /;

Q6
jD1 xj .uj /� above, we see that

.�u2 C u5/t12 C .�u1 C u5/t13 C .�u3 C u6/t14

C .u1 C u2 � u6/t15 C .�u2 � u3/t16 D 0

for all tj 2 Fq . So we have a system with variables uj :8̂̂̂̂
ˆ̂̂<̂
ˆ̂̂̂̂̂:

�u2 C u5 D 0;

�u1 C u5 D 0;

�u3 C u6 D 0;

�u1 � u2 C u6 D 0;

�u2 � u3 D 0:

As gcd.q; 3/ D 3, we have u1 D u5 D u2, u3 D u6 D �u2 for all u2 D t 2 Fq .
So
Q6
jD1 xj .uj / D x2.t/x1.t/x3.�t /x5.t/x6.�t / D s1.t/ 2 S1.
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(b) Since H D Z.U /H3X8X9X10, to find StabT .�/ � StabT .�jH4H3/ D S1,
by (a), it is enough to find s1 2 S1 such that s1�.xi / D �.xi / for i D 8; 9; 10.
Again, for each xi .ti / 2 Xi , i D 8; 9; 10, and s1 D s1.t; r; s/ 2 S1, we compute
Œxi ; s1�:

Œx8.t8/; s1� D x20.t8s/x17.�t8r/x14.t8t /x20.�t8t
2/x13.t8t /x19.t8t

2/;

Œx9.t9/; s1� D x21.t9s/x15.t9t /x21.�t9t
2/x12.�t9t /x18.�t9t

2/x13.�t9t /

� x19.�t9t
2/x17.t9t

2/;

Œx10.t10/; s1� D x18.�t10r/x16.�t10t /x15.t10t /x21.�t10t
2/x14.�t10t /

� x20.t10t
2/x19.�t10t

2/:

Since �.xi .t//D �.bi t /, 12� i � 16, and �.xi .t//D �.t/, 17� i � 21, from
�.Œx9.t9/; s1�/ D �.Œx10.t10/; s1�/ D 1 for all t9; t10 2 Fq , we have

s D 2t2 C b12t C b13t � b15t and r D 2t2 � b14t C b15t � b16t:

From �.Œx8.t8/; s1�/ D 1 for all t8 2 Fq , we have s� rCb14tCb13t D 0. There-
fore, s1 2 StabT .�/ iff r; s are as above and

s � r C b14t C b13t D 2t
2
C b12t C b13t � b15t � .2t

2
� b14t C b15t � b16t /

C b14t C b13t

D t .b12 � b13 � b14 C b15 C b16/

D tB3 D 0:

Therefore, if B3 ¤ 0, then StabT .�/ D ¹1º.

(c) By (a), T=S1 acts faithfully on the set of all extensions of �jH4 to H4H3
with the same B3. Since jT=S1j D q4 D jH3=R3j, it follows that this action is
transitive. Therefore, with B3 D 0, there exists x 2 T such that x� D �0;0;0;0;0

b0
8;b

0
9;b

0
10for some b08; b

0
9; b
0
10 2 Fq .

Now set � D �
0;0;0;0;0
b8;b9;b10

, and H3 is the normal closure of H3 in HX4S1. To
show that

H3 � ker.�HX4S1/ E HX4S1;

it suffices to show that H3 � ker.�HX4S1/. By (a), StabTX4.�jH4H3/ D S1X4
which is a transversal of H in HX4S1, the claim holds by the induction formula
and H3 � ker.�/.

By Lemma 1.5 above for G D U with N DM D HX4S1, X D X1X3X5X6,
Y D H3 and Z D H4, the induction map from Irr.HX4S1=H3; �/ to Irr.U; �/ is
bijective. Since H3 � �HX4S1 , Irr.HX4S1=H3; �/ D Irr.HX4S1; �/.
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38 T. Le and K. Magaard

5.4.2 Proof of Lemma 3.3

Recall that R2 D ¹r2.t/ WD x8.�t /x9.t/x10.t/ W t 2 Fqº � H2 D X8X9X10 and

� D �
0;0;0;0;0
b8;b9;b10

:

By Lemma 3.2 (c), it suffices to work with the quotient group HX4S1=H3.
(a) The fact that S2 D StabS1.�/ is a direct consequence of Lemma 3.2 (b) with

B3 D 0. Recall that X4S1 is a transversal of H in HX4S1 and ŒH2; X4� D ¹1º.
So to show that R2 D ¹x 2 H2 W j�HX4S1.x/j D �HX4S1.1/º we find all x 2 H2
such that �.Œx; y�/ D 1 for all y 2 S1. Since H E HX4S1 is abelian, using the
computation in Lemma 3.2 (b), for s1.t; r; s/ 2 S1 and x8.t8/x9.t9/x10.t10/ 2 H2
we have

Œx8.t8/x9.t9/x10.t10/; s1.t; r; s/�

D Œx8.t8/; s1.t; r; s/�Œx9.t9/; s1.t; r; s/�Œx10.t10/; s1.t; r; s/�

D x20.t8s/x17.�t8r/x20.�t8t
2/x19.t8t

2/x21.t9s/x21.�t9t
2/

� x18.�t9t
2/x19.�t9t

2/x17.t9t
2/x18.�t10r/x21.�t10t

2/

� x20.t10t
2/x19.�t10t

2/:

Therefore, with �jXi D � for all 17 � i � 21, for all t; r; s 2 Fq we need

.t8 C t9/s � .t8 C t10/r C .t9 � t10/t
2
D 0

So t9 D t10 D u and t8 D �u for all u 2 Fq , i.e. x D r2.u/ 2 R2.
To show that �HX4S1 jR2 D �

HX4S1.1/�B2 , it is enough to check that

�.r2.t// D �B2.t/:

For each r2.t/ 2 R2 we have

�.r2.t// D �.t.�b8 C b9 C b10// D �B2.t/:

(b) Suppose that B2 62 ¹c2 W c 2 F�q º. Let � be an extension of � to HX4. By
(a), we have S2 D StabS1.�/, hence StabS1.�jH / D S2. Since S1 is a tranversal
of HX4 in HX4S1, to find StabS1.�/, it is enough to find all s2.t/ 2 S2 such that
�.Œx4; s2.t/�/ D 1 for all x4 2 X4. For each s2.t/ 2 S2, we have

Œx4.t4/; s2.t/� D x10.t4t /x9.t4t /x21.2t4t
3/x21.�t4t

3/x8.�t4t /

� x20.�2t4t
3/x17.2t4t

3/x20.t4t
3/x19.�t4t

3/:

Since �.xi .t// D �.bi t /, 8 � i � 10, and �.xi .t// D �.t/; 17 � i � 21, for all
t4 2 Fq , �.Œx4.t4/; s3.t/�/ D 1 forces

t4.t
3
� B2t / D t4.t

3
� B2t / 2 ker.�/:
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Since t4.t3�B2t / 2 ker.�/ for all t4 2 Fq , we have 0 D t3�B2t D t .t2�B2/.
SinceB2 … ¹c2 W c 2 F�q º, the equation t .t2�B2/ D 0 has only the trivial solution
t D 0 in Fq . Therefore, s2.t/ D 1, i.e. StabS1.�/ D ¹1º. Hence,

IHX4S1.�/ D HX4:

(c) Suppose B2 D c2 2 F�q and let � be an extension of � to HX4. Using the
computation in (b), we continue with the analysis for the solutions of t to obtain
t4t .t

2 � B2/ 2 ker.�/ for all t4 2 Fq . So it forces t .t2 � B2/ D 0. This equation
has three solutions ¹0;˙cº. Hence, StabS1.�/ D ¹1; s2.˙c/º D F2. So

IHX4S1.�/ D HX4F2:

By the above argument,

ŒHX4F2;HX4F2� � ker.�/;

hence � extends to IHX4S1.�/.
To show that � extends to HF4S2, we check ŒHF4S2;HF4S2� � ker.�/. Us-

ing the same argument, it is enough to check that Œs2.t/; x4.t4/� 2 ker.�/. By the
computation in (b), we need t4.t3 � B2t / D t4.t3 � c2t / 2 ker.�/ for all t 2 Fq .
By Proposition 1.3, since t4 2 ¹0;˙c�º, the claim holds.

Let �1; �2 be two extensions of � to HX4F2, and  an extension of � to
HF4S2. Since the degree of all the irreducible constituents of �HX4S1 is q

3

3
, we

have �1HX4S1 , �2HX4S1 , HX4S1 2 Irr.HX4S1; �/.
Choose 1 2 S � S1 as a representative set of the double coset

HF4S2nHX4S1=HX4F2:

As HF4S2 \HX4F2 D HF4F2 and HX4F2 E HX4S1, by Mackey’s formula,

.�1
HX4S1 ; HX4S1/ D

X
s2S

.s�1js.HX4F2/\HF4S2 ;  js.HX4F2/\HF4S2/

D

X
s2S

.s�1jHF4F2 ;  jHF4F2/:

For each s 2 S , if s�1jHF4F2 D  jHF4F2 , then s�1jH D  jH . Since both are
extensions of the character �, we have s� D �, i.e. s 2 StabS1.�/ D S2. There is
a unique 1 2 S \ S2 since S is a representative set of HF4S2nHX4S1=HX4F2.
So

.�1
HX4S1 ; HX4S1/ D .�1jHF4F2 ;  jHF4F2/ D 1 iff �1jFi D  jFi ; i 2 ¹2; 4º:

Therefore, �1HX4S1 D HX4S1 D �2HX4S1 iff �1jFi D �2jFi , i 2 ¹2; 4º.
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5.5 Proofs of Section “Sylow 5-subgroups of E8.5f /”

5.5.1 Proof of Lemma 4.2

(a) First we find all x 2 H5 such that j�U .x/j D �U .1/. Since TX5 is a transversal
ofH in U , we get ŒH5; X5� D ¹1º D ŒH5; Tk� for all k � 2, and y�.x/ D �.x/ iff
�.Œx; y�/ D 1, it suffices to find all x 2 H5 such that �.Œy; x�/ D 1 where y 2 T1.
For each y D

Q8
iD1 xi .ui / 2 T1 with u5 D 0, and x D

Q36
jD30 xj .vj / 2 H5, to

abbreviate our notation we write xi for xi .�/ and plug in the parameters in .�/ as
need be. We have"

36Y
jD30

xj .vj /;

8Y
iD1

xi .ui /

#
D Œx30; x4�Œx30; x6�Œx31; x2�Œx31; x7�Œx32; x1�Œx32; x6�Œx33; x1�

� Œx33; x4�Œx33; x7�Œx34; x3�Œx34; x8�Œx35; x2�Œx35; x1�Œx35; x8�

� Œx36; x2�Œx36; x3�

D x37.�v30u4/x38.v30u6/x38.�v31u2/x39.v31u7/x37.�v32u1/

� x40.v32u6/x38.�v33u1/x40.�v33u4/x41.v33u7/

� x41.�v34u3/x42.v34u8/x41.�v35u2/x39.�v35u1/

� x43.v35u8/x42.�v36u2/x43.�v36u3/:

Since �jXi D � for all i 2 Œ37::43�, for all sj we need

.�v31 � v35 � v36/u2 C .�v32 � v33 � v35/u1 C .�v34 � v36/u3

C .�v30 � v33/u4 C .v30 C v32/u6 C .v31 C v33/u7

C .v34 C v35/u8 D 0:

Therefore, we obtain a system with variables vi as follows:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

�v31 � v35 � v36 D 0;

�v32 � v33 � v35 D 0;

�v34 � v36 D 0;

�v30 � v33 D 0;

v30 C v32 D 0;

v31 C v33 D 0;

v34 C v35 D 0:
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Since gcd.q; 5/ D 5, we have

.v30; v31; v32; v33; v34; v35; v36/ D .v; v;�v;�v;�2v; 2v; 2v/

for all v 2 Fq . Hence, x D r5.v/ 2 R5, i.e. R5 D ¹x 2 H5 W j�U .x/j D �U .1/º.
To show that �U jR5 D �

U .1/�B5 , it suffices to check that �.r5.v// D �B5.v/.
For each r5.v/ 2 R5, we have

�.r5.v// D �.v.b30 C b31 � b32 � b33 � 2b34 C 2b35 C 2b36// D �B5.v/:

To show that S1 D StabT .�jH6H5/, we find all y 2 T such that �.Œx; y�/ D 1
for all x 2 H6H5. Since H6 D Z.U / and ŒH5; Tk� D ¹1º for all k � 2, it is suf-
ficient to find y 2 T1 such that �.Œx; y�/ D 1 for all x 2 H5. Using the above
computation of Œ

Q36
jD30 xj .vj /;

Q8
iD1 xi .ui /�, we find ui such that for all vj

.�u4 C u6/v30 C .�u2 C u7/v31 C .�u1 C u6/v32 C .�u1 � u4 C u7/v33

C .�u3 C u8/v34 C .�u2 � u1 C u8/v35 C .�u2 � u3/v36 D 0:

Therefore, we obtain a system with variables ui as follows:8̂̂̂̂
ˆ̂̂̂̂̂̂
ˆ̂<̂
ˆ̂̂̂̂̂̂
ˆ̂̂̂̂:

�u4 C u6 D 0;

�u2 C u7 D 0;

�u1 C u6 D 0;

�u1 � u4 C u7 D 0;

�u3 C u8 D 0;

�u2 � u1 C u8 D 0;

�u2 � u3 D 0:

Since gcd.q; 5/ D 5, we have

.u2; u1; u3; u4; u6; u7; u8/ D .2u; u;�2u; u; u; 2u;�2u/

for all u 2 Fq . So y D l1.u/ 2 L1, i.e. S1 D StabT .�jH6H5/.

(b) Suppose B5 ¤ 0. To show that StabT .�/ D ¹1º, we are going to show that

StabS1.�jH6H5H4/ D T3T4;

StabT3T4.�jH6H5H4H3/ D T4;

StabT4.�/ D ¹1º:

First, we show that StabS1.�jH6H5H4/ D T3T4. By considering root heights,
it is clear that ŒH6H5H4; T3T4� D ¹1º, hence, T3T4 � StabS1.�jH6H5H4/. It suf-
fices to show that StabL1T2.�jH6H5H4/ D ¹1º, i.e. there is no nontrivial y 2 L1T2
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such that �.Œh; y�/ D 1 for all h 2 H5H4. For each

y D

15Y
iD1

xi .ui / 2 L1T2

(with u5 D u12 D u13 D 0 and
Q8
iD1 xi .ui / D l1.u//, and

h D

36Y
jD24

xj .vj / 2 H5H4;

we have"
36Y

jD24

xj .vj /;

15Y
iD1

xi .ui /

#
D Œx24; x10�Œx24; x14�Œx25; x14�Œx26; x15�Œx26; x9�Œx26; x11�Œx27; x15�

� Œx27; x10�Œx29; x11�Œx24; x2�ŒŒx24; x2�; x6�ŒŒx24; x2�; x4�

� Œx24; x6�ŒŒx24; x6�; x7�Œx25; x1�ŒŒx25; x1�; x4�ŒŒx25; x1�; x6�

� Œx25; x4�ŒŒx25; x4�; x6�Œx25; x6�ŒŒx25; x6�; x7�Œx26; x3�

� ŒŒx26; x3�; x4�ŒŒx26; x3�; x7�Œx26; x7�ŒŒx26; x7�; x8�Œx27; x2�

� ŒŒx27; x2�; x1�ŒŒx27; x2�; x4�ŒŒx27; x2�; x7�Œx27; x1�

� ŒŒx27; x1�; x7�Œx27; x7�ŒŒx27; x7�; x8�Œx28; x2�ŒŒx28; x2�; x3�

� ŒŒx28; x2�; x8�Œx28; x3�ŒŒx28; x3�; x8�Œx28; x8�Œx29; x4�

D x37.v24u10/x39.v24u14/x41.v25u14/x42.v26u15/x38.�v26u9/

� x40.v26u11/x43.v27u15/x40.v27u10/x39.�v28u9/

� x42.�v29u10/x43.�v29u11/x30.�2v24u/x38.�2v24u
2/

� x37.2v24u
2/x31.v24u/x39.v242u

2/x30.�v25u/x37.v25u
2/

� x38.�v25u
2/x32.�v25u/x40.�v25u

2/x33.v25u/x41.2v25u
2/

� x33.2v26u/x40.�2v26u
2/x41.4v26u

2/x34.2v26u/

� x42.�4v26u
2/x33.�2v27u/x38.2v27u

2/x40.2v27u
2/

� x41.�4v27u
2/x31.�v27u/x39.�2v27u

2/x35.v272u/

� x43.�4v27u
2/x34.�2v28u/x41.�4v28u

2/x42.4v28u
2/

� x35.2v28u/x43.�4v28u
2/x36.�v282u/x36.�v29u/:
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On the character degrees of Sylow p-subgroups of E.pf / 43

Since �jXi D � for all i 2 Œ37::43� and �jXi D �bi for the others, after evaluat-
ing the above at � and setting this to 1, for all vj , we need

v24.u10 C u14 � 2b30uC b31uC 2u
2/

C v25.u14 � b30u � b32uC b33uC u
2/

C v26.u15 � u9 C u11 C 2b33u � 2u
2
C 2b34u/

C v27.u15 C u10 � 2b33u � b31uC 2b35u � u
2/

C v28.�u9 � 2b34uC 2b35uC u
2
� 2b36u/

C v29.�u10 � u11 � b36u/ D 0:

Hence, we have a system with variables ui and u W

u10 C u14 � 2b30uC b31uC 2u
2
D 0;

u14 � b30u � b32uC b33uC u
2
D 0;

u15 � u9 C u11 C 2b33u � 2u
2
C 2b34u D 0;

u15 C u10 � 2b33u � b31uC 2b35u � u
2
D 0;

�u9 � 2b34uC 2b35uC u
2
� 2b36u D 0;

�u10 � u11 � b36u D 0;

which is equivalent to8̂̂̂̂
ˆ̂̂̂̂̂̂
<̂
ˆ̂̂̂̂̂̂
ˆ̂̂:

u9 D u
2
C .3b34 C 2b35 C 3b36/u;

u10 D �u
2
C .b30 � b31 � b32 C b33/u;

u11 D u
2
C .�b30 C b31 C b32 � b33 � b36/u;

u14 D �u
2
C .b30 C b32 � b33/u;

u15 D 2u
2
C .�b30 C 2b31 C b32 C b33 C 3b35/u;

.b30 C b31 � b32 � b33 � 2b34 C 2b35 C 2b36/u D 0:

(�)

The last equation is actually B5u D 0. Since B5 ¤ 0, we have

u D 0 and u9 D u10 D u11 D u14 D u15 D 0;

i.e. StabL1T2.�jH6H5H4/ D StabT1T2.�jH6H5H4/ D ¹1º.
Thus T1T2 acts faithfully on the set of all extensions of �jH6 to H6H5H4 with

the same B5 ¤ 0, which is invariant under the action of T , i.e. B5.�/ D B5.x�/
for all x 2 T . Since jH5H4=R5j D q12 D jT1T2j, this action is transitive. There-
fore, we choose �jXi D � for all i 2 Œ37::43�, �jX36 D �B5=2, and �jXi D 1Xi for
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the others Xi � H5H4. By the root heights, we have

R5

43Y
iD37

Xi � Z.HX5T4T3/; HX5T4T3 E U; H4

35Y
iD30

Xi E HX5T4T3:

By Lemma 1.5 for G D U with N DM D HX5T3T4, X D T1T2, Z D H6R5
and Y DH4

Q35
iD30Xi , the induction map from Irr.HX5T4T3=Y; �/ to Irr.U; �/ is

bijective. As X5T4T3 D StabX5T .�jH6H5H4/ is a transversal of H in HX5T4T3,
we have �HX5T4T3 jY D ŒHX5T4T3 W H��jY D jX5T4T3j1Y . Hence,

Irr.HX5T4T3=Y; �/ D Irr.HX5T4T3; �/:

Now we find StabT4T3.�jH6H5H4H3/. Since ŒH6H5H4H3; T3T4� D ŒH3; T3�,
we find y 2 T3 such that �.Œx; y�/ D 1 for all x 2 H3. For each

y D
Y

jD16;17;22

xj .uj / 2 T3 and x D

21Y
iD18

xi .vi / 2 H3

we have

Œx; y� D Œx18; x16�Œx18; x22�Œx19; x22�Œx20; x17�Œx20; x16�Œx21; x17�

D x37.v18u16/x42.v18u22/x43.v19u22/x40.�v20u17/

� x39.�v21u16/x41.�v21u17/:

Since �jXi D � for all i 2 Œ37::43�, for all vi we need

v18.u16 C u22/C v19u22 � v20u17 C v21.�u17 � u16/ D 0:

The only solution is .u16; u17; u22/D .0; 0; 0/, i.e. StabT4T3.�jH6H5H4H3/D T4.
Next, we find StabT4.�/. Since ŒH; T4� D ŒH2; T4�, we find y 2 T4 such that

�.Œx; y�/ D 1 for all x 2 H2. For each

y D x23.u23/ 2 T4 and x D x12.v12/x13.v13/ 2 H2

we have

Œx12.v12/x13.v13/; x23.u23/� D Œx12; x23�Œx13; x23�

D x37.�v12u23/x38.�v13u23/:

Evaluate with �, for all vi we need .�v12�v13/u23 D 0. Therefore, the only solu-
tion is u23 D 0, i.e. StabT4.�/ D ¹1º. So we finish the proof of StabT .�/ D ¹1º.
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Let �; �0 be two extensions of �jH6H5H4 toHX5. By the bijection of the induc-
tion map from Irr.HX5T4T3; �/ to Irr.U; �/, it suffices to show that �HX5T4T3 D
�0HX5T4T3 iff �jRj D �

0jRj for j D 2; 3 and �jX5 D �
0jX5 . By Mackey’s formula

and the fact that the double coset HX5nHX5T4T3=HX5 D HX5T4T3=HX5 is
represented by T4T3 we have

.�HX5T4T3 ; �0HX5T4T3/ D
X

y2T4T3

.y�; �0/:

Since ŒX5; T3T4� � H4
Q35
iD30Xi � ker.�/, we have y�jX5 D �jX5 . Therefore,

the restrictions to X5 of both �, �0 are clear for the proof. To show for the restric-
tions to Rk with k D 2; 3, we are going to prove that

R2R3 D ¹x 2 H2H3 W j�
HX5T4T3.x/j D �HX5T4T3.1/º

and
T4T3 D StabT4T3.�jR2R3/:

Then by StabT4T3.�/ D ¹1º and jT4T3j D q4 D jH3H2=R2R3j, the claim holds.
By the above computations of ŒH3; T3� and ŒH2; T4� we find all x 2 H2H3

such that �.Œx; y�/ D 1 for all y 2 T4T3. For

y D x16.u16/x17.u17/x22.u22/x23.u23/ 2 T3T4

and

x D x12.v12/x13.v13/

21Y
iD18

xi .vi / 2 H2H3;

we solve for vi in the following:

u16.v18 � v21/C u17.�v20 � v21/C u22.v18 C v19/C u23.�v12 � v13/ D 0:

We obtain a system with variables vi :8̂̂̂̂
<̂
ˆ̂̂:

v18 � v21 D 0;

�v20 � v21 D 0;

v18 C v19 D 0;

�v12 � v13 D 0:

We obtain solutions

.v18; v19; v20; v21/ D .v;�v;�v; v/ and .v12; v13/ D .s;�s/ for all v; s 2 Fq .

Therefore, x 2 R2R3. Hence, y�jR2R3 D �jR2R3 for all y 2 T4T3.
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46 T. Le and K. Magaard

(c) Suppose thatB5 D 0. By (a), T=S1 acts faithfully on the set of all extensions
of �jH6 to H6H5 with the same B5. Since jH5j=jR5j D q6 D jT=S1j, this action
is transitive. Hence, there exists x 2 T such that x�jXi D 1Xi for all Xi � H5.
Let � be this linear. So S1X5 D StabTX5.�jH6H5/, a transversal ofH inHX5S1,
and �HX5S1 jH5 D �HX5S1.1/�jH5 , i.e. H5 � ker.�HX5S1/ and so is its normal
closure H5 in HX5S1.

By Lemma 1.5 withGD U ,N DM DHX5S1,X D
Q4
iD1XiX6X7,Z DH6

and Y D H5, the induction map from Irr.HX5S1=H5; �/ to Irr.U; �/ is bijective.
Since H5 � ker.�HX5S1/, we have Irr.HX5S1=H5; �/ D Irr.HX5S1; �/.

5.5.2 Proof of Lemma 4.3

Recall that � is a linear character of H such that �jXi D � for all Xi � H6,
�jXi D 1Xi for allXi � H5, and �jXi D �bi for the othersXi � H4H3H2 where
bi 2 Fq . By Lemma 4.2 (c), we work with the quotient group HX5S1=H5. Abus-
ing the notation of root groups, we call them root groups in the quotient group.

(a) By computation .�/ in Lemma 4.2 (b) with B5 D 0,

S2 D StabS1.�jH6H5H4/:

Now we show the identityR4 D ¹x 2H4 W j�HX5S1.x/j D �HX5S1.1/º. For each
l1y2y3y4 2 L1T2T3T4 D S1 and h4 2 H4, we have Œh4; l1y2y3y4� D Œh4; l1y2�.
Hence, we are going to find all elements h4 2 H4 such that �.Œh4; l1y2�/ D 1 for
all l1y2 2 L1T2. Using the computation of Œ

Q36
jD24 xj .vj /;

Q15
iD1 xi .ui /� in Lem-

ma 4.2 (b) with bj D 0 for j 2 Œ30::36�, we solve for vi in the following equation:

u9.�v26 � v28/C u10.v24 C v27 � v29/C u11.v26 � v29/C u14.v24 C v25/

C u15.v26 C v27/C u
2.2v24 C v25 � 2v26 � v27 C v28/ D 0:

So we obtain a system with variables vi :8̂̂̂̂
ˆ̂̂̂̂̂<̂
ˆ̂̂̂̂̂̂
ˆ̂:

�v26 � v28 D 0;

v24 C v27 � v29 D 0;

v26 � v29 D 0;

v24 C v25 D 0;

v26 C v27 D 0;

2v24 C v25 � 2v26 � v27 C v28 D 0:

Thus, .v24; v25; v26; v27; v28; v29/ D .2v;�2v; v;�v;�v; v/ is a solution for all
v 2 Fq , i.e. �.Œh4; l1y2�/ D 1 for all l1y2 2 L1T2 iff h4 D r4.v/ 2 R4.
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It is clear that �HX5S1.r4.v//D �HX5S1.1/�B4.v/ for all r4.v/ 2R4 by check-
ing directly that �.r4.v// D �B4.v/.

(b) Suppose that B4 ¤ 0. Since StabT .�jH6H5H4/ D S2 D L2T3T4, we are
going to show that StabS2.�jH6H5H4H3/ D T4, and then StabT4.�/ D 1 is done
by using the same argument in Lemma 4.2 (b). This means that we find all y 2 S2
such that �.Œx; y�/ D 1 for all x 2 H3 since �.ŒH6H5H4; S2�/ D ¹1º.

It is clear that T4 � StabS2.�jH6H5H4H3/. So by (a) and jH3j D q4 D jL2T3j,
it suffices to show thatL2T3 acts faithfully on the set of all extensions of �jH6H5H4
to H6H5H4H3, i.e. StabL2T3.�jH6H5H4H3/ D ¹1º. By the root heights and the
fact that H is abelian, ŒH3; L2T3� D ŒH3; T3�ŒH3; L2�, where ŒH3; T3� is com-
puted in Lemma 4.2 (b). Since we work with HX5S1=H5, for each

x D

21Y
iD18

xi .vi / 2 H3 and y D

11Y
jD1

xj .uj /

17Y
jD14

xj .uj /x22.u22/ 2 L2T3;

we have

Œx; y� D Œx; x16x17x22�Œx18; x3�ŒŒŒx18; x3�; x4�; x6�ŒŒŒx18; x3�; x6�; x7�

� ŒŒx18; x3�; x14�Œx18; x6�ŒŒŒx18; x6�; x7�; x8�ŒŒx18; x6�; x15�

� ŒŒx18; x6�; x11�ŒŒx18; x6�; x9�Œx19; x2�ŒŒŒx19; x2�; x1�; x4�

� ŒŒŒx19; x2�; x1�; x6�ŒŒŒx19; x2�; x4�; x6�ŒŒŒx19; x2�; x6�; x7�

� ŒŒx19; x2�; x14�Œx19; x1�ŒŒŒx19; x1�; x6�; x7�ŒŒx19; x1�; x10�

� ŒŒx19; x1�; x14�Œx19; x6�ŒŒŒx19; x6�; x7�; x8�ŒŒx19; x6�; x10�

� ŒŒx19; x6�; x15�Œx20; x2�ŒŒŒx20; x2�; x3�; x4�ŒŒŒx20; x2�; x3�; x7�

� ŒŒŒx20; x2�; x7�; x8�ŒŒx20; x2�; x15�ŒŒx20; x2�; x11�ŒŒx20; x2�; x9�

� Œx20; x3�ŒŒŒx20; x3�; x7�; x8�ŒŒx20; x3�; x10�ŒŒx20; x3�; x15�

� Œx20; x7�ŒŒx20; x7�; x9�Œx21; x4�ŒŒx21; x4�; x9�Œx21; x8�

� ŒŒx21; x8�; x10�ŒŒx21; x8�; x11�

D x37.v18u16/x42.v18u22/x43.v19u22/x40.�v20u17/x39.�v21u16/

� x41.�v21u17/x25.2v18u/x40.�2v18u
3/x41.4v18u

3/

� x41.�2v18u
3/x26.v18u/x42.�4v18u

3/x42.2v18u
3/x40.v18u

3/

� x38.�v18u
3/x25.�2v19u/x37.�2v19u

3/x38.2v19u
3/

� x40.2v19u
3/x41.�4v19u

3/x41.2v19u
3/x24.�v19u/

� x39.�2v19u
3/x37.v19u

3/x39.v19u
3/x27.v19u/x43.�4v19u

3/
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� x40.�v19u
3/x43.2v19u

3/x26.�2v20u/x40.4v20u
3/

� x41.�8v20u
3/x42.8v20u

3/x42.�4v20u
3/x40.�2v20u

3/

� x38.2v20u
3/x27.2v20u/x43.�8v20u

3/x40.�2v20u
3/

� x43.4v20u
3/x28.2v20u/x39.�2v20u

3/x28.�v21u/x39.v21u
3/

� x29.�2v21u/x42.�2v21u
3/x43.2v21u

3/:

Evaluating at � and setting the result equal to 1, we see that the following equa-
tion is true for all vi :

v18.u16 C u22 C 2b25uC b26u � 2u
3/

C v19.u22 � b24u � 2b25uC b27u � 3u
3/

C v20.�u17 � 2b26uC 2b27uC 2b28u � 3u
3/

C v21.�u16 � u17 � b28u � 2b29uC u
3/ D 0:

So we obtain a system with variables uj and u:8̂̂̂̂
<̂̂
ˆ̂̂̂:

u16 C u22 C 2b25uC b26u � 2u
3
D 0;

u22 � b24u � 2b25uC b27u � 3u
3
D 0;

�u17 � 2b26uC 2b27uC 2b28u � 3u
3
D 0;

�u16 � u17 � b28u � 2b29uC u
3
D 0;

which is equivalent to:8̂̂̂̂
<̂̂
ˆ̂̂̂:

u22 D 3u
3
C .b24 C 2b25 � b27/u;

u17 D 2u
3
C .3b26 C 2b27 C 2b28/u;

u16 D 4u
3
C .2b26 � 2b27 � 3b28/u;

.2b24 � 2b25 C b26 � b27 � b28 C b29/u D 0:

The last equation in the system is actually B4u D 0. Since B4 ¤ 0, the only
solution of this system is .u16; u17; u22/ D .0; 0; 0/, i.e.

StabL2T3.�jH6H5H4H3/ D ¹1º:

Hence, StabS2.�jH6H5H4H3/ D T4 and StabS1.�/ D ¹1º.
The above argument also proves that L1T2T3 acts transitively on the set of all

extensions of �jH6H5H4 to H6H5H4H3 with the same B4 ¤ 0. The number of
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these extensions is jH4H3j=jR4j. Therefore, there exists an element x 2 L1T2T3
such that x�jXi D � for all Xi � H6, x�jX29 D �B4 , x�jXi D 1Xi for the others
Xi � H5H4H3. Let � be this linear character. By Lemma 1.5 with G D HX5S1,
N D M D HX5T4, X D L1T2T3, Z D H6R4, Y D H3

Q28
iD24Xi , the induc-

tion map from Irr.HX5T4=Y; �/ to Irr.HX5S1; �/ is bijective. Let �; �0 be two ex-
tensions of �jH6H5H4H3 toHX5. We have �HX5S2 ; �HX5S2 2 Irr.HX5S2=Y; �/.
Using the same argument in Lemma 4.2 (b), we obtain .�HX5S2 ; �0HX5S2/ D 1 iff
�jR2 D �

0jR2 and �jX5 D �
0jX5 .

(c) Suppose that B4 D 0. By (a), S1=S2 acts faithfully on the set of all exten-
sions of �jH6H5 to H6H5H4 with the same B4. Since jS1=S2j D q5 D jH4=R4j,
it follows that this action is transitive. Hence, with B4 D 0, there exists an element
x 2 S1 such that x�jXi D 1Xi for all Xi � H5H4. Let � be this linear character.
Since S2X5 D StabS1X5.�jH6H5H4/ is a transversal of H in HX5S2, we have

�HX5S2 jH4 D ŒHX5S2 W H��jH4 D jX5S2j1H4 :

SoH4 � ker.�HX5S2/. By Lemma 1.5 forG DHX5S1 withN DM DHX5S2,
X D T2, Y D H4 and Z D H6, the induction map from Irr.HX5S2=H5H4; �/
to Irr.HX5S1; �/ is bijective where H5H4 is the normal closure of H5H4 in
HX5S2. Since H5H4 � ker.�HX5S2/, we have

Irr.HX5S2=H5H4; �/ D Irr.HX5S2; �/:

5.5.3 Proof of Lemma 4.4

Recall that � is a linear character of H such that �jXi D � for all Xi � H6,
�jXi D 1Xi for allXi � H5H4, and �jXi D �bi for the othersXi � H3H2 where
bi 2 Fq . By Lemma 4.3 (c), we work with the quotient group HX5S2=H5H4.
Abusing language slightly, we call the images of root groups in a quotient group
root groups also.

(a) By the computation in Lemma 4.3 (b) with B4 D 0, it is clear that

S3 D StabS2.�jH6H5H4H3/:

Now we show that R3 D ¹x 2 H3 W j�HX5S2.x/j D �HX5S2.1/º. Since X5S2 is
a transversal ofH inHX5S2, we are going to find x 2 H3 such that �.Œx; y�/ D 1
for all y 2 S2. Since ŒH3; X5� D ¹1º D ŒH3; T4�, it is enough to work with x 2H3
and y 2 S2T3. For each

x D

21Y
iD18

xi .vi / 2 H3 and y D

11Y
jD1

xj .uj /

17Y
jD14

xj .uj /x22.u22/ 2 S2T3;
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by the computation in Lemma 4.3, we find .vi /i2Œ18::21� satisfying for all uj and
u in the following equation:

u16.v18 � v21/C u17.�v20 � v21/C u22.v18 C v19/

C u3.�2v18 � 3v19 � 3v20 C v21/ D 0:

We have a system with variables vi :8̂̂̂̂
<̂
ˆ̂̂:

v18 � v21 D 0;

�v20 � v21 D 0;

v18 C v19 D 0;

�2v18 � 3v19 � 3v20 C v21 D 0:

Its solutions are .v18; v19; v20; v21/ D .u;�u;�u; u/ for all u 2 Fq , i.e. we
have x D r3.u/ 2 R3. Now to show that �HX5S2 jR3 D ŒHX5S2 W H��B3 , it is
enough to check �.r3.t// D �B3.t/ which is clear.

(b) Suppose that B3 ¤ 0. By (a) we have StabS2.�jH6H5H4H3/ D S3 D L3T4.
To show that StabS2.�/ D ¹1º, since jL3T4j D q2 D jH2j, we show that L3T4
acts faithfully on the set of all extensions of �jH6H5H4H3 to H , i.e. proving that
there is no nontrivial y 2 L3T4 such that �.Œx; y�/ D 1 for all x 2 H2.

By the root heights, ŒH2; L3T4� D ŒH2; T4�ŒH2; L3�, where ŒH2; T4� is com-
puted in Lemma 4.2 (b). For

x D x12.v12/x13.v13/ 2 H2 and y D l3.u/x23.u23/ 2 L3T4;

we have

Œx; y� D Œx; x23�Œx; l3�

D Œx12; x23�Œx12; x2�ŒŒŒŒx12; x2�; x3�; x4�; x6�ŒŒŒŒx12; x2�; x3�; x6�; x7�

� ŒŒŒŒx12; x2�; x6�; x7�; x8�Œx12; x3�ŒŒŒŒx12; x3�; x6�; x7�; x8�

� Œx12; x6�ŒŒŒx12; x2�; x3�; x14�ŒŒŒx12; x2�; x6�; x9�

� ŒŒŒx12; x2�; x6�; x11�ŒŒŒx12; x2�; x6�; x15�ŒŒŒx12; x3�; x6�; x10�

� ŒŒŒx12; x3�; x6�; x15�ŒŒŒx12; x6�; x7�; x9�ŒŒx12; x2�; x22�

� ŒŒx12; x2�; x16�ŒŒx12; x3�; x22�ŒŒx12; x6�; x17�

� ŒŒx12; x9�; x10�ŒŒx12; x9�; x14�Œx13; x23�Œx13; x4�Œx13; x7�

� ŒŒŒx13; x4�; x7�; x9�ŒŒŒx12; x7�; x8�; x10�ŒŒŒx13; x7�; x8�; x11�

� ŒŒx13; x4�; x17�ŒŒx13; x7�; x16�ŒŒx13; x7�; x17�ŒŒx13; x10�; x15�

� ŒŒx13; x10�; x11�ŒŒx13; x11�; x15�
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D x37.�v12u23/x18.�2v12u/x40.4v12u
4/x41.�8v12u

4/x42.8v12u
4/

� x19.2v12u/x43.�8v12u
4/x20.v12u/x41.4v12u

4/x38.2v12u
4/

� x40.�2v12u
4/x42.�4v12u

4/x40.�2v12u
4/x43.4v12u

4/

� x39.�2v12u
4/x42.�6v12u

4/x37.�8v12u
4/x43.6v12u

4/

� x40.�2v12u
4/x37.v12u

4/x39.v12u
4/x38.�v13u23/

� x20.�v13u/x21.2v13u/x39.2v13u
4/x42.�4v13u

4/

� x43.4v13u
4/x40.2v13u

4/x39.�8v13u
4/x41.�4v13u

4/

� x42.2v13u
4/x40.v13u

4/x43.�2v13u
4/:

Evaluating � and setting the result equal to 1, we obtain in the following equa-
tion:

v12.�s23 � 2b18uC b20uC 2b19u � 2u
4/

C v13.�u23 � b20uC 2b21u � 2u
4/ D 0:

We have a system with variables uj and u W´
�u23 � 2b18uC b20uC 2b19u � 2u

4
D 0;

�u23 � b20uC 2b21u � 2u
4
D 0:

It is equivalent to ´
u23 D 3u

4
C .�2b18 C b20 C 2b19/u;

.b18 � b20 � b19 C b21/u D 0:

The last equation is actually B3u D 0. Since B3 ¤ 0, it follows that the only
solution is .u23; u/ D .0; 0/, i.e. StabL3T4.�/ D ¹1º or L3T4 acts faithfully on the
set of all extensions of �jH6H5H4H3 to H . Hence, we also get StabS2.�/ D ¹1º.

Therefore, there is an element x 2 L3T4 such that x�jXi D � for all Xi � H6,
x�jX21 D �B3 , x�jXi D 1Xi for the others Xi � H5H4H3. Let � be this linear.
By Lemma 1.5 with G D HX5S2, N DM D HX5, X D S2, Y D

Q20
iD18Xi

and Z D H6X21, the induction map from Irr.HX5=Y; �/ to Irr.HX5S2; �/ is
bijective. Using the same method as in Lemma 4.2 (c), we see that the rest of the
statement holds.

(c) Suppose B3 D 0. By (a), S2=S3 acts faithfully on the set of all extensions
of �jH6H5H4 toH6H5H4H3 with the same B3. Since jS2=S3j D q3 D jH3=R3j,
this action is transitive. Hence, there exists x 2 S2 such that x�jXi D 1Xi for all
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Xi � H5H4H3. Let � be this linear. Since X5S3 is a transversal of H in HX5S3
and S3 D StabS2.�jH6H5H4H3/, we have

�HX5S3 jH5H4H3 D �
HX5S3.1/�jH5H4H3 :

Therefore,
H5H4H3 � ker.�HX5S3/;

so is its normal closure H5H4H3 in HX5S3.
By Lemma 1.5 with G D HX5S2, N DM D HX5S3, X D T3, Y D H3 and

Z D H6, the induction map from Irr.HX5S3=Y; �/ to Irr.HX5S2; �/. Since we
have Y � ker.�HX5S3/, it follows that Irr.HX5S3=Y; �/ D Irr.HX5S3; �/.

5.5.4 Proof of Lemma 4.5

Recall that � is a linear character of the group H such that �jXi D � for all
Xi � H6 D Z.U /, �jXi D 1Xi for all Xi � H5H4H3, and �jXi D �bi for the
others Xi � H2 where bi 2 Fq . By Lemma 4.3 (c), we work with the quotient
group HX5S3=H5H4H3. Abusing language slightly, we call the images of root
groups in a quotient group root groups also.

(a) By the computation in Lemma 4.4 (b) with B3 D 0, S4 D StabS3.�/.
Now we show that R2 D ¹x 2 H2 W j�HX5S3.x/j D �HX5S3.1/º. Since X5S3 is
a transversal ofH inHX5S3, we are going to find x 2 H2 such that �.Œx; y�/ D 1
for all y 2 S3. As ŒH2; X5� D ¹1º, it is enough to work with x 2 H2 and y 2 S4.
For each x D

Q13
iD12 xi .vi / 2 H2 and y D l3.u/x23.u23/ 2 S3T4, by the com-

putation in Lemma 4.4 (b), we find .v12; v13/ satisfying for all u23 and u in the
following equation:

u23.�v12 � v13/C 2u
4.�v12 � v13/ D 0:

So .v12; v13/ D .v;�v/ for all v 2 Fq , i.e. x D r2.v/. Since �.r2.v// D �B2.v/
for all r2.v/ 2 R2, we have �HX5S3 jH2 D ŒHX5S3 W H��B2 .

(b) Suppose that B2 2 Fq � ¹c4 W c 2 F�q º. Let � be an extension of � to HX5.
Since S4 D StabS3.�/, to get IHX5S3.�/ D HX5, we show that S4 acts transi-
tively on the set of all extensions of � to HX5. Hence, we find all l4 2 S4 such
that �.Œhx5; l4�/ D 1 for all h 2 H and x5 2 X5. Since S4 D StabS3.�/, we have
�.Œh; l4�/ D 1 for all h 2 H , l4 2 S4. Thus we compute Œx5; l4�. Since we work
with HX5S3=H5H4H3, for each x5.v5/ 2 X5 and l4.u/ 2 S4, we have

Œx5.v5/; l4.u/� D Œx5; x4�ŒŒŒx5; x4�; x9�; x10�ŒŒŒx5; x4�; x9�; x14�

� ŒŒŒŒx5; x4�; x6�; x7�; x9�ŒŒŒx5; x4�; x6�; x17�ŒŒx5; x4�; x23�

� Œx5; x6�ŒŒŒx5; x6�; x10�; x11�ŒŒŒx5; x6�; x10�; x15�
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� ŒŒŒx5; x6�; x11�; x15�ŒŒŒŒx5; x6�; x7�; x8�; x10�

� ŒŒŒŒx5; x6�; x7�; x8�; x11�ŒŒŒx5; x6�; x7�; x16�

� ŒŒŒx5; x6�; x7�; x17�ŒŒx5; x6�; x23�ŒŒx5; x14�; x16�

� ŒŒx5; x14�; x17�ŒŒx5; x11�; x22�ŒŒx5; x10�; x16�

� ŒŒx5; x10�; x22�

D x12.�v5u/x37.�v5u
5/x39.�v5u

5/x39.2v5u
5/x40.2v5u

5/

� x37.3v5u
5/x13.v5u/x40.v5u

5/x42.2v5u
5/x43.�2v5u

5/

� x42.�4v5u
5/x43.4v5u

5/x39.�8v5u
5/x41.�4v5u

5/

� x38.�3v5u
5/x39.4v5u

5/x41.2v5u
5/x43.�3v5u

5/

� x42.3v5u
5/x37.4v5u

5/:

Evaluating with � to get 1, for all v5 we need

v5.�.b12 � b13/uC u
5/ 2 ker.�/;

which is v5.u5�B2u/ 2 ker.�/ for all v5. Hence, we solve for u: u.u4�B2/ D 0.
Since B2 2 Fq � ¹c4 W c 2 F�q º, this equation only has one trivial solution u D 0,
i.e. StabS4.�/ D ¹1º, or IHX5S3.�/ D HX5.

(c) Suppose B2 D c4 2 F�q . Let � be an extension of the character � to HX5.
Continue the computation in part (b), the equation u.u4 � B2/ D 0 has five solu-
tions u 2 ¹ac W a 2 F5º, i.e. l4.u/ 2 F4. Hence, we have IHX5S3.�/ D HX5F4.
Since ŒHX5; F4� � ker.�/, � extends to HX5F4, i.e. � extends to HX5F4.

Since S4 D StabS3.�/ Š Fq , we have

ŒH; S4� � ker.�/:

So � extends to HS4 E HX5S3. Let �0 be an extension of � to HS4. We find
IHX5S3.�

0/. Since StabX5S3.�
0/ � StabX5S3.�

0jH / D X5S4, it is enough to find
all x5 2 X5 such that �0.Œx5; hl4�/ D 1 for all hl4 2 HS4. Since HX5 is abelian,
we have

Œx5; hl4� D Œx5; l4�:

For each x5.v5/ 2 X5 and l4.u/ 2 S4, by the computation in (b), we need

v5.u
5
� B2u/ 2 ker.�/ for all u 2 Fq .

By Proposition 1.3, there are five solutions v5 2 ¹ac� W a 2 F5º, i.e. x5.v5/ 2 F5.
Hence, IHX5S3.�

0/ D HF5S4. Since ŒF5; S4� � ker.�0/, �0 extends to HF5S4,
i.e. � extends to HF5S4.
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Let �1; �2 be two extensions of � to HX5F4, and let  be an extension of � to
HF5S3. Since the degree of all irreducible constituents of �HX5S3 is q

2

5
, we have

�1
HX5S3 ; �2

HX5S3 ; HX5S3 2 Irr.HX5S3; �/:

Choose 1 2 S � S3 as a representative set of the double coset

HF5S4nHX5S3=HX5F4:

As HF5S4 \HX5F4 D HF5F4 and HX5F4 E HX5S3, by Mackey’s formula,

.�1
HX5S3 ; HX5S3/ D

X
s2S

.s�1js.HX5F4/\HF5S4 ;  js.HX5F4/\HF5S4/

D

X
s2S

.s�1jHF5F4 ;  jHF5F4/:

For each s 2 S , if s�1jHF5F4 D  jHF5F4 , then s�1jH D  jH . Since both are
extensions of �, we have s� D �, i.e. s 2 StabS3.�/ D S4. There is a unique
1 2 S \ S4 since S is a representative set of HF5S4nHX5S3=HX5F4. So

.�1
HX5S3 ; HX5S3/ D .�1jHF5F4 ;  jHF5F4/ D 1 iff �1jFi D  jFi ; i 2 ¹4; 5º:

Therefore, �1HX5S3 D HX5S3 D �2HX5S3 iff �1jFi D �2jFi ; i 2 ¹4; 5º.
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