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Abstract
In this paperwe study a second-ordermean-field stochastic differential systems describing the
movement of a particle under the influence of a time-dependent force, a friction, a mean-field
interaction and a space and time-dependent stochastic noise.Using techniques fromMalliavin
calculus, we establish explicit rates of convergence in the zero-mass limit (Smoluchowski-
Kramers approximation) in the L p-distances and in the total variation distance for the position
process, the velocity process and a re-scaled velocity process to their corresponding limiting
processes.

Keywords Smoluchowski-Kramers approximation · Stochastic differential by mean-field ·
Total variation distance · Malliavin calculus

Mathematics Subject Classiffication (2010) 60G22 · 60H07 · 91G30

1 Introduction

In this paper,we are interested in the following second-ordermean-field stochastic differential
equations

⎧
⎪⎨

⎪⎩

dXα
t = Y α

t dt,
1
α
dY α

t = [−κY α
t − g(t, Xα

t ) − γ (Y α
t − E(Y α

t ))] dt + σ(t, Xα
t ) dWt ,

Xα
0 = x0, Y α

0 = y0.

(1.1)
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Here α, γ and κ are positive constants, g(t, x) : [0, T ] × R → R is a given function,
x0, y0 ∈ R are given points in the real line, and (Wt )t≥0 is the standard one-dimensional
Wiener process. The notation E denotes the expectation with respect to the probability mea-
sure of the underlying probability space in which the Wiener process is defined.

System (1.1) describes the movement of a particle at position (displacement) Xα
t ∈ R

and with velocity Y α
t ∈ R, at time t , under the influence of four different forces: an external,

possibly time-dependent and non-potential, force −g(t, Xα
t ); a friction −κY α

t ; a (McKean-
Vlasov type) mean-field interaction force −γ (Y α

t −E(Y α
t )) (noting that here the mean-field

term is acting on the velocity rather than the position) and a stochastic noise σ(t, Xα
t )Ẇt .

Physically, α is the inverse of the mass, κ is the friction coefficient and γ is the strength of
the interaction. We use the superscript α in (1.1) to emphasize the dependence on α since in
the subsequent analysis we are concerned with the asymptotic behaviour of (1.1) as α tends
to +∞.

Under Assumptions 1.1 (see below) of this paper, system (1.1) can also be obtained as the
mean-field (hydrodynamic) limit of the following interacting particle system as N tends to
+∞
⎧
⎪⎨

⎪⎩

dXα,i
t = Y α,i

t dt,

dY α,i
t = [−ακY α,i

t − αg(t, Xα,i
t ) − αγ

N

∑N
j=1(Y

α,i
t − Y α, j

t )] dt + ασ(t, Xα,i
t ) dWi

t ,

Xα
0 = x0, Y α

0 = y0,
(1.2)

where {Wi }Ni=1 are independent one-dimensional Wiener processes. In fact, under Assump-
tions 1.1 the above interacting system satisfies the property of propagation of chaos, that is
as N tends to infinity, it behaves more and more like a system of independent particles, in
which each particle evolves according to (1.1) where the interaction term in (1.2) is replaced
by the expectation one. For a detailed account on the propagation of chaos phenomenon, we
refer the reader to classical papers [12, 25] and more recent papers [1, 8, 11] and references
therein for degenerate diffusion systems like (1.1). The interacting particle system (1.2) and
its mean-field limit (1.1) and more broadly systems of these types have been used exten-
sively in biology, chemistry and statistical physics for the modelling of molecular dynamics,
chemical reactions, flockings, social interactions, just to name a few, see for instance, the
monographs [22, 23].

In this paper, we are interested in the zero-mass limit (as also known as the Smoluchowski-
Kramers approximation) of (1.1), that is its asymptotic behaviour as α tends to +∞. By
employing techniques from Malliavin calculus, we obtain explicitly rate of convergences, in
L p-distances and in total variation distances, for both the position and velocity processes.

1.1 Main Results

Before stating our main results, we make the following assumptions.

Assumption 1.1 (A) The coefficients g, σ : [0, T ] ×R −→ R have linear growth, i.e. there
exists K > 0 such that

|g(t, x)| + |σ(t, x)| ≤ K (1 + |x |) ∀x ∈ R, t ∈ [0, T ].
(B) The coefficients g, σ : [0, T ]×R −→ R are Lipschitz, i.e. there exists L > 0 such that

|g(t, x) − g(t, y)| + |σ(t, x) − σ(t, y)| ≤ L|x − y| ∀x, y ∈ R, t ∈ [0, T ].
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Rate of Convergence for Mean-field SDEs

Assumption 1.2 g(t, x), σ (t, x) are twice differentiable in x and the derivatives are bounded
by some constant M > 0.

Let F,G be random variables, we denote by dTV (pF , pG) the total variation distance
between the laws of F and G, that is,

dTV (pF , pG) = sup
A∈B(R)

|P(F ∈ A) − P(G ∈ A)|

= 1

2
sup{|φ(F) − φ(G)| : φ : R → R which is bounded by 1}.

Consider the following first-order stochastic differential equation, which will be the lim-
iting system for the displacement process

(κ + γ )dXt =
[

− g(t, Xt ) − γ

κ
E[g(t, Xt )]

]
dt + σ(t, Xt )dWt , X0 = x0 ∈ R. (1.3)

Our firstmain result provides an explicit rates of convergence for the displacement process.

Theorem 1.1 (Quantitative rates of convergence of the displacement process)UnderAssump-
tions 1.1 and 1.2, systems (1.1) and (1.3) have unique solutions and the following statements
hold.

1. (rate of convergence in L p-distances) For all p ≥ 2, α ≥ 1 and t ∈ [0, T ],
E

[
sup

0≤s≤t
|Xα

s − Xs |p
]

≤ C
[
(λ(t, α(κ + γ )))

p
2 + (λ(t, ακ))p

]
,

where λ(t, a) = (1/a)[1−exp(−at)] for t, a > 0 andC is a positive constant depending
on {x0, y0, κ, γ, K , L, p, T } but not on α and t.

2. (rate of convergence in the total variation distance). We further assume that |σ(t, x)| ≥
σ0 > 0 for all (t, x) ∈ [0, T ] × R. Then, for each α ≥ 1 and t ∈ (0, T ],

dTV (pXα
t
, pXt ) ≤ C

√

t−1(λ(t, α(κ + γ )) + (λ(t, ακ))2),

where C > 0 is a constant depending only on {x0, y0, σ0, κ, γ, K , L, M, T } but not on
α and t. As a corollary, if |σ(t, x)| ≥ σ0 > 0 for all (t, x) ∈ [0, T ] × R then we have.

dT V (pXα
t
, pXt ) ≤ C min{t−1/2α−1/2, 1/C}.

Furthermore, the above rate of convergence in terms of α is sharp.

dummy

Theorem 1.1 combines Theorem 1.2 (for the L p-distances) and Theorem 3.1 (for the total
variation distance) in Section 3.1.

We are also interested in the asymptotic behavior, when α → ∞, of the velocity process
Y α
t of (1.1) and of a re-scaled velocity process, Ỹ α

t , which is defined by

Ỹ α
t := 1√

α
Y α
t/α.

The re-scaled process Ỹ α
t satisfies the following stochastic differential equation

⎧
⎨

⎩

Ỹ α
t = y0√

α
−(κ+γ )

∫ t
0 Ỹ

α
s ds−

1√
α

∫ t
0 g(

s
α
, Xα

s
α
)ds−γ

∫ t
0 E(Ỹ α

s )ds+∫ t0 σ( s
α
, Xα

s
α
)dW̃s

Xα
0 = x0,

(1.4)
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where W̃t := √
αWt/α is a rescaled Brownian process.

Nowwe consider the following stochastic differential equation, which will be the limiting
process of the rescaled velocity process

{
dỸt = −(κ + γ )dỸt + σ(0, x0)dW̃t ,

Ỹ (0) = 0.
(1.5)

We now describe our result for the rescaled velocity process first since for this process we
also work with a general setting where both g and σ can depend on both spatial and temporal
variables. We only assume additionally the following condition.

Assumption 1.3

|σ(t, x) − σ(s, y)| ≤ L(|t − s| + |x − y|) ∀x, y ∈ R, t, s ∈ [0, T ].
In the next theorem, we provide explicit rates of convergence, both in L p-distances and

in the total variation distance, for the rescaled velocity process.

Theorem 1.2 (Quantitative rates of convergence for the rescaled velocity processes) Under
Assumptions 1.1 and 1.3 the following hold.

1. (rate of convergence in L p-distance for the rescaled velocity process) For all p ≥ 2 and
α ≥ 1,

E

[

sup
0≤t≤T

|Ỹ α
t − Ỹt |p

]

≤ C

α p/2 ,

where C is a positive constant depending on p and other parameters but not on α.
2. (rate of convergence in the total variation distance for the rescaled velocity process)

Assume that Assumptions 1.1 and 1.3 hold and |σ(0, x0)| > 0 for all (t, x) ∈ [0, T ]×R.

Then, for each α ≥ 1 and t ∈ (0, T ],
dTV (pỸ α

t
, pỸt ) ≤ C min{(λ(t, 2(κ + γ )))−1/2 α−1/2, 1/C},

where C > 0 is a constant depending only on {x0, y0, κ, γ, K , L, p, T , σ (0, x0)}.
Theorem 1.2 summarizes Theorem 3.3 (for the L p-distances) and Theorem 3.4 (for the

total variation distance) in Section 3.2.
When g(t, x) = g(x) and σ(t, x) = δ, [18, Theorem 2.3] shows that the velocity process

Y α
t converges to the normal distribution asα → ∞. The third aimof this paper is to generalize

this result to a more general setting where g depends on both x and t while σ depends only
on t , i.e. σ(t, x) = σ(t), obtaining rates of convergence in the total variation distance. The
following theorem is the content of Theorem 3.5 in Section 3.2.

Theorem 1.3 (Quantitative rates of convergence for the velocity processes) Under Assump-
tions 1.1 the following hold. Assume additionally that σ(t) is continuously differentiable on
[0, T ] and that σ(t) 	= 0 for each t ∈ (0, T ]. Let N (t) be a normal random variable with

mean 0 and variance
σ 2(t)

2(κ + γ )
, Then, for each α ≥ 1 and t ∈ (0, T ]

dTV
(
pY α

t /
√

α, pN (t)

)
≤ C min{(λ(t, 2(κ + γ )))−1/2 α−1/2, 1/C},

where C > 0 is a constant not depending on α and t.
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Rate of Convergence for Mean-field SDEs

Theorem 1.3 is Theorem 3.5 in Section 3.2. We emphasize that in the main theorems, to
obtain the existence and uniqueness as well as the rate of convergence in L p-distances we
only use Assumptions 1.1. Assumptions 1.2 and 1.3 are needed to employ techniques from
Malliavin calculus, in particular to derive estimates for the Malliavin derivatives.

Corollary 1.1 (Rate of convergence in Wasserstein distance for the laws of the displacement
and velocity processes) Let μ and ν be two probability measures with finite second moments,
then the p-Wasserstein distance, Wp(μ, ν), between them can be defined by

Wp(μ, ν) =
(
inf{E[|X − Y |p] : X ∼ μ, Y ∼ ν}

)1/p
.

Using this formulation, as a direct consequence of our main results, we also obtain explicit
rates of convergence in p-Wasserstein distances for the laws of the displacement and the
rescaled velocity processes to the corresponding limiting ones

sup
t∈[0,T ]

W p
p (law(Xα

t ), law(Xt )) ≤ C

α p/2 ,

sup
t∈[0,T ]

W p
p (law(Ỹ α

t ), law(Ỹt )) ≤ C

α p/2 .

1.2 Comparison with Existing Literature

The zero-mass limit of second order differential equations has been studied intensively in the
literature. In the seminalwork [14],Kramers formally discusses this problem, in the context of
applications to chemical reactions, for the classical underdamped Langevin dynamics, which
corresponds to (1.1) with g = −∇V (a gradient potential force), γ = 0 (no interaction force)
and a constant diffusion coefficient. Due to this seminal work, this limit has become known
in the literature as the Smoluchowski-Kramers approximation. Nelson rigorously shows that,
under suitable rescaling, the solution to the Langevin equation converges almost surely to the
solution of (3.14)withψ = 0 [19]. Since then various generalizations and related results have
been proved using different approaches such as stochastic methods, asymptotic expansions
and variational techniques, see for instance [3, 5, 6, 9, 10, 16–18, 20]. The most relevant
papers to the present one include [6, 16–18, 20]. The main novelty of the present paper lies in
the fact that we consider interacting (mean-field) systems allowing time-dependent external
forces and diffusion coefficients, and providing explicit rates of convergence in both L p-
distances and total variation distances for both displacement and velocity processes. Existing
papers lack at least one of these features. More specifically,

Papers that Consider Mean-Field (Interaction) Systems The papers [6, 16–18] consider sec-
ond order mean-field stochastic differential equations establishing the zero-mass limit, but
they require much more stringent conditions that g(t, x) = g(x) (time-independent force)
and σ(t, x) = δ (constant diffusivity). On top of that, they do not provide a rate of conver-
gence. Furthermore, our approach using Malliavin calculus is also different: Narita’s papers
use direct arguments while [6] employs variational methods based on Gamma-convergence
and large deviation principle.

Papers that Provide a Rate of Convergence The papers [5, 20] provide a rate of convergence
but only consider non-interacting systems (also using different measurements). Like our
paper, [20] also utilizes techniques fromMalliavin calculus, but [5] uses a completely different
variational method. The recent paper [4], which studies the kinetic Vlasov-Fokker-Planck
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equation, is particularly interesting since it considers both interacting systems and provides
a rate of convergence, but this paper is different to ours in a couple of aspects. First, the
interaction force is acting on the position instead of the velocity; second, it works on the
Fokker Planck equations and obtains a rate of convergence in Wasserstein distance while
we work on the stochastic differential equations and obtain error quantifications in both
L p-distances and total variation distances; third, as mentioned, we use Malliavin calculus
while [4] applied variational techniques like in [5, 6]. We also mention the paper [26],
which provides similar rate of convergence to ours but it consider non mean-field stochastic
differential equations driven by fractional Brownian motions.

1.3 Outlook

We provide further discussions on possible extensions of our results in the present paper.

Multi-dimensional Systems The analysis of the present paper is carried out only for one-
dimensional processes. This is because in the proof of Lemma 2.1 below, we apply [26,
Lemma 2.1] which is only applicable to one-dimensional random variables. Generalizing
this lemma and our results to multi-dimensional processes would be an interesting problem.
We will come back to this issue in a future work.

Non-Lipschitz and Singular Interactions The Lipschitz boundedness and differentiability
Assumptions 1.1-1.2-1.3 are standard, but rather restricted since they do not cover some
physically interesting interacting singular, such as Coulomb or Newton, forces. It would be
interesting and challenging to extend our work to non-Lipschtizian and singular coefficients.
We note that initial attempts in this direction for related models exist in the literature, see [2]
for non-Lipschitzian coefficients and recent papers [4, 27] for singular forces.

Interacting Particle Systems Another interesting problem for future work is to study the
Kramers-Smoluchowski approximation at the level of the N -particle system (1.2), which is a
linear equation, and its relation to themean-fieldmodel (1.1),which is nonlinear and nonlocal.
In this context, one aims to obtain a rate of convergence that is independent or controllable
in term of the number of particles N that enables one to pass to the limit N → ∞.

1.4 Overview of the Proofs

To prove the main theorems for the general setting, with time-dependent coefficients, and
obtain L p-distances and total variations distances for the position and velocity processes,
several technical improvements have been carried out.

On Existence and Uniqueness Under Assumptions 1.1, the existence and uniqueness, as well
as the boundedness of the moments, of the second-order system (1.1) and the limiting first-
order one (1.3) are standard results following Hölder’s and the Burkholder-Davis-Gundy
inequalities.

On Rate of Convergence in L p-Distances Combining the mentioned inequalities

and known estimates from [17] we can directly estimate E

[
sup0≤s≤t |Xα

s − Xs |p
]
and

E

[
sup0≤t≤T |Ỹ α

t − Ỹt |p
]
and obtain the rate of convergences in L p-distances, proving parts

(1) of both theorems.
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On rate of Convergence in Total-Variation Distances The Malliavin differentiablity of the
processes is followed from similar arguments as in [21]. Obtaining the rate of convergence in
total variation distances is the most technically challenging. Lemma 2.1, which provides an
upper bound estimate for the total variation between two random variables in terms of their
Malliavin derivatives, is the key in our analysis. This lemma enables us to obtain the desired
rates of convergence by estimating the corresponding quantities appearing in the right-hand
side of Lemma 2.1.

1.5 Organization of the Paper

The rest of of the paper is organized as follows. In Section 2, we give an overview of some
elements of Malliavin calculus and mean-field stochastic differential equations. The proofs
of the main theorems are given in Section 3.

2 Preliminaries

In this section, we provide some basic and directly relevant knowledge on the Malliavin
calculus and mean-field stochastic differential equations.

2.1 Malliavin Calculus

Let us recall some elements of stochastic calculus of variations (for more details see [21]).We
suppose that (Wt )t∈[0,T ] is defined on a complete probability space (�,F,F, P), where F =
(Ft )t∈[0,T ] is a natural filtration generated by the Brownian motion W . For h ∈ L2[0, T ] :=
H, we denote by W (h) the Wiener integral

W (h) =
T∫

0

h(t)dWt .

Let S denote the dense subset of L2(�,F, P) := L2(�) consisting of smooth random
variables of the form

F = f (W (h1), ...,W (hn)), (2.1)

where n ∈ N, f ∈ C∞
b (Rn), h1, ..., hn ∈ H. If F has the form (2.1), we define its Malliavin

derivative as the process DF := {Dt F, t ∈ [0, T ]} given by

Dt F =
n∑

k=1

∂ f

∂xk
(W (h1), ...,W (hn))hk(t).

More generally, for each k ≥ 1 we can define the iterated derivative operator on a cylin-
drical random variable by setting

Dk
t1,...,tk F = Dt1 ...Dtk F .

For any p, k ≥ 1, we shall denote by Dk,p the closure of S with respect to the norm

‖F‖p
k,p := E

[|F |p]+ E

[ ∫ T

0
|D1

t1F |pdt1
]

+ ... + E

[ ∫ T

0
...

∫ T

0
|Dk

t1,...,tk F |pdt1...dtk
]

.

A random variable F is said to be Malliavin differentiable if it belongs to D1,2.
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An important operator in the Malliavin’s calculus theory is the divergence operator δ,
which is the adjoint of the derivative operator D. The domain of δ is the set of all functions
u ∈ L2(�,H) such that

E
[|〈DF, u〉H|] ≤ C(u)‖F‖L2(�),

where C(u) is some positive constant depending on u. In particular, if u ∈ Dom(δ), then
δ(u) is characterized by the following duality relationship

E
[〈DF, u〉H

] = E[Fδ(u)].

The following lemma provides an upper bound on the total variation distance between two
random variables in terms of their Malliavin derivatives. This lemma will play an important
role in the analysis of the present paper.

Lemma 2.1 Let F1 ∈ D
2,2 be such that ‖DF1‖H > 0 a.s. Then, for any random variable

F2 ∈ D
1,2 we have

dTV (pF1 , pF2) ≤ ‖F1 − F2‖1,2
[

3
(
E‖D2F1‖4H⊗H

)1/4 (
E‖DF1‖−8

H
)1/4

+2
(
E‖DF1‖−2

H
)1/2

]

, (2.2)

provided that the expectations exist.

Proof From [26, Lemma 2.1] we have

dTV (pF1 , pF2) ≤ ‖F1 − F2‖1,2

⎡

⎢
⎣

⎛

⎝Eδ

(
DF1

‖DF1‖2H

)2
⎞

⎠

1/2

+
(
E‖DF1‖−2

H
)1/2

⎤

⎥
⎦ . (2.3)

Now using [21, Proposition 1.3.1], we get

Eδ

(
DF1

‖DF1‖2H

)2

≤ E

∥
∥
∥
∥
∥

DF1
‖DF1‖2H

∥
∥
∥
∥
∥

2

H
+ E

∥
∥
∥
∥
∥
D

(
DF1

‖DF1‖2H

)∥
∥
∥
∥
∥

2

H⊗H

= E ‖DF1‖−2
H + E

∥
∥
∥
∥
∥
D

(
DF1

‖DF1‖2H

)∥
∥
∥
∥
∥

2

H⊗H
.

(2.4)

Moreover, observing that

D

(
DF1

‖DF1‖2H

)

= D2F1
‖DF1‖2H

− 2
〈D2F1, DF1

⊗
DF1〉H⊗H

‖DF1‖4H
,

which implies that

∥
∥
∥
∥
∥
D

(
DF1

‖DF1‖2H

)∥
∥
∥
∥
∥H⊗H

≤ 3‖D2F1‖H⊗H
‖DF1‖2H

. (2.5)
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Substituting the inequality (2.5) into (2.4) and using Hölder’s inequality, one can derive
that

Eδ

(
DF1

‖DF1‖2H

)2

≤ E ‖DF1‖−2
H + 9E

(‖D2F1‖2H⊗H
‖DF1‖4H

)

≤ E ‖DF1‖−2
H + 9

(
E‖D2F1‖4H⊗H

)1/2 (
E‖DF1‖−8

H
)1/2

.

Finally, substituting the above estimate back into (2.3) and using the fundamental inequal-
ity (a + b)1/2 ≤ a1/2 + b1/2 for all a, b ≥ 0, we obtain (2.2), which completes the proof of
this lemma. �

2.2 Mean-field Stochastic Differential Equations

Let (�,F,P) be a probability space with an increasing family {Ft ; t ≥ 0} of sub-σ -algebras
of F and let {Wt ; t ≥ 0} be a one-dimensional Brownian motion process adapted to Ft .

The following lemma provides equivalent formulations of (1.1) and (1.3) as stochastic
integral equations.

Lemma 2.2 Equations (1.1) and (1.3) are, respectively, equivalent to the following equations

Xα
t = x0− 1

κ + γ

∫ t

0
g(s, Xα

s ) ds − γ

κ + γ

∫ t

0
Gα(s) ds+ 1

κ + γ

∫ t

0
σ(s, Xα

s )dWs

+ Iα
0 (t) + Iα

1 (t) − Iα
2 (t) − Iα

3 (t) + Iα
4 (t),

(2.6)

Xt = x0 − 1

κ + γ

∫ t

0
g(s, Xs) ds − γ

κ + γ

∫ t

0
G(s) ds + 1

κ + γ

∫ t

0
σ(s, Xs)dWs, (2.7)

where Gα(t) = E[g(t, Xα
t )]/κ , G(t) = E[g(t, Xt )]/κ , and

Iα
0 (t) = y0λ(t;α(κ + γ )),

Iα
1 (t) = 1

κ + γ

∫ t

0
exp [α(κ + γ )(u − t)]g(u, Xα

u )du,

Iα
2 (t) = γ

κ + γ

∫ t

0
exp [α(κ + γ )(u − t)]nα(u) du,

Iα
3 (t) = 1

κ + γ

∫ t

0
exp [α(κ + γ )(u − t)]σ(u, Xα

u )dWu,

Iα
4 (t) = γ

κ + γ

(

y0λ(t;ακ) +
∫ t

0
exp [ακ(u − t)]Gα(u)du

)

,

where λ(t; a) = (1/a)(1 − exp [−at]), nα(t) = E[Y α
t ].

Proof Firstly, we can rewrite the second equation of (1.1) as follows

dY α
t = [−ακY α

t − αg(t, Xα
t ) − αγ (Y α

t − nα(t))]dt + ασ(t, Xα
t )dWt with Y α

0 = y0.

Using Itô formula, we have the following expression

d(exp [α(κ + γ )t]Y α
t ) = −α exp [α(κ + γ )t]g(t, Xα

t )dt + αγ exp [α(κ + γ )t]nα(t)dt

+ α exp [α(κ + γ )t]σ(t, Xα
t )dWt ,
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which implies

Y α
t = y0 exp [−α(κ + γ )t] − α

∫ t

0
exp [α(κ + γ )(s − t)]g(s, Xα

s )ds

+αγ

∫ t

0
exp [α(κ + γ )(s − t)]nα(s) ds

+α

∫ t

0
exp [α(κ + γ )(s − t)]σ(s, Xα

s )dWs . (2.8)

Secondly, substituting this equation into the first equation of (1.1) we get

Xα
t = x0 + y0

∫ t

0
exp [−α(κ + γ )s]ds − α

∫ t

0

∫ s

0
exp [α(κ + γ )(u − s)]g(u, Xα

u )duds

+αγ

∫ t

0

∫ s

0
exp [α(κ + γ )(u − s)]nα(u) duds

+α

∫ t

0

∫ s

0
exp [α(κ + γ )(u − s)]σ(u, Xα

u )dWuds.

Now, we use integration by parts for the non-stochastic integral and Ito’s product rule for
the stochastic integral to get

Xα
t = x0 − 1

κ + γ

∫ t

0
g(u, Xα

u ) du + γ

κ + γ

∫ t

0
nα(u) du + 1

κ + γ

∫ t

0
σ(s, Xα)dW (s)

+Iα
0 (t) + Iα

1 (t) − Iα
2 (t) − Iα

3 (t), (2.9)

where the terms I α
i (t) (i = 0, 1, 2, 3) are defined in the statement of the lemma. On the other

hand, from the second equation of (1.1) we have

d

dt
nα(t) = −ακnα(t) − ακGα(t) with nα(0) = y0.

This implies that

nα(t) = y0 exp [−ακt] − ακ

∫ t

0
exp [ακ(u − t)]Gα(u)du. (2.10)

Integrating this equation over the interval [0, t] and changing the order of integration in
the double integral, we get

∫ t

0
nα(s) ds = y0λ(t, ακ) −

∫ t

0
Gα(s)ds +

∫ t

0
exp[ακ(s − t)]Gα(s)ds. (2.11)

Substituting (2.11) back into (2.9) we obtain (2.6).
The proof for Eq. (2.7) is similar. �
The existence and uniqueness of solutions to (2.6) and (2.7) under Assumptions 1.1 is

stated in the [15].

3 Proof of theMain Results

In this section, we present the proofs of the main Theorems 1.1, 1.2 and 1.3. We start with
the displacement process (Theorems 3.1 and 3.2 give Theorem 1.1) in Section 3.1. Then in
Section 3.2 we deal with the rescaled velocity process and the velocity process (Theorems
3.3 and 3.4 give Theorems 1.2 and 1.3 is Theorem 3.5).
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3.1 Approximation of the Displacement Process

In this section, we give explicit bounds on L p-distances and the total variation distance
between the solution Xα

t of (1.1) and the solution Xt of (1.3). We will repeatedly use the
following fundamental inequalities.

(i) Minkowski’s inequality: for p ≥ 1 and n real numbers a1, . . . , an , we have

∣
∣
∣

n∑

i=1

ai
∣
∣
∣
p ≤ n p−1

n∑

i=1

|ai |p. (3.1)

(ii) Hölder’s inequality: for p ≥ 1, t > 0 and measurable functions f we have
( ∫ t

0
| f (s)| ds

)p ≤ t p−1
∫ t

0
| f (s)|p ds. (3.2)

(iii) The Burkholder-Davis-Gundy (BDG) inequality for Brownian stochastic integrals, see
for instance [24, Section 17.7]: for 0 < p < ∞ and f ∈ L2([0, t],�) we have

E

[

sup
s∈[0,t]

∣
∣
∣

∫ s

0
fr dWr

∣
∣
∣
p
]

≤ CpE

[( ∫ t

0
| fs |2 ds

)p/2
]

, (3.3)

where Cp is a positive constant depending only on p.

Applying the BDG inequality (3.3) to solutions of (2.6) and (2.7) we obtain

E

[

sup
s∈[0,t]

∣
∣
∣

∫ s

0
σ(r , Xα

r ) dWr

∣
∣
∣
p
]

≤ CpE

[( ∫ t

0
|σ(s, Xα

s )|2 ds
)p/2

]

, (3.4)

E

[

sup
s∈[0,t]

∣
∣
∣

∫ s

0
(σ (r ,Xα

r )−σ(r ,Xr )) dWr

∣
∣
∣
p
]

≤CpE

[( ∫ t

0
|σ(s, Xα

s )−σ(s,Xs)|2 ds
)p/2

]

.

(3.5)

The next lemma provides important estimates on themoments of the displacement process
{Xα

t , t ∈ [0, T ]}, which will be helpful to prove the main results of this section. Hereafter,
we denote by C a generic constant which may vary at each appearance.

Lemma 3.1 Let {Xα(t), t ∈ [0, T ]} be the solution of (2.6) under Assumptions 1.1. Then,
for all p ≥ 2,

sup
α>0

E

[
sup

0≤t≤T
|Xα(t)|p

]
≤ C, (3.6)

and for all 0 ≤ t ≤ T ,

sup
α>0

E

[
|Xα(t) − x0|p

]
≤ Ct p/2, (3.7)

where C is a positive constant depending only on {x0, y0, κ, γ, K , p, T }.
Proof We first prove (3.6). We shall divide the proof into two steps.

Step 1:We evaluate the upper bound of the moments of each I α
i (t), i = 1, 2, 3, 4.

From definition of I α
1 (t) and Assumptions 1.1 we have

sup
0≤s≤t

|Iα
1 (s)| ≤ K

κ + γ
sup

0≤s≤t

∫ s

0
exp [α(κ + γ )(u − s)](1 + |Xα

u |)du

≤ Kt

κ + γ
+ K

κ + γ

∫ t

0
sup

0≤u≤s
|Xα

u |ds.
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Now Minkowski’s inequality (3.1) with n = 2 and Hölder’s inequality (3.2) yield

E

(
sup

0≤s≤t
|Iα
1 (s)|p

)
≤ 2p−1K pt p

(κ + γ )p
+ 2p−1K pt p−1

(κ + γ )p

∫ t

0
E

(
sup

0≤u≤s
|Xα

u |p
)
ds (3.8)

For Iα
2 (t), by substituting (2.10) into Iα

2 (t) and changing the order of integration in the
double integral, one can derive that

Iα
2 (t) = y0γ λ(t, αγ )

κ + γ
exp[−α(κ + γ )t] − 1

κ + γ

∫ t

0
exp [ακ(s − t)]E[g(s, Xα

s )]ds

+ 1

κ + γ

∫ t

0
exp [α(κ + γ )(s − t)]E[g(s, Xα

s )]ds.
(3.9)

Using Assumptions 1.1, Minkowski’s inequality (3.1) with n = 2 and Hölder’s inequality
(3.2) with noting that λ(t, a) ≤ t for all t ≥ 0, a ≥ 0, we get

sup
0≤s≤t

|Iα
2 (s)|p ≤

(
y0γ t

κ + γ
+ 2K

κ + γ

∫ t

0
(1 + E|Xα

s |)ds
)p

≤ 2p−1 (y0γ + 2K )p t p

(κ + γ )p
+ 22p−1K pt p−1

(κ + γ )p

∫ t

0
E( sup

0≤u≤s
|Xα

u |p)ds.
(3.10)

For Iα
3 , using the BDG inequality (3.4), Hölder’s inequality (3.2) and Assumptions 1.1,

we get

E

(
sup

0≤s≤t
|Iα
3 (s)|p

)
≤ Cp

(κ + γ )p
E

(∫ t

0
exp [2α(κ + γ )(s − t)]|σ(s, Xα

s )|2ds
)p/2

≤ 2p−1K pt
p−2
2 Cp

(κ + γ )p

∫ t

0
exp [pα(κ + γ )(s − t)](1 + E|Xα

s |p)ds

≤ 2p−1K pt
p
2 Cp

(κ+γ )p
+ 2p−1K pt

p−2
2 Cp

(κ + γ )p

∫ t

0
E

(
sup

0≤u≤s
|Xα

u |p
)
ds. (3.11)

Next, from Assumptions 1.1, Minkowski’s inequality (3.1) with n = 2 and Hölder’s
inequality (3.2) with noting that λ(t, a) ≤ t for all t ≥ 0, a ≥ 0, we get

sup
0≤s≤t

|Iα
4 (s)|p ≤ γ p

(κ + γ )p

[

y0t + K

κ

∫ t

0

(

1 + E

(
sup

0≤u≤s
|Xα

u |
)
ds

)

ds

]p

≤ 2p−1γ p

(κ + γ )p

[(

y0 + K

κ

)p

t p + K pt p−1

κ p

∫ t

0
E

(
sup

0≤u≤s
|Xα

u |p
)
ds

]

.

(3.12)
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Step 2:We estimate the integrand in the integrals in the right hand side of the above expres-
sions. From (2.6), applying Minkowski’s inequality with n = 9, Hölder’s inequality (3.2),
the BDG inequality (3.4) as well as Assumptions 1.1, we obtain

E

(
sup

0≤s≤t
|Xα

s |p
)

≤ 9p−1
[

x p
0 + t p−1

(κ + γ )p

∫ t

0
E|g(s, Xα

s )|pds+ γ pt p−1

(κ + γ )p

∫ t

0
|Gα(s)|p ds

+ Cp

(κ + γ )p
E

(∫ t

0
|σ(s, Xα

s )|2ds
)p/2

+ sup
0≤s≤t

|Iα
0 (s)|p + E

(
sup

0≤s≤t
|Iα
1 (s)|p

)

+ sup
0≤s≤t

|Iα
2 (s)|p + E

(
sup

0≤s≤t
|Iα
3 (s)|p

)
+ sup

0≤s≤t
|Iα
4 (s)|p

]

≤ 9p−1
[

x p
0 + 2p−1K p

(
t p−1

(κ + γ )p
+ γ pt p−1

κ p(κ + γ )p

)∫ t

0
(1 + E|Xα

s |p)ds

+2p−1K pt
p−2
2 Cp

(κ + γ )p

∫ t

0
(1 + E|Xα

s |p)ds + sup
0≤s≤t

|Iα
0 (s)|p

+E

(
sup

0≤s≤t
|Iα
1 (s)|p

)

+ sup
0≤s≤t

|Iα
2 (s)|p + E

(
sup

0≤s≤t
|Iα
3 (s)|p

)
+ sup

0≤s≤t
|Iα
4 (s)|p

]

.

From this, together with (3.8), (3.10), (3.11) and (3.12), we deduce that

E

(
sup

0≤s≤t
|Xα

s |p
)

≤ C + C
∫ t

0
E

(
sup

0≤u≤s
|Xα

u |p
)
ds, (3.13)

whereC is a positive constant depending on {x0, y0, κ, γ, K , p, T }. From (3.13), by applying
Gronwall’s lemma, we have

sup
α>0

E

[
sup

0≤t≤T
|Xα(t)|p

]
≤ C,

which completes the proof of (3.6).
Next we prove (3.7). From expression (2.6), applying Minkowski’s inequality (3.1) with

n = 8, Hölder’s inequality (3.2), the BDG inequality (3.4) and Assumptions 1.1 again, we
get

E|Xα
s − x0|p ≤ 8p−1

[
t p−1

(κ + γ )p

∫ t

0
E|g(s, Xα

s )|pds + γ pt p−1

(κ + γ )p

∫ t

0
|Gα(s)|p ds

+ Cp

(κ + γ )p
E

(∫ t

0
|σ(s, Xα

s )|2ds
)p/2

+ sup
0≤s≤t

|Iα
0 (s)|p

+E

(
sup

0≤s≤t
|Iα
1 (s)|p

)
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+ sup
0≤s≤t

|Iα
2 (s)|p + E

(
sup

0≤s≤t
|Iα
3 (s)|p

)
+ sup

0≤s≤t
|Iα
4 (s)|p

]

≤ 8p−1
[

2p−1K p
(

t p−1

(κ + γ )p
+ γ pt p−1

κ p(κ + γ )p

)∫ t

0
(1 + E|Xα

s |p)ds

+2p−1K pt
p−2
2 Cp

(κ + γ )p

∫ t

0
(1 + E|Xα

s |p)ds + sup
0≤s≤t

|Iα
0 (s)|p

+E

(
sup

0≤s≤t
|Iα
1 (s)|p

)

+ sup
0≤s≤t

|Iα
2 (s)|p + E

(
sup

0≤s≤t
|Iα
3 (s)|p

)
+ sup

0≤s≤t
|Iα
4 (s)|p

]

.

This, together with (3.8), (3.10), (3.11), (3.12) and (3.6), we get (3.7). �

In the following theorem, we obtain a rate of convergence in L p-distances in the
Smoluchowski-Kramers approximation for the displacement process.

Theorem 3.1 Let {Xα
t , t ∈ [0, T ]} and {Xt , t ∈ [0, T ]} be respectively the solution of (2.6)

and of (2.7) under Assumptions 1.1. Then, for all p ≥ 2, α ≥ 1 and t ∈ [0, T ],
E

[
sup

0≤s≤t
|Xα

s − Xs |p
]

≤ C
[
(λ(t, α(κ + γ )))

p
2 + (λ(t, ακ))p

]
,

where C is a positive constant depending on {x0, y0, κ, γ, K , L, p, T } but not on α and t.

Proof From (2.6) and (2.7), we have

Xα
t − Xt = 1

κ + γ

∫ t

0
(g(s, Xα

s ) − g(s, Xs)) ds

− γ

κ(κ + γ )

∫ t

0
(E[g(t, Xα

t )] − E[g(t, Xt )])ds

+ 1

κ + γ

∫ t

0
(σ (s, Xα

s ) − σ(s, Xs))dW (s) + Iα
0 (t) + Iα

1 (t) − Iα
2 (t)

−Iα
3 (t) + Iα

4 (t).

Similar to the proof of the previous lemma, by applyingMinkowski’s inequality (3.1) with
n = 8, Hölder’s inequality (3.2), the BDG inequality (3.5) and Assumptions 1.1, we get

E

[
sup

0≤s≤t
|Xα

s − Xs |p
]

≤ 8p−1
[

t p−1

(κ + γ )p

∫ t

0
E |g(s, Xα

s ) − g(s, Xs)|pds

+ γ pt p−1

κ p(κ + γ )p

∫ t

0

∣
∣
∣E[g(t, Xα

t )] − E[g(t, Xt )]
∣
∣
∣
p
ds

+ Cp

(κ + γ )p
E

(∫ t

0
|σ(s, Xα

s ) − σ(s, Xs)|2ds
)p/2

+ sup
0≤s≤t

|Iα
0 (s)|p + E

(
sup

0≤s≤t
|Iα
1 (s)|p

)

+ sup
0≤s≤t

|Iα
2 (s)|p + E

(
sup

0≤s≤t
|Iα
3 (s)|p

)
+ sup

0≤s≤t
|Iα
4 (s)|p

]
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≤ 8p−1
[

L pt p−1

(κ + γ )p

∫ t

0
E|Xα

s − Xs |pds

+ L pγ pt p−1

κ p(κ + γ )p

∫ t

0
E|Xα

s − Xs |pds

+ CpL pt
p
2

(κ + γ )p

∫ t

0
E|Xα

s − Xs |pds + sup
0≤s≤t

|Iα
0 (s)|p

+E

(
sup

0≤s≤t
|Iα
1 (s)|p

)

+ sup
0≤s≤t

|Iα
2 (s)|p + E

(
sup

0≤s≤t
|Iα
3 (s)|p

)
+ sup

0≤s≤t
|Iα
4 (s)|p

]

.

Next we estimate the terms E

(
sup

0≤s≤t
|Iα
i (s)|p

)
, i = 1, 2, 3, 4. We start with

E

(
sup

0≤s≤t
|Iα
1 (s)|p

)
. From definition of I α

1 (t) and Assumptions 1.1 andMinkowski’s inequal-

ity (3.1) with n = 2 we obtain that

|I α
1 (t)|p ≤ K p

(κ + γ )p

(∫ t

0
exp [α(κ + γ )(s − t)](1 + |Xα

s |)ds
)p

≤ 2pK p

(κ + γ )p

(

1 + sup
0≤t≤T

|Xα
t |p
)

(λ(t; (κ + γ )α))p.

This, together with the fact that the function t �→ λ(t, a) is increasing and Lemma 3.1,
implies

E

(
sup

0≤s≤t
|Iα
1 (s)|p

)
≤ 2pK p

(κ + γ )p

[

1 + E

(
sup

0≤t≤T
|Xα

t |p
)
]

(λ(t; (κ + γ )α))p

≤ C(λ(t; (κ + γ )α))p,

(3.14)

where C is a positive constant depending on {x0, y0, κ, γ, K , p, T }. Next, using (3.9) and
Lemma 3.1, we get

|I α
2 (t)| ≤ y0λ(t;α(κ + γ )) + K

κ + γ

∫ t

0
exp [ακ(s − t)][1 + E(|Xα

s |)] ds

+ K

κ + γ

∫ t

0
exp [α(κ + γ )(s − t)][1 + E(|Xα

s |)] ds

≤ C

[

λ(t;α(κ + γ ) +
∫ t

0
(exp [ακ(s − t)] + exp [α(κ + γ )(s − t)]) ds

]

≤ C
[
λ(t;α(κ + γ ) + λ(t, ακ)

]
,

where C is constant depending on {x0, y0, κ, γ, K , p}. Thus,

sup
0≤s≤t

|Iα
2 (s)|p ≤ C

[
(λ(t, α(κ + γ )))p + (λ(t, ακ))p

]
. (3.15)
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Applying the BDG inequality (3.3), Hölder’s inequality (3.2) and Lemma 3.1, one can
derive that

E

(
sup

0≤s≤t
|Iα
3 (s)|p

)
≤ Cp

(κ + γ )p
E

(∫ t

0
exp [2α(κ + γ )(s − t)]|σ(s, Xα

s )|2ds
)p/2

≤ Cp

(κ + γ )p

(∫ t

0
exp

[
p

p − 1
α(κ + γ )(s − t)

]

ds

)p/2−1

×
∫ t

0
exp

[ p

2
α(κ + γ )(s − t)

]
E|σ(s, Xα

s )|p ds

≤ 2p−1Cp

(κ + γ )p

(∫ t

0
exp

[
p

p − 1
α(κ + γ )(s − t)

]

ds

)p/2−1

×
∫ t

0
exp

[ p

2
α(κ + γ )(s − t)

]
(1 + E|Xα

s |p)ds

≤ C

(

λ(t,
p

p − 1
α(κ + γ ))

)p/2−1

λ(t,
p

2
α(κ + γ )),

where C is constant depending on {x0, y0, κ, γ, K , p, T }. On the other hand, for all t > 0
and a > 0, we have

∂λ(t, a)

∂a
= (1 + at)e−at − 1

a2
< 0.

Thus the function a �→ λ(t, a) is decreasing. Hence we get

E

(
sup

0≤s≤t
|Iα
3 (s)|p

)
≤ C (λ(t, α(κ + γ )))p/2 .

Now we consider sup
0≤s≤t

|Iα
4 (s)|p . Using Lemma 3.1 we can derive that

sup
0≤s≤t

|Iα
4 (s)| ≤ γ

κ + γ

[

y0λ(t;ακ) + K

κ

∫ t

0
exp [α(κ + γ )(u − t)] [1 + E(|Xα

u |)] du
]

.

Thus,
sup

0≤s≤t
|Iα
4 (s)|p ≤ C

[
(λ(t, α(κ + γ )))p + (λ(t, ακ))p

]
,

whereC is constant depending on {x0, y0, κ, γ, K , L, p}. From the above estimates, together
with the fact that λ(t, α(κ + γ )) ≤ t ≤ T , one sees that

E

[
sup

0≤s≤t
|Xα

s − Xs |p
]

≤ C

[

t2p−1
∫ t

0
E|Xα

s − Xs |pds +
4∑

i=0

E

(
sup

0≤s≤t
|I α
i (s)|p

)
]

≤ C

[∫ t

0
E

[
sup

0≤u≤s
|Xα

u − Xu |p
]
ds + (λ(t, α(κ + γ )))

p
2 + (λ(t, ακ))p

]

,

where C is constant depending only on {x0, y0, κ, γ, K , L, p}. Using Gronwall’s inequality,
we obtain the claimed estimate and complete the proof. �

Remark 3.1 1. Since 1 − exp(−ta) ≤ ta for all t > 0, a > 0, we have

λ(t, α(κ + γ )) = 1 − exp(−α(κ + γ )t)

α(κ + γ )
≤ t .
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Therefore,

E

[
sup

0≤s≤t
|Xα

s − Xs |p
]

≤ C
[
(λ(t, α(κ + γ )))

p
2 + (λ(t, ακ))p

]

≤ C
[
(λ(t, α(κ + γ )))

p
2 + (λ(t, ακ))p

]

≤ C(t p/2 + t p) → 0 as t → 0.

2. In general, when the drift and diffusion coefficients depend on both space and time
variables, the constant C in Theorem 3.1 depends on the final time T . However, we now
show that when g and σ do not depend on x , i.e. g(t, x) = g(t), σ (t, x) = σ(t), then C
does not depend on T . In fact, by Assumptions 1.1 we have |g(t)| ≤ K and |σ(t)| ≤ K .
By virtue of proof of Theorem 3.1 we obtain

E

[
sup

0≤s≤t
|Xα

s − Xs |p
]

≤ 5p−1
[

sup
0≤s≤t

|Iα
0 (s)|p + E

(
sup

0≤s≤t
|Iα
1 (s)|p

)
+ sup

0≤s≤t
|Iα
2 (s)|p

+ E

(
sup

0≤s≤t
|Iα
3 (s)|p

)
+ sup

0≤s≤t
|Iα
4 (s)|p

]

≤ C
[
(λ(t, α(κ + γ )))

p
2 + (λ(t, ακ))p

]
,

where C is a positive constant depending on {x0, y0, κ, γ, K , p} but not on α, t and T .

In the following lemma, we show Malliavin differentiability of Xα
t and Xt .

Lemma 3.2 Under Assumptions 1.1, the solutions {Xα
t , t ∈ [0, T ]} and {Xt , t ∈ [0, T ]} of

(2.6) and (2.7) respectively are Malliavin differentiable random variables. Moreover, the
derivatives Dr Xα

t , Dr Xt satisfy Dr Xα
t = Dr Xt = 0 for r ≥ t and for 0 ≤ r < t ≤ T ,

Dr X
α
t = σ(r , Xα

r )

κ + γ
(exp [α(κ + γ )(r − t)] − 1) − 1

κ + γ

∫ t

r
ḡα(s)Dr X

α
s ds

+ 1

κ + γ

∫ t

r
σ̄ α(s)Dr X

α
s dWs + 1

κ + γ

∫ t

r
exp [α(κ + γ )(s − t)]ḡα(s)Dr X

α
s ds

+ 1

κ + γ

∫ t

r
exp [α(κ + γ )(s − t)]σ̄ α(s)Dr X

α
s dWs, (3.16)

Dr Xt = σ(r , Xr )

κ + γ
− 1

κ + γ

∫ t

r
ḡ(s)Dr Xsds + 1

κ + γ

∫ t

r
σ̄ (s)Dr Xs dWs, (3.17)

where ḡ(s), ḡα(s), σ̄ (s), σ̄ α(s) are adapted stochastic processes and are bounded by L,
where L is the constant from Assumption 1.1.

Proof From the second equation of (1.1) we have

Y α
t = y0−α(κ +γ )

∫ t

0
Y α
s ds−α

∫ t

0
g(s, Xα

s )ds−αγ

∫ t

0
E(Y α

s ) ds+α

∫ t

0
σ(s, Xα

s ) dWs .
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Using Minkowski’s inequality (3.1) with n = 5, Hölder’s inequality (3.2) with p = 2, the
BDG inequality (3.3), Assumptions 1.1 and Lemma 3.1 we get

E( sup
0≤s≤t

|Y α
s |2) ≤ 5

(

y20 + tα2(κ + γ )2
∫ t

0
E|Y α

s |2ds + tα2
∫ t

0
g2(s, Xα

s ) ds

− tα2γ 2
∫ t

0
E|Y α

s |2 ds + α2
∫ t

0
σ 2(s, Xα

s ) ds

)

≤ C

(

1 +
∫ t

0
E( sup

0≤u≤s
|Y α

u |2) ds +
∫ t

0
(1 + E|Xα

s |2) ds
)

≤ C

(

1 +
∫ t

0
E( sup

0≤u≤s
|Y α

u |2) ds
)

.

Applying Gronwall’s lemma we obtain

E

[
sup

0≤t≤T
|Y α

t |2
]

≤ C .

This, together with Lemma 3.1 we deduce that E[ sup
0≤t≤T

|Y α
t |] and E[ sup

0≤t≤T
|Xα

t |] are

bounded. Then, by Assumptions 1.1 and the dominated convergence theorem, the integrals
Iα
0 (t), Iα

2 (t) and Iα
4 (t) are continuous functions.

Let us define

f (t) := x0 − γ

κ + γ

∫ t

0
Gα(u) du + Iα

0 (t) − Iα
2 (t) + Iα

4 (t).

Then f (t) is continuous function in [0, T ] and Equation (2.6) becomes

Xα
t = f (t) + 1

κ + γ

∫ t

0
(exp [α(κ + γ )(s − t)] − 1) g(s, Xα

s ) ds

+ 1

κ + γ

∫ t

0
(exp [α(κ + γ )(s − t)] − 1)σ (s, Xs) dWs .

(3.18)

Now, we consider the Picard approximation sequence {Xα,n
t , t ∈ [0, T ]}n≥0 given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Xα,0
t = f (t),

Xα,n+1
t = f (t) + 1

κ + γ

∫ t

0
(exp [α(κ + γ )(s − t)] − 1) g(s, Xα,n

s ) ds

+ δ

κ + γ

∫ t

0
(exp [α(κ + γ )(s − t)] − 1)σ (s, Xα,n

s ) dWs, t ∈ [0, T ], n ≥ 0.

From this, using the same method as in the proof of [21, Theorem 2.2.1], we conclude that
the solution {Xα

t , t ∈ [0, T ]} of (3.18) (thus, of (2.6)) is Malliavin’s differentable. Obviously,
the solution {Xα

t , t ∈ [0, T ]} is F-adapted. Hence, we always have Dθ Xα
t = 0 for θ > t . For

θ ≤ t, from [21, Proposition 1.2.4] and Lipschitz property of g and σ , there exist adapted
processes ḡα(s), σ̄ α(s) uniformly bounded by L such that Dθ g(s, Xα

s ) = ḡα(s)Dθ Xα
s and

Dθσ (s, Xα
s ) = σ̄ α(s)Dθ Xα

s . Then we obtain (3.16) by applying the operator D to the
equation (3.18).

The proof for the solution Xt of (2.7) is similar. �
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Remark 3.2 If g and σ are continuously differentiable, then ḡ(s) = g′
2(s, Xs), ḡα(s) =

g′
2(s, X

α
s ), σ̄ (s) = σ ′

2(s, Xs) and σ̄ α(s) = σ ′
2(s, X

α
s ). Here, for a function h(t, x), we use

the convention h′
2(t, x) = ∂h(t,x)

∂x .

In the next lemma, we show that the moments of the Malliavin’s derivative of solutions
of (2.7) are bounded.

Lemma 3.3 Let {Xt , t ∈ [0, T ]} be the solution of (2.7) with Assumptions 1.1. Then, for all
p ≥ 2, we have

sup
0≤t,r≤T

E(|Dr Xt |p) < ∞.

Proof Using Minkowski’s inequality (3.1) with n = 3, Hölder’s inequality (3.2), the BDG
inequality (3.3), Assumptions 1.1 and Lemma 3.1, and noting that |ḡ(s)| ≤ L, |σ̄ (s)| ≤ L ,
it follows from (3.17) that

E[|Dr Xt |p] ≤ 3p−1
(
E[|σ(r , Xr )|p]

(κ + γ )p
− 1

(κ + γ )p
E

(∫ t

r
ḡ(s)Dr Xs ds

)p

+ 1

(κ + γ )p
E

(∫ t

r
|σ̄ (s)Dr Xs |2 ds

)p/2
)

≤ 3p−1
(
K p(1 + E[|Xt |p])

(κ + γ )p
− L p(t − r)p−1

(κ + γ )p

∫ t

r
E[|Dr Xs |p] ds

+ L p(t − r)p/2−1

(κ + γ )p

∫ t

r
E[|Dr Xs |p]ds

)

≤ C

[

1 +
∫ t

r
|Dr X

α(s)|p ds
]

,

where C is a positive constant depending only on {κ, γ, K , L, p, T }.
Taking the expectation and using Gronwall’s inequality, we obtain the claimed estimate.�

The following lemma provides an upper bound for the difference between the derivatives
of the solutions of (2.6) and (2.7).

Lemma 3.4 Let {Xα
t , t ∈ [0, T ]} and {Xt , t ∈ [0, T ]} be respectively the solution of (2.6)

and of (2.7) under Assumptions 1.1 and 1.2. Then, for all α ≥ 1,

E
[‖DXα

t − DXt‖2H
] ≤ C(λ(t, α(κ + γ )) + (λ(t, ακ))2),

where C is a positive constant depending only on {x0, y0, κ, γ, K , L, T }.

Proof UnderAssumptions 1.2, g and σ are twice differentiable, thus (see Remark 3.2) ḡ(s) =
g′
2(s, Xs), ḡα(s) = g′

2(s, X
α
s ), σ̄ (s) = σ ′

2(s, Xs) and σ̄ α(s) = σ ′
2(s, X

α
s ). Furthermore,

|g′
2(s, X

α
s ) − g′

2(s, Xs)| ≤ M |Xα
s − Xs |, |σ ′

2(s, X
α
s ) − σ ′

2(s, Xs | ≤ M |Xα
s − Xs |. (3.19)
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From (3.16) and (3.17) we have

Dr X
α
t − Dr Xt =

(
σ(r , Xα

r )

κ + γ
(exp [α(κ + γ )(r − t)] − 1) − σ(r , Xr )

κ + γ

)

− 1

κ + γ

∫ t

r

(
g′
2(s, X

α
s )Dr X

α
s − g′

2(s, Xs)Dr Xs
)
ds

+ 1

κ + γ

∫ t

r

(
σ ′
2(s, X

α
s )Dr X

α
s − σ ′

2(s, Xs)Dr Xs
)
dWs

+ 1

κ + γ

∫ t

r
exp [α(κ + γ )(s − t)]g′

2(s, X
α
s )Dr X

α
s ds

+ 1

κ + γ

∫ t

r
exp [α(κ + γ )(s − t)]σ ′

2(s, Xs)Dr X
α
s dWs .

(3.20)

Now, we shall estimate each term in the right hand side of (3.20). First, using Assumptions
1.1, Lemma 3.1 and Theorem 3.1 for p = 2, we can derive that

E

(
σ(r , Xα

r )

κ + γ
(exp [α(κ + γ )(r − t)] − 1) − σ(r , Xr )

κ + γ

)2

≤ 2

[
E
[|σ(r , Xα

r ) − σ(r , Xr )|2
]

(κ + γ )2
+ E

[|σ(r , Xα
r )|2]

(κ + γ )2
exp [2α(κ + γ )(r − t)]

]

≤ 2

[
L2

E|Xα
r − Xr |2

(κ + γ )2
+ 2K 2(1 + E[|Xα

r |2])
(κ + γ )2

exp [2α(κ + γ )(r − t)]
]

≤ C
[
λ(t, α(κ + γ )) + (λ(t, ακ))2 + exp [2α(κ + γ )(r − t)]] ,

where C is constant depending only on {x0, y0, κ, γ, K , L, T }. From Hölder’s inequality,
Assumptions 1.1, Lemma 3.1, Lemma 3.3 and Theorem 3.1 for p = 4, together with (3.19)
we get

E

(∫ t

r

(
g′
2(s, X

α
s )Dr X

α
s − g′

2(s, Xs)Dr Xs
)
ds

)2

≤ 2E

(∫ t

r

(
g′
2(s, X

α
s ) − g′

2(s, Xs)
)
Dr Xs ds

)2

+ 2E

(∫ t

r
g′
2(s, X

α
s )
(
Dr X

α
s − Dr Xs

)
ds

)2

≤ 2(t − r)

[ ∫ t

r
E| (g′

2(s, X
α
s ) − g′

2(s, Xs)
)
Dr Xs |2 ds

+
∫ t

r
E
∣
∣g′

2(s, X
α
s )
(
Dr X

α
s − Dr Xs

)∣
∣2 ds

]

≤ 2M2(t − r)
∫ t

r

(
E
[|Xα

s − Xs |4
])1/2 (

E|Dr Xs |4
)1/2

ds

+ 2L2(t − r)
∫ t

r
E
[|Dr X

α
s − Dr Xs |2

]
ds

≤ C

(

λ(t, α(κ + γ )) + (λ(t, ακ))2 +
∫ t

r
E
[|Dr X

α
s − Dr Xs |2

]
ds

)

.
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By Itô’s isometry formula, Hölder’s inequality, Assumptions 1.1, Lemma 3.1, Lemma 3.3
and Theorem 3.1 for p = 4, together with (3.19), we have

E

(∫ t

r

(
σ ′
2(s, X

α
s )Dr X

α
s − σ ′

2(s, Xs)Dr Xs
)
dWs

)2

≤ 2E

(∫ t

r

(
σ ′
2(s, X

α
s ) − σ ′

2(s, Xs)
)
Dr Xs dWs

)2

+ 2E

(∫ t

r
σ ′
2(s, X

α
s )
(
Dr X

α
s − Dr Xs

)
dWs

)2

≤ 2
∫ t

r
E| (σ ′

2(s,X
α
s )−σ ′

2(s,Xs)
)
Dr Xs |2 ds+2

∫ t

r
E|σ ′

2(s,X
α
s )
(
Dr X

α
s −Dr Xs

) |2 ds

≤ 2M2
∫ t

r

(
E|Xα

s − Xs |4
)1/2 (

E|Dr Xs |4
)1/2

ds + 2L2
∫ t

r
E|Dr X

α
s − Dr Xs |2ds

≤ C

[

λ(t, α(κ + γ )) + (λ(t, ακ))2 +
∫ t

r
E
[|Dr X

α
s − Dr Xs |2

]
ds

]

.

Next, using Hölder’s inequality, Assumptions 1.1 and Lemma 3.3 one sees that

E

(∫ t

r
exp [α(κ + γ )(s − t)]g′

2(s, X
α
s )Dr X

α
s ds

)2

≤ (t − r)L2
∫ t

r
exp [2α(κ + γ )(s − t)]E[|Dr X

α
s |2]ds

≤ C
∫ t

r
exp [2α(κ + γ )(s − t)]ds

≤ Cλ(t, α(κ + γ )).

By the same estimate for the last term in the right hand side of (3.20), we can obtain

E

(∫ t

r
exp [α(κ + γ )(s − t)]σ ′

2(s, Xs)Dr X
α
s dWs

)2

≤ L2
∫ t

r
exp [2α(κ + γ )(s − t)]E[|Dr X

α
s |2] ds

≤ C
∫ t

r
exp [2α(κ + γ )(s − t)]ds

≤ Cλ(t, α(κ + γ )).

From the above estimates, togetherwith the fact that the functiona �→ λ(t, a) is decreasing
one can derive that

∫ t

0
E
[|Dr X

α
t − Dr Xt |2

]
dr

≤ C
∫ t

0

(

λ(t, α(κ + γ )) + (λ(t, ακ))2 + exp [2α(κ + γ )(r − t)] +
∫ t

r
E
[|Dr X

α
u − Dr Xu |2

]
du

)

dr

≤ C

[

λ(t, α(κ + γ )) + (λ(t, ακ))2 + λ(t, 2α(κ + γ )) +
∫ t

0
dr
∫ t

r
E
[|Dr Xu − Dr X

α
u |2] du

]

≤ C

[

λ(t, α(κ + γ )) + (λ(t, ακ))2 +
∫ t

0
du
∫ u

0
E
[|Dr Xu − Dr X

α
u |2] dr

]

,
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where C is constant depending only on {x0, y0, κ, γ, K , L,M, T }.
Let φ(t) :=

∫ t

0
E
[|Dr Xt − Dr X

α
t |2] dr , then we have

φ(t) ≤ C

[

λ(t, α(κ + γ )) + (λ(t, ακ))2 +
∫ t

0
φ(u) du

]

.

Thus, applying Gronwall’s inequality, we get

φ(t) ≤ C(λ(t, α(κ + γ )) + (λ(t, ακ))2) exp (Ct),

where C is constant depending only on {x0, y0, κ, γ, K , L,M, T }. This completes the proof
of the lemma. �

Now, we give explicit bounds on the total variation distance between the solution Xα(t)
of (2.6) and the solution Xt of (2.7).

Theorem 3.2 Let {Xα
t , t ∈ [0, T ]} and {Xt , t ∈ [0, T ]} be, respectively, the solution of

(2.6)and of (2.7) with Assumptions 1.1 and 1.2. We further assume that |σ(t, x)| ≥ σ0 > 0
for all (t, x) ∈ [0, T ] × R. Then, for each α ≥ 1 and t ∈ (0, T ],

dTV (pXα
t
, pXt ) ≤ C

√

t−1(λ(t, α(κ + γ )) + (λ(t, ακ))2),

where C is a constant depending only on {x0, y0, σ0, κ, γ, K , L, M, T }.
Proof Lemma 2.1 gives

dTV (pXα
t
, pXt )≤‖Xα

t − Xt‖1,2
[

3
(
E‖D2Xt‖4H⊗H

)1/4 (
E‖DXt‖−8

H
)1/4+2

(
E‖DXt‖−2

H
)1/2

]

.

Thanks to Theorem 3.1 and Lemma 3.4, we obtain

dTV (pXα
t
, pXt ) ≤ C

√

(λ(t, α(κ + γ )) + (λ(t, ακ))2)

×
[

3
(
E‖D2Xt‖4H⊗H

)1/4 (
E‖DXt‖−8

H
)1/4 + 2

(
E‖DXt‖−2

H
)1/2

]

,

(3.21)

whereC is a constant depending only on {x0, y0, κ, γ, K , L, T }. To proceed, wewill estimate
the last two terms in (3.21). To this end, we will estimate E‖DXt‖−γ

H for γ > 0 adopting the
techniques used in the proof of Proposition 2.1.3 in [21]. From (3.17) and the fundamental

inequality (a + b + c)2 ≥ a2
2 − 2(b2 + c2), we have

|Dθ Xt |2 ≥ σ(θ, Xθ )

2(κ + γ )2
− 2

(κ + γ )2

(∫ t

θ

g′
2(s, Xs)Dθ Xs ds

)2

− 2

(κ + γ )2

(∫ t

θ

σ ′
2(s, Xs)Dθ XsdWs

)2

.

For each z ≥ z0 := 4(κ+γ )2

σ 2
0 t

, the real number ε = 4(κ+γ )2

zσ 2
0 t

belongs to (0, 1]. Hence,

‖DXt‖2H ≥
∫ t

t(1−ε)

|Dθ Xt |2dθ ≥ σ 2
0 tε

2(κ + γ )2
− Iz(t) = 2

y
− Iz(t),
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where Iz(t) is given by

Iz(t) := 2

(κ + γ )2

∫ t

t(1−ε)

(∫ t

θ

g′
2(s, Xs)Dθ Xs ds

)2

dθ

+ 2

(κ + γ )2

∫ t

t(1−ε)

(∫ t

θ

σ ′
2(s, Xs)Dθ XsdWs

)2

dθ.

By Markov’s inequality, for all p ≥ 2 we get

P

(

‖DXt‖2H ≤ 1

z

)

≤ P

(
2

z
− Iz(t) ≤ 1

z

)

= P

(

Iz(t) ≥ 1

z

)

≤ z p/2E
(|Iz(t)|p/2

)
.

(3.22)

By using Minkowski’s inequality (3.1) with n = 2, Hölder’s inequality (3.2), the BDG
inequality (3.3) and Assumptions 1.1, it follows from Lemma 3.3 that

E|Iz(t)|p/2 ≤ 2p−1

(κ + γ )p

(

E

[∫ t

t(1−ε)

(∫ t

θ

g′
2(s, Xs)Dθ Xs ds

)2

dθ

]p/2

+ E

[∫ t

t(1−ε)

(∫ t

θ

σ ′
2(s, Xs)Dθ XsdWs

)2

dθ

]p/2 )

≤ 2p−1L p(tε)
p−2
2

(κ + γ )p

(∫ t

t(1−ε)

E

(∫ t

θ

|Dθ Xs |2ds
)p/2

dθ

+
∫ t

t(1−ε)

E

(∫ t

θ

|Dθ Xs |dWs

)p

dθ

)

≤ 2p−1L p(tε)
p−2
2

(κ + γ )p

(∫ t

t(1−ε)

(t − θ)
p−2
2

∫ t

θ

E|Dθ Xs |pdsdθ

+
∫ t

t(1−ε)

(∫ t

θ

E|Dθ Xs |2ds
)p/2

dθ

)

≤ C(tε)
p−2
2

(∫ t

t(1−ε)

(t − θ)
p
2 dθ +

∫ t

t(1−ε)

(t − θ)p/2 dθ

)

= C(tε)
p−2
2 (tε)

p
2 +1 = C

(
4(κ + γ )2

zσ 2
0

)p

.

(3.23)

Combining (3.22) and (3.23) we deduce that

P

(

‖DXt‖2H ≤ 1

z

)

≤ Cz−p/2

(
4(κ + γ )2

‖σ‖20

)p

∀ p ≥ 2, z ≥ z0.
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We recall here that z0 = 4(κ+γ )2

tσ 2
0

. For any γ ≥ 1 and p = 2γ − 1, we have

E

(
‖DXt‖−2γ

H
)

=
∫ ∞

0
γ zγ−1P

(
‖DXt‖−2

H > z
)
dz

≤
∫ z0

0
γ zγ−1dz +

∫ ∞

z0
γ zγ−1P

(

‖DXt‖2H <
1

z

)

dz

≤ zγ0 + γC
∫ ∞

z0
zγ−1z−p/2

(
4(κ + γ )2

σ 2
0

)p

dz

= zγ0 + γC

(
4(κ + γ )2

σ 2
0

)p
z
γ− p

2
0

γ − p
2

≤ C
(
t−γ + t

p
2 −γ

)
= C

(

t−γ + T−1/2
(
T

t

)1/2
)

≤ C

(

t−γ + T−1/2
(
T

t

)γ)

= Ct−γ .

(3.24)

where C is a constant depending only on {x0, y0, σ0, κ, γ, K , L, T }.
We continue to estimate the termE‖D2Xt‖4H⊗H appearing in the right-hand side of (3.21).

From (3.16), for γ, θ ≤ t, under Assumptions 1.2, we get

Dγ Dθ Xt = σ ′(θ, Xθ )Dγ Xθ + σ ′(γ, Xθ )Dθ Xγ

+
∫ t

θ∨γ

(
g′′(s, Xs)Dθ XsDγ Xs + g′(s, Xs)Dγ Dθ Xs

)
ds

+
∫ t

θ∨γ

(
σ ′′(s, Xs)Dθ XsDγ Xs + σ ′(s, Xs)Dγ Dθ Xs

)
dWs,

Now, using Minkowski’s inequality (3.1) with n = 4, Hölder’s inequality (3.2), the BDG
inequality (3.3), Assumptions 1.1 and 1.2, we can deduce

E|Dγ Dθ Xt |4 ≤ 64

[

L4
E|Dγ Xθ |4 + L4

E|Dθ Xγ |4

+ 8(t3+C4t)
∫ t

θ∨γ

(
M4(E|Dθ Xs |2)2(E|Dγ Xs |2)2+L4

E|Dγ Dθ Xs |4
)
ds

]

.

This, with together Lemma 3.3, gives us

E
[|Dγ Dθ Xt |4

] ≤ C + C
∫ t

θ∨γ

E
[|Dγ Dθ Xs |4

]
ds,

where C is a positive constant. By Gronwall’s inequality, we can verify that

E
[|Dγ Dθ Xt |4

] ≤ CeC(t−θ∨γ ) ≤ C ∀ 0 ≤ θ, γ ≤ t ≤ T .

Therefore,

E‖D2Xt‖4H⊗H ≤ t2
∫ t

0

∫ t

0
E
[|Dγ Dθ Xt |4

]
dθ dγ ≤ t2

∫ t

0

∫ t

0
Cdθdγ = Ct4, (3.25)

where C is a constant depending only on {x0, y0, κ, γ, K , L, T }.
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Combining (3.21), (3.24) and (3.25), we can conclude that

dTV (pXα
t
, pXt ) ≤C

√

(λ(t, α(κ + γ )) + (λ(t, ακ))2) × [
C + Ct−1/2]

≤ C
√

t−1(λ(t, α(κ + γ )) + (λ(t, ακ))2),

where C is a constant depending only on {x0, y0, σ0, κ, γ, K , L, M, T }. This completes the
proof. �

Similar to Remark 3.1, in the following Remark, we show that the constant C in Theorem
3.2 does not depend on the final time T when g(t, x) = g(t), σ (t, x) = σ(t).

Remark 3.3 In the case g(t, x) = g(t), σ (t, x) = σ(t) we see that

E
[‖DXα

t − DXt‖2H
] = 1

(κ + γ )2

∫ t

0
σ 2(r) exp [2α(κ + γ )(r − t)]dr

≤ K

(κ + γ )2
λ(t, α(κ + γ )).

Moreover, if we assume that σ(t) ≥ σ0, then we get

dTV (pXα
t
, pXt ) ≤ C

√

t−1(λ(t, α(κ + γ )) + (λ(t, ακ))2),

where C is a positive constant depending on {x0, y0, κ, γ, K , p} but not on α, t and T .

From Theorem 3.2, together with the fact that for all t > 0 and a > 0, λ(t, a) < 1
a , we

obtain the following Corollary, which provides an explicit estimate for dTV (pXα
t
, pXt ) in

terms of α showing that it vanishes when α tends to +∞.

Corollary 3.1 Let {Xα
t , t ∈ [0, T ]} and {Xt , t ∈ [0, T ]} be, respectively, the solution of (2.6)

and of (2.7) with Assumptions 1.1 and 1.2. We further assume that |σ(t, x)| ≥ σ0 > 0 for all
(t, x) ∈ [0, T ] × R. Then, for each α ≥ 1 and t ∈ (0, T ],

dTV (pXα
t
, pXt ) ≤ min{Cα−1/2t−1/2, 1},

where C is a constant depending only on {x0, y0, σ0, κ, γ, K , L, M, T }.
The following remark shows that the rate of convergence of Xα

t to Xt as α tends to +∞
obtained in Theorem 3.2 and Corollary 3.1 is optimal.

Remark 3.4 Weconsider the equations (1.1) and (1.3)with x0 = y0 = 0, b(t, x) = σ(t, x) =
1. By Corollary 3.1 we have

dTV (pXα
t
, pXt ) ≤ Ct−1/2α−1/2 = O(

1√
α

), α → ∞.

On the other hand, by solving (1.1) and (1.3) explicitly, we obtain

Xα
t = − t

κ + γ
− γ t

(κ + γ )κ
+ Wt

κ + γ
− 1

κ + γ

∫ t

0
exp [α(κ + γ )(u − t)]dWu + 1

κ
λ(t, ακ),

and

Xt = − t

κ + γ
− γ t

(κ + γ )κ
+ Wt

κ + γ
.
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It follows that both Xα
t , Xt are normal random variables with means and variances given

explicitly by

μ := EXt = − t

κ + γ
− γ t

(κ + γ )κ
, σ 2 := VarXt = t

(κ + γ )2

μα = EXα
t = − t

κ + γ
− γ t

(κ + γ )κ
+ 1

κ
λ(t, ακ),

σ 2
α := Var(Xα

t ) = 1

(κ + γ )2

∫ t

0

(
1 − exp [α(κ + γ )(u − t)])2du.

Then, applying Theorem 1.3 in [7], we get

dTV (pXα
t
, pXt ) ≥ 1

200
min

{

1,max

{ |σ 2
α − σ 2|

min{σ, σα}2 ,
|μα − μ|
min{σ, σα}

}}

≥ 1

200
min

{

1,
|μα − μ|

σα

}

= 1

200
min

⎧
⎪⎨

⎪⎩
1,

(κ + γ )λ(t, ακ)

κ
(∫ t

0

(
1 − exp [α(κ + γ )(u − t)])2du

)1/2

⎫
⎪⎬

⎪⎭

≥ 1

200
min

⎧
⎪⎨

⎪⎩
1,

(κ + γ )λ(t, ακ)

κ
(∫ t

0

(
1 − exp [α(κ + γ )(u − t)])du

)1/2

⎫
⎪⎬

⎪⎭

= 1

200
min

{

1,
(κ + γ )λ(t, ακ)

κ (λ(t, α(κ + γ )))1/2

}

= O(
1√
α

), α → ∞.

Thus, in this simple example, we obtain an optimal rate of convergence of order= O( 1√
α
)

for dTV (pXα
t
, pXt ).

3.2 Approximation theVelocity and RescaledVelocity Processes

In this section, we establish rates of convergence in L p-distances and in the total variation
distance for the velocity and rescaled velocity processes.Wewill discuss the re-scaled velocity
process first since in this case, our results are applicable to more general settings where both
external forces and diffusion coefficients can be dependent on both x and t , i.e. g = g(t, x)
and σ = σ(t, x).

3.2.1 The Re-scaled Velocity Process

From the second equation of (1.1) we can see that the process Y α
t
α

satisfies

{
Y α

t
α

= y0 − (κ + γ )
∫ t
0 Y

α
s
α
ds − ∫ t

0 g(
s
α
, Xα

s
α
)ds − γ

∫ t
0 E(Y α

s
α
)ds + α

∫ t
0 σ( s

α
, Xα

s
α
)dW s

α

Xα
0 = x0.

(3.26)
We recall the definition of the re-scaled velocity process introduced in the Introduction

Ỹ α
t = 1√

α
Y α

t
α

.
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Then Ỹ α
t satisfies (1.4), that is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ỹ α
t = y0√

α
− (κ + γ )

∫ t
0 Ỹ

α
s ds − 1√

α

∫ t
0 g(

s
α
, Xα

s
α
)ds − γ

∫ t
0 E(Ỹ α

s )ds

+ √
α
∫ t
0 σ( s

α
, Xα

s
α
)dW s

α

Xα(0) = x0.

(3.27)

Now, we put W̃t = √
αWt/α , then (W̃t )t≥0 is a Brownian motion process and (3.27) can

be rewritten in the form
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ỹ α
t = y0√

α
− (κ + γ )

∫ t
0 Ỹ

α
s ds − 1√

α

∫ t
0 g(

s
α
, Xα

s
α
)ds − γ

∫ t
0 E(Ỹ α

s )ds

+ ∫ t
0 σ( s

α
, Xα

s
α
)dW̃s

Xα
0 = x0.

(3.28)

Our goal in this section is to study the rate of convergence in L p-distance and in the
total variation distance between Ỹ α

t and Ỹt . Here, Ỹt is the solution of Ornstein-Uhlembeck
process (1.5), which is

{
dỸt = −(κ + γ )dỸt + σ(0, x0)dW̃t ,

Ỹ (0) = 0.
(3.29)

First, we obtain the rate of convergence in L p-distances between Ỹ α
t and Ỹt in the following

lemma.

Theorem 3.3 Let {Ỹ α
t , t ∈ [0, T ]} and {Ỹt , t ∈ [0, T ]} be, respectively, the solution of (3.28)

and of (3.29) with Assumptions 1.1 and 1.3. Then, for all p ≥ 2 and α ≥ 1,

E

[

sup
0≤t≤T

|Ỹ α
t − Ỹt |p

]

≤ C

α p/2 ,

where C is a positive constant depending on p but not on α.

Proof From (3.28) and (3.29), together with the fact that E[Ỹt ] = 0 for all t ∈ [0, T ], we get

Ỹ α
t − Ỹt = y0√

α
− (κ + γ )

∫ t

0
(Ỹ α

s − Ỹs)ds − 1√
α

∫ t

0
g(

s

α
, Xα

s
α
)ds

− γ

∫ t

0
E(Ỹ α

s − Ỹs)ds +
∫ t

0
(σ (

s

α
, Xα

s
α
) − σ(0, x0))dW̃s .

Using Minkowski’s inequality (3.1) with n = 5, Hölder’s inequality, the BDG inequality
and Assumptions 1.1 and 1.3, one can derive that

E

[

sup
0≤s≤t

|Ỹ α
s − Ỹs |p

]

≤ 5p−1
[ |y0|p

α p/2 + t p−1(κ + γ )p
∫ t

0
E
[|Ỹ α

s − Ỹs |p
]
ds

+ K p(2t)p−1

α p/2

∫ t

0
(1 + E

[|Xα
s
α
|p]) ds

+ t p−1γ p
∫ t

0
E
[|Ỹ α

s − Ỹs |p
]
ds

+ 2p−1Cpt
p/2−1

∫ t

0
(
s p

α p
+ E

[|Xα
s
α

− x0|p)
]
ds
]
.
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By Lemma 3.1, with noting that 0 ≤ s
α

≤ s ≤ t ≤ T , we have

E

[

sup
0≤s≤t

|Ỹ α
s − Ỹs |p

]

≤ C

α p/2 + C
∫ t

0
E

[
|Ỹ α

s − Ỹs |p
]
ds + C

∫ t

0
(
s p

α p
+ s p/2

α p/2 )ds

≤ C

α p/2 + C
∫ t

0
E

[

sup
0≤u≤s

|Ỹ α
u − Ỹu |p

]

ds,

whereC is constant depending only on {x0, y0, κ, γ, K , L, p}. Using Growwall’s inequality,
we obtain the claimed inequality and complete the proof. �

From (3.27) and (3.29), under Assumptions 1.1 the Malliavin differentiability of the
solutions Ỹ α

t and Ỹt can be proved by using the same method as in the proof of Lemma 3.2.
Moreover, the Malliavin derivatives Dθ Ỹ α

t and Dθ Ỹt satisfy Dr Ỹ α
t = Dr Ỹt = 0 for r ≥ t/α

and 0 ≤ αr < t ≤ T ,

Dr Ỹ
α
t = √

ασ(r , Xα
r ) − (κ + γ )

∫ t

αr
Dr Ỹ

α
s ds − 1√

α

∫ t

αr
ḡ(

s

α
)Dr X

α
s
α
ds

+√
α

∫ t

αr
σ̄ (

s

α
)Dr X

α
s
α
dW s

α
,

Dr Ỹt = √
ασ(0, x0) − (κ + γ )

∫ t

αr
Dr Ỹsds, (3.30)

where ḡ(s), ḡα(s), σ̄ (s), σ̄ α(s) are adapted stochastic processes and bounded by L. Fur-
thermore, if g and σ are continuously differentiable, then ḡ(s) = g′

2(s, Xs), ḡα(s) =
g′
2(s, X

α
s ), σ̄ (s) = σ ′

2(s, Xs) and σ̄ α(s) = σ ′
2(s, X

α
s ).

Lemma 3.5 Let {Ỹ α
t , t ∈ [0, T ]} and {Ỹt , t ∈ [0, T ]} be defined as above. Assume that

Assumptions 1.1 and 1.3 hold. Then, for all α ≥ 1,

E

[
‖DỸ α

t − DỸt‖2H
]

≤ Cα−1,

where C is constant depending only on {x0, y0, κ, γ, K , L, T }.
Proof It follows from (3.30) that, for 0 ≤ αr < t,

DỸ α
t − DỸt = √

α
(
σ(r , Xα

r ) − σ(0, x0)
)− (κ + γ )

∫ t

αr

[
DỸ α

s − DỸs
]
ds

− 1√
α

∫ t

αr
ḡ(

s

α
)Dr X

α
s
α
ds + √

α

∫ t

αr
σ̄ (

s

α
)Dr X

α
s
α
dW s

α
.

Using Cauchy-Schwarz inequality, the Itô isometry formula, Assumptions 1.1 and 1.3,
Lemma 3.1, with noting that 0 ≤ s

α
≤ s ≤ t ≤ T , we get

E

[
|Dr Ỹ

α
t − Dr Ỹt |2

]
≤ 4

(
2L2α

(
r2 + E

[|Xα
r − x0|2

])

+ (κ + γ )2(t − αr)
∫ t

αr
E

[∣
∣Dr Ỹ

α
s − Dr Ỹs

∣
∣2
]
ds

+ L2T

α

∫ t

αr
E
[|Dr X

α
s
α
|2] ds + L2α

∫ t

αr
E
[|Dr X

α
s
α
|2]ds

α

)

≤ C
(
α
(
r2+r

)+
∫ t

αr
E

[∣
∣Dr Ỹ

α
s −Dr Ỹs

∣
∣2
]
ds+ (t−αr)

α
+(t−αr)

)
,
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where C is constant depending only on {x0, y0, κ, γ, K , L, T }. From this, we have
∫ t/α

0
E
[|Dr Ỹ

α
t − Dr Ỹt |2

]
dr

≤ C
(
α

(
t3

3α3 + t2

2α2

)

+
∫ t/α

0

(∫ t

αr
E

[∣
∣Dr Ỹ

α
s − Dr Ỹs

∣
∣2
]
ds

)

dr + t2

2α2 + t2

2α

)

≤ C

α
+ C

∫ t

0

(∫ s/α

0
E

∣
∣
∣Dr Ỹ

α
s − Dr Ỹs

∣
∣
∣
2
dr

)

ds.

Denote φ(t) = ∫ t/α
0 E |Dr Ỹ α

t − Dr Ỹt |2dr , using Gronwall’s inequality, one sees easily
that

E

[
‖DỸ α

t − DỸt‖2H
]

= φ(t) ≤ C

α
eCt ≤ Cα−1,

whereC is a constant depending only on {x0, y0, κ, γ, K , L, T }. This completes our proof.�

Bringing the above lemmas together, we can get the following result.

Theorem 3.4 Let {Ỹ α
t , t ∈ [0, T ]} and {Ỹt , t ∈ [0, T ]} be as before. Assume that Assumptions

1.1 and 1.3 hold and |σ(0, x0)| > 0 for all (t, x) ∈ [0, T ] × R. Then, for each t ∈ (0, T ],
dTV (pỸ α

t
, pỸt ) ≤ C (λ(t, 2(κ + γ )))−1/2 α−1/2,

where C is a constant depending only on {x0, y0, κ, γ, K , L, T , σ (0, x0)}.
Proof Using Lemma 2.1 we have

dTV (pỸ α
t
, pỸt ) ≤ ‖Ỹ α

t − Ỹt‖1,2
[

3
(
E‖D2Ỹt‖4H⊗H

)1/4 (
E‖DỸt‖−8

H
)1/4 + 2

(
E‖DỸt‖−2

H
)1/2

]

.

Thanks to Theorem 3.3 and Lemma 3.5, we obtain

dTV (pỸ α
t
, pỸt )≤Cα−1/2

[

3
(
E‖D2Ỹt‖4H⊗H

)1/4 (
E‖DỸt‖−8

H
)1/4+2

(
E‖DỸt‖−2

H
)1/2

]

.

(3.31)
Moreover, we have Dr Ỹt = 0 for r ≥ t/α and Dr Ỹt = √

ασ(0, x0)−(κ+γ )
∫ t
αr Dr Ỹsds,

for 0 ≤ αr < t . Solving this ODE directly yields

Dr Ỹt =
{
0 if rα ≥ t√

ασ(0, x0) exp [(κ + γ )(rα − t)] if rα < t .
(3.32)

Thus, one can easily show that

‖DỸt‖2H = ασ 2(0, x0)
∫ t/α

0
exp [2(κ + γ )(rα − t)]dr = σ 2(0, x0)λ(t, 2(κ + γ )).

This implies, for all p ≥ 2,

E
[‖DỸt‖−p

H
] = σ−p(0, x0) (λ(t, 2(κ + γ )))−p/2 . (3.33)

Applying the Malliavin derivative to (3.32), we have

Dθ Dr Ỹt = 0. (3.34)
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Combining (3.31), (3.33) and (3.34), we obtain

dTV (pỸ α
t
, pỸt ) ≤ C (λ(t, 2(κ + γ )))−1/2 α−1/2,

where C is a constant depending only on {x0, y0, κ, γ, K , L, T , σ (0, x0)}. This completes
our proof. �

3.2.2 The Velocity Process

As mentioned in the introduction, when g(t, x) = g(x) and σ(t, x) = δ, [18, Theorem 2.3]
shows that the velocity process Y α

t converges to the normal distribution as α → ∞. In the
rest of this section, we generalize this result to a much more general setting where g depends
on both x and t while σ depends only on t , i.e. σ(t, x) = σ(t).

From (2.8) we get

Y α
t = y0 exp [−α(κ + γ )t] − α(κ + γ )I α

1 (t) + α(κ + γ )Iα
2 (t) + α(κ + γ )Iα

3 (t). (3.35)

Since Xα
t isMalliavin differentiable,Y α

t is alsoMalliavin differentiable satisfying DrY α
t =

0 for r ≥ t , and for 0 ≤ r < t ≤ T

DrY
α
t = ασ(r) exp [α(κ + γ )(r − t)] − α

∫ t

r
exp [α(κ + γ )(t − s)]g′(s, Xα

s )Dr X
α
s ds.

(3.36)
Define

Wα(t) = √
α(κ + γ )Iα

3 (t) = √
α

∫ t

0
exp [α(κ + γ )(u − t)]σ(u)dWu .

Then Wα(t) is also Malliavin differentiable and DrWα
t = 0 for r ≥ t and for 0 ≤ r <

t ≤ T
DrW

α(t) = √
ασ(r) exp [α(κ + γ )(r − t)]. (3.37)

Lemma 3.6 Let Y α
t be the solution of (3.26) with Assumptions 1.1. Then, for all p ≥ 2 and

t ∈ (0, T ],
E

[∣
∣
∣
Y α
t√
α

− Wα(t)
∣
∣
∣
p
]

≤ Cα−p/2,

where C is constant depending only on {y0, κ, γ, K , L, p}.

Proof From (3.35), we get

Y α
t√
α

− Wα(t) = y0√
α
exp [−α(κ + γ )t] − √

α(κ + γ )Iα
1 (t) + √

α(κ + γ )Iα
2 (t).
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Then, by (3.14), (3.15) and Lemma 3.3, we have the following estimation

E

[∣
∣
∣
Y α
t√
α

− Wα(t)
∣
∣
∣
p
]

≤ 3p−1
[ |y0|p

α p/2 + α p/2(κ + γ )pE
(|I α

1 (t)|p)+ α p/2(κ + γ )p|I α
2 (t)|p

]

≤ C

[
1

α p/2 +α p/2

(

2+E

(
sup

0≤t≤T
|Xα

t |p
)
)

(λ(t; (κ+γ )α))p+α p/2 (λ(t, ακ))p

]

≤ C

α p/2

[

1 + E

(
sup

0≤t≤T
|Xα

t |p
)
]

≤ C

α p/2 ,

where C is a constant depending only on {y0, κ, γ, K , L}. This completes the proof of the
lemma.

Lemma 3.7 Let Y α
t be the solution of (3.26) with Assumptions 1.1. Assume that σ(t) is

continuous on [0, T ]. Then, for all α ≥ 1,

E

∫ t

0

∣
∣
∣
∣
DrY α

t√
α

− DrW
α(t)

∣
∣
∣
∣

p

dr ≤ C‖σ‖p∞α−p/2,

where ‖σ‖∞ = sup
t∈[0,T ]

|σ(t)| and C is constant depending only on {κ, γ, K , L, p, T }.

Proof From (3.36) and (3.37) we have

E

∫ t

0

∣
∣
∣
∣
DrY α

t√
α

− DrW
α(t)

∣
∣
∣
∣

p

dr = E

∫ t

0

∣
∣
∣
∣
√

α

∫ t

r
exp [α(κ + γ )(t − s)]g′(s, Xα

s )Dr X
α
s ds

∣
∣
∣
∣

p

dr

≤ Cα p/2
∫ t

0
E

∣
∣
∣
∣

∫ t

r
exp [α(κ + γ )(t − s)]|Dr X

α
s |ds

∣
∣
∣
∣

p

dr .

(3.38)

On the other hand, from (3.16), togetherwithAssumptions 1.1 and the fact that σ̄ α(s) = 0,
we have

|Dr X
α
t | ≤ |σ(r)|

κ + γ
(1 − exp [α(κ + γ )(r − t)]) + 1

κ + γ

∫ t

r
|ḡα(s)||Dr X

α
s |ds

+ 1

κ + γ

∫ t

r
exp [α(κ + γ )(s − t)]|b̄α(s)||Dr X

α
s |ds

≤ ‖σ‖∞
κ + γ

+ 2L

κ + γ

∫ t

r
|Dr X

α
s | ds.

Thus, by Gronwall’s inequality one sees that

|Dr X
α
t | ≤ ‖σ‖∞

κ + γ
e
2L(t−r)

κ+γ ≤ C‖σ‖∞,

where C is constant depending only on {κ, γ, K , L, T }. Substituting this into (3.38) yields

E

∫ t

0

∣
∣
∣
∣
DrY α

t√
α

− DrW
α(t)

∣
∣
∣
∣

p

dr ≤ C‖σ‖p∞α p/2
∫ t

0

∣
∣
∣
∣

∫ t

r
exp [α(κ + γ )(t − s)]ds

∣
∣
∣
∣

p

dr

≤ C‖σ‖p∞α p/2
∫ t

0
λp(t − r;α(κ + γ ))dr

≤ C‖σ‖p∞α−p/2,
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which is the desired conclusion. �

Now we are ready to prove the rate of convergence in total variation distance for the
velocity process Y α

t as α → ∞.

Theorem 3.5 Let Y α
t be the solution of (3.26) with Assumptions 1.1. Assume that σ(t) is a

continuously differentiable function on [0, T ] and that σ(t) 	= 0 for each t ∈ (0, T ]. Then,
for each α ≥ 1 and t ∈ (0, T ]

dTV
(
pY α

t /
√

α, pN (t)

)
≤ C (λ(t, 2(κ + γ )))−1/2 α−1/2,

where N is a normal random variable with mean 0 and variance
σ 2(t)

2(κ + γ )
, and C is a

constant depending only on {x0, y0, κ, γ, K , L, T , σ }.
Proof Using Lemma 2.1, we have:

dTV
(
pY α

t /
√

α, pWα(t)

)
≤
∥
∥
∥
∥
Y α
t√
α

− Wα(t)

∥
∥
∥
∥
1,2

[

3
(
E‖D2Wα(t)‖4H⊗H

)1/4 (
E‖DWα(t)‖−8

H
)1/4

+ 2
(
E‖DWα(t)‖−2

H
)1/2

]

.

By Lemmas 3.6 and 3.7, one can derive that

dTV
(
pY α

t /
√

α, pWα(t)

)
≤ Cα−1/2

[

3
(
E‖D2Wα(t)‖4H⊗H

)1/4 (
E‖DWα(t)‖−8

H
)1/4

+ 2
(
E‖DWα(t)‖−2

H
)1/2

]

,

(3.39)

where C is a constant depending only on {x0, y0, κ, γ, K , L, T }.
Now we calculate the derivatives of Wα(t). One can easily show that

DrW
α(t) = √

ασ(r) exp [α(κ + γ )(r − t)] and Dθ DrW
α(t) = 0. (3.40)

Therefore,

‖DWα(t)‖2H =
∫ t

0
σ 2(r)α exp [2α(κ + γ )(r − t)]dr

≥ αλ(t; 2α(κ + γ )) min
t∈[0,T ] |σ(t)|2

≥ λ(t; 2(κ + γ )) min
t∈[0,T ] |σ(t)|2.

Thus, for all p ≥ 2,

E
[‖DỸt‖−p

H
] ≤ 1

λp/2(t; 2(κ + γ )) min
t∈[0,T ] |σ(t)|p . (3.41)

From (3.39), (3.40), (3.41), we obtain

dTV
(
pY α

t /
√

α, pWα(t)

)
≤ Cα−1/2

⎛

⎝
2

(λ(t; 2(κ + γ )))1/2 min
t∈[0,T ] |σ(t)|

⎞

⎠ ,
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where C is a constant depending only on {x0, y0, κ, γ, K , L, T , σ }. Thus,

dTV
(
pY α

t /
√

α, pWα(t)

)
≤ C (λ(t, 2(κ + γ )))−1/2 α−1/2,

where C is a constant depending only on {x0, y0, κ, γ, K , L, T , σ }.
Note that by Itô’s isometry and using integration by parts for the non-stochastic integral,

we have

E
[ [
Wα(t)

]2 ] =
∫ t

0
ασ 2(r) exp [2α(κ + γ )(r − t)]dr

= σ 2(t)

2(κ + γ )
− σ 2(0) exp [−2α(κ + γ )t]

2(κ + γ )

−
∫ t

0
σ(r)σ ′(r) exp [2α(κ + γ )(r − t)]dr .

Thus, we can deduce that Wα(t) is random variable with normal distribution with mean
0 and variance

σ 2(t)

2(κ + γ )
− σ 2(0) exp [−2α(κ + γ )t]

2(κ + γ )
−
∫ t

0
σ(r)σ ′(r) exp [2α(κ + γ )(r − t)]dr .

Now, applying Lemma 4.9, [13], we derive that

dTV (pWα(t), pN (t)) ≤ C

(
σ 2(0) exp [−2α(κ + γ )t]

2(κ + γ )
+
∫ t

0
|σ(r)σ ′(r)| exp [2α(κ + γ )(r − t)]dr

)

≤ C

(
σ 2(0) exp [−2α(κ + γ )t]

2(κ + γ )
+ ‖σ‖∞‖σ ′‖∞λ(t, 2α(κ + γ ))

)

≤ C‖σ‖∞‖σ ′‖∞α−1,

where ‖σ‖∞ = sup
t∈[0,T ]

|σ(t)|, ‖σ ′‖∞ = sup
t∈[0,T ]

|σ ′(t)| and C is an universal constant. Thus,

dTV
(
pY α

t /
√

α, pN (t)

)
≤ dTV (pWα(t), pN (t)) + dTV

(
pY α

t /
√

α, pWα(t)

)

≤ C (λ(t, 2(κ + γ )))−1/2 α−1/2,

where C is a constant depending on {x0, y0, κ, γ, K , L, T , σ }. This completes the proof. �
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