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Abstract

Borehole gravity sensing can be used in a number of applications to measure features

around a well, including rock-type change mapping and determination of reservoir porosity.

Quantum technology gravity sensors, based on atom interferometry, have the ability to offer

increased survey speeds and reduced need for calibration. While surface sensors have

been demonstrated in real world environments, significant improvements in robustness and

reductions to radial size, weight, and power consumption are required for such devices to be

deployed in boreholes. To realise the first step towards the deployment of cold atom-based

sensors down boreholes, we demonstrate a borehole-deployable magneto-optical trap, the

core package of many cold atom-based systems. The enclosure containing the magneto-

optical trap itself had an outer radius of (60 ± 0.1) mm at its widest point and a length of (890

± 5) mm. This system was used to generate atom clouds at 1 m intervals in a 14 cm wide, 50

m deep borehole, to simulate how in-borehole gravity surveys are performed. During the

survey, the system generated, on average, clouds of (3.0 ± 0.1) × 105 87Rb atoms with the

standard deviation in atom number across the survey observed to be as low as 8.9 × 104.

Introduction

Gravity surveys are used to detect features through their density contrasts, and have an advan-

tage over alternative techniques in that gravity is not attenuated by the intervening medium,

such as borehole casing. In comparison with techniques such as ground penetrating radar or

nuclear logging, this can allow for the detection of features at greater distances [1]. Addition-

ally gravity sensing avoids the use of radioactive isotopes [2], mitigating security and health

concerns. These benefits have led to gravity surveys being used in a number of environments

to detect features of interest [3], including below the surface in boreholes. Borehole gravity

sensing is used for a number of applications, including: remote sensing of gas and oil zones

behind casing [4]; vertical density profiling for gravity map interpretation and for seismic

modelling and analysis [5]; detection of geologic structures [6, 7]; determination of reservoir

porosity for reserve estimates [8]; monitoring of reservoir fluid conditions for production
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evaluation, and rock-type change mapping for groundwater and engineering studies [9, 10];

Carbon Capture and Storage (CCS) monitoring [11, 12]; as well as tests of fundamental physics

[13, 14].

Despite numerous applications for borehole gravity sensing, a major drawback is measure-

ment time when compared to other remote sensing techniques [15]. This is primarily due to

the need to average out micro-seismic vibrations and calibrate for the inherent drift in existing

sensors, via repeat measurements of the same point between sets of measurements. This limits

its widespread use as a measurement technique. Quantum technology gravity and gravity gra-

dient sensors based on atom interferometry [16, 17] have the potential to overcome these

issues [18]. Moreover, gravity gradient sensors have the additional benefit of negating issues

arising from micro-seismic noise [19].

Quantum technology based on atom interferometry has proven to be a powerful method

for precision gravity sensing [17, 18, 20, 21], with sensitivities of 4.2 ng/
ffiffiffiffiffiffi
Hz
p

having been

achieved in existing sensors [22]. Within laboratories, atom interferometry has enabled precise

measurements of the equivalence principle [23], the fine-structure constant [24, 25], and the

gravitational constant [26]. The demonstrated performance of laboratory systems and their

inherent low drift has resulted in the development of a number of transportable atom interfer-

ometry systems targeting multiple applications and operational conditions [18, 19, 27–35].

Before atom-interferometry based-gravity sensors can be deployed down boreholes, a num-

ber of challenges need to be overcome. Borehole sensors have strict requirements on size,

weight, and power consumption (SWaP), particularly for the radial size of the sensor. Existing

borehole sensors typically have a radial diameter of between 10 mm—200 mm, usually set by

the depth of operation. In addition to meeting the required SWaP, sensors need to be robust

against environmental and operating conditions. Typically, the environmental conditions and

operating requirements become more demanding the deeper the borehole. For example, in the

deepest boreholes of up to 12 km [36], sensors can be required to operate at pressures of up to

1.4 kbar, temperatures of up to 200 ˚C and at angles from the vertical of up to 90˚. However

for the majority of boreholes environmental conditions are much more hospitable, particularly

in near surface boreholes.

In this article, for the first time, we demonstrate a compact magneto-optical trap (MOT). A

MOT uses light that is detuned slightly below an atomic resonance in conjunction with a quad-

rupolar magnetic field, to cool and trap clouds of atoms [37]. The compact MOT system has

the required SWaP and environmental robustness to be deployed in a borehole. This demon-

strator was used to perform a simulated survey down a 14 cm diameter, 50 m deep, borehole

where the water level was to within a few meters of the ground surface, to assess its robustness

under trial conditions. During the deployment the system was able to, on average, produce

clouds of (3.0 ± 0.1) × 105 87Rb atoms. MOTs form a core part of a number of cold atom-based

devices including atomic clocks [38], accelerometers [39] and magnetometers [40]. As such,

achieving a MOT meeting the form factor and robustness for in-borehole operation is the first

step towards achieving a borehole-deployable cold atom-based sensor.

Borehole gravity surveys

Typically, borehole gravity measurements are collected at discrete intervals by stopping a

deployed gravity sensor at predetermined observation depths and performing a stationary

measurement [41], before moving to the next observation depth, as illustrated in Fig 1. From

these measurements, the vertical gradient of gravity, Δg/Δz, is determined for the interval of

interest by measuring the gravity difference, Δg, and the vertical distance between two conse-

cutive stations, Δz. The subsurface layers are typically assumed to be infinitely extended
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horizontal slabs of different densities, and the measurements between two points used to pro-

vide an average density of the region between each set of measurement points. For example, in

Fig 1 the density measured between measurement points 1 and 2 would be the average of the

various rock layers in-between.

Existing borehole gravity sensors used to perform such measurements typically rely on

spring-based technology similar to that used in surface-based gravimeters [41]. To allow for

operation down boreholes the technology used in surface-based sensors has been miniatur-

ized, equipped with self-leveling capabilities and packaged to fit in narrow diameter borehole

tools. For example, the sensor discussed in reference [41] has a radial diameter of 57 mm, can

be used to depths of 2,500 m and its self leveling capabilities allow it to be deployed in bore-

holes inclined up to 30˚ from vertical. It is typically deployed by conducting wireline cable

[41]. Atom interferometry based sensors will need to reach a similar or greater level of deploy-

ability to be a competitive tool across all of the applications in which gravity sensing is cur-

rently used.

To date, portable atom interferometry based gravity and gravity gradient sensors target sur-

face-based applications and are consequently unsuitable for borehole deployment partly due

to radial size and form factor. Several quantum technology-based gravity sensors comprise of a

separate control system and sensor head [19, 29]. The control system typically contains the

majority of electronics required to run the system, while the sensor head is the part of the sys-

tem where the measurements take place. These two components are connected via an

Fig 1. Schematic diagram of a borehole gravity sensing survey. In typical borehole gravity sensing, the sensor is

lowered or raised to measurements points (denoted as 1 and 2) at fixed distances apart and measurements are

performed when the sensor is stationary, with the data collected sequentially in time (ti, where i = 1, 2).

https://doi.org/10.1371/journal.pone.0288353.g001
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umbilical, carrying optical and electronic signals. An early implementation could require that

in-borehole atom interferometers have a control system on the surface. While this approach

will work for shallow boreholes, it is expected that at certain length of the umbilical, systemat-

ics associated with having long optical fibres become a limitation (i.e optical power attenua-

tion). As such, a control system capable of being deployed down a borehole will likely be

required for operation at much greater depths. Initial implementations of quantum sensors

are likely to operate in a similar manner to the existing borehole gravity sensors, stopping at

intervals to perform measurements, with the long-term goal of performing measurements

while moving [42], such that it can be used as a continuous logging tool. It is also expected that

future quantum gravity sensors in borehole would be able to determine the gradient directly

[43, 44], reducing errors associated with relative positioning between measurements [41].

As such, the demonstrator constructed here was designed to have the package deployed

downhole while the control system remains on the surface. The science package was designed

to be deployable via a winch, which was stopped at predefined intervals along the depth of the

borehole to perform measurements. This allowed for an assessment of the variability and

robustness of the system performance, while performing a simulated but representative

survey.

Experimental system

The demonstrator consists of two sub-units (see Fig 2a), a control system and a science pack-

age, with optical and electrical signals transferred through a 75 m umbilical.

Fig 2. Laser system and science package diagram. a) Schematic diagram of the laser system and the science package (not to scale). b) Arrangement of

the optics used to generate and measure the atom cloud (vacuum walls not shown). c) Photo of the science package. The vacuum system, optics and

measurement photodiode are contained within the watertight stainless steel casing shown. The top of the science package is connected to the umbilical,

which delivers the light and electrical signals required to operate the science package.

https://doi.org/10.1371/journal.pone.0288353.g002
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The control system primarily consists of a laser system comprised of two Alter UK

REMOTE external-cavity diode lasers (ECDLs) [45], each locked to different atomic transi-

tions. ECDL 1 is used to produce repump light and is stabilised to a rubidium reference via sat-

urated absorption spectroscopy [46, 47]. ECDL 2 is offset locked [48] to ECDL 1 and produces

the light required for cooling. The repump is locked to the 87Rb |F = 1i ! |F0 = 2i transition

and the cooling laser is offset locked 6.5 GHz from the repump, approximately 10 MHz

detuned below the |F = 2i ! |F0 = 3i transition.

Optical isolators are placed directly after the output of both ECDLs, providing 35 dB isola-

tion to mitigate unwanted back reflections impacting the frequency performance of the

ECDLs. The laser system has a pre-aligned saturated absorption spectroscopy setup where all

the optics are bonded in place to provide a robust locking signal to stabilise the repump laser

frequency. Separately, a small amount of light from both the cooling and repump beams are

split off and overlapped on a fast photodiode to provide a beatnote for the offset lock. Various

optics distribute laser light to two fibre couplers where the cooling and repump are combined

using a 2x2, 90:10 fibre splitter. The laser system can produce a maximum power of 35 mW of

cooling and 5 mW of repump light. During typical operation and in the survey, 12.8 mW cool-

ing and 1.9 mW repump light was input into the umbilical fibre. The laser system is 250 mm x

300 mm x 80 mm in size, weighs 5 kg and uses robust mechanical mounting techniques to

increase portability.

The light from this laser is delivered to the science package using a 75 m long polarisation-

maintaining optical fibre. This fibre delivers the light to a telescope, which produces a circu-

larly polarised beam with 16.6 mm 1/e2 diameter and an output power of approximately 8

mW, due to attenuation in the umbilical. This beam is collimated and shone directly into the

vacuum chamber in which the four 5 mm × 5 mm prisms, a quarter wave plate, and a mirror

are used to create the six counter-propagating beams required to cool the atoms in all three

degrees of freedom (see Fig 2b) [49]. The use of a prism MOT reduces both the size of the opti-

cal delivery system and vacuum chamber, by reducing the number of optical inputs required,

and the complexity of the laser system. Additionally, the use of a single input has the benefit

that real and polarisation induced intensity noise are both common-mode between beam

pairs. This enables highly stable atom cloud positions and temperatures overall, enhancing the

system robustness. Coils are used to create a quadrupole magnetic field with a linear gradient

and null field at the centre of the trapping region. The atoms are loaded into the trap from

background atomic vapour, produced under vacuum with a rubidium dispenser. The scattered

light from the atom cloud is measured through fluorescence detection. Vacuum pressure is

maintained by a 0.4 ls−1 ion pump. The vacuum system, telescope and photo-diode have a

form factor of (420 ± 1) mm × (72 ± 1) mm. To achieve this form factor techniques, such as

indium sealing of vacuum windows, laser welding, and 3D printing of components were used

alongside with custom electronics.

The science package is (420 ± 5) mm long and is contained in a (890 ± 5) mm long

stainless steel waterproof enclosure (see Fig 2c), with an outer radius of (60 ± 0.1) mm at

its widest point and internal radius of (37 ± 0.1) mm. The end of this enclosure consists of

a solid stainless steel block to reduce buoyancy. This casing allows it to be deployed in

cased or uncased boreholes and under waterlogged, muddy or dry borehole conditions.

The science package is capable of surviving at temperatures of 60 ˚C, limited by the glass

transition temperature of a few 3D printed polylactic acid parts. Replacing these with alu-

minium would enable operation at higher temperatures. The science package is expected

to be waterproof to pressures of �100 bar. The science package does not require

centralisation.
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Deployment campaign

The system was transported in a medium-sized van, a short distance from the lab to the Uni-

versity of Birmingham campus borehole test site [50, 51] for deployment down a borehole as

shown in Fig 3a. During transport the system was unpowered. The optical system was found

to be robust, remaining aligned throughout transport without the need for realignment at the

survey site. The borehole itself is 50 m deep and cased to a depth of 12 m with an internal

diameter of 14 cm in the cased section (see Fig 3b). The groundwater level was (3.59 ± 0.02) m

below the ground surface level at the time of the survey, determined via the use of a water level

meter. No permits were required to carry out the survey as the borehole site is located on the

university’s campus.

Once at the site, the science package was attached to a cable via the eye holes on the top of

the package and lowered into the borehole using a winch and tripod (see Fig 3c). At intervals

of (1 ± 0.02) m below the surface the system was stopped and 5 MOT loading curves were

taken. On average, 2 minutes were spent at each depth to record data, limited by the data cap-

ture of the oscilloscope used. Moving the system between depths took approximately 4 min-

utes, limited by the speed of the winch used.

During the survey the stability of the number of atoms in the MOT was measured for 400 s

on the surface as well as at the middle, (25.34 ± 0.02) m and bottom, (49.34 ± 0.02) m of the

borehole. The variation in atom number (ΔN) relative to the start each of time period is shown

in Fig 4. The standard deviations at the surface, middle and bottom positions (shown in Fig 4)

were 1.1 × 105, 1.1 × 105 and 1.1 × 105 respectively, suggesting that the MOT stability on short

time scales in the borehole and on the surface were comparable. The atom number over the

Fig 3. Borehole where the survey was conducted. a) The location of the test site and route driven to the test site

(shown by the blue dashed line). Map data from © OpenStreetMap under the Open Database Licence [53]. The surface

of the borehole used for the deployment campaign, is shown in the inset photo (red border). b) Diagram showing the

dimensions and lithology of the borehole used in the deployment campaign. The lithological data was obtained from

geophysical logging (natural gamma and electrical resistivity), combined with core examination. c) The winch and

tripod system used to lower the science package into the borehole. A wire with markings at 1 m intervals was used to

record the depth of the device.

https://doi.org/10.1371/journal.pone.0288353.g003
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whole deployment had a standard deviation of 8.9 × 104, suggesting that the variation in atom

number on short and long time scales was similar.

The atom number and loading time constant averaged over 5 curves at each depth can be

seen in Fig 5. The loading time constant over the course of the deployment had a standard

deviation of 5.00 ms, demonstrating a good level of repeatability. The average atom number

achieved in the system over the course of the deployment was (3.0 ± 0.1) × 105, with an average

loading time constant of (24.8 ± 0.2) ms. After reaching a depth of (49.34 ± 0.02) m and com-

pleting all data acquisition, the system was brought back to the surface. The MOT was main-

tained throughout the trial and was robust to all of the moving and stopping, with no

statistically significant effect on the atom cloud observed when becoming submerged under

water or exiting the cased part of the borehole. The variation in atom number and loading

time can be attributed to variation in polarisation and the intensity of the light used to create

the MOT. This variation is caused by temperature and stress on the 75 m optical fibre used to

deliver light into the science package. This could be addressed in future systems with polarisa-

tion stabilisation and correction systems [52].

During the trial the pressure in the vacuum chamber varied between 6.5 × 10−7 mbar and

7.7 × 10−7 mbar estimated from the ion pump. This level of variation is typical of performance

seen during operation in the lab. The average background pressure over the course of the sur-

vey in the MOT region is estimated from the MOT to be 1.1 ± 0.3 × 10−6 mbar using method

in reference [54]. While these pressures allow for the generation of a MOT, future systems will

need to improve the pressure in the system for any practical uses.

Conclusions and outlook

The high-precision and low-drift measurements offered by atom interferometry-based gravity

sensors, once realised in borehole-deployable packages, have the potential to open up new

sensing capabilities, particularly for long-term monitoring applications such as CCS [56] and

hydrological monitoring. To push cold atom-based sensors towards the SWaP profile and

Fig 4. Variation of the atom number at different depths. The atom number variation with time, relative to the first measurement in each time

period, on the surface and at depths of (25.34 ± 0.02) m and (49.34 ± 0.02) m in the borehole. The inset photo shows a photo of the cloud on the

surface with a radius (1/e2) of (0.81 ± 0.08) mm in the x-direction and (1.1 ± 0.1) mm in the y-direction.

https://doi.org/10.1371/journal.pone.0288353.g004
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robustness that is required for deployment and operation in boreholes, the first borehole-

deployable cold atom system has been developed and trialed.

The system was demonstrated to be capable of generating clouds of laser-cooled 87Rb atoms

in a system package of (890 ± 5) mm × (120 ± 1) mm diameter. The system successfully oper-

ated down a 50 m deep borehole, generating atom clouds with an average of (3.0 ± 0.1) × 105

atoms. The standard deviation in atom number performance across the survey was 8.9 × 104

atoms. The performance in terms of number of atoms in the trap and atom number stability

Fig 5. MOT parameters as a function of depth in the borehole. The atom numbers and loading time constants were

determined by fitting equation 2 from reference [55] to loading curves taken at each depth, with the leading source of error

attributed to the voltage to atom number conversion. The depths were measured with an error of ±0.02 m.

https://doi.org/10.1371/journal.pone.0288353.g005
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were comparable to the device performance on the surface and comparable to MOTs used in

some existing cold atom sensors [27, 31, 40].

To upgrade the demonstrator shown here to a full sensor capable of gravity measurements,

several extensions to the system (i.e additional functionality in the laser, magnetic shielding).

For example, to implement a sub-Doppler cooling stage in the system, In addition of adding

functionality to the laser, upgrades to the science package to include shielding and/or cancella-

tion fields would be required. Upgrades such as these would need to meet the requirements for

operation down a borehole. These requirements include meeting sufficiently small SWaP and

robustness for deployment (e.g. operation while tilted from the vertical), both of which are

active research areas. Examples of innovations which could be utilised to produce SWaP opti-

mised sensors for borehole deployment include SWaP optimised 3D printed components [57–

59] and passively pumped vacuum cells [54, 60, 61] to allow for operation in shallow boreholes.

Further miniaturisation is required to remove the need for a surface based control system and

allow for deployment in deeper boreholes, i.e. compact laser systems [62–64].

It is also possible that significant improvements in performance over current state of the art

laboratory and portable systems may be possible, through the incorporation of the latest and

future techniques [65–69] and technological developments [49, 70–72].
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