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a b s t r a c t 

This paper proposes a novel approach to evaluate the damage in Peridynamic simulations 

to identify the crack initiation and propagation, based on the physical meaning of the bond 

network. The most commonly used criterion to assess the damage in Peridynamic simula- 

tions is the nodal damage value, a ratio of the broken bonds to number of unbroken bonds 

for each point. There is no consensus on the magnitude of nodal damage value within the 

literature. In most cases, the assessment is conducted visually via damage contours. Rarely, 

researchers calculate nodal damage value by counting the bonds that pass through a crack 

plane and must be broken to initiate a crack. Despite being widely-used, the application 

of nodal damage value is questionable since it neglects the likelihood of broken bonds 

that are irrelevant to a crack. In other words, the applied value of the nodal damage value 

might not give the information about the crack whether it emerges or not. This paper 

shows the influence of the nodal damage value on damage assessments and compares the 

proposed method with the nodal damage value in different scenarios. The results exhibit 

that the proposed method is robust, effective, and more importantly provides a single out- 

come for Peridynamic simulations. 

© 2023 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY license 

( http://creativecommons.org/licenses/by/4.0/ ) 

 

 

1. Introduction 

In the last two decades, numerical methods have featured prominently to solve many problems ranging from nano scale 

to macro scale in engineering and science. Within the literature, there are many methods having unique properties and 

limitations associated with the definition of the problem. Probably, the most common and flexible method is the renowned 

Finite Element Method (FEM), which utilizes classical continuum theory (CCT). Despite its superiority, the mathematical 

framework of CCT has flaws while solving certain problems that present large deformations and discontinuities which can- 

not be defined by partial derivatives [1] . Particularly, it is a great challenge in fracture mechanics with regard to crack

discontinuity and crack tip singularity that are of the subject. Many remedies such as special elements, advanced numerical 

algorithms or specific evaluation techniques are proposed to get around such problems originating from CCT [ 2 , 3 ]. However,
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the applications of those solutions are custom-tailored and require expert knowledge, thus, reducing the usefulness of FEM 

in most cases. 

To overcome the burdens of FEM, a new formulation of a continuum model was introduced at the beginning of the

current millennia, so-called ‘Peridynamics’ (PD) that means ‘Near Forces’ in Greek [4] . Peridynamic theory is fundamentally 

devoid of partial differential equations and inherently effective to solve problems including large displacements and discon- 

tinuities. In Peridynamic theory, the motion of equation is determined by the forces acting between the points of interest 

and their neighbours. Those forces are referred as bond forces and the distance between two neighbours is represented by 

a virtual bond. In other words, in PD, a motion of a point in a body can be described by the motions of all other points

within a certain distance, which produce forces on the point of interest. PD is able to deal with the discontinuities within

the body trivially by employing integration of the forces between neighbouring points. The original or early version of PD 

is called “Bond-based PD”. Nevertheless, it captures Poisson’s ratios of 0.33 in 2D (plane stress) and 0.25 in 3D (the same

for plane strain in two-dimension) automatically, which ensures the validity of theory only for elastic materials with certain 

Poisson’s ratio. In 2007, the theory was reformulated and a more generalized formulation of PD was developed, referred 

to as “State-based PD” which is more flexible in terms of Poisson’s ratio in comparison to “Bond-based PD”[5] . In details,

the state-based PD is established on two different formulations such as ordinary and non-ordinary [5] . By definition, the

ordinary PD considers that the forces acting between two neighbour nodes are colinear whereas non-ordinary formulation 

concerns arbitrary interaction between those nodes. The basis of non-ordinary state-based PD formulation is to reflect the 

material behaviour in a similar way in classical continuum theory such that the interactions between nodes are represented 

with conventional strain and stress tensors enabling the use of the general constitutive models [6] . It is worth mention-

ing that ordinary state-based theory requires new constitutive equations for each material. Despite sounding attractive, the 

main challenge in the application of non-ordinary state-based PD is the stability problem as demonstrated in [7] . In recent

years, several studies proposed more stable material models for non-ordinary state-based PD [8–10] . Yet, those non-ordinary 

material models have some drawbacks such as being more computationally expensive than the general non-ordinary state- 

based models. Consequently, there is no superiority amongst the versions of PD. All three versions of PD are still in use and

development. 

The potential of PD has been proved in numerous studies. PD has been applied to many problems including but not

limited to stationary cracks [ 11 , 12 ], thermal cracks [ 13 , 14 ], dynamic cracks [ 15 , 16 ], fatigue cracks [17–20] . PD also provides

considerable flexibility in terms of material models. Various material models (i.e. elastic, plastic, viscoelastic, hyperplastic, 

composites, polycrystalline) are successfully developed and implemented in PD [ 4 , 21–24 ]. Furthermore, PD could be cou-

pled with classical continuum methods such as FEM, to exploit the advantage of both methods [ 25 , 26 ]. Despite its power to

eliminate the limitations that are encountered in classical continuum theory, there are also some challenges to be addressed 

in PD. For instance, the influence of discretization parameters [ 8 , 10 ], surface effects [ 27 , 28 ] and being computationally ex-

pensive [29] are some of the challenges in PD theory. 

In PD, a common approach to assess the failure is to define nodal damage value(NDV) that will represent the crack. The

challenge, here, is to determine the nodal damage value itself. Even though the assessments are mostly qualitative and the 

approach reflects the result at some degree, the nature of the approach is questionable. For instance, crack profile, length 

and propagation speed can be manipulated to achieve desired outcomes by adjusting the nodal damage value. Likewise, it is 

a significant question in fatigue modelling [17] , where it was said that phase transition from crack initiation to propagation

was related to the nodal damage value but the description of how to determine nodal damage value was not given. In order

to avoid the subjective concept of nodal damage value, there have been manual attempts to determine the nodal damage 

value in a more objective way [ 19 , 20 , 30 ]. For that purpose, basically, a line or plane is drawn as a crack path and then the

number of bonds to be broken is manually counted to calculate the nodal damage value. However, this method ignores the

possibility of broken bonds that do not intersect with the crack plane. It is noteworthy that damage criteria could also be

a modification of nodal damage value in some cases [31] , which is still subjected to same question. Apart from the nodal

damage value, critical energy release criteria, a quantitative approach, is offered in [32] . Yet, the study is limited to a simple

geometry with a stationary crack due to the total energy approach and the preferred definition of critical energy release 

rate. Furthermore, critical energy release methods cannot be applicable for fatigue crack growth [33] . Briefly, there is a

necessity to define the failure or to trace the crack propagation more accurately. Recently, a new method has been proposed

to solve the problem [34] . However, the proposed solution neglected the non-local nature of PD. This paper presents, based

on the physical meaning of the crack and non-local nature of PD, a novel approach that states “a crack will occur between

two closest neighbour points that lose all direct and first-degree indirect contact”. It is the first time that this approach

is established to define the failure in PD simulations. It is believed that the method can be utilized with any Peridynamic

model. Throughout this paper, the state-based Peridynamics is preferred for convenience in our simulations. 

2. Methodology 

2.1. Theory of Peridynamics 

In this section, Peridynamics (PD) theory will be briefly explained. More detailed explanation of the theory could be 

found in [ 1 , 4–6 ]. The basis of the PD theory is similar to conservation of the momentum. For any point in a body that
275 
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occupies a reference configuration in space, the force per unit reference volume can be defined by 

L ( x , t ) = 

∫ 
H x 

f 
(
u 

(
x 

′ , t 
)
−u ( x , t ) , x 

′ −x 

)
.dV x ′ (1) 

where f, u ( x ′ , t ) − u ( x , t ) , x ′ − x, V x ′ are a pairwise vector-valued force function between the points and their neighbours,

displacements of the points and their neighbours, initial distance between each point-neighbour pairs and volumes of each 

neighbour point, respectively. H x , so-called horizon, is the range for identifying neighbours. Beyond the horizon, f = 0. PD

equation of motion is given by 

ρ( x ) . ̈u ( x , t ) = L ( x , t ) + b ( x , t ) (2) 

where ρ( x ) is the density of point x and b ( x , t ) is the external force vector per unit reference volume, acting on the point.

The bond, which will be represented by ξ later, is a PD jargon for x ′ − x . Similarly, η will show the relative displacement of

the bond, u ( x ′ , t ) − u ( x , t ). For a linear elastic isotropic solid, the f is expressed as 

f 
(
x , x 

′ , t 
)

= Cs. 
η + ξ∣∣η + ξ

∣∣ C = 

12 E 

πδ
and s = 

| η| ∣∣ξ∣∣ (3) 

where C is a material constant, E is the modulus of elasticity, δ is the radius of horizon and s is the PD bond stretch. As

seen from Eq. (3) , only one parameter of Lame parameters (E, ν) exists in the pairwise force function. Since Poisson’s ratio

cannot be selected freely, this version of PD theory, “Bond-based Peridynamic”, is valid for the Poisson’s ratio of 0.33 in two-

dimension (plane stress) and 0.25 in three-dimension (the same for plane strain in two-dimension) [29] . Due to limitations

of bond-based PD, the motion of equation was upgraded as follows, 

ρ( x ) . ̈u ( x , t ) = 

∫ 
H x 

{
T ( x , t ) 

〈
x 

′ − x 

〉
− T ′ 

(
x 

′ , t 
)〈

x − x 

′ 〉}.dV x ′ + b ( x , t ) (4) 

where T ( x , t ) 〈 x ′ − x 〉 is called force state. For the convenience, the notation of states will be simplified such that the force

state will given as T instead of T ( x , t ) 〈 x ′ − x 〉 . The term “state” is a basically an array that holds the information about

PD bonds. For instance, deformation( Y ) and force states ( T ) of the point x i can be written such that, 

Y 

⎧ ⎨ 

⎩ 

y 1 − y i 
· · ·
y n − y i 

⎫ ⎬ 

⎭ 

= T 

(
Y x i 

)
= 

{
t 1 ,i ···
t n,i 

}
(5) 

where the n and t indicate the number of neighbours of the point x i and the force between two neighbours. It is noteworthy

that states are mathematically defined special tensors-like object [5] having its own rules. Hence, each state might have 

different properties. For instance, force state is dependant on deformation state whereas deformation state is independent 

as can be seen in Eq. (5) . 

The correlation between force and deformation states depends on the state-based material models. As mentioned in the 

introduction, there are many material models in the literature. Here, a brief explanation could be provided for the difference 

between ordinary and non-ordinary state-based PD materials, which is related to how to define the relation between force 

state and deformation state. Assume a state called “deformed direction vector state “, M that is defined by M ( Y ) = dir Y 

and the relation between T and M is established in Eq. (6) . 

T = t . M (6) 

where t is a scalar force state field. If a material has a scalar state for any deformation, then material is an ordinary material

and the PD theory using this material is called “Ordinary State-Based PD”. Otherwise, the material is non-ordinary and must 

satisfy the conservation of angular momentum, which is defined in Eq. (7) . ∫ 
H x 

{ Y × T } .dV x ′ = 0 (7) 

As aforementioned, non-ordinary materials are expected to behave like classical continuum materials and can be related 

to stress and strain terms. This relation is provided by 

T = w P K 

−1 and K = 

∫ 
H x 

w ( X � X ) .dV x ′ (8) 

where P is Piola stress tensor, K is the shape tensor, X is the reference position state and w is the influence function state

that weighs the contribution of each bond. It should be emphasized that the influence function can be utilized to break

so-called bonds between the point x i and its neighbour x j ; and to define the damage for the point x i . For instance, it can be

set to zero if the stretch of a bond exceeds certain value. Then, the ratio between damaged bonds and undamaged bonds

gives a damage value for the relevant point in Eq. (9) . 

w 

(
x i j 

)
= 

{ 

1 

0 

i f s i j < s c 
i f s i j > s c 

And φ( x i ) = 1 −
∫ 

H x 
w 

(
x i j 

)
.dV x ′ ∫ 

H x 
dV x ′ 

(9) 
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Fig. 1. An illustration of PD theory. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

where w ( x ij ), s ij , s c are the influence function, the stretch between the point x and its neighbour x’ and critical stretch value

to break the bonds. Likewise, φ( x i ) is the nodal damage value of the point x. Here, it is crucial to emphasize that the

expressions in Eq. (9) could be the most common method to introduce damage in PD simulations. In Eq. (9) , w ( x ij ) is the

simplest condition called as “Critical Stretch Criteria”; can be labelled as “bond-breaking criteria” and be set different with 

reference to the material model. On the other hand, φ( x i ) in Eq. (9) is a way of assessing the damage and can be applicable

to any material model. It is a qualitative assessment and the most common method, which will be called as “nodal damage

value” throughout this paper. Indeed, it can be the only method since the quantitative method offered in [32] is limited

to certain type of geometry and valid for stationary crack due to definition of critical released energy. The critical released

energy was defined in [32] as, 

w s = 

1 

2 

G 0 B �x (10) 

where w s is the critical released energy of the crack surface, G 0 is the Griffith’s critical released energy of the material, B is

the thickness of the specimen and �x is the unit crack propagation. Since the crack propagation surfaces cannot be defined

in many applications and Griffith’s approach is limited to certain scenarios, the proposed methodology in [32] cannot be 

used as a general criterion. 

2.2. The method of “Close neighbour and crack on mid-plane”

An illustration of Peridynamics (PD) theory in two dimension is given in Fig. 1 . The motion of the point x, blue dot is

influenced by bond forces between the point and its neighbours. It should be emphasized that not all the bonds are illus-

trated in the Fig. 1 to present a clear picture. One of the neighbours is point x’, orange dot, motion of which is also defined

by its own neighbours. The bond force between two points could be in three different configurations, which represent three 

versions of PD theory (as shown in Fig. 1 ). 

As illustrated in Fig. 1 , PD theory considers the physics of material points via bonds somehow rather than mathematics.

In other words, the concept of bond represents something physical. Therefore, based on this physical meaning, the damage 

criteria could be established in a similar way. 

Due to its non-local property of PD, the points within the body influence each other “directly” when they are neighbours 

and “indirectly” when they have common neighbours. The indirect interaction between points that have common neighbours 

is called first-degree indirect contact. It is crucial to remind that PD geometry is a network of bonds in which points can

influence each other via bond network. Nonetheless, those interactions are weak in comparison to direct and first-degree 
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indirect contact. Based on this definition, the proposal for damage criteria can be set as 

R x = 

{
x ′ ∈ β : 0 < 

∣∣x ′ − x 
∣∣ < δ ∧ w 

(∣∣x ′ − x 
∣∣) � = 0 , x ∈ β

}
(11) 

φ( x i ) , φ
(
x j 

)
= 

{
0 

1 

i f 
∣∣x j − x i 

∣∣〈c ∧ R x i ∩ R x j � = 0 or i f 
∣∣x j − x i 

∣∣〉c 
i f 

∣∣x j − x i 
∣∣ < c ∧ R x i ∩ R x j = 0 ∧ w 

(∣∣ξi j 

∣∣) = 0 

(12) 

where R x is a set of neighbour points of a point within the discretized body domain β; x i and x j are any two neighbour

points in the body and c is the constant identifying the closest neighbours. The constant (c) is selected as �x 
√ 

2 to deter-

mine closest neighbours of the point of interest in a body that has a uniformly distributed mesh structure. Here, �x means

the initial distance between two adjacent nodes, where the horizon constant is 3 �x . It is noteworthy that as aforemen-

tioned, the novel method proposes “a crack will occur between two nodes only if those nodes are in the closest vicinity”.

That is why the nodes having | x j − x i | > c cannot produce a crack. 

The equations of Eqs. (11) and (12) mean that damage will occur between those two close neighbours if they lose their

direct and indirect contact. Here, it should be noted that the general notation, φ, is used to define a crack. However, this

notation has a slight different meaning in the proposed method such that a crack occurs between two damaged points 

( φ = 1) and those points might bear loads in other directions. 

The basis of the assumption of two-close neighbour is that there will be always closest neighbours surrounding a crack 

(i.e. x’’ and x’) even if the first broken bonds belongs to a point x and its far neighbour x’. The application of proposed

method is computationally demanding due to the number of subsets of R x . Therefore, the proposed method is simplified

further. Assume there exist a plane, P , between the point x and its closest neighbour point x’ and there is a function that

defines the relation between bonds and broken bonds of those two points that pass through this plane Eqs. (13) , ( (14) ). 

Z ( x ) = 

∫ 
P 

(
1 − w 

(∣∣ξ ∣∣))dA (13) 

φ( x ) , φ
(
x ′ 
)

= { 1 

0 

i f Z ( x ) = 0 ∧ Z 

(
x ′ 
)

= 0 

else 
(14) 

where P,A are a plane and areas of the bonds on that plane. To facilitate the problem, the formula of the plane P can be

defined as, 

ξ . ( p − p 0 ) = 0 (15) 

where p, p 0 are two points on the plane. A suitable selection of p o is the mid-point of the points x and x’. Then, for any

point p , Eq. (15) defines a plane between the points x and x’, which is perpendicular to ξ. Hence, the proposed method

is called as “Crack on Mid-Plane”. It is worth mentioning that the crack planes will be rotated and moved with respect to

positions of the bonds. 

To increase the efficiency, one more condition in Eq. (16) can be introduced. 

P ε R i f w 

(∣∣ξ ∣∣) = 0 (16) 

In the numerical procedure, the above condition produce the mid-point plane when the relevant bond is broken instead 

of creating planes for each closest neighbours at the beginning of the simulation. 

The computational routine for the method of “crack on mid-plane” is depicted in Fig. 2 . The procedure starts by creating

planes between point and its neighbours if the bond between those points are broken. At this point, planes have no geomet-

rical meaning yet. They are composed of a group of arrays providing relevant information such as point ID, neighbour ID,

the bond identification index, plane identification index and so on. Having created all the planes at the locations of broken

bonds, another function is called for every plane of the point x to create geometrical planes for the point x. Then, the same

function is called to check all the bonds belonging to the point x whether they intersect the plane or not. Simultaneously,

the function also checks whether the intersecting bonds are broken or not. In the final step, the procedure calls another

function that checks the condition in Eq. (14) . If the condition is satisfied, a crack develops at that location. 

3. Results and discussions 

In this section, the proposed method is investigated by using four examples. The method is implemented in the open- 

source code of Peridynamics (PD), called “Peridigm” [35] . All other elements of a peridynamic simulation ranging from 

material models to surface effects treatment are used from the library of Peridigm. 

Due to computational costs, the simulations are conducted on a High Performance Computing (HPC) system, which also 

limits the number of cases. The cost of the proposed method is approximately 2x (in Case 1), 1.7x (in Case 2), 1.2x (in Case

3) and 1.4x (in Case 4) times higher than normal run that can be used to assess damage by nodal damage value. The word

“approximately” is used since the performance of the system depends on several parameters that cannot be controlled by 

the user of HPC system. 
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Fig. 2. The procedure for the proposed method. 
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3.1. Case 1 – fatigue crack propagation in a CT specimen 

A simulation of a fatigue crack is simulated with Peridynamics (PD) theory. There are two models for fatigue cracking in

the literature such as stretch-based [17] and energy-based approaches [19] . Both methods assign a certain value that repre-

sents total life, λ, to all bonds. In every cycle, the bonds gradually lose their life with respect to the magnitude of the stretch

that they are subjected to or the magnitude of energy release from a bond due to bond deformation. The former is known

as stretch-based fatigue model and the latter as energy-based fatigue model. Despite sounding similar, it is mentioned in 

[22] that the former is more suitable for elastic materials and the latter for plastic and composite materials. 

A fatigue crack is simulated to show the effect of nodal damage value and the advantage of proposed method. The

stretch-based fatigue model is preferred in this paper. The stretch-based method assumes in Eq. (17) that a bond has a

finite life. 

λ( 0 ) = 1 (17) 

The life of the bond decrease when it is exposed to cyclic loadings and the function of degradation is given as 

dλ

dN 

= −Aε m (18) 

where A, m are material constants and ε, N represents stretch value and cycle, respectively. The material constants are 

extracted from experimental data by following the instructions in [17] . A bond will fail when it satisfies the condition in

Eq. (19) . 

λ( 0 ) −
∫ 

dλ = 0 (19) 

The damage will occur after sufficient number of failures of the bonds. In other words, the damage will be observed when

the average damage of the node (the nodal damage value) reaches certain value as shown in Eq. (9) . As aforementioned, the

question is how to determine the nodal damage value to estimate the correlation between crack propagation and cycle. 

To show the effectiveness of the proposed method, an experiment with a compact-tension(CT) specimen [36] is repeated 

in PD environment. The test material is 900A grade rail steel having the modulus of elasticity of 207 GPa and Poisson’s ratio

of 0.295. The dimensions of specimen are 50 × 48 × 10 mm (w x h x d). The positions of loading and initial crack complies

with the standard [37] . The applied load is 14 kN with R ratio of 0.2. The geometry is discretized with 1 mm mesh and PD

parameter horizon is selected as 3 mm (3 �x ) with reference to recommendation in [1] . The PD model of the geometry is

presented in Fig. 3 a. 

In Fig. 3 b, the crack propagation that is estimated by proposed method is compared with experimental data from [36] .

Apparently, the PD model with proposed method mimics the experiment with a negligible error. Particularly, the crack 

propagation curve of the model fits the experiment comprehensively. Nevertheless, one can realize that data points of the 

model indicating crack propagation speed in Fig. 3 c slightly disagree with the experiment for lower stress intensity factors. 

The discrepancy between experiment and the model is related to the discretization of the geometry in PD, which is relatively

large. Due to rough discretization, the model reaches the stable crack propagation stage later than the experiment. That 

difference is also perceptible in Fig. 3 b. The density of the model data points is less than the experiment below 60,0 0 0

cycles in the figure, indicating that the less measurement points are available for the model. In other words, there is a data

loss due to the lower resolution of the measurements which is directly related to discretization size. It is expected that fine

meshes will increase conformity between experiment and model. Nevertheless, the correlation between fine meshes and 

computational cost is exponential in fatigue simulations as well as PD simulations. 

In Fig. 3 d, the proposed method is compared to four different nodal damage values in terms of crack length versus cycle.

What stands out in the figure is that the nodal damage value influences the crack propagation, significantly. Regarding the 

proposed method as a reference, the deviations from the reference is related to the required number of broken bonds for

each damage values. The higher the nodal damage value is, the higher the number of bonds is to be broken. Fig. 3 d points

out that the nodal damage value of 0.4 is the closest one to the proposed method. This value is slightly higher than the

value in [20] , which was 0.385. In [20] , the possibility of a broken bonds in the opposite direction in comparison to direction

of the most broken bonds was ignored. 

Further explanations for certain behaviours in Fig. 3 c must be provided for clarification. First, crack propagation speed, 

the gradient of the curves, changes suddenly for all damage values in the early stage of the crack propagation. This behaviour

resulted from non-locality of PD that causes well-known surface effects [38] . Briefly, the points close to crack surfaces or

domain boundaries in a distance less than the horizon will have lower number of bonds since they will have less neighbours

in comparison to points within the body. Several remedies could be found within the literature [ 27 , 28 , 38 , 39 ]). Even though

PD models are corrected with those solutions to some extent, most of the studies using nodal damage value as failure

criteria seem to neglect surface effects in the calculation. Nevertheless, those remedies should also be applied to the nodal 

damage values. The nodes close to crack surface will have less bonds and therefore, damage criteria will be met earlier

owing to definition of the nodal damage value. The second explanation is for the strange behaviour of crack propagation 

curve when nodal damage value of 0.45 is applied. When the selected nodal damage value is considerably high, the crack

propagation must be high to break sufficient number of bonds to meet the criteria. Consequently, the crack propagates 

extremely slowly. When crack becomes unstable, crack speed increase rapidly. It is obvious in Fig. 3 d that all the nodal
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Fig. 3. (a) The geometry of PD fatigue model; (b) A comparison between experiment and model in terms of crack length and cycles; (c) A comparison 

between experiment and model in terms of crack propagation speed and stress intensity factor (note: da/dN is the fatigue crack growth rate, and �K is 

the stress intensity factor); (d) A comparison between different nodal damage value and proposed method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

damage values and proposed method converge at some point, when close to failure. Even though it looks strange at first,

this behaviour is completely normal since the failure of the specimen is a physical phenomenon that take place in a certain

time frame. The nodal damage value is a criterion to interpret the outcome. 

Zoomed-in visuals of crack tip of the PD geometry for various nodal damage value and proposed method is presented in

Fig. 4 for two different time steps. In Fig. 4 a-e, the results are given for the time step when the proposed method captures

crack propagation first time. It is clear in the figure that different nodal damage values produce different crack propagation 

speeds, associated with red points. Particularly, higher damage values cannot capture fatigue propagation at lower cycles. 

This outcome is also perceptible in Fig. 4 a’-e’, in which the crack length is provided after 59k cycles. 

3.2. Case 2 – crack propagation due to impact 

A recent study [40] , in which several nodal damage values were also compared in terms of crack propagation speed, is

partially repeated to show the advantage of proposed method. It is noteworthy that the word “partially” is used since a 

small part of the referred study is considered and State-based Peridynamics (SBPD) are used instead of Bond-based Peridy- 

namics (BBPD) in the current study. In fact, BBPD had also been tried but it was not possible to repeat the study exactly

due to nature of PD which seems to produce infinite number of results under impact loadings with respect to slight differ-

ences in PD parameters such as contact parameters, the position of the impact and so on, which are not mentioned in the

reference. Since the major behaviours in [40] are captured in the current model, SBPD is preferred for convenience owing

to aforementioned advantages of SBPD. 

Two parts of the referred study is repeated. In the first part, an iron ball hits a thick layer soda-lime glass plate with

different impact velocities ranging from 50 to 250 m/s, which is used to validate the model. The modulus of elasticity

and fracture energy of the glass plate are given as 72 GPa and 0.007 kJ/m 

2 and that of the steel ball are 200 GPA and

10 kJ/m 

2 ,respectively. In the second part, the study investigates the fracture behaviour of a bullet hitting a cylindrical glass

plate with a velocity of 100 m/s. The radius and thickness of the plate is 37 mm and 2.5 mm, respectively. The elastic

modulus and fracture energy of the glass in that case are 94.5 GPa and 4.3 J/m 

2 . The material of the bullet is copper
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Fig. 4. Crack propagation at 32k and 59k cycles, respectively, (a)(a’) nodal damage value of 0.3 (b)(b’) nodal damage value of 0.35 (c)(c’) nodal damage 

value of 0.4 (d)(d’) nodal damage value of 0.45 (e)(e’) the proposed method. 
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Fig. 5. A comparison between the data in [40] and the model proposed by the current paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

with modulus of elasticity of 115 GPa and fracture energy of 2.665 kJ/m 

2 . The density and Poisson’s ratio values are not

mentioned in the referred study. Those values are obtained from [ 41 , 42 ]. 

In [40] , the model was verified with an experiment [43] in terms of coefficient of restitution ( C r ). Similarly, Fig. 5 com-

pares the current model, the referred model and the experiment presented in [40] . As can be seen from the figure, the

pattern of current model follows the behaviour of the experiment and the model. The value of C r remains constant below

100 m/s, which is close to 1, indicating that collision is perfectly elastic with no energy dissipation. At higher velocities, the

ball starts to lose some of its energy and therefore, the value of C r decreases. 

To show the effect of various nodal damage values, crack propagation speeds are measured for four different crack paths, 

similar to referred study. Selected paths are presented in Fig. 6 a. It is noteworthy that crack paths are symmetric due to

symmetric discretization and symmetrically applied force since the ball centre and plate centre are colinear. Fig. 6 b-e give

the crack propagation speed for North, Northeast, Southeast and West crack paths. The measurements are given in radial 

distance with respect to micro seconds. The formula to calculate crack velocity is given in Eq. (20) . 

v = 1 /N 

∑ 

N 

((d f − d i ) / 
(
t f − t i 

)
) (20) 

where v, d, t, f, i , N represent average velocity, distance, time, final value, initial value and number of crack paths, respec-

tively. From Fig. 6 b-e, it is perceptible that there is a negative correlation between nodal damage value and crack speed.

The lower the nodal damage value is, the higher is the crack speed. Thus, the correct assignment of nodal damage value

becomes more crucial in impact problems. It is obvious that the same simulation produce significantly different results with 

respect to nodal damage value. On the other hand, the proposed method is independent from nodal damage value and gives

a single value for the crack propagation speed Fig. 6 f. The crack speed of 1217 m/s for the proposed method is relatively

lower than crack propagation speeds for nodal damage values. The closer investigation in the simulation environment pro- 

vides two explanations. First, the nodal damage value produce different the crack propagation speeds. It is likely that higher 

nodal damage value can produce lower crack propagation speed. Secondly, it is observed that two cracks merge on the 

same path when the proposed method is used or the nodal damage value is high. The result of this behaviour can be seen

in Fig. 6 e, where Northeast and West cracks slowly propagates between 4 and 8 μs on the contrary to North and Southeast

cracks which show a jump at 8 μs . 

The visual assessments of the proposed method and nodal damage value can provide more insight into the problem. 

In Fig. 7 a, the plate from the simulation is presented after magnifying displacement field by 500x and application of cut-

off filter with damage value of 0.85 that filters out free nodes and severely damaged nodes. Then, the points having nodal

damage values in Fig. 6 are also filtered out to present clear picture for the corresponding damage value. Fig. 7 b-e illustrates

crack propagation associated with different nodal damage values after filtering out damaged nodes above nodal damage 

values. It is apparent from Fig. 7 b-d that those damage values,0.3–0.5, clearly overestimates the crack propagation since a 

concentric separation between outer and inner part exist and there are a lot of chunks in the inner part when compared

to Fig. 7 a. Fig. 7 e has no concentric separation between inner and outer part and therefore, nodal damage value of 0.6 is

relatively accurate to estimate crack propagation even though the ratio of the damaged area to undamaged area seems to be

higher in comparison to Fig. 7 a. In Fig. 7 f, the illustration of proposed method is presented. As can be seen from the figure,

the proposed method captures large cracks clearly. By looking at Fig. 7 a closely, one may claim that perceptible shallow

cracks in Fig. 7 a are not captured by the proposed method. It should be emphasized that the displacement field is magnified
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Fig. 6. Crack propagation speed on four different paths (a) selected paths (b) the nodal damage of 0.3 (c) the nodal damage of 0.4 (d) the nodal damage 

of 0.5 (e) the nodal damage of 0.6 (f) the proposed method. 
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Fig. 7. Crack profiles (a) Free from any methods (b) the nodal damage of 0.3 (c) the nodal damage of 0.4 (d) the nodal damage of 0.5 (e) the nodal damage 

of 0.6 (f) the proposed method. 
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Fig. 8. Crack profiles (a) Free from any methods (b) the proposed method. 

Fig. 9. The dimensions of concrete specimen. 

 

 

 

 

 

 

 

 

 

 

 

 

by 500x, which enables to see those separations on the surface. Nevertheless, it does not mean all the bonds between

neighbouring nodes are broken. In other words, the propagation condition of the proposed method is not satisfied. To ensure 

the sufficiency of the method, Fig. 8 is presented with a magnification factor of 100x that is applied to displacement. In

Fig. 8 b, it is apparent that the proposed method captures all the cracks in Fig. 8 a. 

3.3. Case 3 – crack propagation in a double-edge notched concrete 

The experiment of the double edge notched concrete under loading [44] has been used in various studies [45–47] as a

reference to validate the numerical models of crack propagation in concrete structure. It is a classical failure problem with a

simple configuration. To demonstrate the capability of proposed method, the same setup is simulated in Peridynamics (PD) 

with an exception of that the simulation is conducted in two steps. In the first step, the quasi-static solver is used to find the

equilibrium before crack propagation. Then, explicit solver is activated to solve the crack propagation problem with a small 

increments that yield close to quasi-static solution (maximum strain rate < 1.0e-4) until failure which is absolutely dynamic. 

The idea behind of two-step is to reduce the simulation time and apply similar conditions to experimental method, which 

was quasistatic. It is noteworthy that quasi-static solutions of PD involve some challenges related to the nature of crack 

problem as well as PD itself [48] . 

Fig. 9 illustrates the dimensions of the beam specimen with a modulus of elasticity of 27 GPa, density of 2400 kg/m3,

Poisson’s ratio of 0.18 and mode-I fracture energy of 100 N/m. The crack depth is 40 mm and the load increases from 0

to 47.6 kN, gradually and slowly. The geometry is discretised into points that are equally distanced in 0.5 mm, resulting in

128k nodes. The PD parameter of horizon is 15 mm (3 �x ) with reference to recommendation in [1] . 

In Fig. 10 a, the PD model of the concrete specimen shows fair agreement to the experiment. Though, the PD model

overestimates the failure point, where a snap-back occurs. The discrepancy could result from PD parameters as well as the 

nature of the failure itself. The experimental and PD failure modes are illustrated in Fig. 10 b-d. As can be seen from the

figures, PD simulation exhibits similar failure modes to the experiment. Nevertheless, the curvature of the crack paths in PD 

simulation is relatively lower than the experiment, associated with relatively large mesh size. In Fig. 10 c-d, the maximum

strain before and after failure is presented to show the potential crack path as well as strain relief following the failure. In
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Fig. 10. (a) Comparison between experiment and model (b) the failure mode presented in [44] (c) maximum strains before failure (d) maximum strains 

after failure. 

 

 

 

 

 

 

 

 

 

 

the figures, the area with dense red points are the crack tips of the bottom and top notches. Likewise, the area with light

blue points represents the force points. 

As aforementioned, Fig. 11 that is captured just before the failure proves that the magnitude of the nodal damage value

to represent crack propagation is decisive on how the crack forms. In the figure, the damage values below the threshold

nodal damage value are filtered out. Similarly, the damage values above the threshold are also painted with same colour of

threshold value to present a clear picture. As Fig. 11 a-d show, there is a significant difference between crack paths of various

nodal damage values. The lower nodal damage values estimate large and apparent crack paths and it is vice versa for the

higher values. On the other side, the proposed method estimates a partial crack propagation. In comparison to nodal damage 

value of 0.3, the proposed method indicates that the straight part of the crack path that is under the force acting points has

not appeared, yet. Lastly, the crack path formation after clear failure is presented in Fig. 12 . Apparently, the higher nodal

damage value cannot estimate the crack path accurately, in the case of four point bending of double edge notched concrete

sample. The lowest value of average damage and proposed method exhibit similar behaviour after failure. It might be said 

that ideal value of average damage is 0.3 in the case of quasi-static mixed mode failure in addition to proposed method.
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Fig. 11. Crack path estimation with respect to nodal damage values and the proposed method before the apparent failure (a) the nodal damage of 0.3 (b) 

the nodal damage of 0.4 (c) the nodal damage of 0.5 (d) the nodal damage of 0.6 (e) the proposed method. 

 

 

 

 

 

 

Nevertheless, the nodal damage value of 0.3 lose its validity in dynamic and fatigue problems, which was presented in the

previous sections. 

3.4. Case 4 – dynamic crack propagation 

The fourth case to investigate the advantage of the proposed method involves crack growth with branching. For this pur- 

pose, the simulation in [49] is repeated here. The geometry of the specimen, which is pre-notched glass sheet, is illustrated

in Fig. 13 a. The specimen has the modulus of elasticity of 32 GPa, a Poisson’s ratio of 0.2 and a density of 2450 kg/m 

3 .

A tensile stress with a magnitude of 1 MPa is applied at top and bottom surfaces. The geometry consists of points that is

equally distanced by 0.5 mm in x, y, z, directions . The horizon parameter of 1.5 mm is applied in the simulations. 

It was mentioned in [49] with reference to the experimental study [50] that crack propagates on a straight path with a

gradually increasing speed and then, after exceeding a certain speed value, it splits into at least two different cracks. 

The experimental observation and the outcome of numerical simulation (conducted with Extended Finite Element 

Method (XFEM)) in [49] are presented in Fig. 13 b-c. As shown in Fig. 13 d, the outcome of the proposed method also follows
288 



M. Hamarat and S. Kaewunruen Applied Mathematical Modelling 123 (2023) 274–294 

Fig. 12. Crack path estimation with respect to nodal damage values and the proposed method after the apparent failure (a) the nodal damage of 0.3 (b) 

the nodal damage of 0.4 (c) the nodal damage of 0.5 (d) the nodal damage of 0.6 (e) the proposed method. 

 

 

 

a similar trend in general. The crack first propagates on a straight line and then, at certain point, it splits into two different

cracks. A perceptible difference is related to the estimation of minor cracks prior to crack split, which were observed in

the experiment but underestimated by Peridynamics (PD) as well as XFEM. It is noteworthy that the application of nodal 

damage values also gives same crack paths. Therefore, only the result of proposed method is presented in Fig. 13 . 

The crack propagation speeds obtained by different methods are compared in Fig. 14 . The methods used in [49] are

shown in orange colour. Likewise, different nodal damage values and proposed method are depicted in blue and green 

colours, respectively. It is apparent in the figure that PD estimation of crack propagation speed is between interelement 

method and XFEM, which provides a confidence in estimating crack propagation and branching. What is interesting in 
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Fig. 13. (a) The illustration of the specimen (b) the sketch of experimental result (KOBAYSHI) (c) the sketch of XFEM result (SONG) (d) the result of the 

proposed method. 

Fig. 14. Crack propagation speeds estimated by different methods. 

 

 

 

 

 

Fig. 14 is that the proposed method estimates the start of crack propagation far beyond the start points provided by the

other methods, which might disprove the proposed method. Hence, this contradictory outcome is investigated further. It 

should be reminded that PD theory is established on the interactions of nodes or so-called bond’s behaviour. A loss of in-

teractions, namely broken bonds, defines the damage. In many studies, it is assumed that a nodal damage value is sufficient

to determine the number of bonds of a point that must be broken to assume that there is a damage in the vicinity of that

point. Even though this assumption seems to be independent from damage location, it takes that information into account 

indirectly. In those studies, the nodal damage value represents the number of bonds belonging to the damaged side of the
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point, figuratively. As aforementioned, there are limited number of studies in which the number of bonds passing through 

a crack path that must be broken is manually calculated. In those studies, if a single bond passing through crack surface is

still intact at specific location, then the crack at that location does not exist yet. 

To verify the proposed method or to explain the reason why the proposed method estimated the late start propagation,

it is imperative to track the condition of the relevant bonds. If there is any non-broken bonds that pass through the crack

path(used in the previous studies) or the mid-plane (offered by current method), it means that nodal damage value ignores 

the existence of some non-broken bonds. It is worth mentioning that the crack path and mid-plane have similar orientation 

and location for the straight part of the crack in the current example. To examine the condition of the relevant bonds, two

points on the crack path are selected. Selected two points are located in Fig. 15 a-c. The detailed neighbour information

and non-broken bonds of the common neighbours for the selected points are given in Fig. 15 d-f for different time steps(i.e.

40, 100,110 microseconds). In the figures, red and blue dots are the selected points. Red and blue crosses are the unique

neighbours of corresponding points and black crosses represent common neighbours of those two points. The crack path 

and mid-plane lays between the selected two nodes. As shown in Fig. 15 e, there are several non-broken bonds that pass

through crack path. With reference to the concept of PD bonds, it can be concluded that the damage has not occurred

yet. Moreover, nodal damage values neglect non-broken bonds in that case. In other words, Fig. 15 e reveals that the failure

criteria of proposed method have not yet met, which yields the late start of crack propagation. Considering the similarities 

and discrepancies in Fig. 14 , one may suggest to use nodal damage values to evaluate damage with a cost of ignoring some

non-broken bonds. In that case, the nonlocality of PD theory might become questionable. 

4. Discussions 

Since there is no consensus on how to determine the nodal damage value, most of the studies are interpreted by visual

assessments. In the other few studies, several attempts have been made to quantify the damage. Nevertheless, those studies 

have significant drawbacks which were underlined previously in the introduction. As shown throughout this paper, selection 

of the nodal damage value significantly influence the results. The uniqueness of the study is to set a robust condition

that enables to produce a single outcome for any simulation whereas nodal damage value can produce multiple outcomes 

associated with the magnitude of nodal damage value. This paper proposes that the damage will occur when all direct and

first degree indirect contacts between two closest neighbour are lost. The proposed method is offered with a consideration 

of the non-local nature of PD theory. 

It should be emphasized that visual assessment of the PD simulations by nodal damage value could be indicative in 

quasi-static simulations at some degree when the crack evolution is ignored. Furthermore, the value could be determined to 

certain degree by using so-called bond filters that ignores any bond passing through a crack plane and can assist to figure

out the number of ignored bonds to calculate nodal damage value. Nevertheless, the results of the simulations show that 

those approaches fails in dynamic and fatigue problems where crack propagation speed is crucial. 

One may question the advantage of the proposed method in fatigue case where the extraction of the material constants 

can also be done with reference to nodal damage value. However, it is noteworthy that those constants could also be pro-

duced for irrelevant values such as nodal damage value of 0.01, which means a few broken bonds could reflect the crack

propagation behaviour. On the other hand, the proposed method removes some parts of the virtuality of the fatigue model. 

Indeed, it is believed that there must be correlation between proposed method and crack propagation since it defines the 

propagation in more physical way. Hence, it is aimed to conduct further studies to figure out the relation between proposed

method and crack propagation. The proposed method might be capable of simulating the crack initiation part of the applied 

fatigue model. Crack initiation was mentioned several times in many studies but never investigated thoroughly due to the 

challenge in setting and verifying the condition that will initiate the crack. 

It is worth mentioning that proposed method could be computationally expensive due to the number of subsets of 

the direct and indirect neighbour points. Hence, it is preferred to apply specific conditions that decrease the simulation 

time. This paper also proposes that damage will occur on a mid-plane of two neighbouring points when all the bonds of

those two neighbours that pass through the plane are broken. Moreover, the plane will occur when the direct contact is

lost. Currently, the cost of computation seems to be reasonable to use the current methodology of crack-on-midplane. The 

proposed method is vastly applicable to various engineering structures under dynamic and impact loading conditions such 

as rail surface defacts [ 20 ], railway switches and crossings [ 51 ], and so on. 

5. Conclusions 

The main aim of this paper is to propose a new methodology to assess the damage initiation and propagation in Peri-

dynamics (PD) simulations. Currently, the damage assessment is mostly based on the nodal damage value the magnitude 

of which shows variations within the literature. Therefore, outcomes of the simulations concerning the nodal damage value 

become subjective and the impact of this subjectivity has been presented throughout this paper. 

This paper proposes a new philosophy “the damage will occur when all direct and first degree indirect contacts between 

two closest neighbour are lost” for damage assessments and a new method associated with that philosophy. The method 

sets an objective criterion and yields a single outcome while showing crack formations. 
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Fig. 15. Crack propagation at 100 microseconds for (a) NDV of 0.3 (b NDV of 0.5 (c) the proposed method. The bond conditions of selected points (d) at 

40 microseconds (e) at 100 microseconds (f) at 110 microseconds. 
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In conclusion, in this paper, a comparison between the nodal damage value and the new method has been presented for

four cases. The new method appears to be rigorously effective and relatively efficient tool to trace the crack propagation and

initiation. More importantly, it does not produce different results in the same simulation. Further studies will be conducted 

to test the range of validity and the cost of computation for proposed method in various scenarios. 
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