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1 MALDI Imaging Normal Liver

Figure 1: normal and NASH side by side showing differences in morphology

Figure 1 shows a MALDI image from a normal and a NASH diseased tissue section. The normal liver

shows a much more regular morphology at the resolution of this image and there are no signs of the enlarged

hepatocytes visible within the NASH tissue. The mean spectra have observable differences but it is not

the aim of this work to determine specific molecules that distinguish between normal and NASH tissue, far

greater sample numbers would be required than are available here.
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2 Random Projection of Mouse Brain Image

The mouse brain image made publicly available by Race et al[1] underwent a workflow of random projection,

using 150 projections, and k-means clustering, with five clusters. The segmentation map shown in Figure

2 delineates tissue features (white and grey matter) and the MALDI matrix background. There are two

clusters that form at the boundary. This boundary phenomenon often occurs when using CHCA[3, 4]. The

two boundary layers show progressively fewer peaks in the ‘lipid region’ m/z 700 - 900 and greater numbers

of matrix clusters that are normally suppressed on tissue.

2.1 Clustering Correlation

Segmentation using k-means clustering (5 clusters) was performed on data projected with 5-200 random

projections, with 5 repeat experiments being performed for each set of random projections (new projection

vectors were produced each time). The resulting segmentation maps are shown in Figure 4. For each set

of projections the spearman ranks correlation between the segmentation labellings was calculated and the

average value for each size set of random projections is shown in Figure 3
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Figure 2: A workflow of random projection (150 projections) followed by k-means clustering (5 clusters)
produced a segmentation that delineated the tissue section from the matrix background and separated the
white and grey matter.
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Figure 3: The pairwise correlation between segmentation results (average of 5 sets of projections) for different
size random projection sets. Increasing the number of projections improves the consistency of results to over
0.9.
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Figure 4: k-means clustering results following RP and PCA. a: segmentation maps from RP and PCA
showing the identical regions are identified. b: PCA eigenvalues (variance contained) showing that only the
first 50 components are non trivial. c, the average correlation (spearman, median of 5) between segmentation
maps produced from dimensionality reduction using PCA or random projection

3 PCA

3.1 Equivalence of segmentation

Principal Component Analysis (PCA) was performed using the MATLAB (MathWorks, USA) function

princomp. This technique produces, from within the data, a set of vectors which form an orthogonal basis

for the data. The basis vectors (PCA coefficients) are ordered by the variance they contain and so only

those with significant variance need to be preserved[2]. Projecting the data onto these coefficients achieves

the dimensionality reduction. A near-identical segmentation is achieved from k-means applied to either

randomly projected data or PCA scores (Figure 4). Figure 4.c show the average correlation between maps

produced using PCA for dimensionality reduction and maps produced using varying numbers of random

projections. This rapidly approaches one indicating that the tissue compartments found are identical between

the two dimensionality reduction schemes. This illustrates that the information required for segmentation

(in particular, Euclidean distance) is preserved by both techniques.

3.2 Computing Memory requirements for pca

Data Item (dimension) Size (MB)
data matrix (N M) 2239.6
mean centered data (N M) 2239.6
U (N M) 2239.6
S (M M) 4327.8
V (M M) 4327.8
Total 15,374

Table 1: Maximum Memory estimates for PCA using MATLAB princomp assuming variables are stored as
8 byte doubles.
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PCA is a computationally intensive process that requires the whole dataset to be stored in memory. The

requirements are summarised Stage 3 in Table 1 from Race et al[5] and re-calculated for this dataset in

Table 1. This shows the maximum memory footprint of the MATLAB princomp algorithm. This was used

to calculate the memory requirements for performing PCA on the MALDI-MSI from diseased human liver.

Calculating the random projects took a few seconds once the data was stored in memory whilst PCA took

approximately half an hour.
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