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Abstract 

Nearly 50 years since its potential as a fluorescent base analogue was first recognised, 

2-aminopurine (2AP) continues to be the most widely used fluorescent probe of DNA 

structure and the perturbation of that structure by interaction with enzymes and other 

molecules. In this review, we begin by considering the origin of the dramatic and 

intriguing difference in photophysical properties between 2AP and its structural 

isomer, adenine; although 2AP differs from the natural base only in the position of the 

exocyclic amine group, its fluorescence intensity is one thousand times greater. We 

then discuss the mechanism of interbase quenching of 2AP fluorescence in DNA, 

which is the basis of its use as a conformational probe but remains imperfectly 

understood. There are hundreds of examples in the literature of the use of changes in 

the fluorescence intensity of 2AP as the basis of assays of conformational change; 

however, in this review we will consider in detail only a few intensity-based studies. 

Our primary aim is to highlight the use of time-resolved fluorescence measurements, 

and the interpretation of fluorescence decay parameters, to explore the structure and 

dynamics of DNA. We discuss the salient features of the fluorescence decay of 2AP 
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when incorporated in DNA and review the use of decay measurements in studying 

duplexes, single strands and other structures. We survey the use of 2AP as a probe of 

DNA-enzyme interaction and enzyme-induced distortion, focusing particularly on its 

use to study base flipping and the enhanced mechanistic insights that can be gained by 

a detailed analysis of the decay parameters, rather than merely monitoring changes in 

fluorescence intensity. Finally we reflect on the merits and shortcomings of 2AP and 

the prospects for its wider adoption as a fluorescence-decay-based probe. 

 

Running title: 2-aminopurine as a fluorescent probe. 
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1. Introduction 

The genetic code is protected from photo-induced damage by the extremely short, 

sub-picosecond excited state lifetimes of the nucelobases. While this is highly 

advantageous to life, it is a considerable inconvenience to biophysical science because 

it has the inevitable consequence that DNA is essentially non-fluorescent. This means 

that fluorescence techniques, amongst the most powerful for the study of 

biomolecular systems, can only be applied to nucleic acids by the introduction of an 

extrinsic fluorophore into the molecular structure. 2-Aminopurine (2AP) is one such 

fluorophore and is unique in its structural similarity to a natural nucleobase. 2AP 

differs from adenine (6-aminopurine) only in the position of the exocyclic amine 

group, and yet its fluorescence intensity is one thousand times that of adenine. 

It is important at this point to make the distinction between a fluorescent label and a 

fluorescent probe. A fluorescent label serves to confer detectable fluorescence on an 

otherwise non-fluorescent species, or to provide fluorescence in a spectral region that 

differs from the intrinsic fluorescence of the species. A fluorescent probe, on the other 

hand, reports on its local molecular environment through a change in its fluorescence 

properties (intensity/lifetime/wavelength) in response to interaction with this 

environment. 2AP is not valuable as a fluorescent label because its fluorescence is 

highly quenched by stacking with the natural bases, when it is inserted in an 

oligonucleotide. However, it is this very susceptibility to interbase quenching that 

makes 2AP an exquisitely sensitive fluorescent probe of nucleic acid structure. 

Fluorescent base analogues that are environmentally insensitive labels, valuable in 

techniques such as Förster resonance energy transfer (FRET) and fluorescence 
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anisotropy, have been reviewed recently (Wilhelmsson, 2010) and will not be 

discussed here. 

Using solid-phase synthesis and phosphoramidite chemistry, 2AP can be substituted 

for a natural base at any selected position in an oligonucleotide. The introduction of 

2AP into DNA, in this fashion, causes minimal disturbance to the duplex structure. 

Melting temperatures of single-2AP-substituted duplexes are typically 1-3 oC less 

than the unsubstituted duplex (Eritja et al., 1986; Nordlund et al., 1989; Xu et al., 

1994). 2AP forms a Watson-Crick base pair with thymine (T), as shown by NMR 

spectroscopy (Sowers et al., 1986) and revealed clearly by X-ray crystallography, as 

illustrated by the structure in Figure 1. It forms a wobble base pair with cytosine (C) 

(Neely et al., 2005; Sowers et al., 2000) or adenine (A) (Fazakerley et al., 1987) and 

can form a Hoogsteen-type base pair with guanine (G), as shown by the X-ray 

structure in Figure 2 (Neely et al., 2005). Spectroscopic and calorimetric 

measurements indicate the base pair stability to be 2AP-T>2AP-C>2AP-A>2AP-G 

(Law et al., 1996). The effects of substitution of adenine by 2AP on duplex structure 

and base pair dynamics have been examined in detail in a recent NMR study 

(Dallmann et al., 2010). It was found that substitution of adenine by 2AP in the 

central base pair of 13mer duplex did not affect the overall helical structure; slight 

local conformational perturbations at the substitution site were seen but these are 

weak compared with those reported for other base or base-pair analogues (Engman et 

al., 2004; Guckian et al., 1998; Guckian et al., 2000; Smirnov, 2002). In agreement 

with previous studies (Lycksell et al., 1987) the lifetime (opening times) of the 2AP-T 

base pair was found to be significantly shorter that of the A-T base pair, 1.6 ms 

compared with 8 ms. Moreover, a cooperative effect on base dynamics was observed, 
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with lifetimes of three adjacent base pairs in either direction reduced by around 30% 

by the substitution of 2AP for A. Although introduction of 2AP is not entirely without 

structural repercussions, an over-riding, crucially important fact is that 2AP-

substituted oligonucleotides are biologically active as substrates for enzymes that 

modify DNA. 

In this review, we begin by considering the dramatic difference in photophysical 

properties between 2AP and its structural isomer, adenine, the origin of which has 

intrigued physical chemists and been widely studied by both experimentalists and 

theorists. Even if it had proved useless as a fluorescent probe, 2AP would still stand 

out as a paradigm of molecular photophysics! We then turn to the mechanism of 

interbase quenching of 2AP fluorescence in DNA which is the basis of its use as a 

conformational probe, but remains imperfectly understood. 

There are hundreds of examples in the literature of the use of changes in the 

fluorescence intensity of 2AP as the basis of assays of conformational change in 

studies of DNA, and numerous, although fewer, examples of its use in studies of 

RNA. However, in this review we will consider in detail only a few intensity-based 

studies, in the context of base (nucleotide) flipping. In considering the applications of 

2AP as a fluorescent probe, our main aim is to highlight the use of time-resolved 

fluorescence measurements, and the interpretation of fluorescence decay parameters, 

to explore the structure and dynamics of DNA and the perturbation and manipulation 

of the duplex structure by enzymes. In Section 3, we discuss the salient features of the 

fluorescence decay of 2AP when incorporated in DNA and review the use of decay 

measurements in studying duplexes, single strands and other structures. In Section 4, 

we survey the use of 2AP as a probe of DNA-enzyme interaction and enzyme-induced 
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distortion. We focus particularly on its use to study base flipping by 

methyltransferases (and other enzymes), an area in which it has found extensive 

application. We highlight the enhanced mechanistic insights that can be gained by a 

detailed analysis of the decay parameters, rather than merely monitoring changes in 

fluorescence intensity. 

The fluorescence decay measurements discussed in this review have been conducted 

mainly using the technique of time-correlated single photon counting, which is ideal 

for measurements in the range of ns down to 10’s of ps. However, there have been a 

few reports of ultrafast, pump-probe fluorescence decay measurements which can 

detect sub-picosecond lifetimes. These are discussed briefly in Section 5. 

Finally, in conclusion, we reflect on the merits and shortcoming of 2AP, the prospects 

for its wider adoption as a fluorescence decay-based probe and whether ultrafast 

measurements offer significant added value. 

2. Fluorescence properties and photophysics of 2-aminopurine 

2.1 Intrinsic properties of the fluorophore 

The fluorescence properties of 2AP (and a number of its derivatives) were first 

reported by Stryer and coworkers (Ward et al., 1969). 2AP has a quantum yield of 

0.68 in aqueous solution, compared with ~ 10-4
 for adenine, and an emission 

maximum at ~370nm. Importantly, its excitation maximum, at ~303nm, lies to the red 

of the absorption of the nucleic bases and aromatic amino acids, allowing it to be 

excited selectively in DNA or RNA, and in the presence of proteins.  

The fluorescence quantum yield of 2AP decreases markedly with decreasing polarity 

of the solvent environment (a five-fold reduction in dioxane relative to water), 
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accompanied by shifts in the emission spectrum to shorter wavelength (Evans et al., 

1992; Rachofsky et al., 2001a; Ward et al., 1969). However, as shown by Rachofsky 

et al, specific hydrogen bonding with water has negligible effect on the fluorescence 

quantum yield or emission wavelength. The sensitivity of fluorescence quantum yield 

to solvent polarity was suggested to be due to the participation of an nπ* state in the 

non-radiative decay of the emitting ππ* state, with the nπ* lying higher in energy in 

water, but being stabilised relative to the ππ* state in non-polar solvents. (Rachofsky 

et al., 2001b). 

The striking difference in photophysical properties between 2AP and adenine has 

been the subject of numerous theoretical studies, as summarised by Serrano Andres 

and coworkers (Serrano-Andres et al., 2006). The currently accepted explanation of 

the non-fluorescence of adenine, proposed by these authors and others, is that ultrafast 

excited state decay occurs by internal conversion to the ground state, facilitated by 

barrierless relaxation from the initially excited 1ππ* state to a conical intersection 

between the excited and ground state potential energy surfaces. (A conical 

intersection can be thought of as an energy funnel between two electronic states 

where the probability of non-adiabatic, non-radiative jumps is high.) Initial 

calculations of Serrano Andres et al. on the isolated molecule (Serrano-Andres et al., 

2006) predicted that, although such a conical intersection exists in 2AP, it cannot be 

accessed rapidly from the initially excited state because of an intervening potential 

energy barrier; the ultrafast decay pathway is, therefore blocked, resulting in a 

relatively high fluorescence quantum yield. A subsequent computational study 

examined the effects of aqueous solvation (Ludwig et al., 2008) and predicted that 

hydration increases the height of the barrier to the conical intersection, in line with the 
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experimentally observed increase in quantum yield in polar solutions. It was 

concluded that the photophysics of 2AP was governed by the accessibility of the 

conical intersection with the ground state and, contrary to previous proposals, the 

1nπ* state did not play an important role, since it was found to be higher in energy 

than the 1ππ* state. However, this picture was soon to be challenged by new 

experimental data.  

The important influence of solvation on the fluorescence of 2AP was emphatically 

demonstrated by the recent revelation that 2AP is barely fluorescent in the gas phase 

(Feng et al., 2009; Lobsiger et al., 2011). These high-resolution spectroscopic studies 

of 2AP molecules, free from collisions and cooled to a few Kelvin in supersonic 

molecular beams, showed the fluorescence lifetime of the isolated molecule to be 77 

ps, corresponding to a quantum yield of about 0.005. They also provided clear 

evidence that the main non-radiative channel is the decay to a close-lying 1nπ* dark 

state (a state which is neither emissive nor accessible by direct optical excitation), 

followed by intersystem crossing to the long-lived lowest triplet (3ππ*) state. This led 

to reiteration of the proposal that the fluorescence quantum yield is high in polar 

solvents because the 1nπ* state is shifted to higher energy, and a re-examination of the 

computational predictions. As discussed in detail by Lobsiger et al., the predicted 

relative energies of the 1ππ* and 1nπ* states depend on the computational method 

used (Feng et al., 2009; Lobsiger et al., 2011); by adopting a method different from 

those used in previous studies, they achieved good agreement between the calculated 

and experimental excited state energies for the isolated molecule. Definitive 

experimental evidence for the effect of solvation on the relative energies of 1ππ* and 
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1nπ* states can be obtained, in principle, from high resolution spectroscopy of 2AP-

solvent complexes in supersonic molecular beams. Although recent experiments 

(Lobsiger et al., 2013; Sinha et al., 2011) have demonstrated the ability to produce 

2AP-H2O clusters, containing up to three water molecules, and identify their different 

isomeric forms, a detailed analysis of their energy level structure has yet to be 

achieved. 

Very recent experiments (Reichardt et al., 2013) have demonstrated for the first time 

the significant role of intersystem crossing in the fluorescence quenching of 2AP in 

solution. The triplet yield was found to depend sensitively on the hydrogen-bonding 

ability and polarity of the solvent, with a value of 0.4 in acetonitrile, decreasing to 0.2 

in ethanol and 0.08 in aqueous buffer. This correlates with the increasing trend in 

fluorescence quantum yield: 0.26 in acetonitrile, 0.47 in ethanol and 0.68 in buffer. 

This lends strong support to the mechanism of nπ*-mediated intersystem crossing 

indicated by gas-phase studies. It can be inferred from the fluorescence and triplet 

quantum yields that there is a second solvent-independent non-radiative channel, with 

a yield of about 0.3; this is most likely internal conversion from the 1ππ∗ state to the 

ground state. 

The fluorescence decay of the 2AP base in aqueous solution is often reported to be 

monoexponential, with a lifetime around 11.5 ns (Holmén et al., 1997; Lakowicz, 

2006; Rachofsky et al., 2001a; Rachofsky et al., 1998), and this is indeed the case for 

an individual decay curve measured at a particular excitation and emission 

wavelength. However, measurement over a range of excitation and emission 

wavelengths revealed that the decay is, in fact, biexponential, as a result of the 

presence of both the (minor) 7H and (major) 9H tautomers which differ slightly in 
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their lifetimes and their spectra. (He et al., 2006; Liang & Matsika, 2011; Neely et al., 

2004). The fluorescence decay of 2AP riboside, in which tautomerism is absent, is 

genuinely monoexponential with a lifetime of 10.6 ns in water (Neely et al., 2004). In 

line with the observed decrease in quantum yield, the lifetime decreases in less polar 

solvents; in ethanol, for example, it is 5.8 ns. The substitution of hydrogen at the N(9) 

position by ribose or deoxyribose has negligible effect on the photophysics of the 2AP 

fluorophore (Reichardt et al., 2013). The small discrepancies in the values of quantum 

yields and lifetimes between the free base and the nucleosides, found in the literature, 

can be accounted for by the presence of the 7H tautomer in the former case. Although 

tautomerism is not directly relevant to the photophysics of 2AP as a fluorescent probe, 

since it does not occur in the nucleoside, it reinforces the close analogy between 2AP 

and adenine.  

Under conditions where there is a strong π-stacking interaction between a pair of 2AP 

molecules, or between 2AP and a natural base, a second longer-wavelength emission 

band is observed at around 450 nm, in addition to the familiar short-wavelength 

spectrum at 370 nm. This is due to formation of an electronically coupled ground-

state dimer, which has lower excitation energy than the 2AP monomer. The long-

wavelength emission was first identified by Rist et al. in a DNA duplex containing 

four pairs of adjacent 2AP bases (Rist et al., 2002); they observed a weak, red-shifted 

emission band, in addition to the ‘normal’ 2AP fluorescence spectrum, and a 

corresponding red-shifted excitation spectrum. In a study of the X-ray structure and 

fluorescence of crystalline 2AP, we showed that interaction between 2AP molecules 

in the π-stacked structure of the crystal lattice gave rise to analogous long-wavelength 

emission (Neely et al., 2007). Subsequent examination of a variety of 2AP-containing 
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oligodeoxynucleotide duplexes and single strands showed that dual fluorescence is a 

general property of 2AP in DNA (Bonnist & Jones, 2008). We suggested that red-

shifted fluorescence arises from conformational states of the duplex in which 2AP 

forms a highly eclipsed, π-stacked structure with one of its neighbouring bases. The 

long-wavelength fluorescence is usually much weaker than the short-wavelength band 

and escapes observation at the typically used excitation wavelengths of 300-320 nm; 

however, it is revealed by selective excitation at around 360 nm.  The low intensity of 

the long-wavelength fluorescence means that it is unlikely to add to the utility of 2AP 

as a fluorescent probe of DNA structure and has not been explored in this regard, 

although it is another manifestation of the sensitivity of 2AP to base stacking 

interactions. Excitonic coupling between stacked pairs of 2AP molecules in DNA has, 

however, been exploited in low energy (> 300 nm) circular dichroism spectroscopy to 

probe DNA conformation (Finger et al., 2013; Johnson et al., 2004; Jose et al., 2009). 

2.2. Quenching of 2-aminopurine fluorescence by stacking with the natural 

bases 

As well as identifying 2AP as a fluorescent analogue of adenine, the Stryer group 

made the crucial observation that its fluorescence was quenched in polynucleotides 

and recognized its potential for probing enzyme-induced disruption of nucleic acid 

structure (Ward et al., 1969). When 2AP is substituted for a natural base in DNA, it 

displays an emission band with a maximum at ~370 nm that is essentially unchanged 

in spectral profile from that the of the free nucleoside, but is reduced in intensity by a 

factor of 10 to 100. Several early studies showed that the fluorescence is quenched by 

stacking interactions with neighbouring bases and the quenching efficiency is highly 
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sensitive to the local duplex conformation (Guest et al., 1991; Nordlund et al., 1989; 

Rachofsky et al., 2001c; Xu et al., 1994). 

Barton and coworkers  have presented a substantial body of evidence that excited 2AP 

is quenched efficiently by electron transfer from guanine and have exploited this 

effect in studying the mechanism of charge transfer in DNA (see, for example, 

(Kelley, 1999; O'Neil & Barton, 2002; O'Neill & Barton, 2002; O'Neill & Barton, 

2004a; O'Neill & Barton, 2004b; O'Neill et al., 2003; O'Neill et al., 2004; Wan et al., 

2000). The following observations have emerged from their work. Intrastrand electron 

transfer is more efficient than interstrand transfer, though both occur. The electron 

transfer efficiency (from guanine to excited 2AP) is greater in the 3’-5’ direction and 

is less dependent on distance than in the 5’-3’ direction. Electron transfer is possible 

between guanine and excited 2AP over distance of up to ~14Å. The transfer is most 

efficient when the bridging bases, between G and 2AP, are adenines. Pyrimidine 

bases attenuate the transfer efficiency significantly. A full understanding of the 

mechanisms of charge transport in the duplex has yet to be achieved (see, for 

example, (Genereux & Barton, 2010)), but an established feature, that is relevant to 

the use of 2AP as a probe, is conformational gating, whereby conformational 

fluctuations of the duplex facilitate charge transfer by allowing the formation of 

charge-transfer-active states. Indeed, in frozen duplexes, the quenching of 2AP 

fluorescence is dramatically reduced (Neely & Jones, 2006; O'Neill & Barton, 2004a) 

and, if there is no guanine in close proximity, virtually eliminated. Although the role 

of guanine is well-established, the extent to which excited 2AP in DNA is quenched 

by charge transfer (CT) with the other natural bases, and the contribution of other, 

non-CT processes remain matters of debate. 
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Excited 2AP cannot be quenched by electronic energy transfer to the natural bases, 

since its excitation energy is lower than theirs. 2AP acts as an acceptor for energy 

transfer from the excited natural bases and has been used as an energy trap in studies 

of interbase energy transfer, as described in a review by Nordlund (Nordlund, 2007). 

Although this is an interesting application of 2AP, it is outside the scope of the 

present review and will not be discussed further. 

2AP-containing deoxydinucleotides have been the subject of several studies to 

explore the quenching interaction between the natural bases and 2AP.  Larsen et al 

reported steady-state fluorescence measurements of 2AP in dinucleotides with each of 

the natural DNA bases, and with inosine (I), the riboside of hypoxanthine (Larsen et 

al., 2004). Inosine is deemed to be redox-inactive towards excited 2AP and was 

adopted as a non-CT control in the electron transfer studies of Barton et al. (vide 

supra). 2AP fluorescence was found to be quenched in all of the dinucleotides and the 

quenching efficiency, G>T~A>C>I, could be correlated with the driving force for 

interbase charge transfer. In addition to CT-quenching, they invoked the existence of 

a non-fluorescent excited state of 2AP (supported by transient absorption 

measurements) to account for quenching by inosine. The relationship between 

quenching efficiency and the driving force for charge transfer between the natural 

base and excited 2AP, greatest for G and least for C, was reinforced by a recent study 

of photo-induced electron transfer between 2AP and the natural monophosphate 

nucleotides in aqueous solution (Narayanan et al., 2010). This study included a re-

assessment of the redox potentials of the natural bases and excited 2AP, using cyclic 

voltammetry in aprotic solvents to avoid complications introduced by proton transfer. 

It was concluded that photoinduced electron transfer could occur between all of the 
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natural bases and 2AP, with excited 2AP being reduced by G or A, and oxidised by T. 

(For C, the free energies for oxidation and reduction were equivalent, within 

experimental error).  Time-resolved fluorescence studies (Somsen et al., 2005a; 

Somsen et al., 2005b; Somsen et al., 2006) confirmed that fluorescence of 2AP is 

quenched strongly in dinucleotides by the natural bases and inosine, and inferred the 

involvement of a dark state. An ultrafast (time resolution of ~200 fs) spectroscopic 

study of 2AP-G and 2AP-A dinucleotides provided further insight into the quenching 

process (Wan et al., 2005). A important and unusual feature of this work was the use 

of both fluorescence upconversion, to probe the ultrafast decay of the initial, optically 

excited state, and transient absorption spectroscopy, to reveal the existence of dark 

states formed in the decay process. Two significant observations emerged from this 

work. Firstly, a discrepancy between the decay time measured by fluorescence 

upconversion and that from transient absorption indicated the existence of a dark state 

to which the initially excited, emissive state decays. An emission decay time on the 

10’s of ps timescale was attributed to charge transfer (to form the dark state) while the 

decay time of the dark state, also on the 10’s of ps timescale was attributed to charge 

recombination. Secondly, 50% of the initial fluorescence intensity of 2AP-G and 

2AP-A was lost in less than 200 fs, faster than the time resolution of the 

measurement. This extremely rapid non-radiative decay was attributed to barrierless 

charge transfer by vibrationally hot molecules prior to vibrational relaxation. 

Unfortunately this study did not include 2AP-inosine as a CT-free control system. 

Further evidence of ultrafast inter-base quenching of 2AP fluorescence comes from 

observed discrepancies between the fluorescence quantum yields determined from 

steady state intensity measurements and those from the measurement of time-resolved 
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decay parameters (discussed in more detail below); the latter are higher than the 

former, indicating the occurrence of non-radiative decay processes that are too fast to 

be observed in typical decay measurements, that is to say with lifetimes less than 

about 10 ps. Such discrepancies have been observed for 2AP in duplexes and single 

strands (Avilov et al., 2008; Godet et al., 2011; Neely et al., 2009; Rachofsky et al., 

2001c). Ultrafast fluorescence measurements on 2AP-containing DNA duplexes and 

single strands have shown fluorescence decay times of < 5 ps, with values as low as 

400 fs when 2AP is closely stacked with G (Gelot et al., 2012; Manoj et al., 2008). 

The base-sequence-dependence of the decay times observed by Manoj et al. implies 

that ultrafast quenching on the sub-ps to ps timecale (as well as quenching on the 10-

100 ps timescale) is due to charge-transfer processes. Gelot et al. found good 

agreement between decay-derived and intensity derived quantum yields showing the 

absence of unresolved, faster (< 300 fs) decay processes, contrary to the findings of 

Wan et al. for dinucleotides (Wan et al., 2005). Similarly, the experiments of Manoj et 

al found no decay time faster than 420 fs, although their time resolution should have 

allowed observation of decay components < 100 fs.  

The nature of the excited states that may be involved in interbase quenching of 2AP 

have been explored in computational studies of gas-phase 2AP-nucleobase dimers 

(and trimers), in which 2AP is stacked with a DNA base in a B-form structure, but 

there is no covalent link between them. Early calculations, using time-dependent 

density functional theory (TDDFT), attributed quenching to internal conversion to 

dark charge-transfer states, energetically below the initially excited 2AP-like 

transition.(Jean & Hall, 2001; Jean & Hall, 2002). However, it is now known that the 

TDDFT methods fail to compute CT states accurately and later studies using 
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configuration interaction singles (CIS) predicted that CT states are higher in energy 

than the locally excited 2AP ππ* state (Hardman & Thompson, 2006; Hardman & 

Thompson, 2007). Two recent computational studies (CIS with second order 

perturbation theory) by Matsika and coworkers, on 2AP-pyrimidine dimers (Liang & 

Matsika, 2011) and 2AP-purine dimers (Liang et al., 2013), represent a significant 

advance over previous studies by exploring the fate of the excited state population 

after absorption. Excited states were calculated for a typical B-DNA conformation 

and relaxation along the S1 surface was then examined. Ground state structures with 

2AP in either the 5’ or 3’ positions were considered; these differed in the extent of π-

overlap and other, specific interactions. From the initially excited (Franck-Condon) S1 

state, which was a ππ* state localised on 2AP, different quenching pathways were 

found, depending on whether 2AP was in the 5’ or 3’ position, as well as the identity 

of the partner base. Some quenching pathways involved charge transfer, but pathways 

involving conical intersections or dark states localised on 2AP were also found. The 

important outcome of these studies was the prediction that different interbase 

interactions, in the different initially excited conformations, can lead to alternative CT 

or non-CT quenching mechanisms. However, even this latter, relatively sophisticated 

computational scenario is far-removed from experimental conditions; it did not 

include the sugar-phosphate backbone or solvent. A full understanding of the 

photophysical mechanism(s) of inter-base quenching awaits the development of 

computational methods to successfully include the complex influence of solvation and 

conformational dynamics, in both the ground and excited states. A tall order, indeed! 
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3. The fluorescence decay of 2-aminopurine in DNA as a reporter of 

conformational properties 

The interbase interactions that quench 2AP fluorescence in DNA not only have the 

effect of dramatically shortening the fluorescence decay time (Figure 3), but also 

result in a complex, multi-exponential decay function. This complex decay behaviour 

is observed for systems that are apparently homogeneous, such as a solution of 

identical oligonucleotides each of which contains a single 2AP in the same sequence 

position, and reflects the conformational heterogeneity of DNA that arises from 

thermal motion of the bases (DNA breathing). The excited 2AP population is 

partitioned between several different local conformational environments that provide 

distinctly different quenching efficiencies, resulting in a number of different 

fluorescence lifetimes. Time-resolved fluorescence studies of 2AP-containing DNA 

have been conducted mainly using the technique of time-correlated single-photon 

counting (Becker, 2005; Lakowicz, 2006); with a time-resolution of around 30 ps, and 

it is the results of these experiments that will be considered in this section. The 

relatively few ultrafast measurements (time resolution <1 ps) will be discussed 

separately in section 5. It should be also be mentioned that, although multi-

exponential fitting of the 2AP fluorescence decay is the conventional approach, other 

descriptions of the decay function have been proposed, such as lifetime distributions 

(Fogarty et al., 2011), stretched exponential (Somsen et al., 2006) and phasor 

diagrams (Buscaglia et al., 2012).  

3.1 2-aminopurine in duplex oligonucleotides 

2AP-containing DNA duplexes generally show fluorescence decays that can be described 

by four exponential components, as expressed by Equation (1), with typical lifetimes of 
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<100 ps, ~0.5 ns, ~2 ns, and ~10 ns (Avilov et al., 2008; Guest et al., 1991; Hochstrasser et 

al., 1994; Neely et al., 2005; Neely & Jones, 2006; Nordlund et al., 1989; Rachofsky et al., 

2001c; Ramreddy et al., 2009; Ramreddy et al., 2007; Sabir et al., 2012). 

−
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where I is the fluorescence intensity, measured as a function of time, t; τi is the 

fluorescence lifetime of the ith decay component and Ai is fractional amplitude of that 

component. 

In a simple interpretation, each lifetime, τi, can be considered to represent a distinct 

conformational state and its fractional amplitude (pre-exponential factor or A factor), 

Ai, indicates the fraction of the population occupying that state. More realistically, 

each lifetime is likely to represent a distribution of conformations in which 2AP 

experiences similar quenching rates.  

Although the precise values of the lifetimes and A factors vary to some extent, 

depending on the sequence context of 2AP, their general magnitudes in the 

unperturbed duplex show a common pattern, with an accepted, common 

interpretation. The very short lifetime component, τ1, <100ps, is attributed to a highly 

stacked conformation, in which excited 2AP is rapidly quenched by interbase 

interaction, primarily electron transfer from guanine bases in close proximity. This is 

the dominant conformation, typically accounting for more than 70% of the emitting 

population. The long, ~10ns, lifetime, τ4, is attributed to an unstacked conformation in 

which 2AP is extrahelical and experiences a solvated environment, free from 

quenching interactions. The value of this decay time is comparable with that of free 

2AP-riboside in solution. This is a minor conformation, typically accounting for <5% 
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of the emitting population. The intermediate lifetimes, τ2 and τ3, ~500 ps and ~2 ns, 

respectively, correspond to imperfectly or partially stacked structures, in which 2AP 

is intrahelical, but is not subject to rapid charge-transfer quenching. The magnitude of 

the A factors (fractional populations) almost invariably follow the trend A1 

>>A2>A3>A4.  

When interpreting the values of the decay parameters of 2AP obtained from fitting 

multi-exponential functions, it is important to be aware of the problem of correlation 

between A factors and lifetimes (Lakowicz, 2006). In the fitting process, the lifetime 

can be varied to compensate for the A factor and vice versa, so that equally good fits 

(within experimental error) can be obtained with different combinations of Ai and τi. 

This problem can be minimized by the use of global analysis in which a set of decays 

is recorded as a function of emission wavelength (or another suitable variable) and 

fitted simultaneously, with the lifetimes, τi, as common parameters (Beechem et al., 

2002). 

Many studies of DNA-enzyme interaction are based on measurement of the 

fluorescence intensity of 2AP and it may be informative at this point, to consider the 

relationship between the intensity (quantum yield) of fluorescence and the decay 

parameters. The quantum yield (and hence intensity) of fluorescence of the emitting 

species that contribute to the observed fluorescence decay is proportional to the 

number-average lifetime, τ , of the multi-component decay. The decay-derived 

value that is normally quoted is the quantum yield relative to the free riboside, relΦ , 

as defined by Equation (2).  
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where τi is the fluorescence lifetime of the ith decay component, Ai is fractional 

amplitude of the ith component and τ2APr is the fluorescence lifetime of 2AP riboside. 

The fractional contribution of each decay component to the steady-state fluorescence 

intensity, Fi, is determined by the product of the A-factor and lifetime for that 

component, as expressed by Equation (3). Thus, the steady-state fluorescence 

spectrum of 2AP in DNA arises mainly from the long-lifetime components (τ3 and τ4), 

although they constitute only a small minority if the emitting population. 
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The decay parameters shown in Table 1, for a single 2AP at two different positions in 

a 50-base-pair duplex (Sabir et al., 2012) are typical of those measured for 2AP-

containing duplexes. Each duplex has an identical sequence, apart from the position at 

which 2AP is substituted in place of adenine. The effect of sequence context on the 

two shortest lifetimes, τ1and τ2, and their amplitudes, A1and A2, is apparent. In 

sequence context CPT (where 2AP is denoted as P), a larger fraction of the 2AP 

population is highly stacked (84% compared with 70% in TPG), and in this highly 

stacked state, 2AP experiences faster quenching (shorter τ1). These characteristics can 

be correlated with the proximity of multiple G:C base pairs to 2AP in the CPT 

position, resulting in a more constrained, tightly stacked local structure. The fractional 

intensity values show that the unquenched, extrahelical component (F4) accounts for 

about 50% of the steady state intensity for each duplex, although it constitutes only 

few percent of the conformational population (A4). 
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5’GTCGGATCCTCTPGATATCTCCPTGCTCACTGGTTATAGGAGAATCCGGG 3’ 
3’CAGCCTAGGAGATCTATAGAGGTACGAGTGACCAATATCCTCTTAGGCCC 5’ 
 
Context τ1/ns τ2/ns τ3/ns τ4/ns A1 A2 A3 A4 F1 F2 F3 F4 

TPG 0.08 0.50 2.9 10.2 0.70 0.17 0.09 0.04 0.07 0.11 0.32 0.50 
CPT 0.05 0.37 2.7 10.6 0.87 0.08 0.03 0.02 0.12 0.08 0.22 0.57 

 
Table 1. Fluorescence lifetimes, τi, and corresponding fractional amplitudes, Ai, 

for 2AP-containing duplexes in which 2AP, denoted as P, is substituted at two 

alternative positions within the same sequence (Sabir et al., 2012). The fractional 

contribution of each component to the steady state intensity, Fi, is also shown. 
 

Early time-resolved fluorescence studies of 2AP in duplexes (Guest et al., 1991; 

Nordlund et al., 1989) demonstrated the non-exponentiality of the decay and that four 

lifetime components were needed give a satisfactory fit. In both studies, the 

temperature-dependence of the decay parameters was found to be consistent with the 

assignment of the shortest lifetime (τ1) to intra-helical, stacked 2AP and the longest 

lifetime (τ4) to extrahelical 2AP. Guest et al also found that the temperature-

dependence of the stacked population (A1) was correlated with the strength of the 

base-pair (decreasing with increasing temperature for the weaker base-pairs 2AP-A 

and 2AP-C). Both studies inferred a relationship between the distribution of lifetimes 

and stacking-unstacking motions of the duplex. 

As part of a study of polymerase-induced melting of a DNA helix terminus, 

Hochstrasser et al used time-resolved fluorescence to analyze the effect of base-

pairing interactions on the fluorescence decay of an end-terminal 2AP base in DNA 

primer/templates (Hochstrasser et al., 1994). They used global analysis and, for the 

first time, gave a detailed interpretation of the four-exponential fluorescence decay 

behaviour in terms of distinct, ground-state conformational states and their 
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populations. The variation of the apparent fraction of paired (highly stacked) 2AP 

bases with temperature was found to be in accord with optical melting data, and the 

extent of base-pairing observed in each duplex was consistent with the base-pairing 

preferences of 2AP established in previous studies. 

A study by Rachofsky et al. of duplexes in which 2AP was paired with an abasic site 

in different sequence contexts provided further evidence of 4-component decays and 

also identified discrepancies between steady-state quantum yield values and those 

derived from decay parameters (Rachofsky et al., 2001c). However, a detailed 

interpretation of the decay parameters was not attempted. Instead, the discussion 

concentrated on the amplitude of the extrahelical component and attributed the other 

three components to a single conformation represented by a number average lifetime. 

This provides little insight into the conformational properties beyond that obtainable 

from the accompanying steady-state data.  

During a study of nucleotide flipping by M.HhaI, discussed in Section 4.3, below, we 

investigated the decays of two crystalline 2AP-containing duplexes with known x-ray 

structures (Neely, 2005; Neely et al., 2005). The duplexes were co-crystallised as 

ternary complexes with the enzyme and cofactor, but 2AP was located several base-

pairs from the protein binding site, so that the local duplex structure was not 

appreciably perturbed, as illustrated by the crystal structures in Figure 4.  As shown in 

Figure 5 the two duplexes differ only in the identity of base opposite the 2AP, 

thymine and guanine, respectively, but 2AP occupies distinctly different 

conformations in each. In duplex PT (Figure 5(a), 2AP, in an anti conformation, 

forms a Watson-Crick base-pair with thymine, whereas in duplex PG (Figure 5(b), 

2AP adopts a syn conformation, forming a Hoogsteen-type base pair with the guanine. 
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The consequent difference in stacking interactions between 2AP and the two 

neighbouring guanines (Figure 5(c) and (d)) is reflected in the decay parameters 

(Table 2) which suggest that 2AP is more effectively quenched in PG than in PT, 

consistent with increased π-overlap in the former.  

Duplex τ1/ns τ2/ns τ3/ns τ4/ns A1 A2 A3 A4 
PT (crystal) 0.09 0.67 2.3 7.3 0.69 0.19 0.18 0.05 
PG (crystal) 0.07 0.53 2.1 7.4 0.62 0.21 0.14 0.03 
PT (solution) 0.06 0.64 3.1 10.1 0.60 0.15 0.12 0.13 
PG (solution) 0.03 0.47 2.8 10.2 0.70 0.12 0.08 0.10 

 

Table 2. Fluorescence lifetimes, τi, and corresponding fractional amplitudes, Ai, 

for two 2AP-containing duplexes in the crystalline state and in solution.(Neely, 

2005; Neely et al., 2005). 

As shown in Table 2, the fluorescence decays of the crystalline duplexes show four 

components with similar lifetimes and A-factors to those found in the equivalent 

solution-phase systems (enzyme-bound duplexes), and thus reveal conformational 

heterogeneity in the crystals at room temperature that is not apparent in the low-

temperature x-ray structure. The fluorescence decay can detect the existence of 

species that constitute only a few percent of the excited state population and is 

sensitive to transient conformational states that exist on the timescale of the excited 

state lifetime. The crystal structure, on the other hand, shows the average or dominant 

conformational geometry at low temperature (90 K), within the limits of the available 

structural resolution. Small differences between crystalline and solution-phase decay 

parameters reflect the greater conformational mobility in solution; the lifetime of the 

highly quenched conformations (τ1) is significantly shorter in solution than in the 
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crystal, consistent with greater dynamic freedom and enhanced charge-transfer 

quenching. However, comparison with the behaviour of duplexes rendered rigid in a 

frozen matrix at 77 K (vide infra) suggests that in the crystal, at room temperature, the 

base motions that facilitate quenching of 2AP remain largely uninhibited. 

Our decay measurements on rigid duplexes in frozen solution at 77 K (Neely & Jones, 

2006) threw light on nature of the conformational states that give rise to the 

heterogeneous decay of 2AP and the role of base dynamics in populating these states. 

The shortest decay component, τ1, was eliminated in frozen duplexes, even when 2AP 

was stacked directly G, demonstrating the importance of base dynamics in facilitating 

rapid charge-transfer quenching. It was inferred that the highly stacked geometry that 

gives rise to the very short decay time can be attained only through thermal motion of 

the bases. On the other hand, the persistence of three longer decay components at 77 

K implies the existence of a number of discrete, equilibrium conformational states 

that can be characterized by three distinguishable intrinsic decay times. 

Rao, Krishnamoorthy and coworkers have probed site-specific dynamics in several 

DNA systems (Goel et al., 2010; Ramreddy et al., 2009; Ramreddy et al., 2007) by 

substituting 2AP at different positions relative to the ends and employing repeats of 

adenine to avoid sequence-specific quenching effects. In 30-nucleotide, poly(A-T) 

duplexes (Ramreddy et al., 2007), it was found that the value of the short lifetime 

component was dependent on the position of 2AP. The lifetime was longer when 2AP 

was placed at the end of the duplex, compared with the centre of the duplex, 

indicating weaker base stacking interactions as a result of base-pair fraying. In 

double-stranded DNA with singe-strand overhangs, base-pair fraying at the ends of 

the duplex region was largely absent. It was proposed that wrapping by the single-
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strand region around the end base-pairs formed three-centred hydrogen-bonds and 

inhibited fraying.  An unexpected finding was that the level of stacking interaction of 

2AP with near neighbours was weaker within the longer strand than within the shorter 

strand. It was suggested that the presence of single-strand overhangs in the longer 

strand could be the cause of higher flexibility in the duplex region. It was speculated 

that DNA enzymes that discriminate between the long versus short strands might rely 

on such differences in dynamics as recognition cues for achieving specific binding 

during DNA repair events. In a later study, the same approach was used to investigate 

the effects of binding DNA to histone and micellar surfaces (Goel et al., 2010). It was 

observed that binding causes is an increase in rigidity of DNA backbone, and drastic 

dampening of the internal dynamics and fraying motions. A significant weakening of 

base-stacking interactions was also found. 

In the interpretation of the decay parameters of 2AP in DNA, many authors use the 

terms ‘static’ and ‘dynamic’ to describe the quenching processes.  However, the use 

of these terms in the context of this conformationally dynamic and heterogeneous 

system can be misleading. Conventionally, ‘dynamic’ quenching is used to describe 

processes such as collisions or conformational changes that occur following excitation 

of a fluorophore, and result in non-radiative decay within the excited state lifetime; 

quenching is described as ‘static’ when the observed fluorescence lifetime is intrinsic 

to the ground-state structure that was excited and, following excitation, the system 

remains static on the timescale of the excited state lifetime. The very short decay 

times (< 100 ps) exhibited by 2AP in DNA are often described as static quenching, 

because it is perceived that there is insufficient time for dynamic process to occur 

within the excited-state lifetime. However, population of the conformations that are 
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susceptible to very rapid (charge-transfer) quenching, and exhibit the shortest decay 

times, likely involves base dynamics in the ground state, prior to excitation. Indeed, 

there is clear evidence that these rapid decay mechanisms are inhibited or arrested by 

increasing the viscosity (Avilov et al., 2008; Gelot et al., 2012; Godet et al., 2011) or 

freezing the sample (Neely & Jones, 2006). It can be argued that all the 2AP decay 

components reflect dynamic processes; they are distinguished merely by the timescale 

of the dynamics and whether the dynamics occur before or after excitation (or both 

before and after). 

3.2 2-aminopurine in single-strand oligonucleotides 

The fluorescence decay of 2AP is not sensitive to hydrogen-bonding interactions per 

se (Guest et al., 1991; Rachofsky et al., 2001a) and so 2AP is not a direct probe of 

base pairing. However, the perturbation of base-stacking interactions that occurs as a 

result of local unpairing of the duplex gives rise to characteristic changes in the 

fluorescence decay of 2AP, as we showed in a systematic comparison of seven 2AP-

containing single strands and their corresponding duplexes (Ma, 2012; Sabir et al., 

2012). As illustrated in Figure 6(a), the decay of 2AP in a single strand is qualitatively 

longer than in the corresponding duplex, implying an overall decrease in quenching, 

as might be expected. The decay parameters shown in Table 3, for a single 2AP at two 

different positions in a 50-base sequence are typical of those measured in this study. 

The decay parameters for the corresponding duplexes are given in Table 1. 

 

5’GTCGGATCCTCTPGATATCTCCPTGCTCACTGGTTATAGGAGAATCCGGG 3’ 
 

Context τ1/ns τ2/ns τ3/ns τ4/ns A1 A2 A3 A4 
T2G 0.07 0.66 2.5 7.4 0.69 0.13 0.13 0.05 
C2T 0.07 0.58 2.2 6.7 0.67 0.16 0.14 0.03 
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Table 3. Fluorescence lifetimes, τi, and corresponding fractional amplitudes, Ai, 

for 2AP-containing single strands in which 2AP, denoted as P, is substituted at 

two alternative positions within the same sequence. (Sabir et al., 2012,). 

 

The very short decay component (τ1) persists in the single strands, indicating that 

highly stacked conformations exist in the absence of base-pairing and, moreover, 

remain highly populated (values of A1 >0.6). The longest lifetime (τ4) is noticeably 

shorter in the single strands, showing that 2AP does not tend to escape completely 

from stacking interactions with neighboring bases, whereas in duplexes this 

component is characteristic of extrahelical (solvent-exposed) 2AP. The population of 

this more-or-less destacked state remains low in single strands. The most 

characteristic difference between single strands and duplexes lies in the relative 

values of the A factors. In duplexes, the values of the A factors generally follow the 

trend: A1>>A2>A3>A4. In single strands, there is a transfer of population from well-

stacked states (A1and A2) to weakly stacked states (A3), so that the trend becomes 

A1>>A2≈A3>>A4. This is illustrated by comparing the ratio A3/A2 for each single 

strand and duplex, as shown in Figure 6(b); in the single strands this ratio is around 1, 

but is consistently much smaller in the duplexes. This increase in the heterogeneity of 

the conformational population is consistent with greater base mobility in the absence 

of base-pairing. The extent to which decay parameters change between duplex and 

single strand depends on the sequence context of 2AP. For example, in CPT, the large 

decrease in A1 in the single strand can be correlated with release from the constraints 

of local G-C base-pairs, and the significant increase in τ1 reflects the loss of inter-

strand charge-transfer quenching of 2AP by adjacent Gs in the complementary strand. 
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Our comparison of the decay parameters of three shorter, 18-nucleotide, single stands 

and duplexes (as part of our study of DNA unpairing by Flap Endonuclease-1) (Finger 

et al., 2013), yielded similar results to those described above, although unpairing 

resulted in a somewhat greater depopulation of the highly stacked states in these 

oligonucleotides.  

Ramreddy et al. examined the position-dependence of the 2AP-decay in 30-nucleotide 

adenine repeats (Ramreddy et al., 2007) in comparison with the corresponding 

duplexes (already discussed above). They found that the short decay component was 

completely lost in the single strands, yielding a 3-component decay and a significant 

increase in average lifetime (quantum yield). They also noted a reduction in the 

longest lifetime in the single strands, consistent with that noted above. The decay 

parameters of 2AP showed little dependence on position in the poly-A strand. 

Absence of the short component can be attributed to the low efficiency of charge-

transfer quenching of 2AP by A, rather than the absence of stacked states. In the 

poly(A-T) duplexes, inter-strand quenching of 2AP by T is probably a significant 

contributor to the short decay time. 

Avilov et al demonstrated the role of base dynamics in the ultrafast quenching of 2AP 

in single-stranded DNA (Avilov et al., 2008). They examined the effect of viscosity 

on the decays of 2AP-containing hexanucleotides, with 2AP in four different 

sequence contexts, APCGCC, AACGPC, APTGCC and AATGPC.  By carrying out 

complementary measurements of the steady state quantum yield, they quantified the 

fractional population of the ultrafast-decaying dark species, which they include 

explicitly as an additional amplitude parameter, α0, in their tabulated decay 

parameters. The value of α0 is sequence-dependent, being significantly higher when 
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2AP is stacked with G, and is dramatically decreased at high viscosity (77% glycerol). 

This is consistent with an ultrafast charge-transfer quenching mechanism that involves 

base dynamics. For 2AP in the GPC context, α0 has the remarkably high value of 0.8; 

that is to say 80% of the 2AP population exists in conformations (presumably 

extremely highly stacked) that are invisible to conventional (not ultrafast) 

fluorescence detection. Consistent with other reports, this study also found the value 

of the longest lifetime component to be substantially shorter than that of unquenched 

2AP. 

3.3 2-aminopurine in other DNA structures 

Time-resolved fluorescence of 2AP has been used in only a few studies of non-duplex 

DNA structures, but these have addressed a variety of systems, including looped 

domains, junctions, and G-quadruplexes. This approach is particularly valuable in 

exploring variations in conformational dynamics between base-paired and non-paired 

domains and investigating structural transitions. 

Lee et al substituted 2AP for adenine in selected positions within the 18-base loop 

domain of a (GC)3(CAG)6(GC)3 hairpin oligonucleotide, a model triple-repeat system 

(Lee et al., 2007). The 4-component exponential decays revealed differences in the 

global DNA conformation between duplex, hairpin and single strand and also 

position-dependent variations in conformation and dynamics within the repeat DNA 

domain. Since the 2AP probe was always in the same sequence environment in this 

model system, the values of the lifetimes showed little variation, but the 

conformational differences were apparent in the variations of the A factors which 

reflect changes in conformational populations. In particular, the conformational 
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distribution at the centre of the CAG repeat differed significantly from that close to 

the hairpin stem, showing substantially higher population of poorly stacked and 

destacked states. 

More recently, Godet et al. investigated the position-dependence of the 2AP decay in 

the 5-nucloetide loop domain of a DNA hairpin, in the context of studying the effect 

of binding of HIV-1 nucleocapsid protein on loop dynamics (Godet et al., 2011). They 

continued the practice of this group to evaluate the fractional population of the 2AP 

dark species, as well as the decay parameters that are measured directly by TCSPC 

(see Section 3.2). The loop structure was found to restrict the inter-base quenching of 

2AP within the loop, compared with single-strand oligonucleotides. Nevertheless, the 

dark species were again found to be dominant, representing 80-90% of the 2AP 

population, indicating efficient charge-transfer quenching by neighbouring guanine 

bases (in each position studied, 2AP was flanked by a G). The values of the longest 

lifetime (τ4) were close to that of free 2AP indicating an extrahelical, fully destacked 

state; this differed from the shorter τ4 value seen in single strands, confirming the 

limited flexibility of the loop. The low population of the extrahelical conformation (1-

4%) showed the bases to be oriented towards the interior of the loop. 2AP placed at 

the 3’ end of the loop, stacked on the 3’ side with a G at the top of the stem, was 

quenched more efficiently than 2AP within the loop and showed the lowest destacked 

population. Interestingly, Gelot et al subsequently made ultrafast fluorescence 

measurements on the same 2AP-containing loop structures (Gelot et al., 2012). For 

2AP within the loop, two ultrafast decay components, of 3-5 ps and 10-40 ps, were 

revealed, with combined amplitudes consistent with the fractional population of the 

dark species estimated by Godet et al. For the most highly quenched 2AP, at the 3- 
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end of the loop, a third, sub-picosecond component was detected. There was good 

agreement between the quantum yields derived from the ultrafast decay parameters 

and those from the fluorescence intensities, showing that there remained no 

undetected decay processes faster than the 0.3-ps time resolution of the 

measurements. In further agreement with the observations of Mély and coworkers, 

(Avilov et al., 2008), the sub-5 ps decay components were found to be entirely 

suppressed in the presence of 70% glycerol. 

To assist in the development of a Holliday junction-based nanoswitch for detection of 

single-nucleotide mismatches in unlabelled targets, Campbell et al use the 

fluorescence decay of 2AP positioned at the branchpoint to probe the conformation 

(switch state) and to detect structural differences arising from hybridisation of 

matched and mis-matched targets (Campbell et al., 2009). The decay parameters 

reported enhanced base-stacking at the branchpoint on switch closure and could 

resolve variations in switch structure that enabled discrimination between target 

mutations that were indistinguishable from steady-state measurements. 

We used 2AP time-resolved fluorescence was used to complement single-molecule, 

multi-parameter Förster resonance energy transfer (FRET) measurements to 

investigate branchpoint expansion in a three-way junction (Sabir et al., 2012). While 

single-molecule time-resolved FRET delivers the 3-dimensional, global structure (in 

solution), the 2AP decay reports the local conformation at the single-base level. 

Having established the response of 2AP decay parameters to unpairing ( as discussed 

above), measurement of the decay of 2AP placed at strategic positions in the junction 

structure confirmed that bases adjacent to the branchpoint are unpaired (despite the 

full Watson−Crick complementarity of the molecule), as had been inferred from the 
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FRET-derived structure. As illustrated in Figure 7, the decay of 2AP located in the 

junction arms, distant from the branchpoint, closely resembled that of the 

corresponding duplex, whereas the decay of 2AP lying adjacent to the branchpoint 

tended towards that of the single-strand, signifying local unpairing. 

Kimura et al. reported fluorescence lifetime measurements on 2AP-containing G-

quadruplexes, to complement fluorescence intensity measurements (Kimura et al., 

2004; Kimura et al., 2007). However the value of these measurements, made using a 

streak camera, is doubtful, since only two (sub-nanosecond) decay components are 

reported for duplexes and one component for G-quadruplexes. This is due, 

presumably, to the limited time range that can be covered, precluding the 

measurement of the longer decay components.  The lifetime measurements provide no 

additional insight into the conformational change from duplex to quadruplex beyond 

that deduced from intensity changes. In a more recent study, Buscaglia et al employed 

(unusually for 2AP) frequency-domain measurements, rather than TCSPC (time-

domain) to explore G-quadruplex structure and stability (Buscaglia et al., 2012). 

However, this paper is mainly concerned with promoting the use of phasor diagrams 

as model-free graphical representations of frequency-domain lifetime data, rather than 

an interpretation of decay parameters derived from exponential fitting. Phasor 

diagrams cannot provide high-resolution structural information but may be of value in 

monitoring changes in G-quadruplex conformation driven by changes in solution 

conditions. 

Continuing their theme of utilising 2AP-containing poly-adenine strands to 

investigate site-specific dynamics, the Rao group turned their attention to TAT triple 

helices (Ramreddy et al., 2009). Significant findings of this work were the absence of 
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the very short (< 100 ps) decay component for 2AP in triplexes, implying a decrease 

in near-neighbour base-stacking interaction compared with duplexes, and an increase 

in the amplitude of the longest lifetime component, indicating a greater propensity for 

2AP to occupy an extra-helical conformation. Strikingly, the decay data also revealed 

an asymmetry in the base dynamics at the two ends of the triplexes: the 5’ end of the 

A strand showed a higher degree of base stacking (more duplex-like) than the 3’ end. 

This was taken to reflect an asymmetry in the strength of the Hoogsteen base-pairing 

of the T strand with the A-T duplex., such that the triplex nature is more dominant 

towards the 3’ end. 

 

4. 2-aminopurine as a probe of the DNA-enzyme interface 

The supreme sensitivity of the 2AP fluorescence response to changes in its 

environment is something of a ‘double-edged sword’. Such sensitivity is exactly what 

we would hope for in a fluorescence reporter but the context of this reporting i.e. the 

highly dynamic DNA duplex makes quantitative interpretation of the signal extremely 

challenging. The magnitude of this challenge has been highlighted in the literature 

over several attempts to utilise changes in the fluorescence intensity of 2AP as a 

means to study enzyme-induced deformations of the DNA duplex. We discuss here 

the successful use and limitations of 2AP intensity as a probe of these systems and 

highlight the application of time-resolved fluorescence as a means for deriving greater 

insight and more quantitative information on the system of interest. 

Towards the end of the nineteen-eighties the synthesis of DNA oligonucleotides was 

becoming increasingly routine such that (in principle) any laboratory could prepare 
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short DNA molecules to study. This evolution in DNA synthesis played a central role 

in the story of 2AP, which despite its characterisation in the nineteen-sixties, was not 

fully utilised as a probe of DNA structure until the early- to mid-nineties. These first 

studies utilized 2AP fluorescence intensity to report on the kinetics of DNA 

unwinding by a DNA helicase (Raney et al., 1994) and DNA melting and nucleotide 

incorporation by polymerase enzymes (Frey et al., 1995; Hochstrasser et al., 1994). 

4.1 Base flipping: an extreme example of enzyme-induced distortion 

Perhaps the first example of the use of 2AP to probe the DNA-enzyme interface was 

described in 1996 (Allan & Reich, 1996). This study focussed on the DNA 

methyltransferase enzyme, M.EcoRI, an enzyme that is naturally found in the 

Eschericia coli bacterium, and set out to better understand the remarkable distortion 

of the DNA duplex, known as base (nucleotide) flipping, that is performed by this 

class of enzymes (amongst others). Here, we give a brief ‘aside’ on the DNA 

methyltransferase enzymes because of their critical role in the discovery of base 

flipping and the development of 2AP as a probe of base flipping enzymes. 

The DNA methyltransferases are present in both pro- and eukaryotic organisms and 

though their functions at the atomic-level are similar in these hosts (i.e. methylation of 

the DNA bases) the impacts of these methylation events are quite distinct (Jeltsch, 

2002)). In bacteria, for example, DNA methylation is a mechanism used by the 

bacterium to prevent digestion (cutting) of its own genome by the restriction enzymes 

it produces. Hence, both the DNA methyltransferases and restriction enzymes from 

the same host organism typically function symbiotically, targeting the same 4- to 8-

base pair recognition sites for modification and cleavage. This is part of a defence 

mechanism in bacteria against viral invasion. In mammals, methylation plays a 
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critical role in health and development through the regulation of genes. Here, 

however, the methylation machinery is rather more involved, with multiple enzymes 

contributing to the maintenance of methylation at 5’-CG-3’ sites across the genome. 

In bacteria, there are many hundreds of known DNA methyltransferase enzymes are 

and thousands have been predicted from genomic DNA sequences, largely thanks to 

their homology with other methyltransferases. They ordinarily methylate one of the 

bases within their target recognition sequence, either an adenine (at the N6 atom) or a 

cytosine (C5 or N4 atoms). For example, the M.EcoRI targets the central adenine of 

the six-base motif 5’-GAATTC-3’ for methylation. In both prokaryotic and 

eukaryotic methylation, the methyltransferases catalyse the transfer of a methyl-group 

from the small cofactor molecule, S-adenosyl-L-methionine, to a DNA base (adenine 

or cytosine). 

Like most enzymes, the methyltransferases perform chemistry that is remarkable 

when compared with what is possible on the benchtop. The basis for the process of 

DNA methylation was revealed for the first time when crystallographers were able to 

trap the M.HhaI DNA methyltransferase in a ternary complex with DNA and a 

cofactor analogue, as illustrated in Figure 8. This amazing snapshot of methylation in 

action showed M.HhaI bound to its DNA target site with its target base for 

methylation flipped completely from the DNA duplex and into its catalytic pocket. 

This process is necessary because the enzyme needs to bring the base that it 

methylates into close proximity to the cofactor (S-adenosyl-L-methionine) from 

which it sources the methyl-group. Once flipping is complete, the enzyme is able to 

catalyse the methyl-transfer reaction.  
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The remarkable DNA distortion performed by M.HhaI (in the absence of any external 

source of chemical energy, such as ATP) changed the way in which scientists 

perceived the DNA duplex. DNA has two seemingly opposed functions, acting as a 

stable store for vast quantities of genetic information yet at the same time being an 

accessible, readable molecule that is able to interact with the multitude of proteins, 

enzymes and other molecules that our cell’s rely upon to survive. The DNA duplex 

structure inferred by Watson and Crick satisfies the former function but not 

necessarily the latter. In order to be accessible, the duplex must be dynamic and the 

M.HhaI structure captured the most extreme distortion of DNA duplex conformation, 

for all to see. Of course, the immediate question, in the wake of the M.HhaI crystal 

structure was whether M.HhaI was a special case or if base flipping was a more 

general mechanism used not only by the methyltransferase enzymes to access their 

target bases but by all enzymes which might need to locally melt the DNA duplex in 

order to access its information, modify or repair it. 

4.2 The fluorescence intensity of 2-aminopurine as a probe of base flipping  

Since the creation of an enzymatic ternary complex in a crystal is very demanding, the 

search for other options to study this process in solution phase began, with 2AP being 

top of the list of possible probes for base-flipping enzymes. Allan and Reich (Allan & 

Reich, 1996)synthesised short DNA duplexes, containing the recognition sequence for 

M.EcoRI (GAATTC, where the underlined adenine is the target for methylation), 

where 2AP was placed at the target site for methylation/ flipping, in place of adenine. 

Upon binding of M.EcoRI to this substrate (in the presence of a cofactor analogue) an 

increase in the fluorescence intensity of the 2AP of around 14-fold was observed. 

Hence, the authors rightly concluded that 2AP was shown to be a useful probe of the 
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disruption of the DNA duplex (likely base flipping) by M.EcoRI. However, the 

interpretation of their results was not entirely straightforward. The observed increase 

in intensity of the 2AP emission was around two-fold less than expected (compared 

with the free nucleoside) and it was accompanied by a significant (10 nm) 

hypsochromic shift of the 2AP emission spectrum. Allan and Reich tentatively 

attributed the low fluorescence enhancement to the fact that M.EcoRI can bind in two 

possible orientations to its recognition site and implied that only half of the available 

2AP may be flipped from the duplex at any given time. However, there is some 

indication here (i.e. both the spectral shift and ‘quenching’ relative to the free 

nucleoside) that the interaction between 2AP and enzyme can be as critical in 

determining its photophysical properties as that between 2AP and the DNA duplex.  

Subsequent studies using 2AP to monitor base flipping showed further unravelling of 

the complex relationship between the environment of 2AP and its photophysical 

behaviour. Holtz et al (Holz et al., 1998) applied similar methodology to Allan and 

Reich in order to compare base flipping by the prototypical M.HhaI with M.TaqI (an 

N6-adenine methyltransferase). Both enzymes show increases in 2AP fluorescence 

intensity upon enzyme binding and base flipping (of the 2AP) but the magnitude of 

the intensity increase is significantly different in each complex; 54-fold for M.HhaI 

and 14-fold for M.TaqI. A later study (Gowher & Jeltsch, 2000) using the same assay 

to probe DNA duplex disruption by M.EcoRV confirmed the unpredictable response 

of the 2AP fluorescence intensity to base flipping. This enzyme targets the six-base 

sequence 5’-GATATC-3’ for methylation. When 2AP was substituted for the target 

adenine base, no significant increase in fluorescence intensity was observed upon 

ternary (EcoRV+DNA+cofactor analogue) complex formation. Indeed, this enzyme, 
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known to bend the DNA duplex at its target binding site, gave a significant (11-fold) 

increase in 2AP fluorescence intensity upon ternary complex formation when the 2AP 

was substituted for the central (unflipped) adenine of the recognition sequence. 

Similar behaviour was observed for the EcoP151 enzyme (Reddy & Rao, 2000) which 

recognises the six-base target CAGCAG. 2AP was substituted for each of the adenine 

bases in the enzyme’s recognition sequence and a fluorescence enhancement of 

similar proportions was observed for 2AP at either site, upon enzyme binding. Yet 

more complex photophysical behaviour from 2AP has been observed for the EcoKI 

DNA methyltransferase enzyme (Su et al., 2004). This enzyme gives a significant (4-

fold) increase in 2AP intensity upon base flipping but also shows the formation (on 

the timescale of several minutes) of a new species with red-shifted excitation and 

emission spectra, relative to 2AP.  

Taken together, these results are complex and confusing but the interesting question is 

from whence this confusion arises? As we now know from studies on the DNA 

duplex alone, the fluorescence response of 2AP is quite predictable; by and large 

stacking results in quenching. What cannot be easily predicted is the myriad of 

conformations that the DNA duplex can adopt, and the specific interactions that can 

be formed between the 2AP and its environment, especially when it is complexed by 

an enzyme. Even though base flipping appears a simple ‘in’ or ‘out’ question it 

involves a complex series of interactions between the 2AP probe, the DNA duplex 

and the amino acids that comprise the enzyme. 

The studies highlighted here show that, whilst the steady-state fluorescence intensity 

of 2AP can often provide good evidence for a distortion of the DNA duplex it cannot 

be used reliably to identify nor quantify a specific rearrangement of the duplex. We 
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lose much of the useful information that is provided by the 2AP because we observe 

the steady-state fluorescence intensity, which is an average signal from the entire 2AP 

population. One way to access this information is to look at the time-resolved 

fluorescence response of 2AP.  

4.3 The fluorescence decay of 2-aminopurine as a probe of base flipping  

Following the lead of those groups pioneering the application of 2AP to study DNA 

duplex structure and dynamics, we employed time-correlated single-photon counting 

in order to study base flipping by a number of DNA methyltransferases, M.HhaI 

(Neely et al., 2005), M.TaqI (Lenz et al., 2007), M.EcoRV (Bonnist et al., 2012), 

M.EcoKI (Neely, unpublished work) and restriction enzymes, R.Ecl18kI, R.PspGI, 

R.EcoRII and PfoI (Neely et al., 2009), all of which were suspected or known base 

flippers.  In short, we found that for every system, unlike the analogous steady-state 

measurements, there is a clear response to base flipping from the 2AP. Rather than 

deriving an overview of the average behaviour of the fluorophores within the 

ensemble (as seen in steady-state measurements) the fluorescence lifetimes reveal 

information about the heterogeneity of the ensemble, derived from the interaction 

between 2AP and enzyme and the dynamics of the flipping process. 

The value of using a time-resolved measurement is clearly illustrated for the 

comparison of base flipping by M.HhaI and M.TaqI. In the fluorescence spectrometer, 

the fluorescence intensity arising from the free DNA duplexes containing 2AP is 

barely perceptible. Holz et al (Holz et al., 1998) showed that upon enzyme binding 

and base flipping of 2AP from these duplexes large increases in fluorescence intensity 

of 54-fold and 14-fold are observed for M.HhaI and M.TaqI, respectively. This 

disparate behaviour is puzzling since we naively expect that 2AP fluorescence is 
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simply quenched when the base is stacked in the duplex and not quenched when the 

base is unstacked. The fact that the increase in intensity is not so great for flipping by 

M.TaqI as it is for M.HhaI (despite using saturating enzymatic conditions) cannot be 

readily explained from steady-state data alone. When we observed the fluorescence 

decay of 2AP-labelled DNA bound and flipped by M.HhaI we saw a dramatic 

fluorescence response that could be readily rationalized from earlier studies of 2AP in 

the duplex. As shown by the decay parameters in Table 4, the 2AP fluorescence 

response changes dramatically upon formation of the ternary complex. Indeed, we 

Table 4. Fluorescence response of 2AP in an unbound DNA duplex and in 

ternary complex with wild-type M.HhaI and cofactor, with 2AP at the target site 

for flipping. 

observe a significant increase in the fraction of 2AP molecules with lifetimes of 

around a nanosecond or longer (τ2-τ4) and a general increase of all of these lifetimes. 

Most noteworthy, however, is the significant reduction of A1 on ternary complex 

formation, indicating a decrease in the amount of highly stacked 2AP in the DNA 

duplex. We confirmed the specificity of this result with a series of control 

experiments with 2AP at different locations in the DNA duplex, relative to the target 

site for flipping and concluded that, along with the corroborating biochemical and 

crystallographic data, the observed change in the 2AP response was indeed the 

fluorescence signature for base flipping.  

Sample A-Factor Lifetime/ ns 

M.HhaI A1 A2 A3 A4 τ1 τ2 τ3 τ4 

Free duplex 0.53 0.26 0.14 0.06 0.08 0.58 2.94 9.60 

Ternary complex 0.22 0.26 0.23 0.29 0.12 0.95 4.23 10.49 
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We subsequently moved on to look at the analogous behaviour of the M.TaqI enzyme 

(target site TCGA) in the hope of better understanding the reasons for the discrepancy 

in the steady-state fluorescence response to base flipping of 2AP by each enzyme. As 

shown in Table 5, The response of 2AP to base flipping by M.TaqI is quite dissimilar  

Sample A-Factor Lifetime/ ns 

M.TaqI A1 A2 A3 A4 τ1 τ2 τ3 τ4 

Free duplex 0.81  0.06 0.09 0.04 0.03 0.57 2.4 7.8 

Ternary complex - 0.54 0.38 0.08 - 0.55 1.9 7.3 

Table 5. Fluorescence response of 2AP in an unbound DNA duplex and in 

ternary complex with wild-type M.TaqI and cofactor, with 2AP at the target site 

for flipping. 

to that seen for base flipping by M.HhaI. The fluorescence response of the 2AP 

population complexed by M.HhaI is dominated by a slow ~11 ns component, whereas 

that of the 2AP population complexed by M.TaqI decays much more rapidly, with a 

lifetime of around 0.5 ns. Figure 9 summarises this contrasting photophysical 

behaviour. 

Critically, the very short decay component, τ1, characteristic of a stacked 2AP 

population is completely absent from the decay of the MTaqI-complexed DNA 

duplex. We have already noted that this very shortest component (typically around 

100 ps) of the 2AP decay is the result of de-excitation via electron transfer along the 

DNA duplex. We observed a dramatic reduction in the contribution of this component 

to the fluorescence decay upon base flipping by both M.HhaI and M.TaqI, showing a 

significant reduction in the fraction of the 2AP population that is stacked in the DNA 

duplex. In other words, the suggestion here is that, in the ternary complexes with both 

enzymes most, or the vast majority of, the 2AP population is in an extrahelical 
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location. The differences that are observed in the time-resolved and steady-state 

fluorescence responses of these systems to base flipping are not related to base 

flipping or the lack of it but, rather, are derived from the fact that the 2AP is being 

flipped into quite distinct atomic environments in M.HhaI and M.TaqI. 

We were able to dig a little further into the interpretation of the solution phase 

fluorescence response of 2AP in these complex molecular systems by recording the 

2AP fluorescence response on single crystals formed from 2AP-modified DNA in 

ternary complexes with the M.HhaI and M.TaqI enzymes. In the case of M.HhaI, the 

ternary complex with the wild-type enzyme proved difficult to crystallize and so we 

resorted to studying a mutant (T250G) of this enzyme that is catalytically active and 

which shows a 100-fold increase in 2AP fluorescence intensity upon base flipping. 

The ternary complex with this enzyme crystallized readily, perhaps because of the 

pocket that is created in the enzyme by the T250G mutation, Figure 10. 

Figure 11 shows the crystal structures of the M.HhaI and M.TaqI ternary complexes 

in the immediate vicinity of the flipped 2AP base. 

 

Naively, we had anticipated that the 2AP population in the crystals would be both 

static and uniform and as a result, we would observe a simple, single exponential 

fluorescence decay from these samples that would allow us to accurately quantify the 

extent of base flipping in the solution phase. However, fluorescence responses from 

both crystals, shown in Table 6, require at least three decay components for a good fit, 

indicating a rather more complex, heterogeneous or dynamic crystal than imagined. 

This may, in part, be derived from the fact that the crystals from which we recorded 
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fluorescence decays were at room temperature, allowing some thermal motion of the 

complexes therein. 

Sample A-Factor Lifetime/ ns 

Ternary complex A1 A2 A3 A4 τ1 τ2 τ3 τ4 

M.HhaI (T250G)  - 0.07 0.13 0.79 - 0.91 5.86 11.05 

M.TaqI  - 0.46 0.51 0.03 - 0.93 2.3 8.6 

Table 6. Fluorescence response of 2AP in DNA at the target site for base flipping 

in ternary complexes in the crystal phase with T250G M.HhaI or wild-type 

M.TaqI enzymes. 

 

This highlights a very important feature of protein crystallography and our 

interpretation of the amazing images that can be derived; these images show only a 

snapshot of the multitude of conformations that the ensemble can adopt in the solution 

phase. In fact, they may not even represent the most populated state in the solution 

phase and as such, the achievable mechanistic insight for a complex enzymatic 

pathway, such as base flipping, is limited. This insight can be greatly extended by use 

of a complementary approach, such as time-resolved fluorescence, which derives 

information on the behaviour of an ensemble in the solution phase. 

Indeed, we can clearly correlate some features of the fluorescence and structural data, 

thereby linking the static crystal snapshot with some of the behaviour we observe by 

time-resoled fluorescence studies in the solution phase. The complexes in both 

crystals display a 2AP fluorescence decay that can be fit using only three exponential 

components. The shortest lifetime component of the decays has been lost, indicating 

that, despite the apparent heterogeneity, there is no 2AP in the crystals that is stacked 
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in the DNA duplex. The distribution of the 2AP population is quite different in each 

complex from the lifetime data. This can be correlated with the structures shown in 

Figure 11 which indicate that the environment into which the 2AP is moved by the 

enzyme is quite distinct for M.HhaI (T250G mutant) and TaqI. Indeed, in the M.HhaI 

crystal structure the 2AP is surrounded by polar- or charged groups and interacts 

closely with the phosphate group 5’- of it and with arginine residues from the M.HhaI. 

In M.TaqI, however, the 2AP is stacked between tyrosine 108 (shown behind the 2AP 

in Figure 11) and valine 21. Its environment contains many apolar amino acids and it 

is π-stacked with an aromatic residue We know from studies made in solution on 2AP 

or its ribonucleoside that the fluorescence lifetime of 2AP is sensitive to polarity, 

dropping by about a factor of five when going from pure water to pure 1,4-dioxane. 

Moreover, 2AP fluorescence can be rapidly quenched by electron transfer from 

tyrosine (or tryptophan) (Harriman, 1987; Wan et al., 2005; Xia et al., 2003), in an 

analogous fashion to electron transfer quenching of intrahelical 2AP by guanine; this 

accounts for the observation of a sub-nanosecond decay component for the flipped 

2AP in M.TaqI.. We observed subsequently (Bonnist & Jones, 2008; Bonnist, 2008) 

that the close stacking interaction of 2AP with tyrosine 108 in the M.TaqI active site 

also gives rise to red-shifted fluorescence, analogous to that seen for 2AP in DNA 

(Bonnist & Jones, 2008). This provided the explanation for the unusual emission 

reported previously for 2AP flipped into M. EcoKI (Su et al., 2004), where 2AP 

stacks closely with an aromatic residue in the active site, in this case phenyalanine. 

These two studies, allowed us to link the fluorescence response of 2AP to specific 

molecular environments and have informed more recent work on a subset of base 

flipping restriction endonucleases (Neely et al., 2009), on the M.EcoRV and M.EcoRI 
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methyltransferases (Bonnist et al., 2012; Youngblood et al., 2008), the Type III 

EcoP15I restriction-modification system (Ma et al., 2014), the flap endonuclease-1 

(Finger et al., 2013) and on the archaeal family-B DNA polymerase, Pfu-Pol 

(Richardson et al., 2013). In all of these systems, the basis of the interpretation of the 

2AP signature is similar to that outlined using M.HhaI and M.TaqI. However, each 

system has its own idiosyncrasies and as the dataset expands, so does our ability to 

interpret the 2AP fluorescence response. 

Our work on M.EcoRV (Bonnist et al., 2012) illustrates the ability of time-resolved 

fluorescence to clarify the different response to enzyme binding of 2AP placed at 

different positions within in the recognition sequence, thereby resolving the 

apparently anomalous observation from steady-state measurements that 2AP 

substituted for the non-target adenine in the recognition sequence showed a much 

greater intensity increase than 2AP at the target site (Gowher & Jeltsch, 2000). The 

fluorescence decay parameters showed that the target 2AP is indeed flipped by the 

enzyme, but its fluorescence is quenched by interaction with aromatic residues in the 

catalytic site, whereas bending of the duplex at the non-target site alleviates inter-base 

quenching and exposes the 2AP to solvent. Furthermore, information on the 

conformational populations that can be gleaned from the decay parameters supported 

previous evidence for specific and non-specific binding. 

A nice example of two very different fluorescence responses from 2AP flipped into an 

enzymatic environment comes from the Ecl18kI and PfoI restriction enzymes. These 

enzymes recognise the sequences CCNGG and TCCNGGA, respectively and in 

nature, make a sequence-specific, double-stranded DNA break at these sites. A 

surprising, yet critical part of this cleavage mechanism is base flipping. The central 
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base of the recognition sequences (‘N’= any base) was found, in the Ecl18kI crystal 

structure, to be flipped from the DNA duplex on both sides of the duplex. This leads 

to a collapse of the DNA duplex and an effective shortening of its length whilst bound 

to the enzyme (Bochtler et al., 2006). Steady-state measurements using 2AP at the 

target site for flipping confirmed the flipping in the solution phase and also identified 

the analogous EcoRII and PspGI enzymes (recognising the same sequence) as base 

flipping enzymes. Interestingly, the Ecl18kI enzyme forms a stacking interaction via 

tryptophan 61 to the base that is flipped from the duplex. When we examined the 

fluorescence response of 2AP flipped into these pockets of Ecl18kI we saw almost no 

perceptible change in the fluorescence response of the 2AP compared with the 

unbound DNA duplex, as shown in Table 7. 

Sample A-Factor Lifetime/ ns 

 A1 A2 A3 A4 τ1 τ2 τ3 τ4 

Free DNA 0.89 0.05 0.05 0.01 0.07 0.46 2.0 7.8 

DNA + Ecl18kI 0.80 0.07 0.08 0.05 0.07 0.70 3.1 8.9 

DNA + Y61A 0.38 0.12 0.24 0.26 0.16 1.3 4.6 9.0 

DNA + PfoI - - 0.09 0.91 - - 3.4 8.3 

Table 7. Fluorescence response of free DNA containing 2AP and this same DNA 

duplex bound by either wild-type Ecl18kI, the W61A mutant of Ecl18kI or PfoI, 

where 2AP is flipped from the duplex into a pocket of the enzyme. 

 

As we found with studies on M.HhaI and M.TaqI, the real power of the time-resolved 

measurements is realised when combined with either biochemical or structural 

information that leads to new understanding about the enzyme-DNA complex. In the 

case of Ecl18kI, the wild-type enzyme was mutated to remove the replace the 
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tryptophan residue that stacks with 2AP in the flipping pocket with an alanine residue. 

The fluorescence response of 2AP bound by this W61A mutant far more closely 

resembles that of the familiar flipped 2AP in the complex with M.HhaI. This 

observation confirms the efficient quenching of 2AP fluorescence via stacking with 

the tryptophan 61 residue, resulting in a short lifetime component for 2AP flipped into 

the wild-type active site, comparable to that seen for intrahelical 2AP quenched by G. 

By contrast, base flipping by PfoI could barely be more simple to interpret. The 2AP 

decay becomes almost mono-exponential with 90% of the 2AP population having a 

lifetime similar to that of the free 2AP ribonucleoside. Hence, in this enzyme, 2AP is 

efficiently flipped into a hydrophilic or solvated environment and is effectively 

prevented from returning to the DNA duplex.  

The seemingly similar Ecl18kI and PfoI enzymes act to stabilise their flipped bases 

using completely different mechanisms. Using time-resolved fluorescence to study 

this process not only reveals the dramatic extent of their disparate behaviour but 

allows us to gain some insight into what causes it. The extra information that the 

fluorescence decay yields enables greater understanding of (in this case) the base 

flipping process and when this is combined with complementary structural or 

biochemical studies, entirely new insight can be derived. 

4.4 The fluorescence decay of 2-aminopurine as a probe of other enzyme-

induced distortions 

The use of 2AP time-resolved fluorescence to elucidate DNA-protein interactions is 

not limited to the study of base flipping. Other, more subtle binding-induced 

deformations can be addressed, as exemplified by the following studies. 
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Reha-Krantz and coworkers have used 2AP decay measurements in a series of 

investigations of the interactions of Bacteriophage T4 DNA polymerase with DNA, 

see for example (Hariharan & Reha-Krantz, 2005; Reha-Krantz, 2009; Subuddhi et 

al., 2008; Tleugabulova & Reha-Krantz, 2007) These measurements have been made 

using a stroboscopic optical boxcar technique (James et al., 1992) which delivers 

lower time resolution and lower quality data than the other studies (employing 

TCSPC) considered in this review. This prevents the detection of short-lifetime 

components (less than about 200 ps) and compromises the reliability of multi-

exponential fitting, precluding a detailed interpretation of the conformational 

behaviour. Nevertheless the time-resolved measurements have proved a valuable 

supplement to intensity data. In particular they have enabled the empirical 

identification of functionally different complexes, based on the dominance of 

different 2AP decay times.  

Mély and coworkers have used 2AP in mechanistic studies of the role of nucleocapsid 

protein (NC) in the lifecycle of human immunodeficiency virus type 1 (HIV-1). 

(Avilov et al., 2009; Avilov et al., 2008; Godet et al., 2011). NC is a 55 amino acid 

protein which contains two highly conserved zinc fingers. In an initial study (Avilov 

et al., 2008), they demonstrated the ability of 2AP time-resolved fluorescence to 

report on the dynamics of target hexanucleotides in complex with NC. Site-specific 

changes in oligonucleotide dynamics were observed during NC binding and correlated 

with the known 3-D structure of the complex. The 2AP decay parameters were 

interpreted to show that NC strongly restricts the oligonucleotide flexibility. This 

conformational ‘freezing’ seemed to be mainly supported by the folded zinc finger 

domain of the NC. Use of NC mutants allowed the restriction of local base dynamics 
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to be more specifically attributed to the hydrophobic platform at the top of the folded 

fingers and to be identified with base interaction with specific aromatic residues. They 

then examined site-specific binding of NC to 2AP-substituted dodecanucleotides 

containing two binding sites (TG motifs) (Avilov et al., 2009). Lifetime 

measurements again showed that NC-binding inhibits conformational fluctuations of 

the oligonucleotides and strongly decreases the population of fully stacked 

conformations. 2AP at a given position was found to respond mainly to the binding of 

NC to its closest TG motif, enabling site-specific investigations of NC binding to 

oligonucleotides with multiple binding sites. In a subsequent study (Godet et al., 

2011), they investigated the role of the nucleopcapsic zinc fingers in the mechanism 

of synthesis of HIV-1 viral DNA, a complex multi-step process catalysed by the viral 

reverse transcriptase (RT). The mechanism involves two obligatory strand transfer 

reactions, the second of which relies on the annealing of two primer binding site 

(PBS) DNA stem loops, which is chaperoned by NC. By exploiting sequence-specific 

insertion of 2AP into PBS loop sequences and site-specific mutations of NC, Godet et 

al. were able to show that NC can freeze PBS conformations competent for annealing 

via the loops and, moreover, the modifications to the loop structure and dynamics that 

govern the annealing reaction are dependent on the integrity of the zinc finger 

hydrophobic platform. 

As discussed above (Section 3.2), the fluorescence decay of 2AP is sensitive to local 

disruption of base pairing. We have exploited this to investigate two cases in which 

enzyme-induced duplex unpairing had been postulated to be mechanistically essential, 

but for which there was no direct evidence: unwinding of primer-templates by an 
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archaeal DNA polymerase (Richardson et al., 2013) and unpairing of substrate by a 

flap endonuclease (Finger et al., 2013). 

Archaeal family-B DNA polymerases bind tightly to deaminated bases and stall 

replication on encountering uracil in template strands, four bases ahead of the primer-

template junction (+4 position). Should the polymerase progress further towards the 

uracil, for example to a position where uracil is only two bases in front of the junction 

(+2 position), 3’-5’ proof-reading endonuclease activity is stimulated to trim back the 

elongating primer and re-sets uracil to the +4 position. This uracil-sensing process 

serves to prevent the inappropriate copying of the deaminated base and the 

introduction of mutations into the genome. The polymerase and exonuclease domains 

of DNA polymerase are well separated and unwinding of the primer to expose a short, 

single-stranded region is required to position the 3-terminal base of the primer in the 

the exonuclease active site. The aim of our study (Richardson et al., 2013) was to test 

the hypothesis that if the polymerase approaches closer than four bases to uracil, the 

primer strand starts to unravel. The fluorescence decay parameters of 2AP showed 

clearly that binding of the polymerase caused pronounced unwinding of primer-

template with uracil at the +2 position, whereas, with uracil at the +4 position, only 

minor distortion of the duplex structure occurred. 

Flap endonuclease-1 (FEN-1) is a structure- and strand-specific phosphodiesterase 

that catalyzes the essential removal of 5’-single-stranded flaps during DNA 

replication and repair. FEN-1 achieves this by selectively catalyzing hydrolysis one 

nucleotide into the duplex region of the substrate, always targeting the 5’ strand. This 

specificity had been proposed to arise by unpairing of the 5’end of the duplex to 

permit the scissile phosphate diester to contact catalytic divalent metal ions in the 
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active site. Using 2AP decay data, in conjunction with low-energy CD, enabled us 

(Finger et al., 2013) to provide the first direct evidence of unpaired conformations in 

DNA substrates bound to FEN-1 and to elucidate the role of 5’-nuclease superfamily 

conserved (K93, R100) and semi-conserved (Y40) residues in unpairing and 

stabilisation of unpaired bases in the substrate and product complexes. 

 

5. Extension of fluorescence decay measurements to ultrafast timescales 

Fluorescence lifetime measurements can be extended to the ps and sub-picosecond 

timescale, beyond the resolution of TCSPC, by the use of the ultrafast, pump-probe 

technique of fluorescence up-conversion (or down-conversion). There are few groups 

equipped to carry out such measurements at the ultraviolet wavelengths required for 

2AP and activity in this area has been dominated by Xia and coworkers who have 

focussed mainly on the study of 2AP in RNA. Their work is the subject of a mini-

review (Xia, 2008) and will not be discussed further here. 

To our knowledge there is only one example in the literature of directly comparable 

TCSPC and ultrafast fluorescence decay measurements on the same DNA system, the 

studies of Godet et al. (Godet et al., 2011) and Gelot et al. (Gelot et al., 2012), 

respectively, on 2AP-containg DNA hairpins. The TCSPC study reports typical 4-

component decays with lifetimes of ~ 100 ps, ~700 ps, ~ 3 ns and ~8 ns, together with 

an unresolvable dark species which accounts for about 80% of the 2AP population ( 

as discussed in Section 3.3 above). The decays measured by femtosecond 

fluorescence down-conversion are also fitted by 4 exponential components, with 

lifetimes of ~ 3 ps, ~ 20 ps, ~ 100 ps and ~ 3 ns. The former two ultrashort lifetimes 
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correspond to the dark species, undetectable by TCSPC, while the latter two longer 

lifetimes can be identified with two of the components measured by TCSPC. The 

limited time-range (3 ns) of the ultrafast measurements and the impossibility of 

extracting more than four decay components, means that the four longer decay times 

measured by TCSPC are compressed into two components in the ultrafast decay 

measurement. A complete picture of the decay properties requires the use of both 

techniques. At present, this is a far-from-practical proposition. 

 

6. Conclusions 

Over 40 years since its remarkable fluorescence properties were first reported (Ward 

et al., 1969) 2AP remains unsurpassed as the most widely used fluorescent base 

analogue and probe of DNA conformation, because of its structural similarity to a 

natural base, its exquisite sensitivity to interbase interactions and its commercial 

availability. In spite of its success, 2AP is certainly not without its disadvantages and 

we will now reflect on these shortcomings and the possibility of improving upon 

them. 

The short, UV excitation wavelength of 2AP is disadvantageous (particularly in the 

context of time-resolved fluorescence measurements, as discussed below), but is a 

consequence of its isomeric relationship to adenine. A shift to longer excitation 

wavelength requires a more delocalised electronic structure and results in greater 

structural deviation from a natural base. 

The complex fluorescence decay of 2AP in DNA may seem disadvantageous, but is a 

consequence of the highly desirable sensitivity of the fluorophore to interbase 
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quenching; a simpler decay function would be the signature of a less responsive 

probe. The shortness of its fluorescence lifetime (< 100 ps), and consequently low 

quantum yield, in a fully stacked state is indeed disadvantageous, demanding the use 

of ultrafast lasers and fast-response detectors to measure it fluorescence decay, and 

often requiring long data acquisition times because of the low fluorescence intensity. 

The combination of low quantum yield and the need for UV excitation also makes it 

unpromising as a probe for single-molecule studies, although we note that detection of 

2AP at the single-molecule level in surface-immobilised oligonucleotides has been 

reported recently (Aleman et al., 2014). 

The short lifetime is, in fact, essential to the wide dynamic range of lifetimes that 2AP 

exhibits in DNA, which makes its complex mutli-component decay tractable to 

reproducible and reliable analysis and interpretation. A fluorophore with similar 

responsiveness but a slower decay time would indeed be welcome in facilitating 

lifetime measurements, although, to maintain the same dynamic range of lifetimes 

would inevitably lead to the same low quantum yield for the highly quenched 

component. Aromatic fluorophores rarely have radiative lifetimes longer than about 

100 ns, so an order of magnitude increase in decay times is the best that could be 

hoped for. 

The susceptibility of 2AP to ultrafast quenching, resulting in species which are 

invisible to all but the most advanced, sub-picosecond measurements, is a cause for 

concern. This does not prevent the use of 2AP as a very effective probe, but the notion 

that a vast proportion of the conformational population evades observation is certainly 

disquieting. The use of ultrafast spectroscopy to provide a window on the ‘dark’ 

conformations that are invisible to TCSPC is undoubtedly valuable in increasing our 
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understanding of base dynamics and the mechanism of quenching of 2AP in DNA. 

However, there is no evidence at present to indicate that ultrafast measurements 

would significantly enhance the utility of 2AP as a probe of DNA-enzyme interaction, 

even if they were practically feasible. An important, unanswered question is to what 

extent the dark conformational population(s) might behave differently, in response to 

enzyme binding, from the populations detectable by TCSPC. More specifically, 

would changes in the values of the ultrafast lifetimes themselves provide useful 

additional information or is it the fractional population that conveys the more valuable 

information? If, as our experience suggests, it is changes in the A factors that are 

often more informative, then the most essential information can be gained by the 

combination of TCSPC and quantitative intensity measurements. 

For photophysicists, 2AP is an object lesson in the subtle interplay of electronic states 

that controls fluorescence properties, and exposes the inadequacy of the current 

understanding of the excited state properties of complex molecules. We cannot yet 

fully explain the fluorescence properties of 2AP, let alone predict precisely how to go 

about changing them for the better. Although considerable efforts are being devoted 

to the development of new, environmentally sensitive, fluorescent, isomorphic base 

analogues, see, for example, (Ben Gaied et al., 2005; Nadler et al., 2011; Noé et al., 

2013; Sinkeldam et al., 2010; Wilhelmsson, 2010), there appears to be no immediate 

prospect of a definitively superior successor to 2AP. 

In this review we have endeavoured to convey the detailed insight into DNA structure 

and dynamics, at the single-base level, that can be obtained from time-resolved 

fluorescence measurements of 2AP. At present, such measurements are restricted to a 

rather small number of groups because of the relatively sophisticated and costly 
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apparatus required. However recent and ongoing technological advances promise to 

make TCSPC measurements with UV excitation and sub-100 ps time resolution much 

more widely accessible. Compact, easy-to-use and relatively low-cost photonic-

crystal-fibre-based supercontinuum (“white light”) lasers have already started to 

replace mode-locked Ti:sapphire lasers as the excitation source of choice for TCSPC 

in the visible wavelength range, and are now beginning to make in-roads into the UV 

range. On the detection side, single-photon avalanche photodiodes (SPAD) and hybrid 

photomultiplier tube detectors (combing a photomultiplier tube front-end with an 

avalanche photodiode amplification stage) are now available as lower cost alternatives 

to expensive microchannel plate photomultipliers which were previously the only 

option for TSCPC with high time-resolution. We anticipate that, almost half-a-century 

since its potential as a fluorescent base analogue was first recognised, 2AP may be set 

for a revival as a fluorescence-lifetime probe. 
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Figure 1. Detail from the crystal structure of a duplex (PDB ID: 4IHX) showing the 

Watson-Crick base-pair formed between 2AP and T. (The lone oxygen atoms (red) in 

the image indicate the presence of water molecules). Figure generated using Pymol 

0.99. 
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Figure 2. Detail from the crystal structure of a duplex (PDB ID: 2C7Q) in which 2AP 

is base-paired with G, showing the hydrogen bonds between the paired bases. 2AP 

forms a Hoogsteen-type base pair with G. (The lone oxygen atom (red) in the image 

indicates the presence of a water molecule). Figure generated using Pymol 0.99. 
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Figure 3. A comparison of the decay curves of the free 2AP-ribonuscleoside (red) and 

a 2AP-containing DNA duplex (grey). The instrument response function is shown in 

black. 
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Figure 4. The crystal structure of (a) the PG (PDB ID: 2C7Q) and (b) the PT duplex 

(blue) (unpublished work) in ternary complex with M.HhaI (green ribbons) and the 

AdoHcy cofactor (dark green sticks). The 2AP base is shown in red. 

 

 
 

 
 

 
 

5'-GACAGTATCAGGCGCCTCCCCACAA _-3'
3'-_ TGTCATAGTCCGMGGPGGGGTGTTG-5'

 

 
 

 
 

5'-GACAGTATCAGGCGCCGCCCCACAA _-3'
3'-_ TGTCATAGTCCGMGGPGGGGTGTTG-5'
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Figure 5. The immediate environment of 2AP in the crystalline (a and b) PG duplex 

(PDB ID: 2C7Q) and (c and d) PT duplex (unpublished work). Water molecules are 

shown as lone oxygen atoms (red). Distances shown are for donor-acceptor 

interactions between hydrogen bonding atoms. For the 2AP-containing 

oligonucleotide strands (b and d), the bases are shown 3’ to 5’ going from the top to 

bottom of the Figure. 
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Figure 6. (a) Comparison of the fluorescence decay curve of a 2AP-containing single 

strand (black) with that of the corresponding duplex (black). (b) Comparison of the 

ratio of the A factors, A3 and A2, for 2AP in each of seven single-strand (black) and 

duplex (grey) oligonucleotides. 
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Figure 7. Comparison of the 2AP fluorescence decay in a three-way DNA junction 

(3WJ) to the corresponding decays for single-stranded (SS) and duplex (DS) DNA. 

(a) The three-way junction sequence and positions at which the 2AP base (blue P) was 

placed. (b) The fluorescence decays of a 3WJ (blue), with 2AP distant from the 

branchpoint, and of the respective SS (black) and DS (red). (c) The fluorescence 

decays of a 3WJ (blue), with 2AP adjacent to the branchpoint, and of the respective 

SS (black) and DS (red). 
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Figure 8. Views from a crystal structure (PDB ID: 3MHT) showing base flipping of 

cytosine by M.HhaI (yellow), (a) looking from the side of the duplex and (b) looking 

down the axis of the duplex. DNA is shown in red with the S-adenosyl-L-

homocysteine cofactor analogue in pale blue. 

  



73 

 

 

Figure 9. Plot of amplitudes (A factors) versus lifetimes for DNA duplexes containing 

2AP at the target site for flipping, in ternary complexes with either M.HhaI (blue 

diamonds) or M.TaqI (red squares) and cofactor (S-adenosyl-L-methionine). 
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Figure 10. Structures of M.HhaI in the region around residue 250. (a) Wild-type 

enzyme with flipped cytosine base in the enzyme active site (PDB ID: 3MHT); (b) 

T250G mutant with flipped 2AP base occupying the void created by the T250G 

mutation (PDB ID:2C7R). Note that the R165 residue has apparently been displaced 

into the region defined as the enzyme ‘active site’ for the wild-type M.HhaI. 

 
 

 

Figure 11. The immediate environment of 2AP (yellow) in crystalline ternary 

complexes of the T250G M.HhaI mutant (cyan) (PDB ID: 2C7R) and the wild-type 

M.TaqI (blue) enzyme (PDB ID: 2IBS). 


