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Deconvolution of whole blood 
transcriptomics identifies changes in immune 
cell composition in patients with systemic 
lupus erythematosus (SLE) treated 
with mycophenolate mofetil
Mumina Akhtar1, Nisha Nair2, Lucy M. Carter3,4, Edward M. Vital3,4, Emily Sutton5, Neil McHugh6, British 
Isles Lupus Assessment Group Biologics Register (BILAG BR) Consortium, MASTERPLANS Consortium, 
Ian N. Bruce5,7 and John A. Reynolds1,8* 

Abstract 

Background Systemic lupus erythematosus (SLE) is a clinically and biologically heterogeneous autoimmune disease. 
We explored whether the deconvolution of whole blood transcriptomic data could identify differences in predicted 
immune cell frequency between active SLE patients, and whether these differences are associated with clinical fea-
tures and/or medication use.

Methods Patients with active SLE (BILAG-2004 Index) enrolled in the BILAG-Biologics Registry (BILAG-BR), prior to 
change in therapy, were studied as part of the MASTERPLANS Stratified Medicine consortium. Whole blood RNA-
sequencing (RNA-seq) was conducted at enrolment into the registry. Data were deconvoluted using CIBERSORTx. Pre-
dicted immune cell frequencies were compared between active and inactive disease in the nine BILAG-2004 domains 
and according to immunosuppressant use (current and past).

Results Predicted cell frequency varied between 109 patients. Patients currently, or previously, exposed to mycophe-
nolate mofetil (MMF) had fewer inactivated macrophages (0.435% vs 1.391%, p = 0.001), naïve CD4 T cells (0.961% 
vs 2.251%, p = 0.002), and regulatory T cells (1.858% vs 3.574%, p = 0.007), as well as a higher proportion of memory 
activated CD4 T cells (1.826% vs 1.113%, p = 0.015), compared to patients never exposed to MMF. These differences 
remained statistically significant after adjusting for age, gender, ethnicity, disease duration, renal disease, and corti-
costeroid use. There were 2607 differentially expressed genes (DEGs) in patients exposed to MMF with over-represen-
tation of pathways relating to eosinophil function and erythrocyte development and function. Within CD4 + T cells, 
there were fewer predicted DEGs related to MMF exposure. No significant differences were observed for the other 
conventional immunosuppressants nor between patients according disease activity in any of the nine organ domains.

Conclusion MMF has a significant and persisting effect on the whole blood transcriptomic signature in patients with 
SLE. This highlights the need to adequately adjust for background medication use in future studies using whole blood 
transcriptomics.

*Correspondence:
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Full list of author information is available at the end of the article
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Introduction
Systemic lupus erythematosus (SLE) is an autoimmune, 
immune complex-mediated disease associated with 
systemic inflammation and the production of autoanti-
bodies. The marked heterogeneous nature of SLE, both 
clinically and biologically, has continued to impose 
challenges in terms of understanding the pathogenesis 
of SLE, in drug development and in clinical care [1, 2].

Transcriptomic profiling has the potential to accel-
erate our understanding of the biology of SLE. It may 
contribute to improving the classification of SLE, allow 
exploration of disease mechanisms, and help to identify 
novel treatment targets or personalised approaches to 
treatment [2]. Previous transcriptomic studies in SLE 
have demonstrated the contribution of IFNβ and IFNγ 
(in addition to IFNα) to SLE pathogenesis and the pres-
ence of distinct gene signatures for susceptibility, dis-
ease activity, and severity [2, 3]. However, the marked 
clinical and molecular heterogeneity of SLE can make 
transcriptomic analysis at either the transcript or 
gene level challenging and may lead to discrepancies 
between studies. Consideration of the cell proportions 
within bulk RNA sequencing (RNA-seq) data may yield 
important insights and improve the statistical power of 
transcriptomic analyses.

CIBERSORTx is a deconvolution-based computa-
tional method which uses support vector regression in 
combination with the knowledge of expression profiles 
in a signature matrix to accurately estimate the relative 
immune proportions of cells from bulk tissue transcrip-
tomes [4, 5]. CIBERSORTx has been used to estimate 
immune cell proportions in peripheral blood in several 
conditions including ischaemic stroke [6], schizophre-
nia [7], and liver cirrhosis [8]. The data obtained from 
the CIBERSORTx pipeline has been validated against 
clinical laboratory measurements and/or flow cytom-
etry data [7, 8]. Recently, it has been reported that 
immune cell scoring systems, based on CIBERSORTx 
data, can predict prognosis in patients with myelodys-
plastic syndromes [9].

Deconvolution of microarray data has been used in 
studies comparing patients with SLE to healthy con-
trols. Patients with SLE had increased monocytes 
and fewer NK cells in the peripheral blood compared 
to healthy controls [10]. Similarly, deconvolution of 
microarray data from renal tissue identified differences 
in cell proportions between glomeruli from patients 
with lupus nephritis compared to healthy donors with 
increased monocytes, macrophages, and activated 

natural killer (NK) cells and fewer memory B cells and 
T follicular helper cells in LN tissue [11].

In this study, we aimed to use CIBERSORTx to deter-
mine whether deconvolution of whole blood RNA-seq 
data could identify differences in predicted immune cell 
proportions between active SLE patients and whether 
these differences are associated with the clinical pheno-
type of patients or with concomitant medication use.

Methods
Study cohort
Patients with active SLE who fulfilled the 1997 Updated 
American College of Rheumatology (ACR) classification 
criteria for SLE [12] or the SLICC 2012 criteria [13] were 
registered with the BILAG-Biologics Registry (BILAG-
BR). Ethical approval was granted by North West Greater 
Manchester West Research Ethics Committee (09/
H1014/64) and the local Research and Development 
departments at participant sites. This cohort formed a 
key component of the UK Medical Research Council 
(MRC) Precision Medicine Consortium ‘Maximising 
SLE Therapeutic Potential by the Application of Novel 
and Stratified Approaches’ (MASTERPLANS). Disease 
activity was quantified using the BILAG-2004 index [14]. 
Blood samples were collected at enrolment into the reg-
istry for whole blood RNA-seq and autoantibody profiles 
were measured in a central laboratory. Routine biochem-
ical, haematological, and serological parameters were 
measured locally.

Whole blood bulk RNA sequencing (RNA‑seq)
RNA was extracted from PAXgene tubes and RNA integ-
rity was analysed using the Agilent 2100 Bioanalyzer. 
Complementary DNA synthesis was performed using 
the Illumina® TruSeq RNA Sample Preparation Kit (Illu-
mina), and pooled cDNA libraries were sequenced using 
the HiSeq 2000 Illumina® platform (Illumina). Quality 
assessment was performed using FastQC (http:// www. 
bioin forma tics. babra ham. ac. uk/ proje cts/ fastqc/), quality 
filtering with Trimmomatic [15], read mapping to hg38, 
and counting into genes with STAR [16] using anno-
tation from GENCODE v24 (http:// www. genco degen 
es. org/). Fragments per kilobase million (FPKM) were 
determined for downstream analysis using RNAAge-
Calc [17]. Differential gene expression was determined 
using DESeq2 [18]. Gene set enrichment analysis (GSEA) 
was performed using ClusterProfiler using the genome 
wide annotation for human (org.Hs.eg.db). Gene ontol-
ogy (GO) analysis was conducted using GOnet [19]. 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
http://www.gencodegenes.org/
http://www.gencodegenes.org/
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Hierarchical clustering with bootstrapping was per-
formed using factoextra.

Deconvolution of gene expression profiles
Bulk RNA-seq deconvolution and cell type estimation 
was performed using CIBERSORTx and the LM22 leu-
kocyte gene signature matrix [4, 5]. LM22 comprises 
547 genes, derived from human microarray data, to dis-
tinguish 22 human immune cell types [5]. The following 
specifications were used: B-mode batch correction, quan-
tile normalisation disabled, 100 per mutations and rela-
tive-mode. For some analyses, absolute mode was used. 
For further details, see Supplementary methods. For high 
resolution mode, only protein-coding transcripts were 
used.

The relative cell proportions obtained from CIB-
ERSORTx were compared between set groups using 
non-parametric tests (Mann–Whitney U test with Ben-
jamini–Hochberg correction or Kruskal–Wallis test with 
Dunn’s correction where appropriate) with the FDR set 
at 0.05. In the adjusted models, cell frequency was con-
verted into quartiles and ordered logistic regression 
models to determine the odds ratio for moving between 
quartiles. Data were analysed using IBM® SPSS® Statis-
tics 26, STATA v.16.0 and R v4.0.3.

Results
Patient characteristics
Whole blood transcriptomic data were available for 
110 patients; one of whom had incomplete clinical data 
and was therefore excluded from analyses. The cohort 
included 104/109 (95.4%) females, with a median (IQR) 
age and disease duration of 38 (29–49) and 10 (6.5–16.5) 
years respectively. Patients had high disease activity with 
a median SLEDAI score of 8 (4–14) (Table 1).

Deconvolution of whole blood RNA‑seq data
We analysed protein-coding genes in 110 patients. Prin-
cipal component analysis did not identify any clear 
patient subgroups (Fig.  1A). Of 19,986 protein-coding 
genes, after removal of those with a raw count of zero in 
all samples, and those not matched during FPKM pro-
cessing, there remained 17,231 for analysis. For further 
details of the workflow, see the Supplementary data file. 
For 11 of the cell types, frequencies could not be esti-
mated in > 50% of samples, and therefore, we focussed 
on the remaining 11 cells: memory B cells, CD8 T cells, 
naïve CD4 T cells, memory activated CD4 T cells, regula-
tory T cells (Treg), resting NK cells, monocytes, M0 mac-
rophages, activated dendritic cells, and resting mast cells 
(see Supplementary data). Of these, only monocytes and 
resting mast cells had a normal distribution. Neutrophils 
were the most abundant cell type (median [IQR] 54.7% 

Table 1 Description of the study population

Patient characteristics, total (n = 109) No (%)/median (IQR)

Age, years (n = 98) 38 (29–49)

Sex

 Female 104 (95.4%)

 Male 5 (4.6%)

Ethnicity

 White 61 (56%)

 Black 14 (12.8%)

 South Asian 20 (18.3%)

 Other 11 (10.1%)

 Not Specified 3 (2.8%)

SLE duration, years 10 (6.5–16.5)

1997 ACR criteria

 Malar rash 60 (55%)

 Discoid rash 15 (13.8%)

 Photosensitivity 59 (54.1%)

 Oral ulcers 68 (62.4%)

 Arthritis 97 (89%)

 Serositis 33 (30.3%)

 Renal disorder 44 (40.4%)

 Neurologic disorder 8 (7.3%)

 Haematologic disorder 63 (57.8%)

 Immunologic disorder 81 (74.3%)

 Positive ANA 96 (88.1%)

Disease activity

 SLEDAI score (n = 99) 8 (4–14)

 BILAG 2004, A or B in organ domain (n = 98)

  Constitutional 8 (8.2%)

  Mucocutaneous 51 (52%)

  Neuropsychiatric 10 (10.2%)

  Musculoskeletal 51 (52%)

  Cardiorespiratory 13 (13.3%)

  Gastrointestinal 5 (5.1%)

  Ophthalmic 5 (5.1%)

  Renal 39 (39.8%)

  Haematological 3 (3.1%)

 Low C3/C4 (n = 99) 53 (53.5%)

 Raised anti-dsDNA (n = 104) 43 (41.4%)

Autoantibodies (n = 104)

 ANA antibodies 99 (95.2%)

 dsDNA antibodies 58 (55.8%)

 U1RNP antibodies 34 (32.7%)

 U3RNP antibodies 1 (1%)

 SSa/Ro52 antibodies 20 (19.2%)

 SSa/Ro60 antibodies 37 (35.6%)

 SSb/La antibodies 6 (5.8%)

Medication

 Current oral corticosteroid use (n = 108) 94 (87%)

 Usual oral corticosteroid dose (mg) (n = 75) 10 (7.5–20)

 Current or previous antimalarial therapy
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[41.3–65.7] followed by monocytes (12.9% [6.80–17.0]). 
The distribution of the 11 cell types is shown in Fig. 1B 
and C.

The estimated absolute number of neutrophils was 
negatively correlated with Treg (r =  − 0.634, p < 0.0001), 
CD8 T cells (r =  − 0.560, p < 0.0001), and monocytes 
(r =  − 0.321, p = 0.0006) and positively correlated with 
activated dendritic cells (r = 0.413, p < 0.0001). Similarly, 
there was a strong correlation between Treg and CD8 T 
cells (r = 0.706, p < 0.0001) (Fig. 1D).

Association between immune cell populations and disease 
phenotype
To assess whether organ involvement was associated with 
differing immune cell frequencies, patients with active 
disease (defined as a BILAG A or B score) in an organ 
domain were compared to those with inactive disease (C, 
D, or E score). There were no significant differences in 
immune cell frequency between active and inactive dis-
ease in any of the nine organ domains after correction for 
multiple testing (data not shown). In a sensitivity analysis 
in which active disease was defined as a BILAG A, B, or 
C score, again, no differences were observed. Similarly, 
there was no correlation between these immune cell fre-
quencies and SLEDAI score or between patients with 
lower disease activity (SLEDAI < 10) and high disease 
activity (≥ 10) (data not shown).

Association between immune cell populations 
and medication exposure
Most patients (94, 87%) were taking oral glucocorti-
coids (GCs) which was associated with increased pre-
dicted frequency of neutrophils compared to those not 
taking oral GCs (56.6% [44.1–66.8] vs 44.3% [33.4–
50.3], p = 0.003) (Fig.  1E and Supplementary data S2). 

Table 1 (continued)

Patient characteristics, total (n = 109) No (%)/median (IQR)

  Hydroxychloroquine 54 (49.5%)

  Mepacrine 2 (1.8%)

 Current or previous immunosuppressant exposure

  Azathioprine 9 (8.3%)

  Methotrexate 5 (4.6%)

  Mycophenolate mofetil 53 (48.6%)

  Tacrolimus 1 (0.9%)

  Cyclophosphamide 8 (7.3%)

Values are n (%) or median (IQR) as appropriate

Fig. 1 Predicted frequency of immune cell types in whole blood. A Principal component (PC) plot of PC1 and PC2 for all patient samples. B Relative 
frequency of each of the 22 cell types predicted using CIBERSORTx in each sample. C The predicted frequency of the 11 selected cell types in the 
whole cohort. D Correlation matrix of the 11 cell types in the whole cohort. Spearman r coefficients are shown and the intensity of the colour 
indicates the strength of the correlation. E Pseudoheatmap of the 11 cell types according to exposure to GC, HCQ and immunosuppressants. The 
colour shows the magnitude of the Z score, *p < 0.05. HCQ, hydroxychloroquine; GC, glucocorticoids; AZA, azathioprine; MTX, methotrexate; MMF, 
mycophenolate mofetil; CYC, cyclophosphamide
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No statistically significant differences were observed 
in the other cell types between patients taking GC 
and those not taking GC. There were no differences in 
immune cell frequency in patients exposed (currently 
or previously) to azathioprine (AZA), methotrexate 
(MTX), hydroxychloroquine (HCQ), or cyclophospha-
mide (CYC).

Compared to patients never exposed to mycophenolate 
mofetil (MMF), patients exposed to MMF had a signifi-
cantly lower proportion of resting macrophages (0.44% 
[0–1.25] vs 1.39% [0.32–2.36], unadjusted p = 0.001), 
naïve CD4 T cells (0.96% [0–1.96] vs 2.25% [0.86–3.88], 
p = 0.002), and regulatory T cells (1.86% [0.29–3.93] vs 
3.57% [1.84–5.52], p = 0.006), as well as a higher propor-
tion of memory activated CD4 memory T cells (1.83% 
[0.87–2.78] vs 1.11% [0.60–2.23], p = 0.015). After Ben-
jamini–Hochberg correction, these remained statisti-
cally significant (Supplementary file S3) and when MMF 
exposure was considered separately as current, previ-
ous, or never exposed, statistically significant differences 
remained for these four immune cell types (Fig. 2).

Patients exposed to MMF were more likely to have cur-
rent or previous renal disease and were less likely to have 
a history of photosensitivity (Table 2). Similarly, patients 
with active mucocutaneous or musculoskeletal disease 
were less likely to have been prescribed MMF (57.9% 
never, 28.6% previous, 4.44% current, p = 0.023 and 
61.4% never, 28.6% previous, 33.3% current, p = 0.004, 
respectively). Conversely, patients with active renal dis-
ease were more likely to be currently taking MMF (61.6% 
current, 25.7% ever, 33.3% never, p = 0.034). To exclude 
the effect of confounding by indication, multivariable 
ordered logistic regression analyses, using quartiles of 
cell frequency as the dependent variable, adjusted for age, 
gender, ethnicity, disease duration, renal disease, and cor-
ticosteroid use, were constructed which remained statis-
tically significant for the 4 cell types above (Table 3).

Transcriptomic signature associated with MMF exposure
There were 2607 differentially expressed genes (DEGs) 
between patients who were exposed (current or ever) 
to MMF compared to those who were not (log2 fold 

Fig. 2 Differences in estimated cell proportions in patients receiving mycophenolate mofetil (MMF). Box plots  show differences in estimated cell 
populations between patients never exposed, previously exposed, or currently receiving MMF. Horizontal line shows the median value and the box 
shows the IQR. Error bars show minimum and maximum values. Comparisons made using Kruskal–Wallis tests with Dunn’s correction for multiple 
comparisons. *p < 0.05, **p < 0.01
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change of 0.5 and adjusted p value of < 0.05). Of these, 
767 were upregulated, and 1840 were downregu-
lated (Fig.  3A). Gene set enrichment analysis (GSEA) 
of DEGs identified over-representation of genes sets 
related to erythrocyte development and eosinophil 
migration (Fig.  3B). The genes upregulated or down-
regulated with smallest adjusted p-value were further 
examined (3 of each). Of the 3 downregulated DEGs, 
expression of PGF was statistically significantly lower 
in patients currently taking or ever exposed to MMF. 
Similarly, of the 3 upregulated DEGS, CSMD1 was 

increased in patients currently taking or ever exposed 
to MMF (Fig. 3C).

As MMF exposure was associated with changes to 
T cell frequency, gene expression within the CD4 cell 
subset was predicted using CIBERSORTx high resolu-
tion mode. Of 4232 genes, only 157 were differentially 
expressed (adjusted p < 0.05) according to exposure to 
MMF (Fig. 4A). There were insufficient genes to perform 
GSEA, but gene ontology (GO) analysis of biological 
function identified over-representation of genes involved 
in nucleocytoplasmic transport (Fig.  4B). Hierarchical 

Table 2 Clinical characteristics of patients related to exposure to MMF

Never
(n = 57)

Previous
(n = 35)

Current
(n = 18)

p

Age

Sex (female) 54 (96.4%) 33 (94.3%) 17 (94.4%) 0.873

Ethnic background 0.408

 White 34 (60.7%) 18 (54.6%) 10 (55.6%)

 Black 4 (7.14%) 6 (18.2%) 4 (22.2%)

 Asian 13 (21.2%) 4 (12.1%) 3 (16.7%)

 Other 5 (8.93%) 5 (15.2%) 1 (5.56%)

Disease duration 18 (8, 17) 11 (7, 17) 8 (5, 13) 0.273

ACR criteria

 Malar rash 33 (58.9%) 17 (48.6%) 10 (55.6%) 0.626

 Discoid rash 7 (12.5%) 5 (14.3%) 3 (16.7%) 0.900

 Photosensitivity 37 (66.1%) 15 (42.9%) 7 (38.9%) 0.035
 Oral ulcers 38 (67.9%) 18 (51.4%) 12 (66.7%) 0.266

 Arthritis 49 (87.5%) 34 (97.1%) 14 (77.8%) 0.090

 Serositis 18 (32.1%) 9 (25.7%) 6 (33.3%) 0.772

 Neurological 4 (7.14%) 3 (8.57%) 1 (5.56%) 0.921

 Renal 21 (37.5%) 11 (31.4%) 12 (67.7%) 0.038
 Haematological 30 (53.6%) 22 (62.9%) 11 (61.1%) 0.651

 Immunological 39 (69.6%) 27 (77.1%) 15 (83.3%) 0.460

 ANA 49 (87.5%) 32 (91.4%) 15 (83.3%) 0.678

SLICC-DI 0 (0, 1) 0 (0, 2) 0 (0, 1) 0.862

Current prednisolone 46 (83.6%) 31 (88.6%) 17 (94.4%) 0.470

Daily prednisolone dose (mg/day) 10 (5–20) 10 (7.5–20) 10 (10–20) 0.280

SLEDAI score 10 (5.5–13.5) 6 (4–10) 10 (6–14) 0.051

Active disease (BILAG A/B)

 Constitutional (A or B) 6 (10.5%) 1 (2.86%) 1 (5.56%) 0.371

 Mucocutaneous (A or B) 33 (57.9%) 10 (28.6%) 8 (44.4%) 0.023
 Neuropsychiatric (A or B) 4 (7.02%) 4 (11.4%) 2 (11.1%) 0.735

 Musculoskeletal (A or B) 35 (61.4%) 10 (28.6%) 6 (33.3%) 0.004
 Cardiorespiratory (A or B) 8 (14.0%) 2 (5.71%) 3 (16.7%) 0.382

 Gastrointestinal (A or B) 3 (5.26%) 0 2 (11.1%) 0.172

 Ophthalmic (A or B) 2 (3.51%) 2 (5.71%) 1 (5.56%) 0.863

 Renal (A or B) 19 (33.3%) 9 (25.7%) 11 (61.1%) 0.034
 Haematological (A or B) 0 2 (5.71%) 1 (5.56%) 0.190

Low C3/C4 29 (51.2%) 11 (44.0%) 13 (72.2%) 0.173

Raised dsDNA 24 (42.9%) 12 (48.0%) 13 (72.2%) 0.094
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clustering of CD4 T cell transcripts identified 4 patients 
clusters (cluster 1; 42 patients, cluster 2; 30 patients, clus-
ter 30; 14 patients, cluster4; 21 patients) (Fig. 4C) and 5 
gene clusters with identifiable pathway enrichment. GO 
analysis of the gene clusters identified pathways related to 
nuclear transport (fold enrichment 2.67, enrichment false 
discovery rate [FDR] 9.97 ×  10−10), negative regulation 
of B cell immunity (fold enrichment 11.9, enrichment 

FDR 0.013), and fumarate metabolism (fold enrichment 
73.5, enrichment FDR 0.030). The pathway genes for 
each of the top 3 GO terms in each of the 5 gene clusters 
are shown in the Supplementary Table S4. The charac-
teristics of patients in each of the 4 clusters is shown in 
Table 4. Patients in clusters 2 and 4 were older and were 
more likely to be receiving prednisolone and less likely to 
be exposed to methotrexate. Overall, the expression of 

Table 3 Ordered logistic regression models of the association between MMF exposure and quartiles of peripheral blood immune cell 
frequency

a Model 1: adjusted for age, gender, ethnicity, and disease duration
b Model 2: as for model 1 plus presence of renal disease (BILAG A/B) and corticosteroid use (Y/N)

Cell type (quartiles) Unadjusted Model  1a Model  2b

OR 95% CI p OR 95% CI p OR 95% CI p

Resting macrophages 0.354 0.176, 0.771 0.004 0.386 0.178, 0.840 0.016 0.329 0.177, 0.872 0.022
Naïve CD4 + T cells 0.390 0.195, 0.776 0.007 0.398 0.184, 0.859 0.019 0.369 0.167, 0.816 0.014
Regulatory T cells 0.363 0.181, 0.728 0.004 0.227 0.099, 0.521  < 0.001 0.216 0.092, 0.508  < 0.001
Activated CD4 + memory T cells 1.952 0.984, 3.869 0.055 2.174 1.014, 1.659 0.046 2.447 1.120, 5.346  < 0.001
Monocytes 0.528 0.266, 1.045 0.067 0.527 0.244, 1.139 0.103 0.579 0.262, 1.279 0.176

Fig. 3 Whole blood gene signature in patients exposed to MMF. A Volcano plot to show differentially expressed genes between patients 
exposed to MMF or not. The y-axis shows -log10 adjusted p value and x-axis shows log2 fold change. Genes in red are differentially upregulated or 
downregulated with log2 fold change > 0.5 and adjusted p value < 0.05. B Gene set enrichment analysis of the 2607 differentially expressed genes. 
The x-axis shows the number of genes contributing to the term and the colour of the bar represents the p value. C Box plots of the 3 genes most 
significantly upregulated or downregulated according to MMF exposure. Horizontal bar shows median. Comparisons with Kruskal–Wallis test with 
Dunn’s correction. *p < 0.05, ****p < 0.0001
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most transcripts was higher in clusters 2 and 4 compared 
to clusters 1 and 3, except for a small group of transcripts 
which were enriched with genes related to mitochondrial 
translation (GO: 0070125). There was no difference in 
lupus disease activity by BILAG organ system, exposure 
to MTX or AZA, between the clusters. Patients in clus-
ters 2 and 3 were more likely to have a history of mucosal 
ulceration.

As MMF exposure was associated with fewer pre-
dicted resting macrophages, predicted gene expression 
in monocytes was also investigated in high resolution 
mode. There were no differentially expressed genes in 
patients exposed or not exposed to MMF with adjusted 
p < 0.05. Cluster analysis suggested 7 patient groups and 9 
gene clusters (see Supplementary Figure S2).

Discussion
We used CIBERSORTx to predict the immune cell com-
position in the blood of patients with active SLE. In the 
interpretation of deconvoluted transcriptomic data, 
it is important to recognise that, whilst this may not 
be directly comparable to studies using flow cytomet-
ric methods, CIBERSORT has been validated against 
flow cytometry data in human blood [20]. Of the 22 cell 
types, 11 were reliably identified in over 50% of patients 
and used for further analysis. In our data, there were 
notable correlations between the predicted numbers 

of neutrophils, Treg, monocytes, and CD8 + T cells, 
which have not been observed in other clinical contexts 
[6, 21] suggesting that these finding may be disease- or 
medication-specific.

In this study, we did not find any associations between 
predicted immune cell frequency and active disease in 
any of the nine BILAG-2004 domains. This contrasts with 
a small flow cytometry study which identified increased 
frequency of T cells and reduced B cell and NK cell fre-
quency in patients with active glomerulonephritis (lupus 
nephritis class III or IV) [22]. Absolute counts of NK cells 
were also decreased in patients with renal involvement. 
This discrepancy between the studies could be attributed 
to using BILAG A/B scores, rather than a histological def-
inition of nephritis, which is likely to encompass a wider 
group of patients, or to important differences between 
flow cytometry and transcriptomic analyses. Our find-
ings in this study suggest that the principal immune cell 
composition in the peripheral blood of patients with SLE 
does not relate to specific organ activity.

Oral GCs were noted to be associated with a significant 
increase in the proportion of neutrophils in the periph-
eral blood, consistent with established literature validating 
our approach [23]. Of the remaining immunosuppressants 
assessed in this study, MMF use associated with statisti-
cally significant differences in the predicted frequency of 
immune cells (macrophages, memory activated CD4 T 

Fig. 4 Predicted gene expression in CD4 + T cells in patients exposed to MMF. A Volcano plot of DEGs predicted in the CD4 T cell subset according 
to exposure to MMF. Horizontal line shows -log10 adjusted p value and vertical line shows log2 fold change. B GO analysis of over-represented 
biological pathways in the 157 DEGs with adjusted p < 0.05 between patients exposed or not to MMF. C Heatmap of genes in CD4 T cells with 
hierarchical clustering of samples (horizontal) and genes (vertical). The vertical bars show the top GO biological process for each cluster of genes
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cells, naïve CD4 T cells and regulatory T cells). Although 
patients currently or previously treated with MMF were 
more likely to have renal disease and less likely to have 
musculoskeletal or mucocutaneous disease, in multivari-
able models, the relative frequency of these 4 immune cell 

populations was independently associated with MMF 
exposure.

Recently a large study by Northcott et. al. (2022) inves-
tigated gene module expression in 210 patients with SLE 
using a commercially available assay [24]. In this study, 

Table 4 Characteristics of patients in each CD4 T cells transcriptional cluster

Cluster 1
N = 42

Cluster 2
N = 30

Cluster 3
N = 14

Cluster 4
N = 24

p

Age (years) 35 (27–46) 41 (34–53) 34 (19–38) 42 (34–52) 0.027
Gender (female) 30 (95.1%) 29 (96.7%) 14 (100%) 22 (91.7%) 0.790

Ethnicity

 White 27 (65.9%) 17 (56.7%) 6 (46.2%) 11 (50.0%) 0.396

 Black 5 (11.9%) 5 (16.7%) 3 (23.1%) 1 (4.55%)

 Asian 6 (14.3%) 4 (13.3%) 4 (30.8%) 6 (27.3%)

 Other 3 (7.14%) 4 (13.3%) 0 4 (18.2%)

Disease duration (years) 8 (6–15) 11 (9–17) 8.5 (6–11) 11.5 (8–20.5) 0.228

SLICC DI 0 (0–1) 0 (0–1) 0 (0–0.5) 0 (0–1) 0.561

ACR criteria

 Malar rash 21 (51.2%) 14 (46.7%) 9 (64.3%) 16 (66.7%) 0.409

 Discoid rash 9 (22.0%) 1 (3.33%) 1 (7.14%) 4 (16.7%) 0.124

Photosensitivity 21 (51.2%) 15 (50.0%) 9 (64.3%) 14 (58.3%) 0.777

 Oral ulcers 24 (58.5%) 23 (76.7%) 11 (78.6%) 10 (41.7%) 0.032
 Arthritis 38 (92.7%) 26 (86.7%) 12 (85.7%) 21 (87.5%) 0.815

 Serositis 14 (34.2%) 7 (23.3%) 4(28.6%) 8 (33.3%) 0.777

 Neurological 3 (7.32%) 2 (6.67%) 1 (7.14%) 2 (8.33%) 0.997

 Renal 15 (36.6%) 14 (46.7%) 7 (50.0%) 8 (33.3%) 0.621

 Haematological 22 (52.7%) 14 (46.7%) 9 (64.3%) 18 (75.0%) 0.174

 Immunological 29 (70.7%) 24 (80.0%) 12 (85.7%) 16 (66.7%) 0.480

 ANA 37 (90.2%) 25 (85.3%) 12 (85.7%) 22 (91.7%) 0.754

Disease activity

 SLEDAI score 8 (4–2) 8 (4–12) 12 (8–18) 6 (4–12) 0.145

 Active disease (BILAG A/B)

  Constitutional 4 (9.76%) 3 (10.0%) 1 (7.14%) 0 0.463

  Mucocutaneous 20 (48.8%) 15 (50.0%) 6 (42.9%) 10 (41.7%) 0.912

  Neuropsychiatric 4 (9.76%) 3 (10.0%) 1 (7.14%) 2 (8.33%) 0.988

  Musculoskeletal 21 (5.12%) 17 (56.7%) 7 (50.0%) 6 (25.0%) 0.105

  Cardiorespiratory 4 (9.76%) 4 (13.3%) 0 5 (20.83%) 0.267

  Gastrointestinal 2 (4.88%) 1 (33.3%) 0 2 (8.33%) 0.669

  Ophthalmic 1 (2.44%) 2 (6.67%) 0 2 (8.33%) 0.538

  Renal 13 (31.7%) 12 (40.0%) 6 (42.9%) 8 (33.3%) 0.826

 Haematological 1 (2.44%) 2 (6.67%) 0 0 0.422

Medication

 Oral prednisolone 32 (78.1%) 29 (96.7%) 10 (76.9%) 23 (95.8%) 0.042
 Oral prednisolone dose (mg/day) 10 (5–20) 10 (7.5–20) 10 (5–15) 12.5 (10–20) 0.495

 MMF exposed 23 (56.1%) 13 (43.3%) 4 (28.6%) 13 (54.2%) 0.284

 MMF current 8 (19.5%) 5 (16.7%) 3 (21.4%) 2 (8.33%) 0.642

 AZA exposed 5 (12.2%) 2 (6.67%) 1 (7.14%) 1 (4.17%) 0.684

 AZA current 3 (7.32%) 2 (6.67%) 1 (7.14%) 0 0.613

 MTX exposed 1 (2.44%) 0 4 (28.7%) 0  < 0.001
 MTX current 1 (2.44%) 0 3 (21.4%) 0 0.002



Page 10 of 12Akhtar et al. Arthritis Research & Therapy          (2023) 25:111 

current MMF use was associated with a significantly 
reduced plasmablast signature. Similarly, AZA use was 
associated with a lower B cell signature and higher IFN 
signature. The number of patients exposed to AZA in 
our study was small, and so it was likely underpowered 
to identify differences in gene expression related to AZA 
use. Patients treated with prednisolone had lower pDC, 
B cell, T cell, and plasmablast signatures, and support-
ing our findings, higher doses of prednisolone (> 7.5 mg/
day) was associated with higher expression of neutrophil-
related genes, which may reflect an absolute increase in 
neutrophil number in the circulation.

A previous small study examined the effects of MMF 
and cyclophosphamide treatment on peripheral blood 
lymphocytes and NK cells after 4  weeks using flow 
cytometry [25]. It identified a significant increase in 
 CD3+CD4+ Th cells over the baseline (pre-treatment) 
level when taking either MMF or CYC. Whilst CIBER-
SORTx identified higher memory activated CD4 T cells 
with MMF use in our study, which would be consistent 
with more CD4 Th cells, there were also fewer naïve CD4 
T cells. This could be because our study analysed multi-
ple subgroups of CD4 T cells, rather than CD4 Th cells as 
a single group. A similar study reported that the frequen-
cies and absolute numbers of CD27-IgD + CD38 +  + tran-
sitional and CD27-IgD + CD38 + naïve B cells, absolute 
numbers of CD27 + IgD + pre-switched memory B cells, 
and B cell counts overall were lower in patients tak-
ing AZA compared to both MMF-treated patients or 
patients not taking immunosuppressive therapy [26]. 
Conversely, patients taking MMF had significantly lower 
frequencies and counts of antibody-producing cells than 
patients taking AZA or no immunosuppressants. In our 
study, plasma cells were not predicted to be present in 
the peripheral blood for many patients. This is in contrast 
to the study by Northcott et. al. [24] in which a plasmab-
last/plasma cell signature was detected. This is likely due 
to differences in the gene panel between the commer-
cially available assay and the LM22 dataset. Furthermore, 
the plasmablast signature was lower in patients receiv-
ing higher doses of prednisolone (defined by Northcott 
as > 7.5  mg/day). In their study, 15% of patients were 
receiving this > 7.5  mg/day, compared to 50% in our 
cohort which may have suppressed the plasma cell signa-
ture further.

We did not identify any significant differences in 
cell frequency in patients receiving either CYC or 
AZA although the number of patients in each of these 
groups was low in our study. A study focusing on juve-
nile-onset SLE in 2020 identified four patient groups 
based on eight immune cell subsets and defined pre-
dominantly by differences in the frequency of CD4 
and CD8 T cells. Interestingly, there were significant 

differences in MMF use, but not other immunosup-
pressants, between the groups [27].

In our study, changes in predicted immune cell fre-
quency were observed according to current/previous 
exposure to MMF rather than whether patients were 
currently receiving MMF. We were unable to determine 
whether, in those patients previously exposed, MMF 
withdrawal was recent enough to still affect cell propor-
tions. In patients with SLE, others have demonstrated 
prolonged changes in the B cell compartment following 
withdrawal of MMF [28].

Although there were a significant number of DEGs 
related to MMF exposure in whole blood, only a small 
number of DEGs were identified within the CD4 T cell 
subset. This suggests that the transcriptomic difference 
observed in whole blood may be driven by changes in 
immune cell frequency, rather than significant differences 
in the transcriptome within an individual cell type. Fur-
ther studies should confirm this observation using sorted 
cells. Within the CD4 T cell population, the patient clus-
ters differed by age, previous mucosal ulceration, predni-
solone use, and MTX exposure. Genes related to nuclear 
transport including NUP88 and NUP105 appeared to be 
expressed at lower levels in clusters 2 and 4, which com-
prised older patients, consistent with reports of reduced 
nuclear transport protein expression in ageing [29].

An important limitation of our study is that the num-
ber of patients currently immunosuppressants other 
than MMF was relatively small, which may be because 
patients were recruited just prior to an escalation in ther-
apy (mostly commonly starting rituximab). Furthermore, 
in our study, low estimated cell numbers were obtained 
for 11/22 cells in the LM22 matrix. This included plasma 
cells which have been reported to be increased in the 
peripheral blood in active SLE patients [30] along with 
other potentially relevant cell types including naïve B 
cells and activated macrophages. As our data does not 
include a healthy control population, we were unable to 
directly compare SLE with heathy controls, but for the 11 
cell types we analysed, their estimated frequencies were 
similar to those reported by others [3]. Our study was 
cross-sectional, and so we were unable to study whether 
these cell populations were stable over time or how they 
might change in response to drug treatment. Finally, 
whilst estimations of cell populations based on transcrip-
tomic profile have been shown to correlate with flow 
cytometry findings in other contexts, this methodology 
has not been validated in patients with SLE.

Conclusion
Drug therapy is associated with important differences 
in the whole blood transcriptomic signature in patients 
with SLE which may persist even after the medication 
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is withdrawn. A better understanding of the short- and 
medium-term consequences of these changes and how 
they relate to prognosis in SLE is needed. Persistent 
immune system changes could influence refractori-
ness to future treatments. Importantly, our results dem-
onstrate the need to adequately adjust for background 
medication use, especially in studies using whole blood 
transcriptomics.
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