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Summary 
In this review, we explore the biology of the TIGIT checkpoint and its potential as a therapeutic target in lung cancer. We briefly review a highly 
selected set of clinical trials that have reported or are currently recruiting in non-small cell and small cell lung cancer, a disease transformed by 
the advent of PD-1/PD-L1 checkpoint blockade immunotherapy. We explore the murine data underlying TIGIT blockade and further explore the 
reliance of effective anti-TIGIT therapy on DNAM-1(CD226)-positive activated effector CD8+ T cells. The synergism with anti-PD-1 therapy is also 
explored. Future directions in the realm of overcoming resistance to checkpoint blockade and extending the repertoire of other checkpoints are 
also briefly explored.

Graphical Abstract 

Keywords: TIGIT, lung cancer, non-small cell lung cancer, small cell lung cancer, immunotherapy
Abbreviations: ES-SCLC: Extensive-stage small cell lung cancer; ICD: ITIM-containing intracellular domain; Ig: Immunoglobulin; ITIM: Inhibitory motif; ITT: Ig 
tail-tyrosine; LAG-3: Lymphocyte-activation gene 3; NK: Natural killer; NSCLC: Non-small cell lung cancer; ORR: Objective response rate; PFS: Progression-free 
survival; TRAE: Treatment-related adverse events; SCLC: Small cell lung cancer; TIGIT: T cell immunoglobulin and ITIM domain; Tregs: Tregulatory; TILs: Tumour-
infiltrating lymphocytes; TIM-3: T-cell immunoglobulin and mucin-domain containing-3; TNM: Tumour/Nodal/Metastasis; TME: Tumour microenvironment; anti-
TIGIT: Atezolizumab/Carboplatin/Etoposide +/- Tirogolumab.

Introduction
The advent of checkpoint blockade immunotherapy has 
revolutionised the management of solid cancers since its incep-
tion. Targeting the PD1/PD-L1 checkpoint has transformed 
the landscape of lung cancer and melanoma in both the 
early and advanced disease setting [1, 2]. Tumour evolution 
strategies include ways in which to evade the host immune re-
sponse, which is a causal link with immunotherapy resistance 
[3, 4]. Research into further immunotherapeutic candidates 
is currently thus at the forefront of cancer research; one such 
candidate molecule is ‘T cell immunoglobulin and ITIM do-
main’ (TIGIT). This is an inhibitory receptor expressed on 

lymphocytes that interacts with its complementary target, 
CD155 (Polio Virus Receptors, PVR or NECL-5) on the sur-
face of antigen-presenting cells or tumour cells to suppress 
T and natural killer (NK) cell anti-tumour responses [5]. 
CD155 acts as a ligand for DNAM-1 (CD226) and CD96, 
in addition to TIGIT, which possesses the highest affinity [6]. 
Cross-linking of DNAM-1 and CD155 results in a cytotoxic 
lymphocyte stimulation, murine data has shown that DNAM-
1 knockout mice demonstrate poor CD8+ T and NK cellular 
responses with poor tumour cell elimination and accelerated 
tumour growth [7, 8]. TIGIT knockout results in the loss of 
anti-tumour T and NK cell suppression, and this has been 
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shown in murine models, without the added burden of high-
grade autoimmune sequelae [9].

TIGIT structure, function, and expression
TIGIT is a PVR-like protein possessing an intracellular do-
main, an extracellular variable immunoglobulin (Ig) domain, 
a type I transmembrane domain, and a cytoplasmic tail with 
two inhibitory motifs that are conserved in both mouse and 
humans: an immunoreceptor tyrosine-based inhibitory motif 
(ITIM) and an Ig tail-tyrosine (ITT)-like motif [5, 10]. These 
motifs have been shown to mediate recruitment of the phos-
phatase SHIP-1 following ITT-like motif phosphorylation at 
Tyr225 with resultant binding to cytosolic adaptors Grb2 and 
β-arrestin 2. This results in dampened phosphoinositide 3 ki-
nase and mitogen-activated protein kinase signalling as well 
as inhibition of TRAF6 and NF-κB activation, thus provid-
ing a mechanism by which TIGIT can act cell intrinsically to 
dampen activating signals [11].

The Ig variable domain shares sequence homology with 
DNAM-1, CD96, CD155, and other PVR-like proteins [10]. 
Structural analysis of TIGIT bound to CD155 reveals that 
two TIGIT/CD155 dimers assemble into a hetero tetramer 
with a core TIGIT/TIGIT cis homodimer, with each TIGIT 
molecule binding to one CD155 molecule. This cis–trans re-
ceptor clustering mediates cell adhesion and signalling [12, 
13].

Expression is seen on T cells (CD4+, CD8+, and Tregulatory 
(Tregs) cells) and NK cells, and this can be upregulated upon 
cellular activation [10]. In contrast to DNAM-1, TIGIT is 
weakly expressed by naive T cells; in cancer, it is co-expressed 
with PD-1 on tumour antigen-specific CD8+ T cells and 
CD8+ tumour-infiltrating lymphocytes (TILs) in humans. On 
exhausted tumour-specific CD8+ T cell subsets, TIGIT co-
expresses with other inhibitory receptors, LAG3 and TIM-3 
[14].

Foxp3+ Tregs are well known to be suppressive components 
of the adaptive immune response, and recent data in mela-
noma has demonstrated that Tregs exhibit increased expres-
sion of TIGIT, and decreased expression of its competing 
costimulatory receptor DNAM-1 as compared with CD4+ 
T cells resulting in an increased TIGIT/DNAM-1 ratio. 
TIGIT+ Tregs are highly suppressive and enriched in tumours 
and correlated with poor clinical outcome upon checkpoint 
blockade [15]. The high expression levels of coinhibitory 
receptors such as TIGIT on Tregs is associated with their potent 

immunosuppressive function, as such understanding these co-
inhibitory receptors on effector T cells and Tregs is vitally im-
portant to developing new treatment strategies for cancer and 
indeed other chronic diseases. TIGIT+ Tregs represent a highly 
active and suppressive phenotype with TIGIT signalling driv-
ing this phenotype with suppression of anti-tumour immunity 
being mediated via these Tregs and not CD8+ T cells [16].

TIGIT acts by binding with CD155 (cellular extrinsic 
mechanism), by interfering with DNAM-1 co-stimulation or 
by delivering direct inhibitory signals to effector cells (cel-
lular intrinsic mechanism) [5]. CD155 cross-linking with 
TIGIT results in a shift of the cytokine milieu whereby den-
dritic cells change from a pro-inflammatory IL-12 centric to 
a suppressive IL-10 centric phenotype [10]. This polarisation 
switch has also been demonstrated in CD155 expressing 
macrophages that change from a type I proinflammatory phe-
notype to a type II suppressive phenotype [17]. TIGIT+ Tregs 
are more efficacious in their ability to suppress Th1 and Th17 
responses than TIGIT- Tregs [18]. Figure 1 illustrates the inter-
play and mechanisms of suppression in the TIGIT/CD155/
DNAM-1 axis.

Pre-clinical murine data in solid tumours
TIGIT-deficient mice show significantly delayed tumour 
growth in distinct murine models [19]; however, the number 
of pulmonary metastatic deposits was comparable following 
B16 melanoma cell inoculation in TIGIT-deficient and wild-
type mice [16, 20]. Conversely, Zhang’s group reported that 
TIGIT deficiency protected mice against secondary pulmo-
nary metastasis [19]. TIGIT expression on CD8+ TILs is of-
ten correlated with other inhibitory receptors such as PD-1, 
lymphocyte-activation gene 3 (LAG-3), T-cell immunoglob-
ulin, and mucin-domain containing-3 (TIM-3), and with 
decreased expression of DNAM-1 [5, 8, 16, 20]. B16F10 or 
RM-1 cell line inoculated TIGIT knockout mice further treated 
with anti-TIM-3 monoclonal antibodies have demonstrated 
further regression of lung metastasis compared to wild-type 
receiving the same treatment suggesting synergism between 
the checkpoints [16]. This has been further illustrated in the 
MC38 murine model, where co-blockade of TIGIT and PD-1 
enhanced the effector T cell responses more than each ther-
apy individually and led to a 100% cure rate in these mice 
[21]. This has been further elicited in CT26 inoculated murine 
models with co-PD-L1 and TIGIT blockade, which resulted 
in enhanced CD8+ T cell effector responses and a 75%  

Figure 1. Interplay in the TIGIT/CD155/DNAM-1 axis.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

m
unotherapyadv/article/3/1/ltad009/7180199 by guest on 29 June 2023



TIGIT in lung cancer 3

decrease in mean tumour volume after 16 days of treatment, 
significantly higher clearance compared to individual receptor 
targeting alone (P < 0.0001) [22].

TIGIT expression in human lung cancer
Meta-analytical data [23] from 1426 cancer patients, 
demonstrated that high TIGIT expression is a poor prognos-
ticator for overall survival in solid cancers (HR 1.66, 95% 
CI [1.26–2.20], P < 0.001). Subgroup analyses in lung can-
cer patients showed the same prognostic relationship (HR 
1.29, 95% CI [0.96–1.72], P = 0.094), albeit not significant. 
Retrospective data from resected lung squamous cell carci-
noma specimens has shown through immunohistochemistry 
that 85.8% of samples expressed CD155 (PVR), compared to 
26.8% expressing PD-L1 [24]. High TIGIT density and high 
CD155/TIGIT expression correlated with advanced Tumour/
Nodal/Metastasis (TNM) stage (P = 0.02 and P = 0.04, re-
spectively) and significantly worse overall survival (P = 0.027 
and P = 0.014, respectively). Similar findings have been shown 
in independent cohorts [25]. CD155/PD-L1 co-expression 
is a significantly independent negative prognostic factor in 
squamous cell carcinoma (HR 1.76, 95% CI [1.152-2.676], 
P = 0.009) [24]. CD155 and TIGIT expression has been 
correlated with significantly shorter overall and progression-
free survival (PFS) in lung adenocarcinoma [26], and CD155 
additionally has demonstrated this in small-cell lung can-
cer (SCLC) [27]. TIGIT expression on tumour-infiltrating 
lymphocytes (TILs) in non-small cell lung cancer (NSCLC) 
is upregulated when compared with healthy controls, but 
moreover, the expression dynamics of TIGIT exceed that of 
PD-1 in that TIGIT mRNA increased more rapidly than PD-1 
mRNA, and TIGIT+ CD8+ T cells upregulated PD-1 more 
rapidly than TIGIT- CD8+ T cells in NSCLC patients [28]. 
Tregs are well-recognised suppressors of anti-tumour effector 
T cell responses; CD4+ CD25+ FoxP3+ TIGIT+ Tregs were 
significantly elevated in the bronchoalveolar lavage fluid and 
peripheral blood of NSCLC patients compared to healthy 
control subjects [29]. The data presented intimates the role 
of TIGIT as a contributor to lung cancer progression and a 
candidate biomarker for immunotherapeutic targeting.

Targeting TIGIT in lung cancer
The paradigm of anti-TIGIT and anti-PD-1/PD-L1 synergism 
exerting better tumour control and overall survival was taken 
forward in a large phase II trial; CITYSCAPE [30] which re-
ported in early 2022. Patients with locally advanced or met-
astatic NSCLC expressing PD-L1 in at least 1% of tumour 
cells and without eGFR or ALK alterations were enrolled 
and randomised to receive Tiragolumab (anti-TIGIT mon-
oclonal antibody) plus Atezolizumab (anti-PD-L1) (n = 67) 
or Atezolizumab alone (n = 68). The co-primary endpoints 
were investigator-assessed objective response rate (ORR) and 
PFS as per Response Evaluation Criteria in Solid Tumours 
version 1.1 criteria (RECIST) [31] in the intention-to-treat 
population. At 5.9 months of median follow-up, 21 patients 
(31.3%) in the combination arm versus 11 patients (16.2%) 
in the anti-PD-L1 arm had an objective response (P = 0.031). 
Median PFS was 5·4 months (95% CI 4.2–not estimable) in 
the combination arm versus 3·6 months (2.7–4.4) in the anti-
PD-L1 arm (stratified hazard ratio 0·57 [95% CI 0.37–0.90], 
P = 0.015). Patients with a high tumour proportion score 

(TPS) of PD-L1 expression (>50%) (n = 29), the differences 
between the treatment groups were more pronounced. ORR 
was 69% and 24.1% in the combination and anti-PD-L1 arm 
alone, respectively. In contrast, patients in the combination 
arm with lower PD-L1 expression (1–49%) had an ORR of 
16% and a median PFS of 4 months, compared with 18% 
and 3.6 months in the anti-PD-L1 arm, suggesting the ben-
efit of synergism is driven by PD-L1 expression. Grade 3–4 
treatment-related adverse events (TRAE) were seen at a simi-
lar frequency in both arms (22.4% vs. 25% for combination 
versus anti-PD-L1 alone, respectively) as well as grade 3–4 
immune-related adverse events (19.4% vs. 16%) [30]. In the 
phase 3 Impower110 trial [32], atezolizumab showed a sig-
nificant and clinically meaningful survival benefit over che-
motherapy in previously untreated patients with advanced 
NSCLC with high PD-L1 expression. The preliminary efficacy 
and safety of Tiragolumab plus atezolizumab as a first-line 
treatment in patients with PD-L1 high (TPS ≥50%) NSCLC 
observed in this phase 2 study is being confirmed in an on-
going phase 3 study (SKYSCRAPER-01; NCT04294810) 
which is expected to enroll 560 patients. The results of this 
trial are encouraging and further biologically interrogation 
and application are warranted to explore the benefit in other 
groups. Pre-clinical data has suggested that DNAM-1 expres-
sion maximises the impact of TIGIT blockade, and this may 
correlate with class I expression [33]. Banta et al. [33] have 
demonstrated a requirement of DNAM-1 expression in or-
der to elicit maximum responses to anti-PD-1 or anti-TIGIT 
treatment in murine cancer models. There is differential ex-
pression of DNAM-1 and CD28 on CD8+ TILs which are 
regulated by the PD-1/PD-L1 and TIGIT/CD155 checkpoints, 
respectively. Mechanistically, PD-1 inhibited phosphorylation 
of both DNAM-1 and CD28 via its ITIM-containing intra-
cellular domain (ICD); with TIGIT restricting DNAM-1 co-
stimulation by blocking interaction with their common ligand 
PVR (CD155). Thus, full restoration of DNAM-1 signalling, 
and optimal anti-tumour CD8+ T cell responses, requires 
blockade of TIGIT and PD-1, providing a biological ration-
ale for combinatorial targeting in the clinic [33]. DNAM-1LO 
CD8+ T cells accumulate at the tumour site and upon inter-
action with cognate antigen exhibit an exhausted phenotype, 
expressing high levels of PD-1, LAG-3, TIM-3, and TIGIT 
[34]. However, DNAM-1HI CD8+ T cells exhibit a greater 
capacity for self-renewal and responsiveness; it is these high 
expressors that are most sensitive to anti-TIGIT blockade 
with subsequent DNAM-1 phosphorylation at tyrosine 322 
[34]. Direct antibody-mediated activation of DNAM-1 on 
these cytotoxic T cells augments the effect of TIGIT block-
ade on CD8+ T cell responses in pancreatic ductal adeno-
carcinoma [34]. Murine data has shown CD8+ T cell loss of 
DNAM-1 at the tumour microenvironment (TME) occurs in 
a Eomes-dependent manner but importantly limits the effi-
cacy of checkpoint blockade [35]. Dysfunctional DNAM-1-
negative CD8+ T cells accumulated in these tumours, and 
despite expression of co-inhibitory receptors, these cells 
failed to respond to anti-PD-1 treatment in the absence of 
DNAM-1 [35]. Enhanced CD8+ T cell effector function as a 
result of co-PD-1 and TIGIT blockade was abrogated by sub-
sequent DNAM-1 blockade in vivo [22]. CD155 ligation with 
DNAM-1 results in its phosphorylation at Tyrosine 319 by 
Src kinases enabling its ubiquitination and clearance from the 
cell surface, and indeed specific mutations such as Y319F pre-
vent phosphorylation and degradation of DNAM1, and thus 
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enable synergism with anti-PD-1 and enhanced anti-tumour 
immunity in murine models (MC38 and B16) [36]. This ef-
fectively drives resistance to checkpoint blockade, and in 
melanoma, the efficacy of treatment is reliant on DNAM-1+ 
CD8+ T cells. Mutations of Tyrosine 319 maintain DNAM-1 
expression with improved anti-tumour immunity [36]. PD-1 
and TIGIT double-positive T cells are predictive of enhanced 
anti-PD-1 activity as has been shown in melanoma and mer-
kel cell carcinoma [37], but without the presence of DNAM-1 
(marking the activation state of CD8+ T cells), there is no 
durable response to anti-PD-1 or indeed anti-TIGIT blockade 
(Fig. 1).

First in-human phase I data comparing the anti-TIGIT 
monoclonal antibody, Vibostolimab alone or in combination 
with anti-PD-1 agent Pembrolizumab has been reported in 
solid cancers, including NSCLC. The combination therapy 
was well tolerated and deemed safe in NSCLC patients with 
early data showing objective tumour response [38]. Thirty-
nine anti-PD-1/PD-L1 therapy naive patients with NSCLC 
received combination therapy and demonstrated an ORR of 
26% with a median PFS of 5 months (95%CI 2–8) [38]. In 
patients with anti-PD1 refractory NSCLC, activity was neg-
ligible both with single agent or combination (ORR 6% and 
3% each) [38]. Toxicities were manageable both as a single 
agent or in combination with Pembrolizumab [38, 39]. No 
dose-limiting toxicities were seen. Three phase 3 clinical tri-
als investigating combinations of anti-TIGIT and anti-PD-L1 
or anti-PD-1 in patients with NSCLC are currently under-
way (NCT04738487, NCT04746924, and NCT04736173). 
Other phase I/II studies are underway in lung cancer 
exploring combinations of humanised IgG1 anti-TIGIT 
(Domvanalimab/AB154) in combination with anti-PD1 a-
gent Zimberelimab (EDGE-Lung, NCT05676931) and anti-
adenosine agent Etrumadenant (AB928) (NCT04791839). 
The ARTEMIDE-01 study (NCT04995523) will be further 
exploring the utility of bi-specific anti-TIGIT/anti-PD-1 anti-
body AZD2936 in a safety and feasibility study in metastatic 
NSCLC.

In extensive-stage small cell lung cancer (ES-SCLC), the 
addition of anti-PD-L1 in two recent randomised trials; 
CASPIAN  [40–42]  And Impower 133 has shown survival 
benefits over chemotherapy alone, albeit modest [36–38]. 
In the recently reported ASCO data from KEYNOTE-604, 
which treated ES-SCLC with anti-PD-1 agent, pembrolizumab 
in combination with Etoposide versus standard of care treat-
ment, again the OS benefit was modest with the combina-
tion arm and did not reach significance at final analysis (HR 
0.80 [95% CI 0.64–0.98], P = 0.0164; median 10.8 vs. 9.7 
months) [43]. The immune axis in this disease is thought to 
be far less PD-1/PD-L1 centric than in NSCLC, and avenues 
have been forged to seek out other checkpoints to target. 
SKYSCRAPER-02 (NCT04256421) [44] has recently re-
ported its preliminary results in a phase III randomised setting 
whereby ES-SCLC patients are treated with Atezolizumab/
Carboplatin/Etoposide +/- Tirogolumab (anti-TIGIT). A to-
tal of 490 patients were randomised. In the primary and fi-
nal analysis sets, no additional benefit was seen in OS or PFS 
with the addition of the anti-TIGIT monoclonal antibody. No 
additional toxicities were observed in the quad combination 
arm. The final overall survival analysis is awaited, but the 
preliminary data from this trial suggest the immune contex-
ture may be radically different in SCLC compared to NSCLC. 

PD-1 T cell expression is crucial to PD-1/PD-L1 checkpoint 
blockade and especially in correlation with the DNAM-1-
positive activated effector T cell phenotype; low PD-1/PD-L1 
expression in SCLC [45–47] is one plausible explanation for 
the lack of durable response seen in the trials reported above.

DNAM-1 agonism
DNAM-1 is a critical regulator of the response to dual TIGIT/
PD-1 blockade as we have discussed above. Moreover, CD155 
cross-linking with DNAM-1 potentiates NK cell cytotoxic-
ity against tumour cells in a range of cancers. It is therefore 
worth discussing the therapeutic implications of DNAM-
1 agonism as a therapeutic strategy in cancer whether it 
be as a stand-alone strategy or more appropriately in syn-
ergy with TIGIT/PD-1 blockade. The Eli-Lilly clinical trial; 
NCT04099277 tested agonistic anti-DNAM-1 in multiple 
cancers with and without Pembrolizumab. This study was 
terminated early but opened a door into exploring this area 
as a therapeutic avenue. Pre-clinical data has reliably shown 
the benefits of DNAM-1 agonism [48] in Multiple Sclerosis 
and Melanoma models. Use of immunomodulatory agent 
Laquinimod (Quinoline-2-Carboxamide) activated NK cells 
via the Aryl Hydrocarbon receptor pathway with increase in 
DNAM-1 surface expression in murine models. This resulted 
in improved NK-mediated cytotoxicity against B16F10 mel-
anoma cells and augmented immunoregulatory functions in 
experimental allergic encephalomyelitis by interacting with 
CD155+ dendritic cells (DC). The immunosuppressive ef-
fect of Laquinimod-activated NK cells was due to decreasing 
MHC class II antigen presentation by DC and not by 
increasing DC killing [48].

Future directions
Targeting the PD-1/PD-L1 checkpoint has occupied a stable 
space in the treatment of advanced NSCLC and this is still 
changing; the combination of nivolumab and ipilimumab 
demonstrated overall survival benefit in the first-line setting, 
regardless of PD-L1 status and Tumour Mutational Burden 
(Checkmate-227) [49]. However, given the pre-clinical data 
and early-phase randomised data discussed above, several 
exciting new compounds [39, 50] targeting TIGIT are cur-
rently in clinical trials and in preclinical development. These 
agents, when combined with PD-1/PD-L1 inhibition, seem to 
confer higher response rates compared to PD-1/PD-L1 inhibi-
tion alone. Questions remain regarding the setting of disease 
(anti-PD-1/PD-L1 naive or refractory), the combination of 
treatment regimens and which biomarkers will help stratify 
disease response (PD-L1, TIGIT, DNAM-1, components of 
the TME). If this can be confirmed in larger trials, the treat-
ment paradigm and regimen will evolve dramatically and the 
quest for new targets (LAG3, OX40, IDO), vaccine develop-
ment and harnessing the TME will certainly be of vital impor-
tance in treatment-refractory and resistant patients.
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