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Abstract

In 2003, Bohman, Frieze, and Martin initiated the study of randomly perturbed
graphs and digraphs. For digraphs, they showed that for every α > 0, there exists
a constant C such that for every n-vertex digraph of minimum semi-degree at least
αn, if one adds Cn random edges then asymptotically almost surely the resulting
digraph contains a consistently oriented Hamilton cycle. We generalize their result,
showing that the hypothesis of this theorem actually asymptotically almost surely
ensures the existence of every orientation of a cycle of every possible length, simulta-
neously. Moreover, we prove that we can relax the minimum semi-degree condition
to a minimum total degree condition when considering orientations of a cycle that do
not contain a large number of vertices of indegree 1.
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1 Introduction
Hamilton cycles are one of the most studied objects in graph theory, and several classical
results measure how ‘dense’ a graph needs to be to force a Hamilton cycle. In particular, in
1952 Dirac [9] proved that every n-vertex graph with minimum degree δ(G) ≥ n/2 contains
a Hamilton cycle; the minimum degree condition here is best possible.

The Hamiltonicity of directed graphs has also been extensively investigated since the
1960s. A directed graph, or digraph, is a set of vertices together with a set of ordered pairs
of distinct vertices. We think of a digraph as a loop-free multigraph, where every edge is
given an orientation from one endpoint to another, and there is at most one edge oriented
in each of the two directions between a pair of vertices. An oriented graph is a digraph with
at most one directed edge between every pair of vertices. An edge from vertex u to vertex
v is represented as −→uv or ←−vu. In the digraph setting, there is more than one natural analog
of the minimum degree of a graph. The minimum semi-degree δ0(D) of a digraph D is the
minimum of all the in- and outdegrees of the vertices in D; the minimum total degree δ(D)
is the minimum number of edges incident to a vertex in D. Ghouila-Houri [14] proved that
every strongly connected n-vertex digraphD with minimum total degree δ(D) ≥ n contains
a consistently oriented Hamilton cycle, that is, a cycle (v1, v2, . . . , vn, vn+1 = v1) with edges
−−−→vivi+1 for all i ∈ [n]. Note that there are n-vertex digraphs D with δ(D) = 3n/2− 2 that
do not contain a consistently oriented Hamilton cycle, so the strongly connected condition
in Ghouila-Houri’s theorem is necessary.

An immediate consequence of Ghouila-Houri’s theorem is that having minimum semi-
degree δ0(D) ≥ n/2 forces a consistently oriented Hamilton cycle, and this is best pos-
sible. After earlier partial results [15, 16], DeBiasio, Kühn, Molla, Osthus, and Tay-
lor [7] proved that this minimum semi-degree condition in fact forces all possible orien-
tations of a Hamilton cycle, except for the anti-directed Hamilton cycle, that is, a cycle
(v1, v2, . . . , vn, vn+1 = v1) with edges −−−→vivi+1 for all odd i ∈ [n] and←−−−vivi+1 for all even i ∈ [n],
where n is even. Earlier, DeBiasio and Molla [8] showed that the minimum semi-degree
threshold for forcing the anti-directed Hamilton cycle is in fact δ0(D) ≥ n/2 + 1.

There has also been interest in Hamilton cycles in random digraphs: the binomial
random digraph D(n, p) is the digraph with vertex set [n], where each of the n(n − 1)
possible directed edges is present with probability p, independently of all other edges.
Recently, Montgomery [25] determined the sharp threshold for the appearance of any fixed
orientation of a Hamilton cycle H in D(n, p), thereby answering a conjecture of Ferber and
Long [12] in a strong form. Depending on the orientation of H, the threshold here can
vary from p = log n/2n to p = log n/n.

In this extended abstract, we consider arbitrary orientations of Hamilton cycles in the
randomly perturbed digraph model. Introduced in both the undirected and directed setting
by Bohman, Frieze, and Martin [3], this model starts with a dense (di)graph and then
adds m random edges to it. The overarching question now is how many random edges
are required to ensure that the resulting (di)graph asymptotically almost surely (a.a.s.)
satisfies a given property, that is, with probability tending to 1 as the number of vertices
n tends to infinity. For example, Bohman, Frieze, and Martin [3] proved that for every
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α > 0, there is a C = C(α) such that if we start with an arbitrary n-vertex graph G
of minimum degree δ(G) ≥ αn and add Cn random edges to it, then a.a.s. the resulting
graph is Hamiltonian. Furthermore, given a constant 0 < α < 1/2, in a complete bipartite
graph with part sizes αn and (1 − α)n, a linear number of random edges are needed to
ensure Hamiltonicity. Thus their result is best possible up to the dependence of C on α.
Subsequently, there has been a significant effort to improve our understanding of randomly
perturbed graphs. See, e.g., [17, Section 1.3] and the references within for a snapshot of
some of the results in the area.

Bohman, Frieze, and Martin [3] also proved the analogous result for consistently ori-
ented Hamilton cycles in the randomly perturbed digraph model. Their result is also best
possible up to the dependence of C on α, for similar reasons as the undirected setting.

Theorem 1.1 (Bohman, Frieze, and Martin [3]). For every α > 0, there is a C = C(α)
such that if D0 is an n-vertex digraph of minimum semi-degree δ0(D0) ≥ αn, then D0 ∪
D(n,C/n) a.a.s. contains a consistently oriented Hamilton cycle.

A notion closely related to Hamiltonicity is pancyclicity, which is when a (di)graph
contains cycles of every possible length. Bondy [4] generalized Dirac’s theorem, showing
that if δ(G) ≥ n/2 then G is pancyclic or Kn/2,n/2. Shortly after, Bondy [5] proposed his
famous meta-conjecture that any ‘non-trivial’ sufficient condition for Hamiltonicity should
be a sufficient condition for pancyclicity, up to a small number of exceptional graphs.
Krivelevich, Kwan, and Sudakov [20] generalized Theorem 1.1 in this way, showing that
the same conditions as in Theorem 1.1 imply that the randomly perturbed digraph contains
consistently oriented cycles of every length.

Theorem 1.2 (Krivelevich, Kwan, and Sudakov [20]). For every α > 0, there is a C =
C(α) such that if D0 is an n-vertex digraph of minimum semi-degree δ0(D0) ≥ αn, then
D0∪D(n,C/n) a.a.s. contains a consistently oriented cycle of every length between 2 and n.

The original rotation-extension-type proofs of Theorems 1.1 and 1.2 only guarantee
consistently oriented cycles. Our main result is a generalization of Theorem 1.2 to allow
for all orientations of a cycle of every possible length. Moreover, we find all these cycles
simultaneously, i.e., D0 ∪D(n,C/n) a.a.s. contains all of them. This last property is an
example of universality, a notion both well-studied in the random graph (e.g., [10, 25]) and
randomly perturbed (e.g., [6, 27]) settings.

Theorem 1.3. For every α > 0, there is a C = C(α) such that if D0 is an n-vertex
digraph of minimum semi-degree δ0(D0) ≥ αn, then D0 ∪D(n,C/n) a.a.s. contains every
orientation of a cycle of every length between 2 and n.

Theorem 1.3 is best possible in the sense that one really needs to add a linear number
of random edges to D0. Indeed, similarly as before, let D be the complete bipartite digraph
with part sizes αn and (1 − α)n (where 0 < α < 1/2). Then one needs to add a linear
number of edges to D to ensure a Hamilton cycle of any orientation.
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It is also natural to try and generalize Theorem 1.1 in another direction, by relaxing
the minimum semi-degree condition to a total degree. Unfortunately, this cannot be true
for a Hamilton cycle H in which all but o(n) vertices have in- and outdegree 1. Indeed,
given 0 < α < 1/2, let D be the n-vertex digraph which consists of vertex classes S and T
of sizes αn and (1−α)n respectively, and whose edge set consists of all possible edges with
their startpoint in S and their endpoint in T . Then whilst δ(D) = αn, given any constant
C, with probability bounded away from 0, D ∪ D(n,C/n) contains a linear number of
vertices with outdegree 0 and a linear number of vertices with indegree 0, so it will not
contain H.

On the other hand, we show that this type of orientation of a Hamilton cycle is the only
one we cannot guarantee. That is, our desired relaxation is possible for all orientations of
a Hamilton cycle that contain a linear number of vertices of in- or outdegree 2.

Theorem 1.4. For every α, η > 0, there is a C = C(α, η) such that if D0 is an n-vertex
digraph of minimum total degree δ(D0) ≥ 2αn, then D0 ∪D(n,C/n) a.a.s. contains every
orientation of a cycle of every length between 2 and n that contains at most (1−η)n vertices
of indegree 1.

The proof of Theorem 1.4 has the same core ideas as the proof of Theorem 1.3, but
there are additional complications and technicalities that come with the weakened degree
condition. We prove these two theorems in [1]. In the next section we highlight some of
the ideas from the proof of Theorem 1.3.
Notation. We write ←→uv if −→uv and ←−uv are edges and call ←→uv a bidirected edge. A bidirected
path is a digraph obtained from an undirected path by replacing each edge uv with a
bidirected edge ←→uv . An oriented path is a digraph obtained from an undirected path by
replacing each edge uv with a single directed edge; either −→uv or ←−uv. Given an oriented or
bidirected path P = (u1, . . . , uk) we call u1 its startpoint and uk its endpoint, distinguishing
it from the path (uk, . . . , u1).

2 Some ideas in the proof of Theorem 1.3
Our goal is to show that for a given orientation C of a cycle, D0 ∪ D(n,C/n) contains
C with probability at least 1 − e−n. Theorem 1.3 then follows from a union bound over
all choices of C, of which there are trivially at most n2n. For the rest of this section we
consider only spanning C, as the non-spanning cycle case follows easily from the machinery
we set up to deal with arbitrary orientations of a Hamilton cycle.

Let D∗(n, p) denote the random digraph with vertex set [n] where each possible pair of
edges −→uv and ←−uv are included together, independently of other edges, with probability p.
In this way D∗(n, p) is the same as the binomial random graph G(n, p) where we replace
every undirected edge with a bidirected edge. Via a coupling argument from [22, 25], to
prove that D0 ∪D(n,C/n) contains C with probability at least 1− e−n, it suffices to show
that D0 ∪ D∗(n,C/n) contains C with probability at least 1 − e−n. This latter goal will
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be achievable as we only need to access the randomness in D∗(n,C/n) through a simple
pseudorandom property that is easily shown to hold with probability at least 1− e−n.

Our argument applies the absorbing method, a technique that was introduced system-
atically by Rödl, Ruciński, and Szemerédi [28], but that has roots in earlier work (see,
e.g., [19]).

2.1 Global absorbers

For our problem, a ‘global absorber’ in D0 ∪D∗(n,C/n) is a structure A on a small (but
linear size) vertex set with the property that for every sufficiently small set of vertices
R, A ∪ R contains an oriented path on |V (A) ∪ R| vertices with prescribed startpoint
and endpoint in R, and so that crucially, this oriented path is a segment of our desired
orientation of a Hamilton cycle C. If we can obtain such a structure A, then we can proceed
as follows: by applying the pseudorandom property of D∗(n,C/n) we find a bidirected path
Q in D∗(n,C/n) disjoint from A that covers almost all of the vertices not in A. Let R
be the set of vertices consisting of the startpoint x and endpoint y of Q, together with all
those vertices not in Q or A. Using the absorbing property of A we ensure that there is an
oriented path QR on V (A)∪R with startpoint y and endpoint x, so that QR is a segment
of C. Joining the startpoints and endpoints of Q and QR, we obtain our desired orientation
of a Hamilton cycle C.

2.2 Montgomery’s absorbing method

Montgomery [24, 23] introduced an approach to absorbing that has already found a number
of applications, for example, to spanning trees in random graphs [24], decompositions of
Steiner triple systems [11], and tilings in randomly perturbed graphs [17]. The basic idea
of the method is to build a global absorber using a special graph Hm as a framework. The
bipartite graph Hm has a bounded maximum degree with vertex classes X ∪Y and Z, and
has the property that if one deletes any set of vertices of a given size from X, then the
resulting graph contains a perfect matching.

Roughly speaking, a global absorber is usually built from Hm as follows: every edge
xy in Hm is ‘replaced’ with a ‘local absorber’ Axy in such a way that all such absorbers
Axy are vertex-disjoint. Here a local absorber Axy is some small gadget that can absorb a
certain (constant size) set of vertices Sxy associated with x and y.

A reason why this approach has found many applications is that, in some sense, it
allows one to construct a global absorber in the case when one can only find ‘few’ local
absorbers, where what is meant by ‘few’ here depends on the precise setting.

In the proofs of Theorems 1.3 and 1.4 in [1] we use Hm again as a framework to build
a global absorber. The reason we use Hm, however, is different from most applications of
the method (although morally the reason is similar to why Montgomery used this method
in [24]). In our case we will replace every edge in Hm incident to z ∈ Z with the same
local absorbing gadget Az. Here Az is not designed to absorb a fixed set of vertices like
before; rather, it has some local flexibility about what vertices it will absorb. The idea is
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that constructing the global absorber in this way gives us the flexibility to know in advance
precisely which (constant size) set of vertices of C an absorbed vertex w can play the role
of. Having this ‘advanced warning’ about what vertices along C w can play the role of
turns out to be a crucial property of our global absorber; see [1, Section 2] for more details.
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