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A B S T R A C T   

The presence and distribution of emerging organic contaminants (EOCs) in freshwater environments is a key 
issue in India and globally, particularly due to ecotoxicological and potential antimicrobial resistance concerns. 
Here we have investigated the composition and spatial distribution of EOCs in surface water along a ~500 km 
segment of the iconic River Ganges (Ganga) and key tributaries in the middle Gangetic Plain of Northern India. 
Using a broad screening approach, in 11 surface water samples, we identified 51 EOCs, comprising of phar-
maceuticals, agrochemicals, lifestyle and industrial chemicals. Whilst the majority of EOCs detected were a 
mixture of pharmaceuticals and agrochemicals, lifestyle chemicals (and particularly sucralose) occurred at the 
highest concentrations. Ten of the EOCs detected are priority compounds (e.g. sulfamethoxazole, diuron, atra-
zine, chlorpyrifos, perfluorooctane sulfonate (PFOS), perfluorobutane sulfonate, thiamethoxam, imidacloprid, 
clothianidin and diclofenac). In almost 50% of water samples, sulfamethoxazole concentrations exceeded pre-
dicted no-effect concentrations (PNECs) for ecological toxicity. A significant downstream reduction in EOCs was 
observed along the River Ganga between Varanasi (Uttar Pradesh) and Begusarai (Bihar), likely reflecting 
dilution effects associated with three major tributaries, all with considerably lower EOC concentrations than the 
main Ganga channel. Sorption and/or redox controls were observed for some compounds (e.g. clopidol), as well 
as a relatively high degree of mixing of EOCs within the river. We discuss the environmental relevance of the 
persistence of several parent compounds (notably atrazine, carbamazepine, metribuzin and fipronil) and asso-
ciated transformation products. Associations between EOCs and other hydrochemical parameters including 
excitation emission matrix (EEM) fluorescence indicated positive, significant, and compound-specific correla-
tions between EOCs and tryptophan-, fulvic- and humic-like fluorescence. This study expands the baseline 
characterization of EOCs in Indian surface water and contributes to an improved understanding of the potential 
sources and controls on EOC distribution in the River Ganga and other large river systems.   
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1. Introduction 

The prevalence of emerging organic contaminants (EOCs) in aquatic 
environments is an increasing concern globally (Kasprzyk-Horndern 
et al. 2008; Pal et al. 2010; Lapworth et al. 2012; Loos et al. 2013; Meffe 
and de Bustamante, 2014; Lapworth et al. 2015; Sorensen et al. 2015; 
Kim et al. 2016; White et al. 2019; Yusuf et al. 2021; Morin-Crini et al. 
2022; Reberski et al. 2022), including in India (Lapworth et al. 2018; 
Philip et al. 2018; Sharma et al. 2019; Mathew and Kanmani, 2020; 
Ghirardelli et al. 2021; Richards et al. 2021; Satyanarayana et al. 2022). 
A wide range of chemicals compounds can be defined as EOCs (Lap-
worth et al. 2012), such as pharmaceuticals (human and veterinary) 
(Kolpin et al. 2002; Richmond et al. 2018), endocrine disrupting com-
pounds, agrochemicals (e.g. pesticides, fertilizers) (Solomon et al. 2000), 
lifestyle products (e.g. food and beverage additives (Lange et al. 2012), 
recreational drugs (Kasprzyk-Horndern et al. 2008) and personal care 
products (Brausch and Rand, 2011)), and industrial compounds and/or 
by-products (Garner and Keller, 2014). 

As some EOCs have persistent, bio-accumulative and toxic charac-
teristics (Mathew and Kanmani, 2020), known or suspected adverse 
environmental effects can include the development or promotion of 
antimicrobial resistance (AMR) (Hawkey, 2008; Kümmerer, 2009; 
Martinez et al. 2009; Kurunthachalam, 2012; Lupo et al. 2012; Szmolka 
and Nagy, 2013; Amos et al. 2015) as well as ecotoxicological (Rich-
mond et al. 2017; Barrick et al. 2022; He et al. 2022) and cytotoxic ef-
fects (Etteieb et al. 2016). Due to increasing AMR concerns, priority 
antimicrobials have been identified for both human (World Health Or-
ganization, 2018) and veterinary medicine (World Organisation for 
Animal Health, 2018). As India is one of the world’s largest pharma-
ceutical producers (Greene, 2007) and consumers (The Center for Dis-
ease Dynamics, 2015), AMR concerns are particularly pronounced. To 
address ecotoxicity concerns, the European Commission (EC)’s Water 
Framework Directive includes regulated and non-regulated Priority 
Substances (covering many EOCs) in the Environmental Quality Stan-
dards Directive 2008/105/EC (European Commission, 2019) and Watch 
Lists (Carvalho et al. 2015; European Commission, 2018; Lapworth et al. 
2019). In addition, predicted no-effect concentrations (PNECs) have 
been developed on the basis of bacterial resistance selection and 
ecological toxicity (e.g. Tran et al. 2018 and references within) for some 
EOCs. Given that PNEC values are not always available, a default PNEC 
of 0.05 μg.L− 1 has been recommended in absence of other data (Vestel 
et al. 2022). 

EOCs enter the hydrological cycle mainly through wastewater 
discharge (Glassmeyer et al. 2005; Roberts and Thomas, 2006; Kaspr-
zyk-Horndern et al. 2008; Writer et al. 2013; James et al. 2016), in-
dustrial production (Lübbert et al. 2017), agricultural runoff (Kay et al. 
2005; Kim et al. 2016), livestock (Campagnolo et al. 2002; Watanabe 
et al. 2010; Kim et al. 2016) and landfill leachate (Wang et al. 2020). In 
surface waters, spatial and temporal variations in concentrations of 
EOCs can be substantial and depend, in part, on source loading, catch-
ment characteristics and base-flow conditions (Ascott et al. 2016; Burns 
et al. 2018). EOCs arising from domestic/residential wastes may contain 
lifestyle compounds, pharmaceuticals and personal care products, 
noting that conventional wastewater treatment plants (WWTPs) are 
often inefficient in complete degradation or removal of EOCs (Glass-
meyer et al. 2005; Roberts and Thomas, 2006; Loos et al. 2013; Kosma 
et al. 2014; Subedi et al. 2015; Anumol et al. 2016; Archer et al. 2017; 
Mathew and Kanmani, 2020). Wastewater discharge (raw or treated) is 
thus a major EOC source, even if advanced wastewater treatment pro-
cesses are implemented, with typical wastewater EOC concentrations at 
the ng.L− 1 to mg.L− 1 level (Loos et al. 2013). EOCs from industrial 
sources (e.g. pulp and paper mills, steel plants, food processing plants) 
may include intermediates (plasticizers, dyes, resins), food additives, 
antioxidants, surfactants, and/or detergents (Meffe and de Bustamante, 
2014). Hospitals and pharmaceutical manufacturers can be point sour-
ces of medical waste including antibiotics and other pharmaceuticals (e. 

g. Lin et al. 2008). Runoff from agricultural areas may contribute pes-
ticides, including fungicides, herbicides, bactericides, and insecticides 
(Agarwal et al. 2015). Once EOCs are discharged to surface waters 
through point or non-point sources, dilution and dispersion typically 
follow, although multiple sources and complex biogeochemical behav-
iour can lead to difficulties in disentangling the influence of individual 
inputs. However, the artificial sweetener sucralose has been successfully 
used as wastewater tracer in aqueous systems (Scheurer et al. 2009; 
Oppenheimer et al. 2011; Lange et al. 2012; Loos et al. 2013; Tran et al. 
2014; Yang et al. 2017; White et al. 2019), because of its widespread 
occurrence (Batchu et al. 2013; Loos et al. 2013) and environmental 
persistence (Roberts et al. 2000; Scheurer et al. 2009; Torres et al. 2011; 
Batchu et al. 2013). 

In parts of India, the presence of EOCs is increasingly being inves-
tigated in surface water (Mutiyar and Mittal, 2014; Shanmugam et al. 
2014; Rayaroth et al. 2015; Sharma et al. 2016; Dwivedi et al. 2018; 
Khalid et al. 2018; Philip et al. 2018; Sharma et al. 2019; Williams et al. 
2019; Mukhopadhyay and Chakraborty, 2021) groundwater (Lapworth 
et al. 2018; Philip et al. 2018; Sharma et al. 2019; Richards et al. 2021) 
and riverine sediment (Chakraborty et al. 2019). A recent review of 
EOCs in Indian surface water has concluded that a wide range of com-
pounds have been detected (Mathew and Kanmani, 2020). However, 
widespread screening is scarce, and investigations evaluating the spatial 
distribution of EOCs remain limited, particularly in northern and 
northeast India (Philip et al. 2018). Further, investigations on temporal 
variability of EOC concentrations in surface water are very limited, 
although high seasonal variation in concentrations of some endocrine 
disrupting compounds (e.g. nonylphenol ethoxylates) have been re-
ported previously (Golovko et al. 2014; Gao et al. 2016). Regardless of 
locality, an inherent challenge with EOC investigations arises from their 
resource-intensive and complex analytical requirements (Richardson 
and Ternes, 2014), especially for environmental samples impacted by 
matrix effects and low level EOC concentrations. In part because of these 
challenges, other less resource-intensive analytical techniques such as 
fluorescence excitation emission matrix (EEM) spectroscopy have begun 
to be explored for potential application in EOC monitoring (Sgroi et al. 
2017; Wasswa et al. 2019; Zhang et al. 2019). 

The River Ganges (known locally as the Ganga) is of huge religious 
and cultural significance in India (Kumar 2017) and one of the world’s 
most important river systems, providing water and associated services 
(e.g. agricultural, industrial) to more than 400 million people (Kumar 
2017; Dwivedi et al. 2018). The Gangetic Basin is a main contributor to 
India’s agro-economy, with 65% of its area covered by farming land 
(Ghirardelli et al. 2021) in addition to heavy industrial presence in some 
areas (Dwivedi et al. 2018). Various types of pollution have been re-
ported in segments of the River Ganga (Lata et al. 2009; Seth et al. 2013; 
Sinha and Loganathan, 2015; Sharma et al. 2016; Paul, 2017, Central 
Pollution Control Board, 2019; Bowes et al. 2020; Richards et al. 2022), 
in part arising from inadequate wastewater infrastructure leading to the 
majority of wastewaters being discharged untreated into receiving water 
bodies (Hamner et al. 2006; Satya and Narayan, 2018; Jadeja et al. 
2022). This is likely to contribute to widespread presence of EOCs in 
aqueous environments in this setting, although it has not been widely 
investigated. 

Our work goes beyond previous studies of EOCs in Indian surface 
waters (Lapworth et al. 2018; Philip et al. 2018; Kumar et al. 2019; 
Sharma et al. 2019; Williams et al. 2019), and aims to build a detailed 
mechanistic understanding of the properties, distribution and potential 
sources of these pollutants through a longitudinal study of a segment of 
the River Ganga and key tributaries from Varanasi (Uttar Pradesh) to 
Begusarai (Bihar) in the mid-Gangetic Basin. This topic is particularly 
relevant in the context of the flagship Namami Gange initiative by the 
Government of India to clean, conserve and rejuvenate the River Ganga. 
Here, our objectives are to: (i) quantify and characterize EOCs, and any 
detected transformation products, including in comparison to priority 
pollutant lists and available PNECs; (ii) evaluate the spatial distribution 
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and potential controls impacting concentrations of EOCs in surface 
water with respect to downstream influences (e.g. tributaries, urban and 
agricultural inputs, surface-groundwater interactions); and to (iii) 
investigate associations with EEM fluorescence data to identify potential 
fluorescence-based proxies for surface water EOCs in the Gangetic Basin. 

2. Methods 

2.1. Study area 

The field area is in the Middle Gangetic Plain in northern India 
(Fig. S1), spanning a ~500 km stretch of the River Ganga and key 
tributaries (Ghaghara, Sone and Gandak), located between Varanasi 
(Uttar Pradesh) and Begusarai (Bihar). Surface water samples (n = 11) 
were collected in November–December 2019 in the post-monsoon sea-
son at downstream intervals ranging from ~10 to 100 km, spanning 
both rural and urban areas (Richards et al. 2022). The post-monsoon 
season was selected for sampling due to accessibility considerations as 
well as the post-monsoon season being a period where relatively high 
groundwater-surface water connectivity is expected (Richards et al. 
2022). Whilst there is substantial agricultural activity in rural areas, 
there are also several rapidly developing cities (e.g. Varanasi, Ghazipur, 
Buxar, Ballia, Chappra, Patna, Barh and Begusarai) intermittently 
located, all of which have extensive bankside development and effluent 
inputs (both industrial and municipal). In particular, Patna city (the 
State capital of Bihar) is a major, rapidly developing urban center and 
identified as a “Smart City” under the Government of India Scheme for 
Smart City Project and Atal Mission for Rejuvenation and Urban 
Transformation. Further details, including estimates of sewage gener-
ated from cities within the sampling frame are included in Supplementary 
Information. 

2.2. Water sample collection 

Surface water samples were collected, using a bucket, from acces-
sible river bank locations (Richards et al. 2022). Unfiltered surface water 
samples for EOC analyses were collected in 1 L glass bottles, prepared by 
the UK National Laboratory Service (NLS), and sealed with Parafilm® M. 
Nitrile gloves were worn during sample collection. Water sub-samples 
for both EEM and ion chromatography (IC) analysis were filtered 
on-site using 0.45 μm sterile cellulose nitrate membrane filters (Ther-
mo-Fisher). Water samples for EEM analysis were stored in 20 mL amber 
glass bottles which had been acid washed (10% nitric acid) and baked; 
water samples for IC analysis were stored in acid washed (20% hydro-
chloric acid) Nalgene PTFE bottles. After collection, samples were 
transported to the UK in non-temperature-controlled airfreight. Upon 
customs clearance, samples were delivered to the relevant analytical 
labs as soon as possible, where they were stored in refrigerated condi-
tions prior to analysis. 

2.3. Chemical analysis 

2.3.1. EOC analysis 
Analysis of EOCs was undertaken at the NLS Environment Agency 

laboratory (Starcross, UK) using methods described elsewhere in 
(Richards et al. 2021), noting many details are included in the associated 
Supplementary Information of that manuscript. In brief, solid phase 
extraction was conducted using cartridges (Waters Oasis HLB SPE car-
tridges), pre-conditioned with methanol and ultra-high purity water, 
and spiked with isotopically labelled carbutamide-d9 as an internal 
standard. Cartridges were loaded, washed and the sorbent dried with 
high purity nitrogen, followed by two-stage elution with 0.1% formic 
acid in methanol:acetonitrile (1:1) and dicholoromethane. The combi-
nation of elution solvents was selected as it enabled optimal extraction 
of a wide variety of target compounds with varying chemical charac-
teristics. Eluted fractions were collected separately, with the 

dicholoromethane eluate evaporated to incipient dryness, and the 
methanol:acetonitrile eluate evaporated under nitrogen to 100 μL. 
Ultra-high purity water was added to each vial to a total volume of 1000 
μL, vortex mixed and filtered. Procedural blanks were used during 
extraction and analysis. Semi-quantitative analysis, screening for >750 
compounds (see list in Supplementary Information), was undertaken 
with Ultra-High Definition Liquid Chromatography/Quadrupole- 
Time-of-Flight Mass Spectrometry (LC/Q-TOF-MS) on an Agilent 
Q-TOF (model 6545). 

2.3.2. EEM and A254 analysis 
Fluorescence analysis was undertaken at the facilities of the British 

Geological Survey (Wallingford, UK) using a VarianTM Cary Eclipse 
fluorescence spectrometer following methods published elsewhere 
(Lapworth et al. 2009; Richards et al. 2019). Fluorescence indices were 
calculated using standard peak picking techniques following absorbance 
correction (Lakowicz, 1991), blank correction and Raman standardiza-
tion. Here we have considered tyrosine-like fluorescence (TYR), 
tryptophan-like fluorescence (TLF), fulvic acid-like fluorescence (FA), 
humic acid-like fluorescence (HA), the humification index (HIX) (Ohno, 
2002), the McKnight ratio, the “freshness index” β:α and Gelbstoff 
(McKnight et al. 2001; Cory and McKnight, 2005; Wilson and Xen-
opoulos, 2009). Further details are included in Supplementary 
Information. 

2.3.3. In-situ water quality measurements and additional hydrochemical 
parameters 

In-situ measurements of pH and electrical conductivity (EC) were 
taken during sampling using a handheld meter (Myron L Ultrameter II, 
USA). Chloride (Cl− ) and nitrate (NO3

− ) were analysed using IC (Dionex 
AS50, Thermo Fisher Scientific) at the UK Center for Ecology & Hy-
drology. Manganese (Mn) was analysed on acidified (2% analytical 
grade nitric acid) samples with Inductively Coupled Plasma Optical 
Emission Spectroscopy (ICP-OES; Agilent 5800) at the Manchester 
Analytical Geochemical Unit at the University of Manchester. Further 
details on IC analysis and quality assurance/quality control are pub-
lished elsewhere (Richards et al. 2022). 

2.4. Software packages and data analysis 

Details of software packages and data analysis are reported in Sup-
plementary Information. 

3. Results and discussion 

3.1. Occurrence and characterization of emerging organic compounds in 
surface water 

A total of 51 EOCs were detected within the 11 surface water samples 
(Fig. 1, Fig. S2 and Table S1), ranging in concentration from below 
detection limit to a maximum concentration (Cmax) of 1.7 μg.L− 1 

(sucralose). Detection frequency in surface water (DFSW) ranged from 
9% to 100% (diuron), with the highest frequency compounds diuron, 
sucralose, clopidol and chlorantraniliprole (DFSW = 100%, 91%, 91% 
and 91%, respectively). For individual surface water samples, the 
number of detected EOCs ranged from 6 (site T39, River Gandak trib-
utary) to 41 (sites G21 and G22, near Varanasi, noting both concentra-
tions and total number of EOCs detected were higher than previously 
reported near Varanasi (Lapworth et al. 2018)), with the sum of EOC 
concentrations ranging from 0.02 (Gandak tributary) to 3.7 μg.L− 1 (site 
G26, near Buxar). The observed concentration ranges and detection 
frequencies are broadly similar to other previous studies from India, for 
example in the wastewater-impacted Ahar River (Rajasthan) EOC 
(pharmaceutical) concentrations ranged up to ~ 1.9 μg.L− 1 (Williams 
et al. 2019). 

Observed EOCs have been broadly characterized by primary usage 
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(e.g. medical/veterinary, agrochemical, industrial and lifestyle) (Fig. 1). 
The identified compounds were mainly agrochemicals (~47% of com-
pounds) and pharmaceuticals (~41%), with fewer lifestyle (~8%) and 
industrial (~4%) chemicals detected. By concentration, samples were 
usually dominated by lifestyle chemicals, with relatively large inputs 
from pharmaceuticals as well. Despite relatively high numbers of 
agrochemical compounds, the contribution of agrochemicals to total 
EOC concentrations was limited. The total number of compounds and 
EOC concentrations were substantially lower in each of the three trib-
utaries sampled than in the main Ganga body. 

3.1.1. Priority Substances 
Ten of the detected EOCs are flagged as priority compounds. The 

antibiotic sulfamethoxazole (DFSW = 73%; Cmax = 63 ng.L− 1) is on the 
WHO Highly Important Antimicrobial list (World Health Organization, 
2018). Compounds on the EC Priority Substance list (European Commis-
sion, 2019) include: diuron (DFSW = 100%; Cmax = 95 ng.L− 1), atrazine 
(DFSW = 82%; Cmax = 12 ng.L− 1) and chlorpyrifos (DFSW = 9%; Cmax = 5 
ng.L− 1), as well as EC Priority Hazardous Substances (EC Directive, 
2013/39/EU) perfluorooctane sulfonate (PFOS, DFSW = 36%; Cmax =

2.4 ng.L− 1) and related perfluorobutane sulfonate (DFSW = 73%; Cmax =

12 ng.L− 1) (European Commission, 2013; Environment Agency, 2019). 
Compounds on the European Commission, 2013 Surface Water Watch list 
(European Commission, 2018) include the neonicotinoid insecticides 
thiamethoxam (DFSW = 73%; Cmax = 7 ng.L− 1); imidacloprid (DFSW =

64%; Cmax = 6 ng.L− 1) and clothianidin (DFSW = 45%; Cmax = 1 ng.L− 1). 
The pharmaceutical diclofenac (DFSW = 18%; Cmax = 18 ng.L− 1) was 
included on the first 2015 EC Watch List (Carvalho et al. 2015) but was 
removed upon update. In addition, the fungicide tricyclazole (DFSW =

73%; Cmax = 24 ng.L− 1) although not currently restricted to the authors’ 
knowledge, has recently been proposed to be banned in India (Agro-
Pages, 2020). 

3.1.2. Agrochemicals 
The agrochemicals detected (n = 24) represent a wide range of 

herbicides, insecticides, fungicides and pesticides. Herbicides were the 
most frequently detected agrochemicals, including (in decreasing fre-
quency): diuron, atrazine, atrazine-desethyl, metribuzin, metribuzin- 
diketo, monuron, bentazone and 2,4-dichlorophenoxyacetic acid. In-
secticides included chlorantraniliprole, thiamethoxam, imidacloprid, 
clothianidin, fipronil and chlorpyrifos. Many of these are components of 

registered herbicides in India (Choudhury et al. 2016). Fungicides 
include: carbendazim (also used as a chemotherapeutic), tricyclazole, 
azoxystrobin, propiconazole (also used as veterinary drug), hex-
aconazole and carboxin. Other detected pesticides and/or pesticide 
metabolites included metribuzin-desamino, atrazine-desisopropyl, 
fipronil sulfide and fipronil sulfon (see Section 3.5). 

3.1.3. Medical and veterinary compounds 
Numerous detected compounds (n = 21) are used for a wide variety 

of medical and veterinary purposes including as poultry anticoccidials 
(e.g. clopidol), anticonvulsants (e.g. carbamazepine, lamotrigine and 
10,11-dihydroxycarbazepine, the later which is an active metabolite of 
the antiepileptic drug oxcarbazepine), analgesics (e.g. tramadol), anti-
fungals (e.g. climbazole, fluconazole and griseofulvin; note both clim-
bazole and fluconazole are also used as pesticides), antihypertensives (e. 
g. telmisartan), antibiotics (e.g. sulfamethoxazole), anesthetics (e.g. 
lidocaine/diocaine), antihistamines (e.g. cetirizine, fexofenadine), anti-
tussives (e.g. dextrorphan), antidiabetics (e.g. metformin), antivirals (e.g. 
amantadine), an x-ray contrast media (e.g. iohexol), an antimicrobial 
agent in personal care products (e.g. triclosan), anti-inflammatories (e.g. 
diclofenac), a beta-blocker and antihypertensive drug (e.g. atenolol) and 
as an anti-platelet agent (e.g. clopidogrel). Previous studies have used 
carbamazepine as a pollution tracer (Hai et al. 2018; Chakraborty et al. 
2019) and have reported significant correlations between atenolol and 
enterococci counts (Subedi et al. 2015). The relatively high detection 
frequency of carbamazepine (DFSW = 82%) here is consistent with 
elevated carbamazepine concentrations previously reported in riverine 
sediment along the Hooghly, the eastern distributary of the Ganga 
(Chakraborty et al. 2019). 

3.1.4. Lifestyle compounds 
The lifestyle compounds detected (n = 4) are heavily dominated by 

artificial sweeteners, namely sucralose (DFSW = 91%; Cmax = 1.7 μg.L− 1; 
Cmean = 0.9 μg.L− 1); saccharin (DFSW = 73%; Cmax = 35 ng.L− 1) and 
acesulfame (DFSW = 27%; Cmax = 380 ng.L− 1). Cotinine (DFSW = 55%; 
Cmax = 45 ng.L− 1) is a tobacco biomarker and nicotine metabolite. The 
high concentrations and frequency of detection of sucralose as a lifestyle 
compound compared to other types of EOC classes is consistent with, for 
example, the comparatively high ratio (~540%) of domestic wastewater 
to industrial sewage discharges in the Ganga (Sharma et al. 2019 and 
references within). Although caffeine has been widely reported in 
wastewater in relatively high income countries (Deblonde et al. 2011; 
Ben et al. 2018; Tran et al. 2018) and elsewhere in India (Sharma et al. 
2019; Williams et al. 2019), caffeine was not included in the LCMS 
screen used and is not reported in this study. 

3.1.5. Industrial compounds 
The industrial compounds detected (n = 2) were both surfactants: 

perfluorobutane sulfonate (DFSW = 73%; Cmax = 12 ng.L− 1) and per-
fluorooctane sulfonate (PFOS; DFSW = 36%; Cmax = 2.4 ng.L− 1). Per-
fluoroalkyl and polyfluoroalkyl substances widely used in consumer 
products (Environment Agency, 2019). The concentrations of PFOS 
detected here (0.4–2.4 ng.L− 1) are very similar to previous studies in the 
Ganga basin (PFOS up to 1.7 ng.L− 1) (Sharma et al. 2016). 

3.1.6. EOC concentrations in comparison to Predicted No-Effect 
Concentration (PNEC) values 

The exceedances of measured surface water EOC concentrations with 
regard to published PNEC values for bacteria resistance selection and 
ecotoxicity (Tran et al. 2018) are shown in Fig. S3. Sulfamethoxazole is 
below the resistance-based PNEC (16 μg.L− 1), yet exceeds the ecotox-
icity PNEC (27 ng.L− 1) in ~45% of the samples, all located on the Ganga, 
mostly near Buxar and Varanasi, upstream of the confluences with the 
major tributaries (one exception is at site G36 just upstream of Patna). 
Similarly, triclosan exceeds the ecotoxicity PNEC (50 ng.L− 1) near 
Buxar. For the other compounds with available PNEC values (e.g. 

Fig. 1. Main category/usage sub-groups of surface water samples (n = 11 
samples) showing (A) number of compounds detected (in total 51 compounds), 
organized in decreasing order per sample of total compounds in each sub-group, 
and (B) total EOC concentration per sample ID. Individual samples are repre-
sented by a single stack column; IDs beginning with “G” are from River Ganga; 
“T” are from tributaries (tribs). 
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carbamazepine, diclofenac, atenolol and iohexol), measured concen-
trations are below the PNEC values, although in some cases are elevated 
especially in the Ganga as compared to the tributaries. Sulfamethoxazole 
and triclosan, in addition to other substances, have been previously 
reported to present moderate risk to aquatic organisms in the Ganga 
(Sharma et al. 2019). Particularly given limitations regarding the spatial 
and temporal scope of sampling, this does not represent a comprehen-
sive risk assessment, but rather highlights that risks associated with such 

compounds may be problematic in some locations and should be 
considered more fully in the future. 

3.2. Spatial distribution of emerging organic compounds in surface water 

3.2.1. Longitudinal variations 
The distribution of EOCs in surface water in the Ganga and the three 

major tributaries (Ghaghara, Sone and Gandak) varies widely between 

Fig. 2. (A) Distribution of EOCs in surface water with pie charts representing the composition of EOCs on the basis of relative proportions of sub-categories of 
dominant usage (agrochemicals, medical/veterinary, industrial and lifestyle) of detected compounds and symbol size representing total EOC concentration. Un-
derlying layer shows population density data from the LandScan 2018™ High Resolution Global Population Data Set (Rose et al. 2019). River center lines are not to 
scale and do not necessarily represent river width. (B–K) Google Earth images of each sampling point with potential nearby pollutant sources marked on the basis of 
geographical information available through Google Maps and Apple Maps. Map Data: Google, CNES/Airbus and Maxar Technologies. 
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Varanasi and Begusarai (Fig. 2). Component-type is typically dominated 
by agrochemicals and medical/veterinary substances, whereas concen-
tration is typically dominated by lifestyle and medical/veterinary 
components. The relative ratio of components is broadly consistent 
through the sampling area, although the total number varies. High 
proportions of agrochemicals are consistent with agricultural runoff 
throughout the basin, whereas medical/veterinary and lifestyle com-
ponents would be expected to derive from anthropogenic sources and 
wastewater inputs. The three tributaries all have considerably lower 
EOC signatures (both in terms of compounds and total concentrations) 
than the main Ganga body. 

Clear downstream trends were observed in EOC signatures (Fig. 3). 
Statistically significant downstream reduction in EOCs along the main 
Ganga body were observed across the total number of compounds 
(Fig. 3B; slope = − 0.02; t6 = -5.5; p < 0.01); total EOC concentration 
(Fig. 3C; slope = − 0.005; t6 = -3.7; p < 0.01); sucralose (Fig. 3C; slope 
= − 0.002; t6 = -3.0; p < 0.05); and EC (Fig. 3C; slope = − 0.28; t6 = -10; 
p < 0.01). Dilution from the three tributaries appears to be a major 
downstream control on EOC signatures, particularly as the number of 
compounds and total EOC concentrations were substantially lower in all 
tributaries than in the main Ganga. The distributions of both total 
number of EOC compounds and concentrations were significantly higher 
in the main Ganga body as compared to the tributaries (p < 0.05, Mann- 
Whitney test). 

A comparison to EC as an indicative tracer of tributary dilution or 
enrichment effects suggests that dilution is most likely to be the domi-
nant downstream control for the total number of EOC components and 
concentration (Fig. 3C and D). Note that here EC has been used as a 
general dilution tracer rather than Cl− due to possible Cl− inputs 
particularly from wastewater, although EC and Cl− are strongly associ-
ated (t9 = 13; p < 0.01). However, in addition to dilution effects, con-
centrations of both lifestyle and medical/veterinary components are also 
observed to be influenced by localized inputs and in some cases deviate 
substantially from the general downstream EC trend. For example, these 

components all show substantial inputs especially near the urban Buxar 
area (~1650 km from source), which then decrease significantly further 
downstream of the tributaries. Industrial and agrochemicals follow the 
same general trend as EC, although downstream patterns are less 
obvious possibly due to the relatively low concentrations. 

Given the potential importance of other processes such as sorption 
and redox controls on the mobility of some EOCs, other hydro-
geochemical differences between the main Ganga body and tributaries 
were also considered. At the 0.05 level, the two distributions (Ganga 
versus tributaries) are not significantly different for pH, DO, nor redox- 
sensitive Mn. This suggest that sorption and/or redox controls are less 
likely than dilution to be the dominant controlling process impacting 
downstream trends. Although the distributions are not significantly 
different, it is noteworthy that both the lowest pH and highest DO 
encountered both were within tributary samples (Fig. S4), indicating 
that the geochemical conditions in the tributaries may be distinct even if 
the distributions are not statistically different, which may still impact 
EOC behaviour. Specific correlations between the EOC classes (com-
pounds and concentrations) as well as the most frequently detected 
specific compounds generally did not show statistically significant cor-
relations with pH, DO or Mn (Fig. 4). The only exception to this is for 
clopidol, which was significantly positively associated with Mn (t9 = 3.3; 
pFDR < 0.05), suggesting that redox controls are particularly important 
for clopidol. Although the tautomerization of atrazine herbicides is pH- 
dependent (Zanasi et al. 2021), the association of atrazine-desethyl with 
pH was positive but marginally insignificant (t9 = 2.4; pFDR = 0.08). If 
only the main Ganga samples are considered (e.g. tributaries excluded) 
(Fig. S5), similarly there are no statistically significant relationships 
between EOCs and pH, DO or Mn. 

3.2.2. Lateral variations 
Paired surface water samples collected from similar locations on 

urban versus non-urban sides of the riverbank show relatively good 
agreement in EOC composition (Fig. S6). The dominantly urban and 

Fig. 3. Spatial distribution of EOCs along a section of 
the middle River Ganga from Varanasi, Uttar Pradesh 
to Begusarai, Bihar, with downstream distance in 
relation to the Himalayan source at Devprayag 
(Uttarakhand). (A) Simplified (linear) schematic of 
Ganga with (i) Major tributaries (Ghaghara, Sone and 
Gandak Rivers) marked as blue arrows and vertical 
lines on all sub-plots; (ii) Urban centers marked by 
stars with size corresponding to population; small 
stars = population ~ 100,000–300,000 people; me-
dium stars (Varanasi) = population ~ 1.2 million; 
large star (Patna) = population ~ 2.1 million; cities 
with population < ~ 100,000 are not included; and 
(iii) sampling points on Ganga (black circles) and 
tributaries (grey circles; data not included here). (B) 
Number of EOCs detected and sub-catergorized; (C) 
concentrations of EOCs detected and sub-catergorized 
as well as sucralose (wastewater tracer) and electrical 
conductivity (EC, as a conservative inorganic dilution 
tracer); (D) Ratios of concentration (C) compared to 
initial concentration (C0) using the furthest upstream 
sample at Varanasi as the reference point. Tributary 
totals (open squares) shown in B and C are for com-
parison to main Ganga body and are not included in 
dotted lines. (For interpretation of the references to 
color in this figure legend, the reader is referred to the 
Web version of this article.)   
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non- or peri-urban sides of the bank across the compound sub-categories 
are strongly correlated for both number of compounds (Fig. S6A; slope 
1.0; t10 = 13.9; p < 0.01) and concentration (Fig. S6B; slope 0.7; t10 =

10.0; p < 0.01). This indicates that the river was generally well-mixed at 
these sample locations despite clear inputs from both point and non- 
point sources which may derive from both banks of the river. The 
notable exception to this is near Buxar, where the sample collected from 
the urban bank had much higher concentrations than the opposite side 
of the river. This supports the hypothesis that urban areas contribute 
EOCs via urban discharge at certain locations, although these inputs are 
mixed and diluted with downstream transport. A number of confound-
ing factors contribute to these processes including high variability of 
river width and flow in various parts of the catchment, noting that 
typical river width near sample points at Varanasi and Buxar (~500 m 
and 700 m, respectively) is much narrower than downstream Begusarai 
(~1.5–2 km). 

3.3. Relationship between EOCs and local population density and land 
use 

The relative importance of local geographical conditions in the areas 
broadly surrounding the sampling sites (e.g. within 500 m in width and 
2 km upstream distance) (Fig. S7) have been considered in comparison 
to regional controls such as the tributaries which contribute to dilution 
impacts (noting that the initial impact of tributary junctions is local-
ized). Population density could plausibly be expected to be associated 
with sucralose (as a wastewater tracer), lifestyle, medical/veterinary 
and/or industrial compounds. However, in this case there was no sig-
nificant overall linear relationship between the surrounding population 
density and these EOCs, either on the basis of concentration or number 
of compounds. However, an interesting curve is observed, with total 
EOCs increasing up until a population density of ~10,000 p. km− 2, 
followed by a steady decrease at higher populations. A similar trend is 
also seen with sucralose and total lifestyle and medical/veterinary 
concentrations and may reflect the influence of improved wastewater 
infrastructure in the highest population density areas. 

Similarly, more extensive crop coverage could potentially be associ-
ated with runoff associated with agrochemicals. Although a statistically 
significant relationship at the 0.05 level is not observed, a general trend 
between grass crops coverage and agrochemicals compounds and con-
centrations within a 2 km zone upstream was identified (p = 0.15 and 
0.14, respective), noting this was most strongly observed in the 2 km 
buffer zone considered. The lack of overarching relationship between the 
locally surrounding geographical characteristics with surface water EOC 
signatures likely reflects numerous confounding factors including mul-
tiple upstream influences and degradation and transformation processes 
which are highly compound-specific. In this case, we observe that the 
regional controls such as dilution and mixing, as discussed in Section 3.2, 
seem to have a stronger influence on EOC composition than local 
geographical characteristics. (Lapworth et al. 2009; Richards et al. 2019). 

3.4. Comparison between surface water and groundwater EOCs 

Surface water EOCs are typically much higher, on the basis of both 
number of compounds and concentration, than EOCs in groundwater 
under the rapidly developing city of Patna (Richards et al. 2021) 
(Fig. S8). In almost all cases, except for industrial EOC concentrations, 
the median compounds and concentration in surface water are sub-
stantially higher than Patna groundwater, with the distributions 
significantly different (p < 0.05; Mann-Whitney test). The exception 
with industrial chemicals is interesting, and the similarity in surface 
water and groundwater may reflect the generally low concentrations of 
these chemicals or potentially localized groundwater influences in 
Patna, including potential legacy contamination in groundwater. The 
generally lower concentrations of EOCs in the tributaries as compared to 
the main Ganga body are more like the groundwater concentrations in 
Patna, although still usually fall above the Patna groundwater median. 
This groundwater-surface water comparison indicates that surface water 
(in particular the River Ganga) are a sink/receptor rather than a source 
for groundwater EOCs in this area, and consistent with an overall net 
horizontal flow direction oriented from the aquifers towards the rivers 
(Lu et al. 2022). 

Fig. 4. Pearson’s correlation matrix for the full 
dataset (Ganga and tributaries) of EOCs versus 
hydrochemical characteristics EC, Cl− , NO3–N, pH, 
dissolved oxygen (DO), Mn, A254 and EEM fluores-
cence based TYR, TLF, FA, HA, HIX, McKnight ratio, 
β:α and Gelbstoff. EOCs have been included where 
frequency of detection was >70% and includes, in 
decreasing order of detection, diuron (DIU), sucralose 
(SUC), clopidol (CLO), chlorantraniliprole (CHL), 
carbamazepine (CAR), tramadol (TRA), climbazole 
(CLI), telmisartan (TEL), atrazine (ATR), atrazine- 
desethyl (ATRD), perfluorobutane sulfonate (PER), 
sulfamethoxazole (SUL), saccharin (SAC), carbenda-
zim (CARB), lidocaine (LID), cetrizine (CET), lamo-
trigine (LAM), tricyclazole (TRI), thiamethoxam 
(THI), azoxystrobin (AZO), fexofenadine (FEX) and 
metribuzin-desamino (METD), along with total num-
ber of compounds and concentrations of total EOCs, 
agrochemicals, medical/veterinary chemicals, indus-
trial chemicals and lifestyle chemicals. Concentra-
tions below detection were entered as half of the 
detection limit. The color scale shows the strength 
and direction of correlation with statistical signifi-
cance indicated by False Discovery Rate (FDR)-cor-
rected p (pFDR) values with ** for pFDR < 0.01 and * 
for 0.05 > pFDR > 0.01; FDR corrections were used to 
address Type 1 error. For correlation matrix including 
the main Ganga samples only (e.g. tributaries 
excluded) see Fig. S5. (For interpretation of the ref-
erences to color in this figure legend, the reader is 
referred to the Web version of this article.)   

L.A. Richards et al.                                                                                                                                                                                                                             



Environmental Pollution 327 (2023) 121626

8

3.5. EOC parent and transformation compounds 

Several parent compounds, notably agrochemicals atrazine, metri-
buzin and fipronil, were detected in addition to their associated trans-
formation products (TPs) (Fig. 5 and Fig. S9), suggesting the occurrence 
of degradation processes and the presence of an active microbial com-
munity. Concentrations of atrazine were higher than its TPs atrazine- 
desethyl and atrazine-desisopropyl, noting that the adsorption coeffi-
cient (i.e. the organic matter-water distribution coefficient KOM) of 
atrazine is also higher than either detected TP (Brouwer et al. 1990). 
Atrazine-desisopropyl has a slightly higher adsorption coefficient (KOM 
~ 30–60 dm3 kg− 1) and lower measured concentrations than 
atrazine-desethyl (KOM ~ 20–50 dm3 kg− 1) (Brouwer et al. 1990), sug-
gesting that sorption is likely an important process impacting the fate 
and transport of atrazine’s TPs. However, it is important to note that 
there are also other factors, such as variation in transfer efficiency, that 
may also influence the fate and transport. These factors are difficult to 
disentangle in complex environmental systems in the absence of 
detailed, compound-specific studies. The observation that atrazine 
concentrations are higher than atrazine’s TPs suggests that there are 
significant surface runoff sources in the Ganga (Capel and Larson, 2001; 
Wang et al. 2018). There is a significant positive correlation between 
atrazine and both atrazine-desethyl (t7 = 3.6, p < 0.01) and 
atrazine-desisopropyl (t3 = 3.5, p < 0.05). 

The opposite trend is observed with parent compound metribuzin, 
with concentrations of TPs metribuzin-desamino and metribuzin-diketo 
(Henriksen et al. 2002; Antonopoulou and Konstantinou, 2014) in some 
cases being substantially higher than metribuzin, indicating a relatively 
high degree of biogeochemical processing (Mulbah et al. 2000); other 
processes such as sorption may also contribute to the observed phe-
nomena. Note the paired dataset is insufficient to determine the asso-
ciation or statistical significance of the direct relationship between 
metribuzin and its TPs. Similarly, the parent compound fipronil, with a 
relatively short half-life in water on the order of 10s of days (Chopra and 
Kumari, 2009), generally had lower concentrations than its more toxic 
metabolites fipronil sulfon and fipronil sulfide (McMahen et al. 2016), 

again suggestive of relative high degrees of fipronil processing. The 
relationship between fipronil and fipronil sulfide is not significant at the 
0.05 level (data insufficient to determine the relationship between 
fipronil and fipronil sulfon). The co-occurrence of parent compounds 
with TPs is geographically focussed around the Varanasi samples (G21 
and G22), although it remains unclear if the transformation processes 
were occurring locally (either before or after run-off into the Ganga) or if 
the observed compounds reflected processes further upstream. 

In other cases, such as with the parent compound carbamazepine 
(DFSW = 82%), known TPs included on the LCMS screen were not 
detected, suggesting that such compounds have not undergone signifi-
cant degradation and are highly persistent (Jaeger et al. 2019; Posselt 
et al. 2020). In addition, the metabolite 10,11-dihydroxycarbazepine 
was detected in three samples although its parent compound oxcarba-
zepine was not; this may indicate upstream source(s) of oxcarbazepine 
which has then transformed along downstream flow paths. A number of 
factors and processes impact relative environmental persistence, 
including microbial diversity (Posselt et al. 2020), sorption with organic 
matter (Jaeger et al. 2019), photolysis (Baena-Nogueras et al. 2017), and 
differences in parent/metabolite transport rates (Gooddy et al. 2002). 

Ratios of the concentration of the various transformation product to 
parent compound (CTP: CP) pairs are shown for surface water as a 
function of downstream distance (Fig. S10). Ratios of atrazine’s TPs to 
parent compound are all <1 (e.g. CP > CTP) and relatively consistent 
along the 500 km stretch of the Ganga, and are also consistent with the 
significant positive relationships observed between atrazine and its TPs. 
This suggests plausibility that inputs could both be occurring locally/ 
recently as well as much further upstream, noting that atrazine’s po-
tential persistence in groundwater and surface water on decadal time-
scales has been documented (Jablonowski et al. 2010). In contrast, 
transformation products associated with metribuzin and fipronil are 
much more localized with ratios usually >1 (e.g. CTP > CP). Given that 
the half-life of these compounds in water is typically much less than that 
of carbamazepine, this suggests that these samples might derive from a 
discrete input leading to a concentration plume travelling downstream. 
Especially given that sampling occurred as a one-off event, the possi-
bility for further interpretation remains limited although results are 
consistent with a very dynamic system impacted by both point and 
non-point sources (which may contribute continual or discrete inputs). 
Detailed investigation of processes controlling the fate and transport of 
parent compounds and associated transformation products would be an 
interesting subject of future work. 

3.6. Relationship between EOCs and hydrochemical and EEM 
fluorescence parameters 

Lastly, the relationship between surface water EOCs and paired 
hydrochemical and EEM fluorescence proxies (Fig. 4 and Table S2) has 
been considered (Sgroi et al. 2017; Wasswa et al. 2019; Zhang et al. 
2019), particularly in light of the clear importance of EOC monitoring in 
wastewater-impacted rivers such as the Ganga, but also the inherent 
limitations associated with resource-intensive sampling and analytical 
requirements for broad EOC screening. The total number of EOC com-
pounds in each sample was significantly positively correlated with EC, 
Cl, NO3–N, A254,TLF, FA, HA, the McKnight ratio and Gelbstoff, whereas 
the total EOC concentration was significantly correlated with EC, Cl, 
NO3–N, A254, FA, HA and Gelbstoff. In general, the majority of the most 
frequently detected compounds (with the exception of clopidol, clim-
bazole and saccharin) were significantly associated with EC, Cl and 
NO3–N, consistent with dilution controls and suggesting the source 
and/or behaviour of those exceptional compounds were different than 
the others (the association of Mn with clopidol suggests a redox control 
as previously discussed). 

There are several compound-specific correlations between EOCs and 
various EEM properties. For example TLF, a wastewater indicator, is 
significantly positively associated with chlorantraniliprole, 

Fig. 5. Box plot of concentration of associated parent and transformation 
product (TP) compounds detected in surface water, including: parent atrazine 
(ATR) and TPs atrazine-desethyl (ATRD) and atrazine-desisopropyl (ATRZ); 
parent metribuzin (MET) and TPs metribuzin-desamino (METD) and 
metribuzin-diketo (METK); and parent fipronil (FIP) and TPs fipronil sulfon 
(FIPR) and fipronil sulfide (FIPS). Box plots show 25–75% range, median line 
and whiskers at 5 and 95% distribution. 
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azoxystrobin, perfluorobutane sulfonate, lidocaine and tramadol, in 
order of decreasing significance, suggestive of wastewater sources of 
these EOCs. Relationships were generally very similar between specific 
EOCs and both FA & HA, including significant positive associations with 
diuron, chlorantraniliprole, carbamazepine, tramadol, telmisartan, 
perfluorobutane sulfonate, sulfamethoxazole, lidocaine, cetrizine, 
lamotrigine, thiamethoxam, azoxystrobin and fexofenadine. Each of 
A254, the McKnight ratio and Gelbstoff had compound-specific correla-
tions with many of the most frequently detected EOCs, although there 
were no significant correlations with TYR. The EEM humification index 
HIX was associated with carbadazim and tricyclazole (indeed the only 
parameter that was for the later). A number of EOCs (e.g. diuron, 
chlorantraniliprole, carbamazepine, tramadol, telmisartan, per-
fluorobutane sulfonate, sulfamethoxazole, carbendazim, lidocaine, 
cetrizine, lamotrigine, thiamethoxam, azoxystrobin and fexofenadine) 
have strong correlations with at least three EEM parameters, indicating 
that EEM might offer stronger predictive power for these types of 
compounds. Whilst certain EOCs such as carbamazepine have been re-
ported to quench fluorescence (Wang et al. 2016), the environmental 
concentrations here are much lower than concentrations where such 
interactions have been reported; however it may still be possible that 
EOC-fluorescence interactions may influence some of the specific re-
lationships observed. Note that when only the main Ganga samples are 
considered (Fig. S5), the compound specific relationships with EEM 
proxies become much less apparent (except for two significant associa-
tions with HIX). This suggest that the overall relationships observed 
within the combined dataset likely reflect the broader range of surface 
water chemistry encountered when the tributaries are considered, and 
thus the sensitivity of EEM proxies for potential predictive power may 
only be suitable for discriminating lower and higher risk sites for EOC 
contamination. Detailed investigation of the potential added value of 
selected fluorescence and absorbance measurements as indicative 
proxies and as a potential predictive tool to inform EOC monitoring is a 
subject of ongoing investigation by co-authors. 

4. Conclusions 

Using a broad screening approach, we have identified and charac-
terized EOCs in surface water along a ~500 km section of the River 
Ganga and some of its key tributaries in the middle Gangetic Basin in 
northern India. A total of 51 EOCs were detected in 11 surface water 
samples, typically at ng.L− 1 to μg.L− 1 level concentrations. Pharma-
ceuticals, agrochemicals, lifestyle and industrial chemicals were all 
identified, with a relatively high number of different pharmaceutical 
and agrochemical compounds detected. The highest concentrations, 
however, were of the artificial sweetener sucralose, a persistent lifestyle 
chemical which can be used as a wastewater tracer. Ten priority com-
pounds were identified (e.g. sulfamethoxazole, diuron, atrazine, chlor-
pyrifos, perfluorooctane sulfonate (PFOS), perfluorobutane sulfonate, 
thiamethoxam, imidacloprid, clothianidin and diclofenac) which are of 
particular monitoring and/or regulatory importance. Concentrations of 
sulfamethoxazole exceeded PNEC values based on ecotoxicity in five 
samples, suggesting that further systematic investigation on the distri-
bution and environmental impacts particularly of sulphonamide class 
antibiotics in the River Ganga and surrounding areas should be 
considered. 

EOC concentrations were spatially variable, and a significant 
downstream reduction in concentration is observed between Varanasi 
(Uttar Pradesh) to Begusarai (Bihar), likely due to the influence of three 
major tributaries within this zone, all of which have considerably lower 
EOC signatures than the main Ganga. Regional downstream trends (e.g. 
dilution from tributaries) appear to be more substantial controls on the 
distribution of surface water EOCs than the local geographical charac-
terization of the near upstream zone (e.g. based on population density 
and crop cover of the upstream 5 km). Comparison across river bank side 
locations at selected sites suggests a relatively high degree of mixing of 

EOCs within surface waters. Parent compounds (notably atrazine, car-
bamazepine, metribuzin and fipronil) as well as detected associated 
transformation products suggest the presence of an active microbial 
community contributing to EOC degradation, as well as other potential 
confounding processes such as sorption and photolysis. Concentrations 
of selected EOCs were strongly correlated with EEM-based fluorescence 
proxies, including TLF, FA and HA which were significantly associated 
with a number of specific compounds as well as the total number of 
EOCs detected. The limitations of this study are related to the relatively 
limited spatial and temporal extent and resolution of sampling, and as 
such this study does not represent a comprehensive characterization nor 
risk assessment. Notwithstanding, this study extends the baseline char-
acterization of EOCs in Indian surface water and contributes to an 
improved understanding of the potential sources and controls on the 
distribution of these pollutants in the River Ganga and key tributaries, as 
well as potentially other similar large river systems. 
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