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In this article, we derive and compare methods to derive P-values and sets of con-
fidence intervals with strong control of the family-wise error rates and coverage
for estimates of treatment effects in cluster randomized trials with multiple out-
comes. There are few methods for P-value corrections and deriving confidence
intervals, limiting their application in this setting. We discuss the methods of
Bonferroni, Holm, and Romano and Wolf and adapt them to cluster randomized
trial inference using permutation-based methods with different test statistics.
We develop a novel search procedure for confidence set limits using permutation
tests to produce a set of confidence intervals under each method of correction.
We conduct a simulation-based study to compare family-wise error rates, cover-
age of confidence sets, and the efficiency of each procedure in comparison to no
correction using both model-based standard errors and permutation tests. We
show that the Romano-Wolf type procedure has nominal error rates and cover-
age under non-independent correlation structures and is more efficient than the
other methods in a simulation-based study. We also compare results from the
analysis of a real-world trial.

K E Y W O R D S

cluster randomized trial, coverage, inference, multiple testing

1 INTRODUCTION

For a randomized controlled trial, the requirement to state a single primary outcome has become accepted, even required,
practice. For example, the influential CONSORT statement on clinical trials requires the pre-specification of a single
primary outcome, which they describe as the “outcome considered to be of greatest importance to relevant stakeholders,”
and recommends against multiple primary outcomes.1 The reason for this is to ensure appropriate control of the “false
discovery rate” when using null hypothesis significance testing.2 If there are multiple outcomes each with their own
associated treatment effect being tested separately, then we are implicitly testing a family of null hypotheses against an
alternative that at least one of them is false. Without correction, the type I error rate for this family of null hypotheses
will be much greater than the nominal rate of any single test.3 Indeed, the CONSORT statement notes that that multiple
primary outcomes are not recommended as it “incurs the problem of multiplicity of analyses.”4

Cluster randomized trials are a widely used method to evaluate interventions applied to groups of people, such as
clinics, schools, or villages. Often these interventions target “higher level” processes and can be complex in nature.5-7

Recent examples from our own work include an incentive scheme to improve implementation of a broad package of
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the
original work is properly cited.
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2 WATSON et al.

education and activities designed to improve employee health in the workplace,8 or a community health worker program
targeting multiple health conditions.9 The effects of such complex interventions cannot be adequately summarized by
a single outcome. Creating a composite outcome is undesirable since it requires applications of arbitrary weights across
outcomes and discards information by collapsing a multivariate outcome to a univariate one. The requirement for a single
primary outcome therefore clashes with the needs of many cluster randomized trials. The solution is to ensure appropriate
methods are used where there are multiple outcomes of interest rather than restricting the outcomes from which we can
make inferences. However, the question of appropriate analysis for randomized trials, and particularly cluster randomized
trials, with multiple outcomes can be contentious and complex.

The Food and Drug Administration (FDA), the main regulatory body for medicines in the United States, declares that
“If the purpose of the trial is to demonstrate effects on all of the designated primary variables, then there is no need for
adjustment of the type I error.”10 They also identify a “gatekeeping” approach where “statistical significance” on a primary
outcome is required before a second one can be analysed and state this does not need correction for multiple testing. Other
authors differentiate aiming to declare “statistical significance” on at least one of a group of null hypotheses to requiring
statistical significance for all tests in order to reject any individual test, and propose different solutions for both.11,12

Where a correction for multiple testing is deemed necessary, we can divide solutions into: (i) multivariate meth-
ods that model the joint distribution of the outcomes, which is particularly favored by Bayesian practitioners;13 and
(ii) univariate solutions that aim to ensure inferential statistics for a set of estimands collectively have the appropriate
frequentist properties.14 In this article, we focus on the latter approaches in a frequentist setting. Despite the different
approaches and guidance, Wason et al2 estimated that only around half of all randomized trials with multiple out-
comes or arms corrected for multiple testing. No evidence is available on the use of corrections for multiple testing in
cluster randomized trials specifically, but there are few, if any, comprehensive discussions of methods in this area cur-
rently available. Furthermore, almost all discussion of multiple testing adjustment relates to corrections for P-values,
with few, if any, solutions for confidence intervals. The FDA note that correcting confidence intervals is complex and
beyond the scope of their advice. However, the duality between hypothesis testing and confidence intervals means that
we should be able to identify the bounds of a “confidence set” adjusted for multiple testing.3,15 The primary limiting
factor to using corrected confidence intervals is that there are no proposed methods for determining these bounds
efficiently.

In this article, we develop several methods for adjusting P-values for multiple testing for a cluster randomized trial
setting using permutation-test based methods, by adapting existing methods of correction, and propose a novel method
to derive corrected confidence sets. We then compare these methods in a simulation-based study to evaluate type I error
rates and efficiency of the different procedures. Our analysis is based on generalized linear mixed models, which are fre-
quently used in the analysis of cluster trials. We also focus on permutation-based methods, since these methods provide
exact inference at all sample sizes. A small number of clusters, which is common to many cluster trials, can result in
small sample biases in the standard error estimator and inflated type 1 errors,16-18 which results in complication when
it comes to considering additional corrections for multiple testing. Section 2 provides a review and discussion of meth-
ods for correcting for multiple testing and their adaptation to a cluster randomized trials setting, Section 3 presents a
simulation-based comparison, Section 4 provides an applied example, and Section 5 concludes.

2 MULTIPLE TESTING IN CLUSTER RANDOMIZED TRIALS

2.1 The multiple testing problem

We first suppose that data X are generated from some probability distribution P, which belongs to some family of probabil-
ity distributions Ω. The family Ω could be a parametric, semi-parametric, or non-parametric model. The multiple testing
problem arises when we have a set of hypotheses Hj vs Hj′ for j = 1, … , J, following the notation of Romano and Wolf.3
These hypotheses in our context are typically estimates of the treatment effect of an intervention on multiple outcomes.
Each of the hypotheses is a subset𝜔j ⊂ Ω and is equivalent to testing P ∈ 𝜔j against P ∉ 𝜔j. So for any subset K ⊂ 1, … , J,
HK = ∩j∈KHj is the hypothesis that P ∈ ∩j∈K𝜔j. We assume each null hypothesis Hj is based on a test statistic Tj; we denote
the 𝛼-quantile of the distribution of Tj as cj(𝛼,P). In a traditional null hypothesis testing framework we “reject” Hj in
favor of Hj′ at the 𝛼 level, if Tj ≥ cj(1 − 𝛼,P), which clearly has probability 𝛼. Conversely, the P-value pj of the test is where
Tj = cj(1 − pj,P), so that the probability of observing Pr(Tj > cj(1 − pj,P)|Hj) = pj. The family-wise error rate (FWER) of
this set of hypotheses is the probability of “rejecting” at least one true null hypothesis. That is, if I = I(P) ⊂ 1, … , J are
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WATSON et al. 3

the indices of the true null hypotheses, so j ∈ I if and only if P ∈ 𝜔j, then the FWER is the probability under P of rejecting
any Hj∈I , that is, Pr(∪j∈ITj > cj(1 − 𝛼,P)), which should be 𝛼.

2.2 Methods for correcting for multiple testing

Solutions to the multiple testing problem aim to ensure that FWER ≤ 𝛼. Control over the FWER is said to be strong if
it holds for any combination of true and false null hypotheses, and weak if it only holds when all null hypotheses are
true.19 Several approaches exist to control the FWER. The Bonferroni method is probably most well known, which sets the
critical value for the test of the null hypothesis to be cj(1 − 𝛼∕J,P). Equivalently, P-values that maintain the FWER for the
family of null hypotheses ensure that Pr(∪j∈ITj > cj(1 − p,P)) = p, so a crude “corrected” P-value for the null hypothesis
Hj using the Bonferroni method would be min(Jpj, 1). However, while this method exerts strong control over the FWER,
it is highly conservative.

Holm20 proposed a less conservative “stepdown” approach to multiple testing. One orders the test statistics from
largest to smallest and then compares the largest statistic to the critical value cj(1 − 𝛼∕J,P). If the test statistic is larger
than this value, then the null hypothesis is rejected, otherwise we do not reject any null hypothesis and stop. If we rejected,
then the next largest test statistic is compared to cj(1 − 𝛼∕(J − 1),P), and again it is either rejected, or we do not reject all
remaining null hypotheses and stop, and so forth. A crude corrected P-value could therefore be obtained by multiplying
the smallest to the largest P-values by J, J − 1 and so forth, respectively. The Holm method is less conservative than the
Bonferroni method,20 but it may still be inefficient as, like the Bonferroni method, it does not explicitly take into account
the dependence structure in the data. Romano and Wolf3,15 developed an efficient resampling based version of Holm’s
stepdown method, which can use permutation-based tests in the context of a cluster randomized trial.

2.3 Permutation-based corrections for multiple testing

An issue that complicates analyses of cluster randomized trials is that test statistics can fail to have the expected sampling
distribution in a range of circumstances, but particularly when the number of clusters is small.16-18,21 This issue means
determining the critical value of a hypothesis test, even in the absence of any multiple testing issue, can be difficult. While
there exist several small sample corrections in the literature their performance often depends on the correlation structure,
which is not known.16,18

An alternative approach is to use a permutation testing method based on the randomization scheme for the trial. In
particular, the null hypothesis implies that the distribution of the data X is invariant under a set of transformations in
A, which has L elements. So, aX and X have the same distribution for all a ∈ A whenever X has distribution P ∈ 𝜔. A
in the context of cluster randomized trials is the set of all transformations that could be generated by the randomization
mechanisms, for example, all ways of dividing the clusters into two groups for a parallel design. Our observed test statistics
with our sample data are Tj(X). The test statistic generated by the lth permutation is Tj(alX) for al ∈ A and l = 1, … ,L. We
can use this approach to estimate the critical values for the Bonferroni or Holm corrections. For example, for Bonferroni:

ĉj(1 − 𝛼∕J,P) = Tj,|L(1−𝛼∕J)|, (1)

where Tj,|L(1−𝛼∕J)| is the L(1 − 𝛼∕J)th (or nearest integer) largest value from the permutations. And a crude, corrected
two-sided P-value is:

pj = min

(

J
L

L∑

l=1
1
[
abs(Tj(alX)) ≥ abs(Tj(X))

]
, 1

)

, (2)

where 1 is the indicator function and abs is the absolute value. The same approach can be used for the Holm method.
Romano and Wolf3,15 developed a modified stepdown approach to take advantage of resampling methods. Their pro-

cess is optimal in a maximin sense. We describe the general stepdown procedure of Romano and Wolf first in terms of
accepting or rejecting each null hypothesis at an 𝛼-level. We let cK(𝛼,P) denote an 𝛼-quantile of the distribution of the
statistic:

TK = max
j∈K

Tj, (3)
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4 WATSON et al.

for any subset of null hypotheses K. We also denote T|r| as the rth largest test statistic so that

T|1| ≥ T|2| ≥ · · · ≥ T|J|, (4)

corresponding to hypotheses H|1|, H|2|, … , H|J|. Then the idealized algorithm is:

1. Let K1 = 1, … , J. If T|1| ≤ cK1(1 − 𝛼,P) then accept all hypotheses and stop; otherwise, reject H|1| and continue;
2. Let K2 be the indices of all the hypotheses not previously rejected. If T|2| ≤ cK2(1 − 𝛼,P), then accept all remaining

hypotheses and stop; otherwise, reject H|2| and continue;
⋮
J. If T|J| ≤ cKJ (1 − 𝛼,P) then do not reject H|J|, otherwise reject.

In this procedure, it is assumed the critical values are known. One can see that this algorithm replicates Holm’s
procedure, but allows us to use permutation-based methods to estimate the critical values where they are not known.

For each permutation we can determine the test statistic as in Equation (3) as TK,l = maxj∈K Tj(alX). As before we
denote TK,|r| as the rth largest of all the permutational test statistics {TK,l; l = 1, … ,L}. Then our estimator for the critical
value is:

ĉK(1 − 𝛼,P) = TK,|L(1−𝛼)|. (5)

We can see how this procedure produces P-values for a two-sided hypothesis that also maintains the FWER for a given
𝛼,22 in particular:

pK =
1
L

L∑

l=1
1 [abs(TK(alX)) ≥ abs(TK(X))] . (6)

For a one-sided test we would not use the absolute values of the test statistics.
Often the size of A can be very large, and increases exponentially with the number of clusters. A Monte Carlo approach

can be used that instead generates a random subset of A of fixed sized in order to generate realizations of the test statistics.
If we conduct M such permutations then the estimator of the P-value for a given null hypothesis vs some alternative is

p̂K =
1

M + 1

M∑

m=1
(1 + 1[abs(T(amX)) ≤ abs(T(x))]) . (7)

Obtaining P-values in this way is described in detail by Romano.22 Values of M = 1000 or greater are often used as this
results in relatively small Monte Carlo error, although much larger values (eg, 10 000 or 100 000) may be preferred for
formal or final analyses.

In subsequent sections, we develop and compare Bonferroni, Holm, and Romano-Wolf methods, however, we note
there are several other multiple testing corrections in the literature, including Hochberg’s “step-up” procedure,23 Hom-
mel’s “stagewise” procedure,24 and Šidák’s procedures25 (see also Reference 14 for a discussion). More exhaustive
comparisons of these methods in other settings, such as References 26-29, show that they all maintain a FWER ≤ 𝛼, but
that Holm’s, Hommel’s, and Hochberg’s procedures generally are the most efficient and perform very similarly. However,
these comparisons do not include the Romano-Wolf method, which purports to be at least as efficient as Holm’s pro-
cedure.3 We note that Westfall and Young30 propose an early version of a resampling based multiple testing correction
similar to Romano-Wolf, which is included in the comparison by Alberton et al29 in the context of modeling brain imag-
ing data. We adapt only a subset of all methods, but believe the application of other methods in the context we describe
below, including any developed after the publication of this article, should be clear from the discussion of these four key
approaches.

2.4 Permutation test statistics for cluster trials

We next introduce a generalized linear mixed model commonly used in the analysis of cluster randomized trials.31 We
denote Yict as the outcome of the ith individual, i = 1, … ,N, in cluster c = 1, … ,C at time t = 1, … ,T. We include
a temporal dimension in this discussion for generality, however, it can be ignored as required. Our simulation-based
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WATSON et al. 5

comparisons include both examples with and without a temporal dimension. We do not restrict the outcome, it could be
continuous or discrete. We specify the linear predictor:

𝜂ict = 𝜇0 + 𝛿Dct + X ′
ict𝛽 + 𝜃ct, (8)

where Dct is an indicator for whether cluster c has received the intervention at time t and so 𝛿 is the parameter of interest,
our “treatment effect.” We also have a vector of individual and/or cluster-level covariates, Xict, which may also contain
temporal fixed effects. The parameter 𝜃ct represents a general “random-effect” term that captures the within cluster and
cluster-time correlation, although we do not provide a specific structure here. The overall model is then

Yict ∼ P(h(𝜂ict)), (9)

where h(.) is a link function. For example, P could be a Binomial distribution and h(.) the logistic link function.
Gail et al32 provided the first extensive examination of permutation tests for cluster-based study designs. Their work

principally used unweighted differences of cluster means as the basis of permutation tests.33 Several other authors have
also developed and evaluated permutation-tests and test statistics in the context of cluster trials.34-39 Here, we build on
the statistic proposed by Braun and Feng.40

Braun and Feng40 examine optimal permutation tests for cluster randomized trials specifically. They derive a
“quasi-score” statistic using the marginal likelihood of the data modeled separately from the correlation structure of the
data. The marginal mean of each observation, ignoring the cluster-effects 𝜃ct, is

h−1(𝜇ict) = 𝜇0 + 𝛿Dct + X ′
ict𝛽. (10)

The “quasi-score” statistic, which is weighted sum of generalized residuals, is then:

∑

c
{D∗

c GcV−1
c [Yc − 𝝁c]}|𝛿=𝛿∗ , (11)

where D∗
c [D∗

c1,D
∗
c1,D

∗
c1, … ,D∗

cT ,D
∗
cT]

′ is a (1 × nc) vector of modified intervention indicators equal to 1 if the interven-
tion was present in cluster c at time t and −1 otherwise, and where nc =

∑
t nct and nct is the number of individuals

in cluster c at time t. Gc is a (1 × nc) vector with elements (𝜕h−1
ict ∕𝜕𝜂ict)−1, and Vc is an (nc × nc) covariance matrix

for cluster c with non-zero elements off its diagonal. As an example, if we assume the data are normally distributed
with mean 𝜇ict, identity link function, variance 𝜎2, and 𝜃ct ∼ N(0, 𝜏2), then the diagonal elements of Vc are 𝜎2 + 𝜏2 and
the off-diagonal elements are 𝜏2. More complex structures might include temporal decay in correlation, for example.
We use Θ to represent the parameters of the variance-covariance matrix. Finally [Yc − 𝝁c] are generalized residuals:
Yc = [Y1c1,Y2c, … ,Ync1c1,Y1c2, … ,YncT cT] is a (1 × nc) vector of outcomes and 𝝁c is a (1 × nc) vector of means.

For the permutation test to be valid the “nuisance” parameters (𝜇, 𝛽,Θ), that is, those other than 𝛿, must be invariant
to permutation.40 This means we cannot re-estimate them for each new permutation. In practice the maximum likelihood
estimates of these parameters are used to construct the test statistic, so that we use the estimates:

𝜇̂ict = h(𝜇̂0 + 𝛿∗Dct + X ′
ict
̂
𝛽), (12)

for the linear predictor under the null H0 ∶ 𝛿 = 𝛿∗. EstimatingΘ is more difficult, however, particularly when the number
of clusters is small.16,21 As an alternative to (11) we can replace GcV−1

c with a (1 × nc) vector of ones:

∑

c

∑

t

∑

i
{D∗

ict[Yict − 𝜇ict]}|𝛿=𝛿∗ (13)

so that the sum of residuals is “weighted” only by the size of each cluster or cluster-time period. One can see that under
homoscedasticity the two test statistics will be approximately proportional. The weighted statistic weights the residuals
in proportion to their variance, so in non-linear models with differing variances (eg, different linear predictors over time)
we may expect to see an improvement in efficiency.

The quasi-score statistics are the motivation behind quasi-likelihood approaches, including GEE methods.40,41 Thus,
the tests and corrections described here can be implemented within a GEE framework. However, our simulations in
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6 WATSON et al.

Section 3, model estimation, and the software we provide to implement the methods uses a more explicitly GLMM for-
mulation. The quasi-score statistic is equivalent for full and marginal likelihoods using linear Gaussian models, or when
using the “unweighted” variant described below. For non-linear alternatives though, the quasi-score statistic is an approx-
imation to the full likelihood. In terms of our implementation of the computation of (11), we use a GLMM formulation
(Equation 8) and use the original estimates of the covariance parameters to generate an estimated inverse covariance
matrix ̂V−1, which is then re-used for each iteration.

For the purposes of correcting for multiple testing we use studentized versions of the two test statistics:

Tw = Tw(X)|𝛿=𝛿0 =
∑

c{D∗
c GcV−1

c [Yc − 𝝁c]}
√

∑
c {D∗

c GcV−1
c [Yc − 𝝁c]}2

, (14)

Tu = Tu(X)|𝛿=𝛿0 =
∑

c
∑

t
∑

i{D∗
ict[Yict − 𝜇ict]}

√∑
c
∑

t
∑

i{D∗
ict[Yict − 𝜇ict]}2

, (15)

where the terms on the right-hand side have been evaluated at 𝛿 = 𝛿∗. We describe Tw as the “weighted test statistic” and
Tu as “unweighted.” In the absence of studentization, the variances of the test statistics are not scale-free and depend on,
among other things, the null hypothesis being tested so that different tests will have different power.3 The lack of bal-
ance is particularly consequential for the construction of confidence sets discussed in the next section. While confidence
sets constructed on the basis of permutational methods will have joint coverage of 1 − 𝛼, without balance the individual
coverage probabilities of each interval will differ, perhaps substantially.15

2.5 Confidence sets and multiple testing

The multiple testing problem extends to the construction of simultaneous confidence intervals or a “confidence set.”
Let the parameters of interest be 𝛿j with associated confidence intervals [Lj,Uj], so that [L1,U1] × [L2,U2] · · · × [LJ ,UJ],
U = [U1, … ,UJ] and L = [L1, … ,LJ], forms a confidence set. Similar to the FWER, we want appropriate control of the
coverage of the 100(1 − 𝛼)% confidence set such that the process produces confidence sets with the property:

Pr(∪j𝛿j ∈ [Lj,Uj]) = 1 − 𝛼, (16)

we refer to this as “family-wise coverage,” which we use analogously to “simultaneous coverage” used in other contexts.
If we construct 100(1 − 𝛼)% confidence intervals independently then the probability that at least one interval in the set
excludes the true value can significantly exceed 𝛼. For Bonferroni, an obvious modification is to instead estimate 100(1 −
𝛼∕J)% confidence intervals to achieve a family-wise coverage of 100(1 − 𝛼)%. There have been some attempts to construct
exact confidence sets for parameters analytically based on the stepdown procedure.15 For example, Guilbaud,42 extending
the proposal of Hayter and Hsu,43 uses the acceptance/rejection of null hypotheses by the stepdown procedure as a basis of
determining upper or lower limits of confidence intervals if we conclude they are strictly negative or positive, respectively.
However, these procedures can only provide information on the upper or lower bound respectively—the other end of the
interval is infinity—so they provide little extra information on the extent of sampling variation beyond the P-value.

As an alternative, consider for a moment, a single parameter 𝛿1. Its 100(1 − 𝛼)% confidence interval is [L1,U1]: for
any value 𝛿∗1 inside this interval the null hypothesis H1 ∶ 𝛿1 = 𝛿∗1 will not be rejected in favor of the two-sided alternative
H1′ ∶ 𝛿1 ≠ 𝛿

∗
1 at the 𝛼 level. The question is then how to find the values of L1 and U1 efficiently. One could iteratively

perform a series of permutation tests to identify the limits as U1 = sup{𝛿∗1 ∶ do not reject 𝛿1 = 𝛿∗1} and L1 = inf{𝛿∗1 ∶
do not reject 𝛿1 = 𝛿∗1}. However, this procedure is inefficient, particularly when testing multiple parameters: if there are
M permutations per test and J outcomes, then for each increment in U we must calculate JM permutation test statistics
and perform the desired correction. Moreover, since the test statistic and its permutational distribution depends on the
values of the other null hypotheses being tested, a very large number of combinations of values of the parameters must
be tested to ensure we have identified with reasonable certainty the limits of the confidence set.

Garthwaite and Buckland44 developed a method for searching for confidence interval endpoints efficiently, which
Garthwaite45 later adapted for use with permutation tests. Their method is based on the search process devised by Robbins
and Munro,46 who developed a stochastic approximation procedure to find the 𝛼-quantile of a particular distribution.
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WATSON et al. 7

Multivariate Robbins-Munro processes follow the same procedures as their univariate equivalents.47 For our multiple
testing scenario the upper limits to the confidence set correspond to where all hypotheses Hj ∶ 𝜃j = Uj for j = 1, … , J
are all rejected in favor of the two-sided alternative with a FWER of 𝛼 but for any smaller values of Uj not all hypotheses
are rejected, and equivalently for the lower limits. Rabideau et al48,49 have also independently proposed this method for
confidence interval estimation for cluster randomized trials, although not in the context of multiple testing.

For each method, at the qth step of Q steps total, we have estimates of the upper confidence interval limits of
our J parameters uq = [u1q,u2q, … ,uJq]. We generate the set of test statistics Tj(X)|𝛿=ujq , which correspond to the
null hypotheses Hj ∶ 𝛿j = ujq. We then generate a single permutation of a permutation test for the same hypotheses
abs(Tj(aqX))

𝛿=ujq . Each method then defines a procedure for determining whether to reject these hypotheses or not, which
are described in the preceding sections. For example, with the Romano-Wolf stepdown procedure: reject hypothesis H|1|
if abs(TK1 (aqX)) < abs(T|1|(X)) otherwise do not reject any hypothesis and stop; if H|1| was rejected then reject hypothesis
H|2| if abs(TK2(aqX)) < abs(T|2|(X)) otherwise do not reject any further hypotheses and stop, and so forth.

The estimates of the upper limits are updated based on the single permutation draw as (we drop the subscript 𝛿 = ujq
for ease of notation, but the test statistics are evaluated at this value for each iteration):

uj,q+1 =

{
ujq − sj𝛼

∗∕q if Hj rejected
ujq + sj(1 − 𝛼∗)∕q otherwise,

(17)

where sj is the “step length constant.” With no correction and with Romano-Wolf 𝛼∗ = 𝛼, for Bonferroni 𝛼∗ = 𝛼∕J, and
for Holm 𝛼

∗ = 𝛼∕J for H|1|, 𝛼∗ = 𝛼∕(J − 1) for H|2|, and so forth. Similarly for the lower limits, the updating rule is:

lj,q+1 =

{
ljq + sj𝛼

∗∕q if Hj rejected
ljq − sj(1 − 𝛼∗)∕q otherwise.

(18)

The step length constants are sj = k(ujq − ̂
𝜃j) and sj = k( ̂𝜃j − ljq) for the upper and lower limits, respectively, where ̂𝜃j is a

point estimate of the parameter and:

k = 2
z1−𝛼(2𝜋)−1∕2 exp(−z2

1−𝛼∕2)
, (19)

where z
𝛼

is the 𝛼-quantile of the standard normal distribution. The algorithm proceeds for a pre-selected number of
iterations; in the simulations in the subsequent section we have used 2000 iterations. A sensible starting value for this
algorithm is the approximate uncorrected confidence interval limits, for example, for the upper limit uj, 0 = ̂

𝛽 j + 2SEj
where SEj is the standard error of 𝛽j from the univariate model.

2.6 Computation

An R package developed by the authors to execute the analyses described in this article is available from CRAN as crct-
Stepdown (version 0.2.1 at the time of writing) including implementations of the Romano-Wolf, Holm, and Bonferroni
methods for correcting P-values and confidence sets using permutation-based tests.

3 SIMULATION STUDY

3.1 Methods

We conduct a simulation-based study to examine the FWER, family-wise coverage, and efficiency of the procedures
outlined in the previous sections for cluster randomized trials. We compare the following procedures:

1. A “naive” no correction approach using the reported standard errors and test statistics from the output of the lme4
package for R. 95% confidence intervals for each parameter were constructed as ̂𝛿 + ∕ − 1.96 × SE.

2. No correction with P-values and confidence sets derived from permutation based tests.
3. The Bonferroni method using permutation based tests.
4. The Holm method using permutation based tests.
5. The Romano-Wolf method using permutation based tests.

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9831 by U
niversity O

f B
irm

ingham
 E

resources A
nd Serials T

eam
, W

iley O
nline L

ibrary on [21/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



8 WATSON et al.

For methods 2-5 we use both the weighted and unweighted test statistic resulting in nine methods. For the
Bonferroni and Holm methods we only use permutation-based inference rather than the perhaps more standard approach
of adjusting P-values reported by mixed model fitting software. Model-based inference can fail to have nominal FWERs for
reasons other than multiple testing, such as biases arising from small numbers of clusters, which would further complicate
interpretation of the results. We include a comparison with methods 1 and 2 to illustrate this issue in our context.

3.1.1 Data generating processes

We use three different data generating processes of cluster randomized trials, described below. We opt for specific sce-
narios of rising complexity to examine the performance of the nine different methods (including both unweighted and
weighed versions of the permutation-based methods). All outcomes are simulated and modeled using exponential-family
models. In all simulations we set the number of individuals per cluster to 20 and simulate either seven or 14 clusters per
arm. The choice of number of clusters is informed by two key considerations. First, the simulations take a very long time
to run given the number of GLM models required to be estimated for the permutation tests and search procedures (for
three outcomes and 10 000 iterations we require 90 million models), and so we aimed to choose the smallest number that
would provide the desired inference. Second, we wanted to include scenarios where there was likely small sample bias
in “standard” non-permutation based estimators of standard errors due to the low number of clusters, and one where
such biases were likely minimal. Previous literature on cluster trials suggests small sample biases are likely minimal at 14
clusters or more per arm, but present with seven clusters per arm,17 although permutation-based methods provide exact
inference at any sample size. We provide estimates of FWER without correction and with non-permutation based estima-
tors to examine whether there are likely small sample biases. However, we recognize that 14 clusters per arm may still be
considered “small.” The treatment effect parameters for each simulation are a vector, 𝛿, with length equal to the number
of outcomes and with different combinations of either 0 or 1, allowing for when all treatment effects are zero and when
only a subset are.

(1) Two-arm, parallel cRCT, two outcomes
The first simulation data generating process (“model (1)”) represents a two arm parallel cluster trial with two outcomes

measured once in the post-intervention period. Both outcomes Yj are continuous, Gaussian variables for j = 1, 2. This
model is intended to examine the effect of correlation, which we model at the individual and cluster levels. For individual
i in cluster c:

(
Y1,ic

Y2,ic

)

∼

((
𝜇1 + 𝛿1Dc + 𝜃1,c

𝜇2 + 𝛿2Dc + 𝜃2,c

)

,

(
𝜎

2
1 𝜌𝜎1𝜎2

𝜌𝜎1𝜎2 𝜎

2
2

))

, (20)

where 𝜇j are intercept parameters, Dc is an indicator for whether the cluster is treated or not, and 𝜃j,c are cluster level
random effect modeled as:

(
𝜃1,c

𝜃2,c

)

∼

((
0
0

)

,

(
𝜏

2
1 𝜋𝜏1𝜏2

𝜋𝜏1𝜏2 𝜏

2
2

))

. (21)

The parameters 𝜌 and 𝜋 are correlation parameters at the individual and cluster levels, respectively with 𝜎j and 𝜏j the
standard deviation of the individual-level outcomes and cluster-random effect terms, respectively. Clusters are assigned
in a 1:1 ratio with seven or 14 clusters per arm and 20 or 10 individuals per cluster. We set 𝜇j = 1 and consider both
𝛿 = (0, 0) and 𝛿 = (0, 0.5) to compare the FWER under different combinations of true null hypotheses. We set 𝜎2

j = 1 and
𝜏

2
j = 0.05, which gives a marginal intraclass correlation coefficient (ICC) (ICCj = Var(𝜃j,c)∕Var(Yj,ic)) of 0.05. We also set
𝜌 = 𝜋 and examine a range of values. We do not report outcomes using the weighted test statistic with this example as it
is proportional the unweighted test statistic as both models are Gaussian with identity link, so there will be no difference
in performance.

(2) Two-arm, parallel cRCT, two differently distributed outcomes
For the next set of simulations (“model (2)”) we consider a parallel cluster trial with two outcomes measured once in

the post-intervention period. Simulation parameters are as the previous example, unless stated below. The first outcome
is specified as Poisson distributed:

Y1,ic ∼ Poisson(exp(𝜇1 + 𝛿1Dc + 𝜃1,c)),
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WATSON et al. 9

and the second outcome as Gaussian distributed:

Y2,ic ∼ N(𝜇2 + 𝛿2Dc + 𝜃2,c, 1),

where the random effects are specified as in Equation (21) with 𝜋 = 0. We again set 𝜇j = 1 and consider both 𝛿 = (0, 0)
and 𝛿 = (0, 0.5). The ICC for non-linear models depends on the realized values of the covariates and the parameter values
and so will differ between simulations. We again choose 𝜎2

j = 0.05, which gives a range of ICCs between approximately
0.01 and 0.2 for the Poisson model and 0.05 for the Gaussian model.

(3) Two-arm parallel cRCT with baseline measures, three outcomes
We finally extend the parallel cluster trial model (“model (3)”) to include baseline measures, which incorporates a

temporal dimension and hence more complex covariance structure. The trial includes seven clusters in each arm, with
half receiving the intervention in the second time period. We simulate three outcomes, with index t representing time
period:

Y1,ict ∼ Poisson(exp(𝜇1 + 𝛿1Dct + T1 + 𝜃1,ct))
Y2,ict ∼ N(𝜇2 + 𝛿2Dct + T2 + 𝜃2,ct, 1)
Y3,ict ∼ Bernoulli(logit(𝜇3 + 𝛿3Dct + T3 + 𝜃3,ct)), (22)

where, now, Dct equals one if the cluster has the intervention in time period t and zero otherwise and T is a fixed effect for
the second time period. We use an auto-regressive specification for 𝜃j,ct to facilitate incorporation of correlation between
outcomes. In particular,

Cov(𝜃j,ct, 𝜃j,ct′ ) = 𝜆|t−t′|
𝜎

2
j (23)

Cov(𝜃j,ct, 𝜃j′,ct′ ) = 𝜆|t−t′|
𝜎j𝜎j′𝜌 (24)

for j ≠ j′. The random effects have a multivariate normal specification as before zero correlation. We maintain the same
number of individuals per cluster. We set 𝜇j = −1 and 𝜏j = 1 for all j = 1, 2, 3. We vary the choice of 𝛿 as either (0, 0, 0)
or (0, 0.5, 0); as with the previous set of simulations we do not consider a completely exhaustive set of permutations of
simulation parameters. We set 𝜆 = 0.7.

3.1.2 Simulation methods

Each set of simulations is run 10 000 times. We note the Monte Carlo error will be moderately higher than expected due to
variation arising from the permutation tests, confidence set search procedure, and simulations. We use 1000 iterations for
the permutation test P-values and 2000 steps for the search procedure as these produced stable values for these simulations
(although we note that for more outcomes longer runs were often required for the confidence interval search procedure
for it to reach a stable equilibrium). Point estimates of parameters were obtained from univariate generalized linear mixed
models estimated with the R package lme4 for models (1) and (2), we similarly obtained estimates of variance parameters
from these models for the weighted test statistics. For example (3) we obtained parameter estimates from a generalized
linear model with no random effects given the lack of widely available software for estimating autoregressive random
effects models; weighted test statistics were generated using a covariance matrix created with the values of 𝜆, 𝜎l, and 𝜌
used in the data generating process.

3.1.3 Evaluation

We estimate the FWER for p ≤ 0.05, which has a nominal rate of 5%, and also estimate coverage of 95% confidence sets. We
also estimate the mean 95% confidence interval width for each parameter 𝛿 to compare the efficiency of the procedures.

3.2 Results

Figure 1 shows the family wise error rates and coverage from model (1) with the permutation-based methods for different
levels of the correlation coefficient. We exclude the “naive” approach from these plots as it has non-nominal marginal
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10 WATSON et al.

F I G U R E 1 Family wise error rate and coverage under model (1) for four methods with different levels of the correlation coefficient 𝜌.
The dashed line shows the nominal rates and the dotted lines approximate Monte Carlo confidence intervals. “None” refers to no correction.

F I G U R E 2 95% confidence interval width model (1) for four methods with different levels of the correlation coefficient 𝜌.
“None” refers to no correction.

type I error and coverage without correction (see below). All three corrections ensured nominal error rates at lower
levels of correlation (𝜌 ≤ 0.6), however at higher levels of correlation Bonferroni was conservative. Without correction,
the FWER declined as the correlation increased but was still approximately 0.08 at 𝜌 = 0.8. Only the Romano-Wolf and
Holm methods ensured nominal family wise coverage at any level of correlation. Figure 2 shows the 95% confidence
interval width for the four methods for the same model. For the two methods with nominal or near nominal error rates
(Romano-Wolf and Holm), Romano-Wolf was moderately more efficient with narrower confidence intervals. The other
methods displayed approximately constant confidence interval widths, with their respective widths reflecting the coverage
results.
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WATSON et al. 11

T A B L E 1 Results of simulation experiments with two outcomes, seven clusters per arm, and with 10 000 iterations each.

CI width

Method Test statistic 𝜹 FWER Coverage 𝜹1 𝜹2

None (naive) - (0,0) 0.158 0.844 0.653 0.497

None (permutation) Unweighted 0.099 0.902 0.725 0.605

Weighted 0.102 0.903 0.726 0.599

Bonferroni Unweighted 0.048 0.958 0.881 0.746

Weighted 0.051 0.954 0.900 0.761

Holm Unweighted 0.051 0.947 0.855 0.716

Weighted 0.056 0.942 0.869 0.710

Romano-Wolf Unweighted 0.053 0.948 0.841 0.708

Weighted 0.049 0.947 0.824 0.720

None (naive) - (0,0.5) 0.067 0.845 0.654 0.484

None (permutation) Unweighted 0.048 0.914 0.722 0.637

Weighted 0.049 0.916 0.727 0.650

Bonferroni Unweighted 0.026 0.960 0.885 0.789

Weighted 0.022 0.962 0.902 0.831

Holm Unweighted 0.049 0.954 0.851 0.754

Weighted 0.045 0.953 0.870 0.773

Romano-Wolf Unweighted 0.048 0.957 0.839 0.740

Weighted 0.051 0.947 0.819 0.796

Note: Each iteration used 1000 permutations for the permutation test and 2000 iterations in each of the lower and upper confidence interval search processes.
Bold results for FWER and coverage show those within approximated 95% Monte Carlo confidence interval of the nominal value.

Table 1 reports the results from model (2). Under all tested conditions the FWER was approximately nomi-
nal in all scenarios for all multiple testing corrections when both parameters were zero. However, when only one
parameter was zero, Bonferroni was conservative as expected with a FWER ≈ 0.025 at 𝛼 = 0.05 which was also
reflected in coverage being greater than the nominal rate. Romano-Wolf and Holm had nominal rates in all sce-
narios. Confidence interval width followed the same pattern as model (1) with Romano-Wolf generally being more
efficient. Use of the weighted test statistic did not make much difference qualitatively with some confidence intervals
larger and some smaller. Without correction, using a permutation test approach resulted in a FWER of≈ 0.10 when there
were two true null hypotheses, as expected. Using the naive output of lme4 resulted in even worse performance due to
the small sample bias in the test statistics, also as expected,16,17 with FWER around 30%-50% higher. Table 2 reports the
results from the two outcome trial simulations with a larger 20 clusters per arm. The same pattern is observed as the
smaller two-arm experiments, but the small sample bias using the naive method is reduced. To illustrate the computa-
tional efficiency of the procedure, a single run of the function to derive P-values and confidence sets took between 1 and
10 s depending on the number of outcomes and size and number of the clusters.

Table 3 shows the results from the three outcome simulations with baseline measures. Despite the more complex
covariance structure and imbalance in the number of observations between control and treatment conditions, Holm
and Romano-Wolf maintained nominal FWER and coverage. Again, Romano-Wolf was the most efficient correction. Its
confidence intervals were between 10% and 50% larger than the uncorrected results. We also note that the uncorrected
approach maintain marginally nominal rates for each univariate outcome in all scenarios.

4 APPLIED EXAMPLE

To provide a real-world example of the the use of the methods proposed in this article, we re-analyse a cluster randomized
trial of a financial incentive to improve workplace health and wellbeing in small and medium sized enterprises (SME) in

 10970258, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/sim

.9831 by U
niversity O

f B
irm

ingham
 E

resources A
nd Serials T

eam
, W

iley O
nline L

ibrary on [21/06/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



12 WATSON et al.

T A B L E 2 Results of simulation experiments with two outcomes, 14 clusters per arm, 10 individuals per cluster, and with 10 000
iterations each.

CI width

Method Test statistic 𝜹 FWER Coverage 𝜹1 𝜹2

None (naive) - (0,0) 0.125 0.878 0.573 0.416

None (permutation) Unweighted 0.095 0.908 0.597 0.457

Weighted 0.099 0.901 0.600 0.466

Bonferroni Unweighted 0.053 0.953 0.706 0.543

Weighted 0.046 0.959 0.714 0.566

Holm Unweighted 0.053 0.948 0.693 0.529

Weighted 0.048 0.950 0.700 0.544

Romano-Wolf Unweighted 0.052 0.951 0.686 0.527

Weighted 0.047 0.952 0.687 0.539

None (naive) - (0,0.5) 0.057 0.878 0.871 0.399

None (permutation) Unweighted 0.049 0.915 0.597 0.469

Weighted 0.052 0.927 0.600 0.561

Bonferroni Unweighted 0.023 0.961 0.707 0.558

Weighted 0.026 0.969 0.715 0.690

Holm Unweighted 0.053 0.935 0.693 0.546

Weighted 0.049 0.963 0.698 0.660

Romano-Wolf Unweighted 0.049 0.956 0.685 0.542

Weighted 0.048 0.960 0.679 0.655

Note: Each iteration used 1000 permutations for the permutation test and 2000 iterations in each of the lower and upper confidence interval search processes.
Bold results for FWER and coverage show those within approximated 95% Monte Carlo confidence interval of the nominal value.

T A B L E 3 Results of simulation experiments for the parallel cluster trial with baseline measures (3).

CI width

Method Test statistic 𝜹 FWER Coverage 𝜹1 𝜹2 𝜹3

None (permutation) Unweighted (0,0,0) 0.129 0.876 0.872 1.199 0.700

Weighted 0.148 0.848 1.033 1.201 0.767

Bonferroni Unweighted 0.046 0.954 1.332 1.714 1.050

Weighted 0.047 0.962 1.834 1.709 1.141

Holm Unweighted 0.048 0.946 1.202 1.652 1.092

Weighted 0.048 0.942 1.554 1.612 1.101

Romano-Wolf Unweighted 0.052 0.956 1.014 1.633 0.986

Weighted 0.049 0.954 1.611 1.498 0.997

None (permutation) Unweighted (0,0.5,0) 0.093 0.869 0.783 1.271 0.705

Weighted 0.093 0.852 0.996 1.282 0.724

Bonferroni Unweighted 0.038 0.940 1.303 1.895 1.043

Weighted 0.032 0.942 1.824 1.834 1.134

Holm Unweighted 0.055 0.939 1.234 1.730 1.090

Weighted 0.045 0.949 1.593 1.646 1.105

Romano-Wolf Unweighted 0.048 0.953 1.000 1.820 1.008

Weighted 0.049 0.954 1.678 1.548 1.031

Note: Each iteration used 1000 permutations for the permutation test and 2000 iterations in each of the lower and upper confidence interval search processes.
Bold results for FWER and coverage show those within approximated 95% Monte Carlo confidence interval of the nominal value.
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WATSON et al. 13

the United Kingdom. The original trial was relatively complex and included four trial arms with pre- and post-intervention
observations comprising a standard control condition (no incentive), two treatment conditions (high and low incentive),
and a second control arm with no baseline measures also with no incentive. The trial enrolled 152 clusters (SMEs), which
were randomly allocated in an equal ratio to each of the trial arms; 100 SMEs completed the trial. Up to 15 employees
were sampled and interviewed from each cluster. The full protocol is published elsewhere8 (at the time of writing the
results from the trial are under review).

4.1 Outcomes

A single primary outcome was specified in the protocol, which was the question “Does your employer take positive
action on health and wellbeing?” However, given the potential lack of insight it might provide into the functioning of
the intervention, several secondary outcomes were specified to capture the “causal chain” between intervention and
employee health and wellbeing. For each of three separate health categories (mental, musculoskeletal, and lifestyle
health) employees were asked:

1. whether the employer provided information in this area;
2. whether the employer had provided activities and services in this area;
3. whether the employee had made a conscious effort to improve in this area;
4. whether the employee had attended any groups or activities in this area at work;
5. whether the employee had attended any groups or activities in this area outside of work.

for a total of 15 outcomes.

4.2 Re-analysis

The original analysis of the trial took a Bayesian approach. The frequentist re-analysis we conduct here is principally for
illustrative purposes, and so we only take a subset of the data and simplify some of the outcomes. In particular, we take only
the main control arm and the high incentive intervention arm to estimate the effect of the high incentive. We focus on the
set of secondary outcomes listed above, which we collapse into five separate outcomes; whether the employer provided
information across all three health areas, and then whether there was a positive response for any of the health areas
for the remaining outcomes, for a total of five outcomes. All outcomes are modeled using a Bernoulli-logistic regression
model, following the notation above, with t = 0 for baseline and t = 1 for post-intervention:

Yk,ict ∼ Bernoulli(logit(𝜇0,k + 𝛿kDct + 𝜃k,c + 𝜃k,ct)). (25)

We used 4000 permutation test iterations and 10 000 steps in the confidence interval search procedure. For illustration,
this re-analysis took 8 min on a desktop PC with Intel Core i7-9700K with 16GB RAM and Windows 10.

4.3 Results

Table 4 shows the results of an analysis using the naive method (a model-based analysis using lme4 with no multiple
testing correction), alongside “corrected” results using the Bonferroni, Holm, and Romano-Wolf methods. We first note
that the convergence of the confidence interval search procedure was highly sensitive to the starting values and we could
not achieve reliable convergence for the weighted Bonferroni and Holm approaches. The algorithm could take a long time
to find the right part of the parameter space, particularly since the search distance decays with the number of iterations.
Convergence can be assessed graphically. Figure 3 shows a search procedure that has not converged after 10 000 iterations.
Several of the upper bounds make a large jump and then require a large number of iterations to eventually reach to the
bound. Figure 4 shows a convergent search procedure.

We make several observations about the results. The uncorrected analysis would suggest there is likely good evi-
dence that the intervention improved employer provision of information and activities and services, and increased
employee taking part at work. However, this conclusion might contradict our understanding of the causal processes
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T A B L E 4 Results from re-analysis of the workplace wellbeing trial.

Outcome Statistic None (Naive) Bonferroni Holm R-W

Employer provided
information

Estimate 2.91

95% CI (Unweighted) [1.98, 3.97] [0.14, 2.96] [0.13, 2.94] [0.34, 2.96]

P-value (Unweighted) 0.03 0.03 0.01 0.01

95% CI (Weighted) NR* NR* [0.28, 2.96]

P-value (Weighted) 0.02 0.02 <0.01

Employer provided
activities

Estimate 2.11

95% CI (Unweighted) [1.31, 2.99] [−0.29, 3.04] [−0.22, 2.71] [−0.11, 3.22]

P-value (Unweighted) <0.01 0.21 0.15 0.05

95% CI (Weighted) NR* NR* [−0.16, 2.95]

P-value (Weighted) 0.21 0.13 0.04

Employee made a
conscious effort

Estimate 0.22

95% CI (Unweighted) [−0.33, 0.77] [−0.89, 0.98] [−0.72, 1.32] [−0.77, 1.45]

P-value (Unweighted) 0.44 1.00 0.38 0.37

95% CI (Weighted) NR* NR* [−0.84, 1.45]

P-value (Weighted) 1.00 0.38 0.36

Employee took part at
work

Estimate 1.13

95% CI (Unweighted) [0.50, 1.75] [−0.37, 1.72] [−0.55, 1.74] [−0.39, 1.85]

P-value (Unweighted) <0.01 1.00 0.88 0.27

95% CI (Weighted) NR* NR* [−0.43, 1.90]

P-value (Weighted) 1.00 0.84 0.29

Employee took part
outside work

Estimate 0.27

95% CI (Unweighted) [−0.06, 0.61] [−0.09, 0.95] [−0.06, 0.97] [−0.69, 0.83]

P-value (Unweighted) 0.11 0.34 0.17 0.18

95% CI (Weighted) NR* NR* [−0.70, 0.83]

P-value (Weighted) 0.34 0.16 0.17

Note: Results are log odds-ratios, 95% confidence intervals, and P-values. Permutation test P-values used 4000 iterations, and the confidence interval search
procedure used 10 000 steps for Bonferroni, Holm, and Romano-Wolf (RW) methods. The “None (Naive)” method refers to a model-based analysis using lme4
with no multiple testing correction. * NR (not reported) because a reliable convergence could not be achieved.

since it would seem contradictory for employees to make more effort but not report making more effort. The results cor-
rected for multiple testing using Romano-Wolf appear to be more consistent in that employers appeared to make more
effort but the employees did not take up the new services with small and negative effects now shown to be compat-
ible with the data for the latter three outcomes. The effect of the intervention is also more uncertain than suggested
by the uncorrected confidence intervals. In particular, the confidence intervals under the corrected methods, which
are based on exact permutation tests, are not symmetric for several outcomes, unlike under the uncorrected approach.
So, smaller effect sizes, particularly for the first two outcomes, are more plausible than the uncorrected method would
suggest.

5 DISCUSSION

We have proposed how one can estimate frequentist statistics for cluster randomized trials with multiple outcomes that
control for the FWER and coverage of simultaneous confidence intervals. These methods also apply generally in any sce-
nario where multiple tests from GLMMs are used. Where a correction for multiple testing is desired in a cluster trial
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WATSON et al. 15

F I G U R E 3 Example of the confidence interval search for the upper and lower confidence interval limits for the five outcomes in the
applied example using the Holm correction for the cluster trial example demonstrating lack of convergence for some bounds.

F I G U R E 4 Example of the confidence interval search for the upper and lower confidence interval limits for the five outcomes in the
applied example using the Romano-Wolf correction for the cluster trial example demonstrating convergence.
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16 WATSON et al.

setting, the Romano-Wolf approach would be recommended as it maintains nominal rates in a variety of scenarios includ-
ing with differing levels of between-outcome correlation, cluster and individual sample sizes, and covariance structures,
it is also more efficient than the alternatives and in the example we considered, exhibits better convergence of confi-
dence interval search procedures. Where a multiple testing correction is not desired, permutation-based methods are
likely to provide marginally nominal error rates and so are also recommended when other methods may exhibit biases.
We also compared a weighted test statistic based on the score statistic proposed by Romano and Wolf,3 but did not find
this provided any obvious benefit over an unweighted sum of generalized residuals. We do note, however, that while
these methods do provide the desired properties, many regulatory agencies, including the FDA, do not (yet) accept statis-
tics derived from re-sampling based methods, which may limit their application. Researchers may also consider other
methods if multiple testing corrections are required such as “intersection-union” testing.50

There have been no previous comparisons of multiple testing corrections in the context of cluster randomized trials
as far as we are aware, but our results generally reflect those from other settings. For example, Ozenne et al28 com-
pared several multiple testing corrections for linear latent variable models, including a resampling-based procedure,
although not Romano-Wolf. They showed this method maintained strong control of the FWER and was more efficient
than Bonferroni. Vickerstaff et al27 considered the question for individual level randomized trials with a linear
model, and suggested that Hommel’s24 and Hochberg’s23 methods were marginally more efficient than Bonferroni
or Holm, but they did not include a permutation-based procedure, not non-linear models. Alberton et al29 also
shows permutation-based methods to outperform other corrections in the context of analysing brain imaging
data.

We have examined methods from a range of previous work including: permutation tests for cluster trials,32,51 univari-
ate methods for corrections for multiple testing that use permutation tests,3,15,22 and procedures for estimating confidence
interval limits based on permutation tests.44,45,48,49 Altogether the proposed methods can deal with several issues that
are common to cluster randomized trials as they allow for multiple outcomes, they can incorporate other features such
as restricted randomization methods, which are often used in trials with a small number of clusters. Watson et al,16 Li
et al,18,37 and Zhou et al35 discuss permutation tests with restricted randomization methods. Permutation-based meth-
ods provide exact inference when there are a small number of clusters, which can lead to non-nominal error rates of
standard test procedures and hence confidence intervals with non-nominal coverage. Several small-sample corrections
exist that can provide nominal error rates with a small number of clusters,16,17 however there is no obvious way these
would be incorporated efficiently into a multiple testing procedure. After conducting the analyses presented in this arti-
cle, an updated and more efficient version of the confidence interval search procedure was brought to our attention.52

This method improves the efficiency of the search procedure, and requires fewer steps by making larger steps on average,
although would not affect the results presented here. We aim to incorporate the algorithm in our R package implementing
these methods (crctStepdown).

The tools developed for this article can be incorporated at the design stage of a cluster trial to determine power using
simulation-based approaches. These methods are useful for the analysis of cluster trials with multiple outcomes and the
treatment effect parameters from the linear predictors of multiple univariate models, however, it is not clear how or if they
could be applied to cluster trials with multiple arms. In multi-arm trials there may be one or more outcomes, but clusters
may receive different “doses” or variants of the treatment. There are a variety of treatment effects and null hypotheses
of interest including pairwise comparisons between arms and a global joint null, which can be estimated from a single
univariate model with indicators for each arm.16,35 Pairwise null hypotheses in these models do not make statements
about the value of the treatment effects in arms outside the pair under comparison as it is left unspecified, so it is not
obvious then how a permutation test could be conducted for the pairwise comparison that is invariant to randomized
allocation. The multiple treatment effects of interest in a multi-arm study clearly fall in the realm of multiple testing.
Nevertheless, we believe the methods proposed in this article will be a useful tool for the analysis of cluster randomized
trials in many cases.
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