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Summary  

Background: Mechanical loading of synovial joints can damage the articular cartilage surface and 

may lead to osteoarthritis. It is unknown if, independent of load, frequency alone can cause failure in 

cartilage. This study investigated the variation of articular cartilage surface damage under 

frequencies associated with normal, above normal and traumatic loading frequencies. 

 

Method: Cartilage on bone, obtained from bovine shoulder joints, was tested. Damage was created 

on the cartilage surface through an indenter being sinusoidally loaded against it at loading 

frequencies of 1, 10 and 100 Hz (i.e. relevant to normal, above normal and up to rapid heel-strike 

rise times, respectively). The frequencies were applied with a maximum load in the range 60-160 N. 

Surface cracks were marked with India ink, photographed and their length measured using image 

analysis software. 

 

Results: Surface damage increased significantly (p<0.0001) with frequency throughout all load 

ranges investigated. The dependence of crack length, c, on frequency, f, could be represented by, 

             
                 where A = 0.006 ± 0.23, B = 0.62 ± 0.23 and   = 0.38 ± 0.51 

mm (mean ± standard deviation).  

 

Conclusion: The increase in crack length with loading frequency indicated that, increased loading 

frequency can result in cartilage becoming damaged. The results of this study have implications in 

the early stages of osteoarthritis. 

 

Keywords: Articular cartilage, Crack, Failure, Frequency, Mechanical loading, Osteoarthritis. 
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1. Introduction 

In this study, experimental damage of the articular cartilage surface was produced by 

applying five sinusoidally varying compressive force ranges over three magnitudes of 

loading frequency. Articular cartilage can become damaged when subjected to repetitive 

mechanical loading1–3. However, the mechanism by which the surface of cartilage becomes 

damaged under loading frequencies associated with normal, above normal and rapid heel-

strike rise time is unknown.  

 

Articular cartilage is a compliant layer covering the much stiffer bone ends of a joint, 

preventing high contact stresses which could ultimately damage the bone in a joint. 

Cartilage needs, therefore, to be able to deform in order to increase the total surface area 

for contact, thereby reducing the overall stress2,4. Cartilage also provides smooth bearing 

surfaces, with surface roughness of 80-170 nm, in freely moving synovial joints5.  

 

The most recognized feature of osteoarthritis is the progressive damage of articular 

cartilage, resulting in impaired joint motion, severe pain, and disability6. The articular 

cartilage surface begins to change from a smooth to a rough or fibrillated appearance in 

early osteoarthritis7. Once damaged, it has a very limited ability to repair itself8,9.  

 

Rapid heel strike rise times during gait have been associated with the early onset of 

osteoarthritis10,11. Heel strike rise times in the normal population have been previously 

determined to be typically 100-150 ms. However, a subset of the population with heel-strike 

rise times from 5 to 25 ms have been identified and are fast enough to create impulsive 

loadings12. Repetitive impulsive/traumatic loading was found to provoke osteoarthritis in 
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animal experiments11. In general, heel-strike rise times of 500 ms corresponds to a loading 

frequency of 1 Hz, whereas a rapid heel-strike rise time such as 5.4 ms is equivalent to a 

loading frequency of 92 Hz12. Cyclic compressive loading has been used to subject the 

surface of cartilage to damage1,2. However, little is known about the role of loading 

frequency in the initiation and progression of damage in cartilage. 

 

Previous studies12–14 which investigated changes in cartilage viscoelastic properties with 

frequency suggested that the likelihood of cartilage failure increases with loading frequency. 

This was suggested, because at higher frequencies the ability of the tissue to store energy, 

for elastic recoil, increased. It was suggested that if the energy available for storage 

exceeded a certain level it might induce damage to the cartilage. Damage caused by 

increasing the loading frequency has been suggested to be different to the damage caused 

by increasing load only following comparisons between failure patterns from static loading 

tests15,16. 

 

Another factor associated with the failure of articular cartilage is the mechanical overload of 

the joint17. Cartilage fissures have typically been formed in the regions exposed to high 

loads in the joint18,19. Therefore, the aim of this study was to determine the variation of 

articular cartilage surface damage with frequencies relevant to normal, above normal and 

rapid heel-strike loading, and how this relationship is altered by the maximum stresses 

which are induced in cartilage. 

 

  



5 
 

2. Method 

Specimen preparation 

Fresh bovine shoulders, from animals less than 30 months old, were obtained from a 

supplier (Johnston’s Butcher, King’s Heath, Birmingham, UK). On arrival in the laboratory 

they were wrapped in tissue paper and soaked in Ringer’s solution. The bovine shoulders 

were then sealed in plastic bags, stored in a freezer at -40°C until they were required for 

testing2,12–14. Freeze-thaw treatment has not been found to alter the mechanical properties 

of articular cartilage20–22 or bone23. Prior to testing, the specimens were thawed at room 

temperature for approximately 2 hours12,13. Two 50 × 50 mm cartilage-on-bone specimens 

were obtained from the humeral head of a shoulder joint. Typically specimens had a total 

thickness of 20 mm (cartilage and subchondral bone) to allow sufficient bone for secure 

fixation in the test rig12,14.The specimens were secured into a custom-made test rig using 

acrylic cement (WHW plastics, Hull, UK). Each specimen was then bathed in Ringer’s solution 

at room temperature throughout the whole test, as in previous studies2,12. 

 

India ink (Loxley Art Materials, Sheffield, UK) was used to confirm that each cartilage surface 

was initially free from defects. Large scale damage was not observed on the surface of any 

specimen before mechanical testing; this was expected because joints were not 

osteoarthritic13,24.  

 

Mechanical testing 

An experimental protocol was developed to investigate the role of frequency of loading on 

damage to the articular cartilage surface. Damage was created using a sinusoidally varying 

compressive load with a solid cylindrical indenter. The indenter had a 5.2 mm diameter flat 
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circular face with a 0.5 mm radius bevel in order to avoid high stresses around its edge. A 

Bose ElectroForce ELF3200 material testing machine, operated under the control of WinTest 

software (Bose Corporation, ElectroForce systems Group, Minnesota, USA) was used to 

perform indentation on the articular cartilage specimens.  A total of 40 specimens were 

obtained from 20 bovine shoulder joints; it is unknown if any of the joints were from the 

same animal, so in the calculations of the 95% confidence intervals it was assumed that the 

joints came from 10 animals to avoid any possibility of dependant observations.  Three sites, 

free from pre-existing lesions, were chosen for testing on each tissue sample over three 

magnitudes of loading frequency (i.e. one frequency per test site).  Therefore, a total of 120 

distinct test sites have been analysed for crack measurements. Frequencies tested ranged 

from normal, above healthy-gait and corresponding to rapid heel-strike rise times, using 1 

Hz, 10 Hz and 100 Hz respectively12, 13. Each test consisted of the cartilage tissue samples 

being loaded for 10,000 cycles3 for each loading frequency individually. The number of 

cycles was kept constant for all tests over all three magnitudes of frequency, in order to be 

able to observe the change in damage when only frequency was altered. Surface effects 

may extend up to 1 mm from the loaded site in healthy cartilage25; therefore, an average 

distance of 5 mm was kept between the test sites. Five sinusoidally varying compressive 

force ranges were used for testing: 6-60 N, 9-90 N, 10-100 N, 12-120 N and 16-160 N. The 

maximum applied loads induced a nominal compressive stress of 2.8 MPa, 4.2 MPa, 4.7 

MPa, 5.6 MPa and 7.5 MPa, respectively. Eight samples were tested for each loading range 

at 1 Hz, 10 Hz and 100 Hz. The loading ranges were chosen to determine in which loading 

range and frequency the surface damage was initiated and how it changes with load or 

frequency. These values were chosen based on preliminary tests and the stresses induced 

by the maximum load.  
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The thickness of each site tested was measured after testing, using an established technique 

which has been described previously12,13,26. Briefly, a sharp needle was pushed through the 

cartilage layer up to the underlying bone using the testing machine described above. The 

thickness of the cartilage was determined from the difference in displacement readings at 

two points where the needle comes into contact with the cartilage surface and the point at 

which the needle contacts the cartilage/bone interface.  

 

 Analysis of cartilage surface damage 

India ink was applied to the cartilage surface to highlight any signs of failure following each 

test1,24. The cartilage surface was then photographed using a DSC-R1 Cyber-shot© digital 

camera (10MP, 5 x Optical Zoom) 2.0" (Sony Corporation, 6-7-35 Kitashinagawa, Shinagawa-

ku, Tokyo, Japan) after each test. A scale-bar was included in each image, positioned in the 

field of view. Digital images were analysed using ImageJ (version 1.48, Rasband, W.S., U. S. 

National Institutes of Health, Bethesda, Maryland, USA). Surface damage was observed on 

the surface of cartilage as cracks and fissures. Lines were drawn manually along the length 

of all the cracks and fissures. The software was used to calculate their total length (in mm) 

with a 0.1 mm precision. The length of cracks and fissures were added together for each test 

site2. Image analysis measurements were repeated twice by one individual to ensure the 

measurements were repeatable. 

 

Data analysis 

The mean total crack length against the three frequencies (1 Hz, 10 Hz and 100 Hz) was 

analysed for all load ranges using Sigmaplot Version 11.0 (Systat Software Inc., London, UK). 
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95% confidence intervals were calculated with the n values shown in Figure 1, so that 

independent observations could be assumed27. The relationship between total crack lengths 

against maximum loads was analysed in order to determine the variation of crack length 

when the maximum load range was altered.  A polynomial or linear regression was used to 

fit a curve or line to the data.  A p value < 0.05 indicates that the curve or line fit was 

significant. 

 

3. Results 

A sample image taken from five cartilage samples at the five loading ranges is shown in 

Figure 2. At lower loading frequencies such as 1 Hz and 10 Hz, cracks and fissures on the 

surface of articular cartilage following cyclic tests appeared to be single or parallel lines. 

However, at 100 Hz, the loaded region contained a greater number of branches. Cracks and 

fissures also increased in length with frequency for all samples, except for the lowest 

loading range of 6-60 N where there were no cracks at 1 or 10 Hz. There also appeared to be 

more crack branches at higher frequencies from qualitative observations (Figure 2).  

 

The crack length was found to increase with loading frequency.  This was true for individual 

tissue samples (Figure 3) and also when the mean values from 8 tissues samples were used 

(Figure 4).  The mean cartilage thickness of specimens was 2.14 mm (range: 1.8–3.6 mm).  

Figure 4, shows the mean total crack length against frequency of 1, 10 and 100 Hz over five 

load ranges. The first signs of failure were observed in the loading range of 6-60 N 

(maximum peak nominal stress of 2.8 MPa) at 100 Hz. Maximum damage was observed in 

the loading range of 16-160 N (maximum peak nominal stress of 7.5 MPa) at 100 Hz. Signs of 

damage at a loading frequency of 1 Hz and 10 Hz were first observed in 10-100 N (maximum 
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peak nominal stress of 4.7 MPa) and 9-90 N (maximum peak nominal stress of 4.23 MPa), 

respectively.  

 

The crack length increased significantly (P<0.05) with increasing frequency for all loading 

ranges. Second order polynomial curves (equation 1) were found to fit the data well for all 

sites tested in the form: 

                             
                                                for    f  ≥ 1                (1) 

 where c is the mean total crack length, f represents frequency and A, B and D are constants. 

(Table I). 

 

The crack length increased with increasing the maximum load (Figure 5). Mean total crack 

length increased by 1.1, 2.4 and 5.1 mm at loading frequencies of 1, 10 and 100 Hz, 

respectively. A linear relationship was found to fit the experimental data in the form: 

                                                                                   for     60  ≤ L ≤  160               (2) 

where c is the mean total crack length, L is the maximum load and E and G are constants. 

Mean values of the constants E and G were 0.02 mm.N-1 (SD 0.019, range 0.013–0.051 

mm.N-1) and -1.74 mm (SD 0.77, range -2.54 – -1 mm), respectively. 

 

4. Discussion 

The results from this study show that surface cracks can form purely by mechanical means, 

and this progression is frequency dependant. This study has investigated the dependency of 

surface damage on loading frequency. Frequencies of 1, 10 and 100 Hz were used as they 

correspond to normal gait, above healthy gait heel-strikes and similar to traumatic heel-

strike rates, respectively1-14,20,28. The results show that repetitive mechanical loading of 

a

  I 

c

  I 

e

  I 
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articular cartilage causes damage in the form of crack and fissures to its surface. Crack 

length was found to increase with increasing loading frequency; this increase was also found 

to be greater at higher maximum loads. An increase in cartilage damage with increasing the 

loading frequency was predicted in previous studies12,14,28. This prediction was made 

because of the change in viscoelastic properties of articular cartilage with frequency. At 

frequencies of up to 92 Hz, there was an increase in storage to loss modulus, i.e. the ability 

of the material to store energy rather than dissipate it increased12. The main mechanism for 

releasing the excess energy was suggested to be by the formation of cracks. The proposed 

mechanism was consistent with increased cartilage failure which occurs with increasing 

energy during impact loading in vitro29,30.  

 

Increase in the length of cracks and fissures during mechanical cyclic loading have been 

reported in previous studies, but only up to frequencies of 0.1 Hz 1 or 0.5 Hz 2 and 1 Hz 31. In 

the current study damage was created on cartilage samples by applying 10,000 cycles over 

five load ranges with peak stresses from 2.8 to 7.5 MPa. The change in damage was 

observed when frequency alone was altered. Ewers et al. (2001)32 who investigated the 

propagation of damage in rabbit cartilage after blunt impact in vivo also reported that the 

total length of fissures increased during the first 4 months following impact tests.  

 

Articular cartilage is subjected to various ranges of peak stresses under light to moderate 

activities which typically range from 1 to 6 MPa33,34. Peak stress amplitudes, under more 

vigorous activities in natural joints have been estimated up to 12 MPa35 or even 18 MPa36. 

The maximum peak stresses used in this study were from 2.8 to 7.5 MPa, which is similar to 

peak stresses acting on cartilage during light to moderate activities.  
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During the normal gait cycle for walking there is a rapid rise in foot-to floor reaction force 

from zero to a peak load of over body weight during the first 100 ms after heel strike37,38. 

These forces results in the deformation of articular cartilage. Thus, ground reaction forces at 

heel-strikes provide indirect information about internal joint loading. This is because a peak 

ground reaction force corresponds with the timing of peak loads in joints38-41. Therefore the 

increase in the loading rate of the ground reaction force (shorter rise times) will be in 

correlation with the changes in rise times of the reaction forces acting on articular cartilage 

in lower limb joints of the body37.  

 

It has been suggested that impulsive/traumatic rise times during heel strike could be 

implicated in the onset of osteoarthritis11. Repetitive mechanical loading can create fissures 

in the surface of cartilage1. Significant increase in crack length with frequency in peak 

stresses which resembles peak stresses acting on cartilage during light and moderate 

activities shows the important role of loading frequency in the initiation and propagation of 

damage on the surface of articular cartilage in this study. Other studies12,13,28 have reported 

that the ability of cartilage to store and dissipate energy is altered with loading frequency. 

This may change the stress transfer to the underlying bone which leads to bone stiffening 

and ultimately failure of articular cartilage13. However, energy transfer between cartilage 

and subchondral bone has not been investigated in this study. 

 

The effect of increasing the loading frequency was investigated in a comparable study42 

when shear force was used to create fractures on the surface of articular cartilage 

experimentally. Results from this study showed that with increasing the speed of the 
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applied load (increasing the frequency), surface cracks appeared on the surface of cartilage 

whereas low speed loads with the same energy, did not create cracks on the surface of 

cartilage.  

 

The effect of slowly applied loads and suddenly applied loads on articular cartilage was 

suggested to differ considerably in previous studies42-45. This was associated with the 

deformation of cartilage under different loading frequencies with displacement of water 

inside and outside of the collagen network.  These studies assumed cartilage as a biphasic 

material composed of a solid matrix phase (20% of the total mass by weight) and an 

interstitial fluid phase (80%)44. It is not clear why the cartilage surface shows signs of 

cracking following cyclic tests, a behaviour mostly seen in brittle materials46,47. However, 

using a theoretical model48, it has been shown that increasing the loading frequency, also 

increases the flow of interstitial fluid inside the cartilage tissue. This fluid flow in and out of 

the collagen matrix is eventually inhibited together at higher frequencies; therefore 

cartilage acts as a brittle, largely incompressible elastic solid. The biphasic mechanism was 

explained by assuming the solid matrix, to be a porous, permeable elastic solid and the 

interstitial fluid to be movable within the tissue49. Both phases were modelled to be 

intrinsically incompressible and the diffusive drag forces between the two phases resulted in 

the viscoelastic behaviour of the tissue50,51. However, this mechanism was not supported, 

when viscoelastic properties of cartilage were measured up to 10 Hz14 or 90 Hz12 as almost 

no variation was observed in loss modulus/stiffness with increasing the loading frequency. 

This might be due to the constraining effect of the underlying bone14,52. The underlying bone 

has previously been predicted to prevent an increase in loss modulus53.   
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Fluid flow is not the only possible mechanism which is involved in cartilage deformation and 

ultimately failure. Another alternative is to treat cartilage as a hydrated gel54,55, undergoing 

glassy transition (transition from soft to glassy material), under high loading frequencies. 

This has been discussed in several studies12,56,57 because of the existence of hydrated 

proteoglycans in the cartilage matrix which act as a natural hydrogel under deformation. 

This is consistent with increased injury observed with increased stiffness under increased 

loading frequencies42. 

 

Articular cartilage is a composite material in which collagen fibrils provide tensile 

reinforcement. The alignment of collagen is different in every layer of cartilage52,56,58. One of 

the mechanisms which has been suggested as being involved in crack growth under 

repetitive loading on the cartilage surface is the tension developed in the superficial layer of 

the cartilage surface (10-20 % of cartilage thickness)59. The investigation of failure 

propagation through the depth of articular cartilage will be the subject of a future study.  

 

5. Conclusion 

It can be concluded from this study that surface damage to cartilage following sinusoidal 

loading increased with frequency throughout all load ranges investigated. Cracks appeared 

on the surface of articular cartilage in lower load ranges (below a maximum peak stress of 

4.7 MPa) only at loading frequencies which are associated with impulsive/traumatic and 

above healthy gait heel-strike rise times, 100 Hz and 10 Hz, respectively. However, cracks 

appeared at all loading frequencies in higher maximum load ranges (above maximum peak 

stress of 4.7 MPa). Variation of damage with different loading frequencies has implications 

in the early stages of osteoarthritis.  
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Figure legends 

Figure 1 –Number of independent observations (n) used for calculating the 95% confidence 

intervals in Figures 4 and 5. Each load range was tested at three frequencies on distinct test 

sites (120 tests). 

 

Figure 2 –Representative images taken from cartilage samples following cyclic loading. The 

black circles show the loaded region. Loading ranges included were (a) 6-60 N, (b) 9-90 N, (c) 

10-100 N, (d) 12-120 N and (e) 16-160 N. The formation and increase in crack length can be 

generally observed with increasing load and frequency. India ink was applied to the cartilage 

surface to easily distinguish the surface cracks. A scale bar is included in every image in 

order to measure the surface features. 

 

Figure 3 – Total crack length plotted against the logarithm (with base 10) of the loading 

frequency for testing on individual tissue samples.  The three represent the load ranges of 6-

60 N (), 9-90 N (), 10-100 N (▼), 12-120 N (△  and 16-160 N (■). 

 

Figure 4 –Mean total crack length plotted against the logarithm (with base 10) of the 

loading frequency for the load ranges of 6-60 N (), 9-90 N (), 10-100 N (▼), 12-120 N (△  

and 16-160 N (■). Second order polynomials (see equation 1) fitted the data well. Error bars 

represent 95% confidence intervals, for clarity only positive error bars have been included. 

When error bars are not visible they are smaller than the symbols used to represent the 

data point. 
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Figure 5 –Mean total crack length plotted against the maximum load for loading frequencies 

of 1 Hz (), 10 Hz () and 100 Hz (▼).Each point in this graph represents the mean crack 

length of 8 measurements. The crack length is described by linear curve fits (see equation 

2). P-value for all lines were P<0.05 which indicates that lines are statistically significant. R2 

is the squared correlation coefficients and shows how well the lines fit the data point. R2 

value for loading frequencies of 1, 10 and 100 Hz are 0.87, 0.97 and 0.99, respectively. 

Uncertainty of estimates is presented in the form of 95% confidence intervals for clarity only 

positive error bars have been included. When error bars are not visible it is because they are 

smaller than the symbols used to represent the data point. 
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Figures and Tables 

Table I  

 

The total crack length is described by lines of the quadratic form for each load range. They 
are characterized by constants A, B and D. R2 is the squared correlation coefficient and 
shows how well the line fits the data points. If P<0.05 it indicates that the lines are 
statistically significant. 

 

Load range (N) Total crack length  (c) curve fit 

 

  
 

 

A B D R2 

 
       
       P-Value 

6-60 -0.32 0.32 0 1 
           
            0 

9-90 0.03 0.51 0 1 
            
            0 

10-100 0.12 0.56 0.1 1 
            
            0 

12-120 -0.1 0.75 0.63 1 
            
            0 

16-160 0.3 0.99 1.18 1 
            
             0 

Details of the constants from the mean total crack length against frequency curve fits.  
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