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INTRODUCTION 
 

Appetite strives to publish the highest quality science possible. To that 
end, we offer the following general guidelines on experimental design and 
statistical analysis. Authors are advised to consult statisticians for specific 
guidance concerning the design and analysis of their own work, especially if 
they have questions concerning the points raised in these guidelines. In 
addition, the development of many of the statistical approaches described 
here are themselves active research areas, which is another good reason to 
consult professionals.  
 
GENERAL ASPECTS of GOOD STATISTICAL PRACTICE   
 

Full data reporting. Disturbing issues in scientific integrity have been 
described in recent years, many of them having to do with statistical practice 
(Ioannidis, 2005; Landis et al., 2012; Simmons et al., 2011). Appetite seeks 
to minimize such issues. To this end, authors are urged to: [i] design the 
experiment, including the statistical approach, in advance; [ii] conduct the 
research – including the statistics – with integrity; and [iii] fully and clearly 
describe the design and execution of the experiments, including statistical 
methods, randomized or blinded aspects of the design, loss of data, etc.  

 
Planning for meta-analyses. Scientific meaning is rarely established 

by a single study, but rather by the cumulative effect of many similar studies. 
The state-of-the-art for the quantitative integration of similar studies is meta-
analysis (Borenstein et al., 2009; Cooper, 2010). Thus, a useful criterion for 
full data reporting is for authors to plan for the potential later inclusion of 
their work in meta-analyses, i.e., quantitative integration with other similar 
studies. To meet this criterion, all sample sizes, measures and outcome 
estimates (means, etc), and their variabilities should be reported. If this does 
not fit easily with the chosen style of presentation, it should be included as 
supplementary data.  

 
Descriptive, exploratory and analytic statistics. Descriptive 

statistics summarize the data, and analytic statistics assist in making 
inferences about the meaning of data. Between the two lies exploratory data 
analysis or data mining, which refers to attempts to understand the collected 
data using a variety of descriptive approaches with the goal of discovering 
unexpected possibilities that could guide future experiments (Tufte, 2001; 
Tukey, 1977; Wainer, 1997; Gelman, 2003). Wainer and Velleman’s (2008) 
exploration of blood glucose level graphing is an excellent example. Recently, 
nonparametric estimation methods have been used to quantify exploratory 
data analysis in novel ways (Harpole et al., 2014). Serendipity plays an 
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important role in science. Exploratory analyses, however, should be clearly 
labeled as such and described separately from analytic statistics.  

  
Analytic statistics. The two main parametric approaches to analytic 

statistics are based on the classical contributions to mathematical probability 
of Carl Friedrich Gauss (distributions of normal errors, least squares 
estimation, etc.) and Pierre-Simon LaPlace (central limit theorem, etc.) in the 
early 19th C. The first approach may be labeled the statistical-significance 
approach and the second, the estimation approach. Despite their 
common roots, these involve different analytic methods, different language, 
and different logical rules for data interpretation. For example, in the 
statistical significance approach, one tests hypotheses such as, “is there a 
difference between groups X and Y?,” whereas in the estimation approach, 
rather than framing specific hypotheses, one asks, “how large is the 
difference between groups X and Y?” Appetite accepts both approaches. 
They should not, however, be mixed in a single experiment. Some aspects of 
each approach are described below. Finally, nonparametric tools have been 
developed for both the statistical-significance approach and the estimation 
approach (nonparametric analytic statistics). 

 
Negative data. Appetite recognizes the need to publish well designed 

experiments that address interesting questions but fail to result in convincing 
outcomes. Not to do so inflates the meaning of positive reports and 
invalidates future meta-analyses. Negative data are rarely considered suitable 
for publication, however, if the experimental design does not include a 
suitable power analysis. 

 
 It is crucial to understand that "negative data" does not mean that the 

statistics show that there is no difference. Rather, it means only that the 
statistics failed to demonstrate evidence of a difference, which is very 
different. As has been pointed out repeatedly, “absence of evidence is not 
evidence of absence” (Alderson, 2004; Altman and Bland, 1995; Bramness et 
al., 2008; Hartung et al., 1985). Negative data should be described with this 
in mind.  

 
Statistics and meaning. Authors are encouraged to bear in mind that 

statistics are not in themselves the meaning of experiments, but are merely 
guides to meaning. Balance and perspective are necessary in interpreting 
statistical results. As already mentioned, individual experiments should not be 
over-interpreted. In addition, authors should realize that, paradoxically, 
rigorous design and statistics may obscure meaning. Corning and Tukey 
(1956) explained this with a metaphor. Imagine that the experimenter is on 
one side of the river, that meaning is on the other side, and that a bridge 
with two spans connects the former with the latter. The first span signifies 
the experimental design and statistical outcome, and the second span 
signifies the gulf between the experimental outcome and actual phenomena 
of interest. Now consider maneuvers that make statistical outcomes clearer, 
such as adding exclusion criteria to reduce sample variability or choosing 
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certain statistical models over others. These may shorten the first span, i.e., 
increase the precision of the experimental result, but they do not affect the 
width of the river and, therefore, lengthen the second span, i.e., increase the 
gulf between the outcome and its meaning. 

  
 
EXPERIMENTAL DESIGN. 
 

Prespecification. The experimental design should be specified in 
advance. This also applies to the statistical approach. Not to do so leads to 
false-positive results (Simmons et al., 2011). Therefore, analyses that are not 
prespecified should be identified and discussed as provisional.  

 
Measurement. Most experiments result in numerical measurements. 

Statistics should be appropriate for the scale of measurement used. For 
example, arithmetic means and most parametric analytic statistics are not 
appropriate for data derived from ordinal scales of measurement. If the 
underlying scale of a measurement is unclear, as is often the case with 
psychological rating schemes, data should be assumed to ordinal. Clinical 
scales that are validated only for detection of clinically relevant vs clinically 
irrelevant scores may be best considered categorical. 

 
Mathematical transformations (multiplying values by a constant, taking 

logs, etc.) can change measurements in ways distorting their meaning. Thus, 
only “permissible” transformations of data, i.e., those that do not distort the 
underlying scale, are recommended for the purpose of meeting the 
requirements of ANOVA or other statistical procedures. Transformations into 
percentages of baseline values are especially troublesome. These can render 
small measured absolute differences larger than large measured absolute 
differences.  Analysis of covariance is usually a better strategy to integrate 
baseline data (see Correlational approaches).  

 
Sarle (1997) gives an excellent introduction to these issues, including 

several examples from psychology experiments.  
 
Meta-Analyses. Authors performing meta-analyses are encouraged to 

adhere to the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA; www.prisma-statement.org). 

 
Clinical trials. Authors are encouraged to adhere to the Consolidated 

Standards of Reporting Trials (CONSORT; www.consort-statement.org). 
 

Robust statistical methods. Computers have permitted the 
development of a variety of novel and powerful statistical methods, 
commonly known as robust statistics (Wilcox, 2003). Two useful methods are 
computerized resampling and bootstrapping methods (Kirby & Gerlanc, 
2013). Authors are encouraged to consider these alternatives. 
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Extreme values / Outliers. Robust statistical methods to detect and 
exclude extreme values are appropriate and often especially useful in small-
sample studies. A simple method is to compute the probability of suspected 
extreme values using median standard scores: 

(x – group median)/1.48 MAD, 

where x is the suspect datum, MAD is the median absolute deviate (xi – 

group medianfor each xi in the group; note: 1.48 MAD ≈ the group’s 

standard deviation). Other robust methods are described by Rousseeuw and 
Croux, 1993. 
  

Reporting. Authors should clearly describe the design and execution of 
the experiments, including all measures, data manipulations, and data 
exclusions. All randomized or blinded aspects of the design should be 
mentioned. 

 
Data ordinarily should be reported in the form measured, using SI units 

(Le Système International d'Unités) where possible and clearly defined units 
otherwise. Care should be taken to report only significant figures; i.e., figures 
that reflect the precision of the measurements. Data shown in figures or 
tables should not be described in the text. If the data are in non-natural units 
(i.e., not g, J, etc.), not related to such units (e.g., effects measured with 
visual-analog scales are often relatable to amount eaten), or not in units with 

known biological or clinical meaning, then effect sizes, such as Cohen’s  
(Cohen, 1988, 1992), are accepted indices of meaningfulness. 

 
The measurement scale determines the form in which the data should 

be reported. To describe central tendency, means are appropriate for ratio or 
interval scales, medians for ordinal scales, and modes for nominal scales. To 
describe spread, standard deviations and related measures (see the 
Reporting sections in ANALYTIC STATISTICS) are appropriate for ratio or 
interval scales, and the index of dispersion is appropriate for interval or 
nominal scales. The index of dispersion (D) is defined: 

 

D = k(n
2
 – sum fi

2
) / n

2
 (k – 1), 

 
where k is the number of categories or intervals, n is the number of data 
points, and f is the number of data points in each of the categories, i = 1 to 
k. Many texts recommend ranges for interval data, but this is incorrect 
because ranges are differences between data points, which are not 
meaningful for interval-scale measures. 
 
 
SOME ISSUES in ANALYTIC STATISTICS 
 
The statistical-significance approach 
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Categorical parametric approaches: t-tests and ANOVA. The 
most familiar analytic statistics, t-tests and analysis of variance (ANOVA) are 
considered categorical parametric statistics; categorical because the 
independent variable is different levels of some nominal or categorical 
measure (e.g., two sexes) rather than a continuous dimension (e.g., age), 
and parametric because they are based on mathematics assuming the 
Gaussian (normal) distribution. Such statistics require interval- or ratio-scale 
measurements. They are designed to test whether there are differences in 
the means of two (t-tests) or more (ANOVA) groups.  

  
ANOVA approaches are applicable to a number of designs, including 

factorial designs, multivariate ANOVA, analysis of covariance, etc. 
 
Assumptions. For t-tests, computer modeling has demonstrated that 

the assumption that the data are drawn from Gaussian distributions is not 
crucial; there is little risk of error as long as the distributions are unimodal 
and fairly symmetric. This is not the case for ANOVA. Rather, the distributions 
of all groups should be approximately Gaussian unless sample size is about 
30 or more, their variances should be similar, groups sizes should be nearly 
equal (this is not crucial for one-way ANOVA), and, for repeated measures 
designs, the sphericity criterion should be met. Most computer statistics 
packages include tests of these criteria. 

 
Note that ANOVA designs in which the independent variable arises from 

an ordinal, interval or ratio scale of measurement may also be analyzed with 
correlational approaches. The choice of which is more appropriate usually 
depends on the specific hypotheses being tested. Usually only one or the 
other type of analysis should be presented. 

 
If the assumptions of parametric categorical approaches are not met, 

non-parametric approaches are called for (see Nonparametric 
approaches).  

 
Interaction effects. Factorial ANOVA are almost universally analyzed 

by partitioning the variance among main effects, interaction effects and error, 
although it is entirely possible to partition variance without interactions. The 
choice whether to include interaction effects should be an educated one: [i] 
because interactions are defined as departures from additivity, unless the 
factors are themselves additive, the interaction makes little sense; [ii] 
similarly, if the independent variable is truly categorical, whether its levels are 
additive or not is impossible to determine; and [iii] any transform of the data 
can produce, or prevent, interactions. These issues are especially problematic 
in analyses of synergy (Caudle and Williams, 1993; Geary, 2013; Winer, 
1971). 

 
ANOVA follow-up. ANOVA and related approaches to determine 

statistical significance in experiments involving more than two groups are 
known as omnibus procedures because they yield overall estimates of 
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statistical significance. These usually require follow-up tests to identify the 
specific source(s) of significance. A crucial aspect of these follow-ups is that 
they must protect the experiment- or analysis-wide  (see Multiplicity). 

 
Multiplicity. If several measures are used to test a single hypothesis 

(for example, different measures of the same underlying process), these 
should be regarded as a single family of tests, and it is necessary to maintain 

or protect the family-wide type 1 error rate (, the probability of obtaining 
statistical significance when in fact there is no effect). In the absence of a 
hypothesis, descriptive statistics are preferred. 

 
Type-1 error rates increase exponentially with the number of tests of 

the hypothesis (n). This is easily calculated by subtracting the probability of 
for making no type-1 errors from 1:   

 

P[1 or more type-1 errors] = 1 – (1 - )
n
. 

 
For example, if a brain-imaging study tests the hypothesis that a 
manipulation will increase neural activity in the limbic system, and 13 limbic 

areas are measured, then P[1 or more type-1 errors]  0.50.  

 
 There are two strategies to deal with the problem of multiplicity: [i] to 

maintain (or “protect”) the experiment (or analysis)-wide type 1 error rate 

() or [ii] to maintain the false-discovery rate.  
 
A number of follow-up tests have been developed in order to maintain 

(or “protect”) the experiment (or analysis)-wide type-1 error rate have been 
derived. Some of these, however, have been determined to be defective and 
should not be used; these include multiple t-tests, (Fisher’s) LSD test, and 
Dunnett’s test. Others are valid, but unnecessarily “conservative,” i.e., have 
poor power. This is the case for both the Tukey HSD test and the Bonferroni-
corrected t-test. Hochberg (1988) and Rom (2013) describe simple, more 
powerful variations of Bonferroni-corrected t-tests.  

 
Controlling the false-discovery rate, rather than the type-1 error rate, is 

a powerful and increasingly popular approach to the multiplicity problem. 
Curran-Everett (2000) provides an introduction.  

 
It is important to note that all the Bonferroni variations and the false-

discovery-rate strategies can be applied to both parametric and 
nonparametric analyses. Finally, it is important to appreciate the difference 
between simple and complex follow-up tests: the former are valid only to test 
individual group means; the latter must be used to test combinations of 
means, an issue that arises frequently (see Interactions & complex 
follow-up tests). Note that computerized statistical packages offer only 
simple follow-up tests.  
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Interactions & complex follow-up tests. Interaction tests arise in 
designs comparing in two or more experimental effects. These situations 
require an explicit test of the difference in the two effects; it does not suffice 
to show that one effect is significant and the other is not. The appropriate 
test is an example of a complex follow-up test because it involves comparing 
two combinations of means (“the difference of differences”), i.e., comparison 
of two effects, where each effect is a difference between two means, such as 
control manipulation vs. test manipulation (for discussion, see: Nieuwenhuis 
et al., 2011). Computerized statistical packages do not offer such tests. They 
can be done with the methods mentioned under Multiplicity.  

 
Correlational approaches. Correlational or dimensional analyses are 

ordinarily the most appropriate approach for bivariate and multivariate data. 
As for categorical analyses, tools for both the statistical-significance approach 
(described here) and the estimation approach are available.  

  
If both the independent and dependent variables are generated from 

interval- or ratio-scale measurements (see Measurement), Pearson 
correlational analysis or corresponding multiple regression approaches should 
be used. If the design includes baseline measurements, these usually should 
be included as a covariate in an analysis of covariance. Logistic regression 
enables correlational analysis when the dependent variable is dichotomous, 
and Poisson regression, when the data describe the rate of occurrences of 
events in time. 

 
Multiple groups should not be included in a single correlation unless 

each group appears to have the same slope and intercept as the overall 
correlation.  

 
Collapsing dimensional data into categories to enable categorical 

analysis approaches (e.g., ANOVA) should be avoided. 
 
Planned comparisons. Typical ANOVA follow-up tests for differences 

between pairs (Tukey’s HSD test, etc.) often involve a large number of (if 
there  are k groups in the ANOVA, there are C(k, 2) = k! / [2 (k-2)!] pairwise 

contrasts). Protecting the analysis-wide  leads to each comparison having 
rather low power. If several of these differences are not of interest, planned 
comparisons provide a more powerful alternative. A simple and adaptable 
planned-comparison method is to design the necessary comparisons and test 
them using, for example, the Hochberg or Rom variations of the Bonferroni 
method (see Multiplicity). In the planned-comparisons approach, ANOVA is 
used simply to generate an experiment-wide SED, not to assess overall 
significance, according to the formula: 

SED = [ 2 MSerror / n]
1/2

   (n = n/group). 
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Power. Power refers to the probability of detecting an effect of a 

certain size. In the statistical-significance approach, power is defined as 1 - , 

where  is the probability of a type 2 error, i.e., not detecting a significant 

effect when there is a group difference. Experiments should be designed with 
adequate power. Underpowered experiments reduce the probability both [i] 
true effects will be detected, and [ii] that significant results reflect true 
effects (Button et al., 2013). Note also that replicating significant results is 
expected to require larger sample sizes than used in the original study 
(Button et al., 2013).  

  
Reporting. Results of categorical statistical tests should be reported in 

standard detail; i.e. for ANOVA, report the F value, degrees of freedom, and 
probability: F(x,x,) = x.xx, P = 0.xxx. A precision of 0.001 ordinarily suffices 
for reporting statistics. Sample sizes should be given, for example in figure 
captions. If tables of statistical outcomes are appropriate, these should be 
given as supplementary data. 

 

Reporting the exact P value rather than P < 0.05 (if 0.05 is the  level) 
is preferred because it provides more information. However, if a sequentially 
rejective approach such as the Hochberg-Bonferroni procedure (mentioned in 
Multiplicity) is used, then P < 0.05 rather than exact P values should be 
reported. The reason for this is that in these procedures the differences are 
ordered by their magnitudes, which changes their probabilities of exceeding 

 levels, so that for all but the smallest difference, the  associated with the 
specific comparison is less than 0.05.  

 
Pearson-type correlations should be reported with r or r2 as well as the 

intercept and the signed slope, with its standard error (SE), and significance. 
Multiple regressions should be reported with both unstandardized slopes, 

each with its SE, and standardized () slopes as well as the significance.  
 
Reporting variability brings several choices. The best choice is to report 

both the standard deviation as a measure of population spread and 95% 
confidence interval (assuming  = 0.05) as a measure of the accuracy of the 

estimation of the mean. Carter (2012) describes the advantages of the 95% 
confidence interval over the standard error of the mean (SEM). Note that if 
data derive from repeated-measures designs, both SD and the usual SEM or 
95% confidence interval conflate within- and between-subject variability; in 
such cases, standard errors of the difference (SED) or repeated-measures 
confidence intervals are more meaningful. Confidence intervals and standard 
errors of the estimate (SEE) are useful measures of the variability of 
correlated data.  
 
The estimation approach.  
 

Point and interval estimates. In the estimation approach is based on 
estimates of the values of the important experimental outcomes and their 
precision, i.e., the probability that the estimates fall in a certain range (the 
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confidence interval; typically the 95% confidence interval). These two 
statistics are often called point and interval estimates (Cumming, 2012, 
2014). Often the parameter estimated is the effect size, a dimensionless 
statistic that ranges from 0 to 1, with 0.2, 0.5, and 0.8 generally considered 
small, medium, and large effects, respectively (Cohen, 1988, 1992).  

 
The estimation approach requires larger sample sizes to function than 

the statistical significance approach. Confidence intervals become quite large 

in small-sample experiments. Cumming (2014) states that if n  10, 
confidence intervals are usually so large as to not be interpretable.  

 
Classical probability theory enters the estimation approach in the 

computation of confidence intervals. Thus, the two methods are 
mathematically interconvertible (although this is often not trivial). Altman and 
Bland (2011) described some methods for this. As described in 
Interpretation, however, the significance approach and the estimation 
approach are not epistemologically interconvertible.  

 
Interpretation. In recognition that a single result is unlikely to be 

dispositive as to meaning, inferences are based on estimates and their 
precisions in a continuous way. Both the point and the interval estimates 
should be included in the interpretation. The underlying assumptions are [i] 
that the particular outcome of the experiment is just one of an infinite 
number of outcomes from the underlying sampling distribution, and [ii] that 
the best use of the data is in a future meta-analysis. Statistical significance is 
not assessed, and no particular importance is given to outcomes that would 
be statistically significant. Graphical displays are often especially effective, 
such as the two-dimensional cat’s eye representation combining the length of 
the confidence interval and the shape of its sampling distribution.  

 
Repeated-measures designs. Confidence intervals for repeated 

measures designs should be computed separately from those of the 
individual groups. Blouin and Riopelle (2005) and Masson and Loftus (2003) 
describe methods.  

 
Power. Estimation approaches do not involve , so there is no  and 

statistical power cannot be calculated. Instead, one specifies the size of the 
maximum confidence interval desired and uses the expected variance of the 
sample to calculate the sample size required to yield it (Maxwell et al.,  2008; 
Cummings, 2014). 

 
Reporting. In the estimation approach, point estimates (i.e., the 

sample means, etc.) and interval estimates (usually 95% confidence 
intervals) are reported. Group standard deviations and sample sizes should 
also be reported.  

 
Nonparametric approaches 
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Nonparametric approaches, i.e., those that are not based on non-
Gaussian probability models, are used for categorical- (nominal-) or ordinal-
scale data or for interval-scale data that fail to meet the assumptions for 
parametric tests. Nonparametric tests are generally less susceptible to type-1 
errors, but more susceptible to type-2 errors. 

 
 Statistical-significance approach. For categorical (nominal) 

measurements, the variations on the chi-squared test are usually the best 
choice: [i] determine whether there is are differences among the expected 
frequencies and the observed frequencies in one or more categories related 
to a single independent variable; [ii] McNemar chi-squared test for 
differences among the expected frequencies and the observed frequencies if 
there are paired categories, again with one independent variable; [iii] the 
Mantel-Haenszel chi-squared for differences among the expected frequencies 
and the observed frequencies in one or more categories related to two 
independent variables. These tests break down if the expected or observed 
frequencies in individual cells are  6. In this situation, Fisher’s exact test can 

replace the chi-squared test. 
 
The chi-squared distribution upon which the test is based comes up in 

many more contexts; for example, the expected value of sample variances 
follows the chi-squared distribution.  Thus, the F distribution, which is the 
basis of ANOVA, is the ratio of two chi-squared distributions. 
 

For ordinal (ranked) data, the Mann–Whitney–Wilcoxon test is an 
appropriate nonparametric version of t-tests for both independent and non-
independent samples. It tests for differences in the central tendency (not 
means) of two groups. This test can be more powerful than the t-test if, for 
example, the data include extreme values. It is important to note that not all 
computerized statistics packages compute this statistic accurately (Bergmann 
et al., 2000).  The Kruskal-Wallis and Friedman and tests are appropriate 
nonparametric versions of one-way ANOVA for independent samples and 
repeated-measures samples of ranked data, respectively. 

  
Nonparametric approaches also require protection of the experiment- or 

analysis-wide  (see Multiplicity). 

  
Spearman’s rho is an appropriate nonparametric measure of association 

if one or both variables is an ordinal-scale measurement. 
 
Reporting. Because non-parametric tests use the ordinal structure of 

the data, central tendency should be reported with medians and are used. If 
the data are interval or ratio scale measures, spread may be reported with 
the MAD (see Extreme values) or ranges, usually the semi-interquartile 
range. 

 
The chi-squared test is an oddity: both the degrees of freedom and the 

sample size are required to specify the probability level, so both should be 
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reported, along with the value of the test statistic and its probability. The 
Mann–Whitney–Wilcoxon, Kruskal-Wallis and Friedman tests depend only on 
the group sizes, so these should be reported together with and the test 
statistics and their probabilities. The significance of Spearman’s rho is tested 
with a t-test and reported as described above. 

 
Estimation approach. Nonparametric estimation methods are not as 

advanced as the nonparametric significance tests described above, although 
a number are under development (Brown and Levine, 2007; Powell, 2003, 
2003; Soltanian and Hossein, 2012; Wang et al., 2012). Methods based on 
kernel-density estimation (Parzen, 1962; Rosenblatt, 1956) are beginning to 
appear more often in both exploratory data analysis (e.g., Harpole et al., 
2014) and in analytic statistics (e.g., Miladinovic et al., 2014). 
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